Zeitschrift: Botanica Helvetica

Herausgeber: Schweizerische Botanische Gesellschaft

Band: 94 (1984)

Heft: 1

Artikel: Sauerstoffkonsum und Versorgung der Rhizome von Acorus Calamus

L., Glyceria maxima (Hartmann) Holmberg, Menyanthes trifoliata L., Phalaris arundinacea L., Phragmites communis Trin. und Typha latifolia

L.

Autor: Studer, Christof / Brändle, Roland

DOI: https://doi.org/10.5169/seals-65861

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sauerstoffkonsum und Versorgung der Rhizome von Acorus Calamus L., Glyceria maxima (Hartmann) Holmberg, Menyanthes trifoliata L., Phalaris arundinacea L., Phragmites communis Trin. und Typha latifolia L.

Christof Studer und Roland Brändle

Pflanzenphysiologisches Institut der Universität, Altenbergrain 21, CH-3013 Bern, Schweiz

Manuskript eingegangen am 16. Januar 1984

Abstract

Studer, Ch., and Brändle, R. 1984. Oxygen consumption and availability in the rhizomes of *Acorus Calamus* L., *Glyceria maxima* (Hartmann) Holmberg, *Menyanthes trifoliata* L., *Phalaris arundinacea* L., *Phragmites communis* Trin. and *Typha latifolia* L. Bot. Helv. 94: 23–31.

Acorus Calamus L., Glycerya maxima (Hartmann) Holmberg, Menyanthes trifoliata L., Phalaris arundinacea L., Phragmites communis Trin. and Typha latifolia have lacunar systems which allow efficient O_2 transport from the surface air to the rhizomes. O_2 is supplied mainly by transport through the shoot. The O_2 content of the surroundings and, therefore, the O_2 uptake through the surfaces of the rhizomes have no influence on the internal O_2 concentration. When the rhizomes are detached the internal O_2 concentration decreases to the limit of detection despite the air saturated environment. The rate of the O_2 decrease is temperature and species dependent.

Einleitung

Verschiedentlich wurden in Rhizomen O₂-Konzentrationen gemessen, die eine aerobe Atmung und dadurch eine effiziente Ausnutzung der Atmungssubstrate zuließen; dies obwohl in ihrer Umgebung kaum O₂ vorhanden war (Laing 1940, Coult and Vallance 1958). Durch den O₂-Gradienten zwischen Rhizom und Umgebung kann sogar O₂ hinausdiffundieren und zur Oxidation von für Pflanzen toxischen Stoffe beitragen (Hook und Crawford 1978, Armstrong 1979, Haldemann und Brändle 1983). Voraussetzung für eine ausreichende O₂-Versorgung des Rhizoms ist ein gut ausgebildetes Lakunarsystem (Armstrong 1972, Coult 1964). Der Transport von O₂ in das bzw. von CO₂ aus dem Rhizom kommt in vielen Fällen durch Diffusion entlang eines O₂- bzw. CO₂-Partialdruckgradienten innerhalb des Lakunarsystems zustande (Evans und Ebert 1960, Armstrong und Wright 1976, Steinmann und Brändle 1981).

In der vorliegenden Arbeit wird untersucht, ob bei Acorus Calamus L., Glyceria maxima (Hartmann) Holmberg, Menyanthes trifoliata L., Phalaris arundinacea L., Phragmites communis Trin. und Typha latifolia L. erwartungsgemäß morphologische Anpassungen in Form von Lakunarsystemen vorhanden sind, die zu einer Vermeidung eines O₂-Defizits führen. Als erstes werden diese Systeme der Rhizome durch Raster-Elektronenmikroskop-(REM)-Aufnahmen und durch die Bestimmung der Gasraumanteile am Rhizomvolumen charakterisiert. Messungen der Gaswegigkeiten von Sproß und Rhizom sollen Auskunft über einen möglichen Gastransport in den Lakunarsystemen geben. Durch Bestimmungen der Atmungsraten und der O₂-Aufnahmeraten der Rhizome aus ihrer Umgebung lassen sich die Anteile des über die Sprosse transportierten O₂ abschätzen. Mit weiteren Experimenten wird abgeklärt, ob der O₂-Gehalt der Rhizomumgebung und die Temperatur die O₂-Konzentration in den internen Gasräumen der Rhizome beeinflussen kann. Zudem wird versucht, die Bedeutung der internen Gasräume als O₂-Reservoir für die Atmung abzuwägen.

Material und Methoden

Sämtliche Pflanzen wurden von ihrem natürlichen Standort als behalmte oder beblätterte Rhizomstücke in unsere Freilandkultur verpflanzt und weiter kultiviert. Als Kulturgefäße dienten Eternitbecken, in denen die Halme oder Blätter immer über die Wasseroberfläche hinausragten. Zur Ernte wurden neu ausgetriebene, besproßte Rhizomstücke behutsam freigelegt und abgetrennt. Die Rhizome wurden sorgfältig von der restlichen Erde befreit und mit Leitungswasser gespült. Die Wurzeln wurden weggeschnitten.

Für die REM-Aufnahmen wurden mit einer entfetteten Rasierklinge kleine Gewebestücke hergestellt und in 1%igem und nachfolgend in 3%igem Glutaraldehyd für je 1 h fixiert. Zur Entwässerung durchliefen sie eine Äthanolreihe. Anschließend wurde das Äthanol durch Pentylacetat ersetzt. Die Trocknung erfolgte in einem «Critical Point Drying Apparatus» (Harry Stranger LTD, Elstree, Herts, England), wobei das Pentylacetat durch flüssiges CO₂ ersetzt wurde. Anschließend wurden die Präparate mit Gold «gesputtert» und in einem REM (Jeol JSM-T300, Tokyo Japan) beobachtet und photographiert.

Zur Bestimmung des Gasraumes wurde das Frischgewicht von 0,5-1 cm langen Rhizomstücken gemessen. Nach einer Vakuuminfiltration mit Leitungswasser wurde das Gewicht erneut bestimmt. Aus der Differenz und dem Volumen des Rhizomstücks konnte der interne Gasraum berechnet werden.

Für die Messung der Atmungs- und O₂-Aufnahmeraten wurden die Rhizome durch kurzes Eintauchen in 80 %iges Äthanol und 1 min Bad in 0,1 %ige HgCl₂-Lösung oberflächensterilisiert. Bei den Experimenten, bei denen die internen O₂-Konzentrationen der Rhizome gemessen wurden, und bei der Bestimmung der O₂-Aufnahmeraten über die Rhizomoberfläche wurden die Schnittflächen der Rhizome abgedichtet. Als Dichtungsmasse diente ein Vaseline-Bienenwachs-Gemisch von 3:1. Als Inkubationsmedium wurde jeweils ein 50 mM Phosphatpuffer pH 7,0 verwendet.

Die Methode der Entnahme der Gasproben und O₂-Bestimmung wurde von Steinmann und Brändle (1981), diejenige zur Bestimmung der Gaswegigkeit von Haldemann und Brändle (1983) übernommen.

Die Messeinrichtung zur Bestimmung der O₂-Aufnahmeraten von Rhizomen basiert auf einer Methode, wie sie Steinmann und Brändle (1981) beschrieben haben. Bei *Glyceria, Menyanthes, Phalaris, Phragmites* und *Typha* wurde der Sproß in natürlichem Zustand belassen. Bei *Acorus* war eine zuverlässige Abdichtung zwischen den einzelnen Blättern und dem Bohrloch des Zapfens nicht möglich. Aus diesem Grunde wurden die Rhizome dicht hinter dem letzten Blatt abgetrennt und durch das Bohrloch geschoben. Mit Hilfe eines auf die Rhizome aufgesetzten Gummischlauches, der über das Wasserbad hinaus ragte, wurde ein möglicherweise stattfindender O₂-Transport von der Atmosphäre in die Rhizome gewährleistet.

Nach einer O₂-Aufnahmemessung der Rhizome mit intaktem Sproß oder aufgesetztem Gummischlauch wurde der sich in der Küvette befindliche Rhizomteil abgetrennt. Nachdem die Inkubationslösung erneuert war, konnte das Rhizom mit Hilfe eines am nun lochfreien Zapfen befestigten Drahtes in der Küvette aufgehängt und die Messung erneut gestartet werden. Die Meßdauer betrug jeweils 3 h. Vor und nach jeder Meßserie wurde die Elektrode auf ihre Stabilität geprüft, wobei auch eine mangelhafte Abdichtung der Küvette oder ein mikrobieller O₂-Verbrauch in der Inkubationslösung erfaßt werden konnte.

Die Rhizome wurden, nach Bestimmung der O₂-Aufnahmeraten, über Nacht in feuchter Atmosphäre bei 20°C gelagert. 24 h nach der Ernte wurden die Rhizome erneut oberflächensterilisiert und anschließend ihre Atmungsraten bestimmt. Die Messungen der Atmungsraten wurden mit Hilfe großer Warburggefäße auf dem Respirometer (Gilson Medical Electronics, Middleton, WI, USA) durchgeführt. Kontrollversuche haben ergeben, daß die Atmungsraten der Rhizome, mit Ausnahme derjenigen von *Menyanthes*, in den ersten 24 h nach der Ernte konstant bleiben. Bei den Rhizomen von *Menyanthes* nimmt die Atmungsrate 24 h nach der Ernte stark zu. Für die Berechnung der über die Sprosse transportierten O₂-Anteile wurden die Atmungsraten als Basis verwendet, die direkt nach der Ernte bestimmt wurden.

Die Messung der Abhängigkeit der O₂-Aufnahmeraten von 0,5–1 mm dicken Rhizomscheiben vom O₂-Gehalt der Umgebung erfolgte in einer Rankelektrode und wurde von Brändle (1980) bereits beschrieben.

Resultate

Acorus Calamus L. und Menyanthes trifoliata L. besitzen sowohl im Cortex als auch im Zentralzylinder gut ausgebildete Lakunarsysteme (Abb. 1). Die einzelnen Gasräume sind meist nur durch eine einzelne Zellreihe voneinander geteilt, wodurch die meisten Zellen an einen oder mehrere der Lakunarräume grenzen. Die Rhizome von Glyceria maxima (Hartmann) Holmberg und Phragmites communis Trin. sind hohl und in Nodien und Internodien gegliedert. Im Cortex von Glyceria sind mehrere kleinere Gasräume zu erkennen, während Phragmites einzelne große Gaskanäle aufweist. Der Zentralzylinder scheint bei beiden Pflanzen recht dicht zu sein und grenzt nach innen an den großen zentralen Gasraum. Das Lakunarsystem der Rhizome von Typha latifolia L. und Phalaris arundinacea L. beschränkt sich hauptsächlich auf den Cortex. Phalaris besitzt einzelne große Gaskanäle, Typha zahlreiche kleinere Gasräume. Die Zentralzylinder dieser Rhizome sind, mit Ausnahme eines kleinen zentralen Gasraums bei Phalaris, recht dicht.

In der Gaswegigkeit der sechs untersuchten Sumpfpflanzen bestehen keine Unterschiede (Abb. 2). Bereits nach 20 min kann das Gas im internen Gasraum der Rhizome über den Sproß ausgetauscht werden. Auffallend ist die bei *Phalaris* verglichen mit den übrigen Pflanzen niedrige O₂-Konzentration, sowohl zu Beginn als auch am Schluß des Experiments.

Der Anteil des internen Gasvolumens am Gesamtvolumen der Rhizome liegt zwischen 20% und 60% (Tab. 1). Glyceria und Phragmites, deren Rhizome hohl sind, weisen den größten Anteil an internen Gasvolumen auf. Acorus und Menyanthes liegen zusammen mit Typha in der Mitte, während Phalaris den kleinsten Anteil besitzt.

Im internen Gasraum sämtlicher Rhizome kann sowohl bei belüfteter als auch bei N_2 -begaster Rhizomumgebung O_2 nachgewiesen werden (Tab. 1). Der O_2 -Gehalt der Rhizomumgebung hat keinen Einfluß auf die interne O_2 -Konzentration der Rhizome. Bei Acorus, Glyceria, Phragmites und Typha kann ein Effekt der Temperatur auf die interne O_2 -Konzentration beobachtet werden. Bei Rhizomscheiben von Typha liegt der

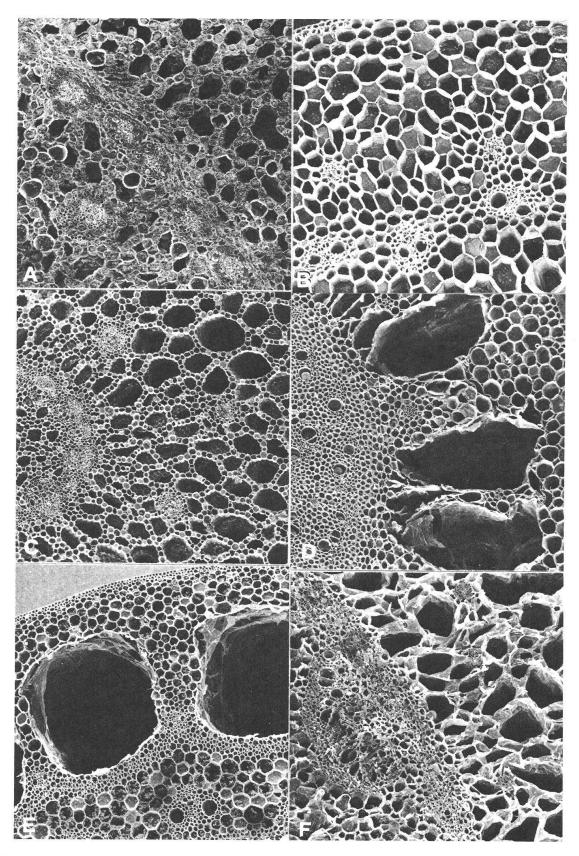


Abb. 1 REM-Aufnahmen von Querschnitten durch die Rhizome. A) Acorus Calamus L. (×75). B) Glyceria maxima (Hartmann) Holmberg (×75). C) Menyanthes trifoliata L. (×35). D) Phalaris arundinacea L. (×60). E) Phragmites communis Trin. (×60). F) Typha latifolia L. (×75).

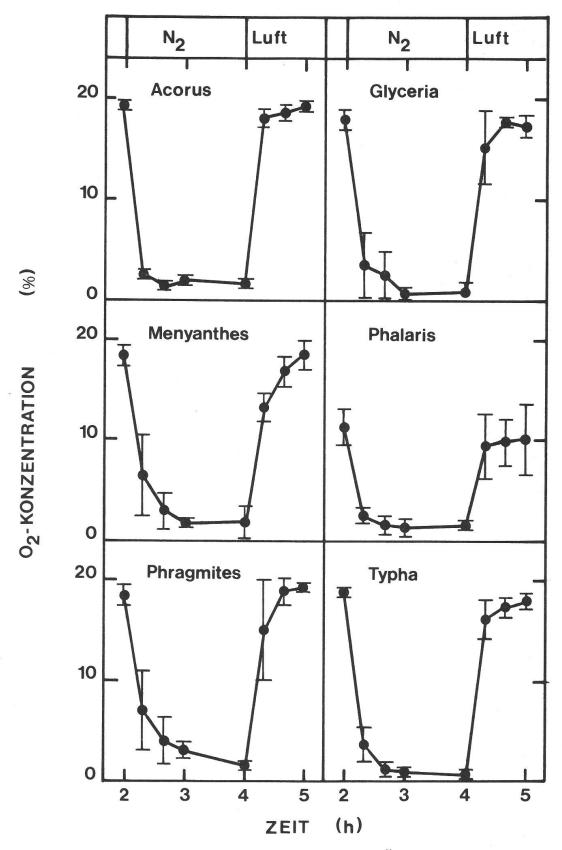


Abb.2 Interne O_2 -Konzentration sproßtragender Rhizome im Übergang von Luft zu N_2 und umgekehrt in der umgebenden Gasphase des Halms. Rhizom in Wasserphase. $T=20\,^{\circ}\text{C}$, Mittelwert aus 3 Messungen \pm Standardabweichung.

für die Atmung limitierende O_2 -Gehalt der Rhizomumgebung unterhalb 2,6 mg O_2 /l oder entsprechenden 6,3 % O_2 in der Gasphase. Die Atmung der übrigen Rhizome ist erst unterhalb 1,5–0,7 mg O_2 /l oder 3,8–1,7 % O_2 in der Gasphase vom O_2 -Gehalt ihrer Umgebung abhängig.

Der O₂-Vorrat in den internen Gasräumen der Rhizome wird, trotz der belüfteten Rhizomumgebung, von sämtlichen Rhizomen bei 20 °C und 5 °C fast vollständig aufge-

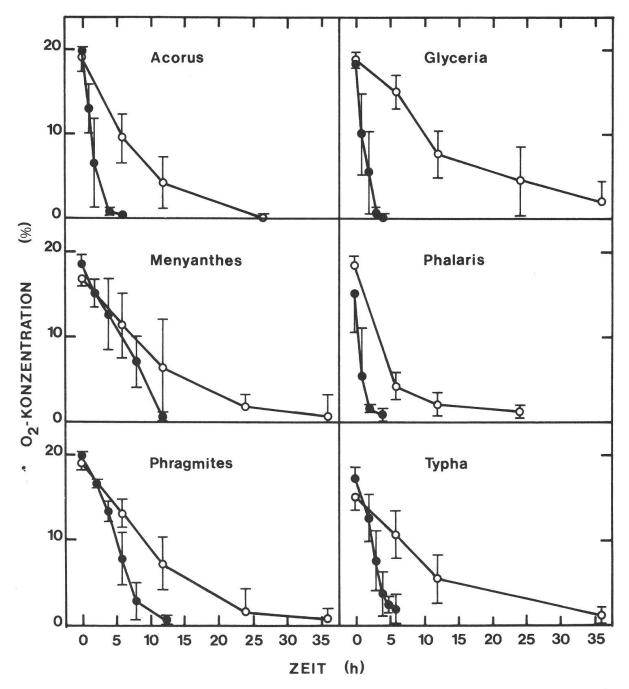


Abb. 3 Zeitabhängige Veränderung der O₂-Konzentrationen im Rhizom nach Entfernung der Sprosse bei belüfteter Rhizomumgebung. 20°C (●——●) und 5°C (○——○), Mittelwert aus 3 Messungen ± Standardabweichung.

Tab. 1. Gasraumanteil in (%) vom Rhizomvolumen. Mittelwert aus 5 Messungen \pm Standardabweichung. – Interne O_2 -Konzentration (%) bei N_2 - und luftbegaster Rhizomumgebung von Rhizomen mit intaktem Sproß bei 25°C und 5°C. Mittelwert aus 3 Messungen \pm Standardabweichung. – O_2 -Konzentration, unterhalb welcher die Atmungsraten abnehmen, in (mg/l) und berechnet in Vol-%. T = 20°C.

		Acorus	Glyceria	Menyanthes	Phalaris	Phragmites	Typha		
	Int. Gasraum (%):								
		$36,1 \pm 2,4$	$50,9 \pm 4,4$	$43,6 \pm 6,7$	$22,3 \pm 5,5$	$58,3 \pm 3,8$	$40,4 \pm 6,7$		
	Int. O ₂ -Konzentration (%):								
25°C	N ₂ Luft	$16,9 \pm 0,4$ $16,2 \pm 0,8$	$16,7 \pm 0,5$ $16,2 \pm 2,0$	$12,9 \pm 5,2$ $17,0 \pm 1,4$	$11,6 \pm 0,5$ $12,0 \pm 1,1$	$16,7 \pm 0,5$ $16,1 \pm 0,8$	$16,6 \pm 1,7$ $15,6 \pm 0,4$		
5°C	N_2 Luft	$18,3 \pm 0,7$ $19,7 \pm 0,8$	$19,5 \pm 0,8$ $19,7 \pm 0,3$	$19,5 \pm 0,8$ $19,7 \pm 0,3$	$15,4 \pm 2,6$ $13,6 \pm 2,9$	$19,2 \pm 0,4$ $18,3 \pm 0,6$	$18,5 \pm 0,4$ $18,9 \pm 0,4$		
	Minimale O ₂ -Konzentration für optimale Atmungsrate:								
	mg/l Vol-%	1,4 3,4	0,8 1,9	0,9 2,1	1,0 2,5	1,1 2,7	2,6 6,3		

Tab. 2. O_2 -Aufnahmeraten aus luftgesättigter Rhizomumgebung von sproßtragenden und sproßlosen Rhizomen bei 20°C im Vergleich zur Atmungsrate (µg O_2 /g FG h). O_2 -Transport durch den Sproß in % der Atmungsrate. Mittelwert aus 3 Messungen \pm Standardabweichung.

	O ₂ -Aufnahmeraten		Atmungsrate	O ₂ -Transport durch	
	aus Rhizomumgebung		des Rhizoms	den Sproß in %	
	mit Sproß ohne Sproß		ohne Sproß	der Atmungsrate	
Acorus	5 ± 3	11 ± 4	72 ± 11	93 ± 5	
Glyceria	5 ± 3	11 ± 4	72 ± 28	93 ± 2	
Menyanthes Phalaris	11 ± 6 13 ± 7	23 ± 9 25 ± 3	51 ± 7 93 ± 6	76 ± 14 86 ± 7	
Phragmites Typha	$\begin{array}{c} 2\pm 3 \\ 6\pm 1 \end{array}$	14 ± 7 13 ± 3	81 ± 10 67 ± 13	97 ± 5 90 ± 3	

braucht (Abb. 3). Die Zeitspanne, die dazu nötig ist, hängt einerseits von der Pflanze, anderseits von der Versuchstemperatur ab. Bei 20°C ist der O₂-Vorrat in den internen Gasräumen der Rhizome von *Phalaris* nach 1–2 h praktisch erschöpft. Bei *Glyceria* reicht dieser für 2–3 h, bei *Acorus* für 3–5 h und bei *Typha* für 4–5 h. *Phragmites* mit 8–12 h und *Menyanthes* mit ca. 12 h vermögen am längsten mit ihrem O₂-Vorrat auszukommen. Bei einer Versuchstemperatur von 5°C reicht der O₂-Vorrat länger aus als bei 20°C. Bei *Acorus*, *Menyanthes*, *Phalaris* und *Typha* ist dieser nach 12–24 h fast vollständig aufgebraucht, während er bei *Glyceria* und *Phragmites* erst nach 24–36 h erschöpft ist.

Aus Tab. 2 wird ersichtlich, daß bei einer Versuchstemperatur von 20°C die Atmungsraten aller sechs Sumpfpflanzen höher sind als deren O₂-Aufnahmeraten aus der luftgesättigten Rhizomumgebung. Dies gilt sowohl für die O₂-Aufnahme besproßter wie auch nicht besproßter Rhizome. Der Anteil des über den Sproß transportierten O₂ an der Atmungsrate liegt, mit Ausnahme von *Menyanthes*, bei allen Versuchspflanzen zwischen 80% und 100%.

Diskussion

Die REM-Bilder (Abb. 1) von Querschnitten durch die Rhizome dokumentieren bei sämtlichen sechs Sumpfpflanzenrhizomen gut ausgebildete Lakunarsysteme. Ihr Bau ist von Art zu Art verschieden, und die Volumenanteile ihrer Gasräume am gesamten Rhizomvolumen variieren stark (Tab. 1). Aus den Resultaten des Gasaustauschexperimentes (Abb. 2) wird ersichtlich, daß die Diffusionsgeschwindigkeit der Gase innerhalb der Lakunarsysteme bei allen untersuchten Pflanzen hoch ist. Damit ist die Möglichkeit gegeben, den O₂-Bedarf ihrer Rhizome durch einen O₂-Transport über den Sproß zu decken.

Bei einer praktisch O₂-freien Rhizomumgebung können in den internen Gasräumen der besproßten Rhizome beträchtliche O₂-Konzentrationen festgestellt werden (Tab. 1), was darauf hindeutet, daß in diesem Falle der gesamte O2-Bedarf durch einen Transport über die Sprosse gedeckt wird. Werden die Sprosse von den Rhizomen abgetrennt, so fällt ein O₂-Transport über den Sproß in die Rhizome dahin. Die O₂-Konzentrationen sinken, auch bei luftgesättigter Rhizomumgebung, bei sämtlichen Rhizomen, bei 20°C und 5°C, nach kürzerer oder längerer Zeit, auf ein Niveau nahe oder unter der Nachweisgrenze ab (Abb. 2). Einer der wichtigsten Faktoren für die langsamere O₂-Verarmung bei tieferen Temperaturen ist sicherlich eine tiefere Atmungsrate. Die Rhizomoberfläche stellt offenbar eine beträchtliche O₂-Diffusionsbarriere dar, so daß der über die Rhizomoberfläche aufgenommene O2 den Bedarf der Atmung nicht annähernd zu decken vermag. Dies wird durch den Vergleich der gemessenen O₂-Aufnahmeraten der sproßlosen Rhizome mit ihren Atmungsraten bestätigt (Tab. 2). Der interne Gasraum, selbst wenn er wie bei Glyceria und Phragmites um die 50% des Rhizomvolumens ausmacht, kommt folglich nicht als langzeitiges O2-Reservoir für die Atmung in Frage. Dieselbe Beobachtung haben auch Steinmann und Brändle (1981) für Schoenoplectus lacustris (L.) Palla. und Crawford (1982) für weitere Sumpfpflanzen gemacht.

Der O₂-Gehalt der Rhizomumgebung (Tab. 1) und damit die O₂-Aufnahme über die Rhizomoberflächen hat keinen Einfluß auf die interne O₂-Konzentration. Die Berechnungen des über den Sproß transportierten O₂-Anteils an der Atmungsrate zeigen, daß alle Versuchspflanzen bei 20°C den größeren Teil des benötigten O₂ über den Sproß beziehen, selbst dann, wenn das Medium, in dem sie sich befinden, luftgesättigt ist (Tab. 2). Einen ähnlich hohen Anteil des über den Sproß transportierten O₂ bestimmten Steinmann und Brändle (1981) und Haldemann und Brändle (1983) bei *Schoenoplectus lacustris* (L.) Palla. Für flutintolerante Pflanzen ist dieser Anteil bedeutend geringer (Vartapetian und Nuritdinov 1976).

Zusammenfassung

Acorus Calamus L., Glyceria maxima (Hartmann) Holmberg, Menyanthes trifoliata L., Phalaris arundinacea L., Phragmites communis Trin. und Typha latifolia L. besitzen gaswegige Lakunarsysteme, die einen effizienten O₂-Transport von der Atmosphäre über die Sprosse in die Rhizome erlauben. Besproßte Rhizome beziehen, auch wenn sie sich in einer luftgesättigten Umgebung befinden, den größeren Teil des benötigten O₂ über die Sprosse. Der O₂-Gehalt der Rhizomumgebung und damit die O₂-Aufnahme über die Oberflächen der Rhizome hat keinen Einfluß auf die internen O₂-Konzentrationen. Werden die Sprosse von den Rhizomen abgetrennt und damit ein O₂-Transport

in die Rhizome unterbunden, sinken die O₂-Konzentrationen, trotz der luftgesättigten Rhizomumgebung, mit einer von Pflanze und Temperatur abhängigen Geschwindigkeit auf ein Niveau um die Nachweisgrenze ab.

Literatur

- Armstrong W. (1972): A re-examination of the functional significance of aerenchyma. Physiol. Plant. 27: 173–177.
- Armstrong W. and Wright E. J. (1976): An electrical analogue to simulate the oxygen relations of roots in anaerobic media. Physiol. Plant. 36: 383–387.
- Armstrong W. (1980): Aeration in higher plants. Adv. in Bot. Res. 7: 226-332.
- Brändle R. (1980): Die Überflutungstoleranz der Gemeinen Teichsimse (Schoenoplectus lacustris (L.) Palla): Abhängigkeit des ATP-Spiegels und des Sauerstoffverbrauchs in Wurzel- und Rhizomgewebe von der Sauerstoffkonzentration und der Temperatur in der Umgebung. Flora 170: 20–27.
- Coult D. A. and Vallance K. B. (1958): Observations on the gaseous exchanges which take place between *Menyanthes trifoliata* L. and its environment. J. Exp. Bot. 9: 384–402.
- Coult D.A. (1964): Observations on gas movement in the rhizome of *Menyanthes trifoliata* L. with comments on the role of the endodermis. J. Exp. Bot. 15: 205–218.
- Crawford R. M. M. (1982): Physiological responses to flooding. In: Encyclopedia of plant physiology, 12B (O. L. Lange, P. S. Nobel, C. B. Osmond and H. Ziegler, ed.), 453–477. Springer-Verlag Heidelberg, pp. 747.
- Evans N.T.S. and Ebert M. (1960): Radioactive oxygen in study of gas transport down in the root of *Vicia faba*. J. Exp. Bot. 11: 246–257.
- Haldemann C. and Brändle R. (1983): Avoidance of oxygen deficit stress and release of oxygen by stalked rhizomes of *Schoenoplectus lacustris*. Physiol. Vég. 21: 109–113.
- Hook D.D. and Crawford R.M.M. (1978): Plant life in anaerobic environments. Ann Arbor, Mich., USA, pp. 564.
- Laing H.E. (1940): The composition of the internal atmosphere of *Nuphar advenum* and other water plants. Amer. J. Bot. 27: 861–868.
- Steinmann F. und Brändle R. (1981): Die Überflutungstoleranz der Teichbinse (Schoenoplectus lacustris (L.) Palla) III. Beziehung zwischen der Sauerstoffversorgung und der «Adenylate Energy Charge» der Rhizome in Abhängigkeit von der Sauerstoffkonzentration in der Umgebung. Flora 171: 307–334.
- Vartapetian B.B. and Nuritdinov N. (1976): Molecular Oxygen Transport in Plants. Naturwissenschaften 63: 246–247.