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Ber. Schweiz. Bot. Ges. 89 (3/4), 227-250 (1979)

Über den Gebrauch mathematisch-statistischer
Methoden in der Taxonomie

von Hans Huber

Manuskript eingegangen am 28. Juni 1979

Einleitung

Da die taxonomischen Einheiten durchwegs Kollektive variabler Objekte sind,
wäre die Verwendung biometrisch-statistischer Verfahren zur Beschreibung und
Unterscheidung dieser Kollektive durchaus am Platz. Seit R.A.Fisher im Jahre 1936
seine „Discriminant Functions" eingeführt hat, sind zwar eine ganze Reihe von
weiteren Verfahren beschrieben worden, welche für Probleme der Klassifikation variabler
Objekte brauchbar sind. Trotzdem werden diese Verfahren von den Taxonomen nur
selten angewendet, und in den wenigen Fällen, in denen dies doch geschieht, werden
dann leider oft statistische Methoden gewählt, welche entweder dem Problem nicht
angepasst sind oder die vorhandene Information nur sehr schlecht ausnützen. Durch
die geringe Aussagekraft der damit gewonnenen Resultate wird dann der Eindruck
erweckt, dass statistische Methoden nicht viel zur Lösung der Probleme der beschreibenden

Taxonomie beitragen können.
Für diesen Sachverhalt dürften unter anderem folgende Gründe verantwortlich sein:

1. Die Kenntnis geeigneter Methoden dringt bei der heutigen Spezialisierung der
Wissenschaften nur schwer von einem Fachgebiet in ein anderes über. Erschwerend
wirkt hierbei die nur den Fachgenossen geläufige Fachsprache mit. 2. Zum
Verständnis der einschlägigen Publikationen werden meist ziemlich fortgeschrittene
mathematische Kenntnisse vorausgesetzt. 3. Die Anwendung der Verfahren ist meist
mit einem recht hohen Rechenaufwand verbunden. 4. Formunterschiede lassen sich
oft nur schwer numerisch erfassen.

In der vorliegenden Arbeit soll zunächst durch eine Übersicht über die für taxo-
nomische Probleme brauchbaren biometrisch-statistischen Methoden der Zugang zur
einschlägigen Literatur erleichtert werden. Sodann soll ein graphisches Verfahren
beschrieben werden, welches mit geringem Rechenaufwand erlaubt, Gliederungen in
einem komplexen Formenkreis zu erkennen.
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Literaturubersicht

Bei taxonomischen Untersuchungen wird jeweilen an jedem untersuchten
Exemplar eine Mehrzahl von Merkmalen beobachtet Um derartige komplexe
Beobachtungen statistisch zu verarbeiten, muss man spezielle Verfahren anwenden,
die m elementaren Einfuhrungen m die statistische Methodik höchstens am Rande
behandelt werden (siehe z B. Linder, 195 1, Kap 6) Diese Verfahren werden
unter der Bezeichnung „multivariate Verfahren" zusammengefasst

Zur Einführung m diese Methoden kommen fur den Biologen die Werke von
Kramer (1972), Cooley & Lohnes (1962), Quenouille (1952), und Seal (1964) m
Betracht Fur em tieferes Eindringen sind die Werke von Anderson (1958), Morrison
(1967), Rao (1952, 1965) beizuziehen, von diesen Buchern setzt dasjenige von
Morrison am wenigsten Vorkenntnisse voraus Eine Einführung m die etwas andere

Betrachtungsweise der franzosischen Schule findet man m Cailliez & Pages (1976)
Eine besondere Richtung in der multivanaten Statistik befasst sich mit dem Problem,
wie man eine Menge von Objekten m Gruppen ähnlicher Objekte gliedern kann
Diese Richtung wird m der angelsachsischen Literatur meist als „Cluster Analysis"
bezeichnet Fur den Biologen durfte die geeignetste Einführung m dieses Gebiet die
Bucher von Sokal & Sneath (1963) und Sneath & Sokal (1973) sein Cole (1969)
hat eine Reihe von Beitragen eines Symposions über diesen Fragenkomplex
herausgegeben Eine Beschreibung der Methoden findet man bei Hartigan (1975) Jardme
& Sibson (1971) behandeln den Fragenkomplex vom mathematisch-theoretischen
Standpunkt aus, leider ist dieses Buch aber sehr schwer verstandlich geschrieben
Einige Gedankengange daraus sollen daher im folgenden Kapitel anhand eines
einfachen Beispiels erläutert werden Eine neue Darstellung des ganzen Sachgebietes soll
demnächst im 2 Band des von Knshnaiah herausgegebenen „Handbook of Statistics"
erscheinen Eine kürzere Ubersicht ist von Cormack (1971) verfasst worden Eine
andere Gruppe multivanater Methoden befasst sich mit dem Problem der optimalen
Trennung verschiedener Populationen Eine ausführliche Bibliographie, sowie eine
Reihe einschlägiger Arbeiten sind in dem Von Cacoullos (1973) herausgegebenen
Band zusammengestellt Uber den neuesten Stand auf diesem Sachgebiet referiert
Lachenbruch (1979) Die Anwendung multivanater Methoden bei einer Reihe von
biologischen Problemen wird im Buch von Blackith & Reyment (1971) besprochen

Gruppierung von ahnlichen Objekten

Figur 1 stellt zwei Zweige von Vaccinium Myrtillus und einen Zweig von Lonicera
nigra dai. Die Blatter dieser Zweige kann man als Emzelobjekte betrachten und damit
eine Cluster-Analyse durchfuhren. Da man genau weiss, zu welchem Zweig jedes Blatt
gehört, kann auf diese Weise die Brauchbarkeit des gewählten Verfahrens überprüft
werden.

Damit eine statistische Bearbeitung überhaupt möglich ist, muss die Form der Blatter
irgendwie numerisch erfasst werden Dies soll zunächst nur durch die Messung von Lange
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Fig 1

Drei Zweige, deren Blatter im Text
zur Veranschaulichung gewisser Prinzipien
statistischer Klassifizierungsmethoden
dienen

L Lomcera nigra
Mj grossblattriges Vaccinium Myrtillus
M2 kleinblättriges Vaccinium Myrtillus

und Breite eines jeden Blattes geschehen Die Ergebnisse dieser Messungen lassen
sich in ein rechtwinkliges Koordinatensystem eintragen (Fig 2) Jedem Blatt entspricht
m dieser Darstellung ein Punkt Wie man sieht, nehmen die Punkte, die zu verschiedenen

Zweigen gehören, voneinander getrennte Gebiete ein Daraus folgt, dass die
beiden Messungen genügend Information enthalten, um die Blatter der verschiedenen
Zweige voneinander zu unterscheiden

Zur Entscheidung, welche Objekte zu einer Gruppe zu vereinigen sind, benotigt
man ein Mass fur die Ahnhchkeit zwischen zwei Objekten Em oft verwendetes
derartiges Ahnlichkeitsmass ist die Distanz zwischen den diesen Objekten zugeordneten
Punkten im Koordinatenraum

Em Blick auf Fig 2 zeigt, dass gewisse Punkte, welche zu Lomcera-Blattern
gehören, nur eine geringe Distanz zu Punkten haben, welche zu Vaccinium-Btettem
gehören Andererseits gibt es am gleichen Lomcera-Zweig Blatter, deren zugehörige
Punkte m der Koordmatenebene weit entfernt voneinander hegen Eine Gruppierung
auf Grund der Distanzen im Koordinatensystem wurde infolgedessen zu einer ganz
unnatürlichen Einteilung fuhren

Wie man auf Fig 2 sehen kann, lassen sich die Punkte der Lomcera Blatter von
den Punkten der Vaccinium Blatter durch eine Gerade (A-A) durch den Nullpunkt
trennen Alle Punkte einer Geraden durch den Nullpunkt des Koordinatensystems
haben dasselbe Verhältnis Lange zu Breite Bei Punkten oberhalb der Geraden ist
dieses Verhältnis grosser, und bei Punkten unterhalb der Geraden kiemer als auf der
Geraden Da alle Punkte, welche zu Lomcera-Blattern gehören, oberhalb der Geraden
A-A hegen, und alle Punkte, welche zu Vaccinium -Blattern gehören, unterhalb der
Geraden hegen, folgt daraus, dass das Verhältnis der Lange zur Breite bei den Lomcera-
Blattern grosser ist, als bei den Vaccinium-Blattern, ohne dass eine Uberschneidung
vorkommt Dieses Verhältnis ist somit ein besseres Mass zur Bestimmung der
Zugehörigkeit der einzelnen Blatter, als das Zahlenpaar (Lange, Breite), aus welchem das
Verhältnis gebildet wird

229



Lange

Flg. 2:

Lange und Breite der auf Fig. 1 abgebildeten
Blatter.
Schwarze Kreise:
Lonicera nigra
Grosse weisse Kreise:
Grossblattriges Vaccinium Myrtillus
Kleine weisse Kreise:
Kleinblättriges Vaccinium Myrtillus

Man ersieht aus diesem Beispiel, dass es nicht genügt, wenn die Messungen die
notwendige Information enthalten, wesentlich ist auch, m welcher Form diese
Information dargestellt wird.

Die Sicherheit der Unterscheidung lässt sich natürlich durch Hinzuziehen weiterer
Merkmale verbessern. So sind z.B. die Vaccinium-Blätter gezähnt, die Lom'cera-Blätter
hingegen ganzrandig. Man kann nun das Merkmal gezähnt-ganzrandig so kodieren,
dass gezähnte Blätter den Wert eins und ganzrandige Blätter den Wert null erhalten.
Betrachtet man nun diese Zahlen als dritte Koordinate, so kommen die Lonicera-
Blätter in eine andere Ebene zu liegen, als die Vaccinium-Blätter. Dadurch wird der
Abstand der Punkte der beiden Gattungen vergrössert.

Es stellt sich nun aber das Problem, wie gross die Einheit auf der dritten Koordinatenachse,

verglichen mit einem Centimeter auf den beiden anderen Achsen, gewählt werden
soll. Je grösser man diese Einheit wählt, umso grösser wird auch der Abstand zwischen
den Punkten der beiden Gattungen, umso mehr Gewicht bekommt also das Merkmal
„gezähnt oder ganzrandig". Das gleiche Problem kann schon auftauchen, wenn gleichartige

Masse (z.B. Längen) m ein Koordinatensystem eingetragen werden. Wenn z.B. die
eine Koordinate die Länge eines Blattes, und die andere Koordinate den Durchmesser
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der Epidermiszellen auf der Blattoberflache darstellt, wäre es falsch, fur beide Achsen
denselben Massstab zu wählen, weil der Zelldurchmesser verglichen mit der Blattlange
verschwindend klein ist, und daher gar nicht mehr ms Gewicht fallen wurde.

Um zu erreichen, dass alle Merkmale ihr gebührendes Gewicht erhalten, muss fur
die Blattlange eine wesentlich längere Strecke als Einheit gewählt werden, als fur die
Zelldurchmesser. In solchen Fallen wird oft die Standardabweichung aller Messungen
der betreffenden Koordinate als Längeneinheit gewählt. Dies hat zur Folge, dass die
Streuung m jeder Koordinatenrichtung gleich gross wird Dies ist jedoch nicht unbedingt
wünschenswert, weil gerade m derjenigen Richtung, m welcher grosse Unterschiede
zwischen den verschiedenen Gruppen bestehen, eine grosse Streuung vorhanden ist.
Die Wahl der Standardabweichung als Einheit bewirkt dann, dass diese Unterschiede
verkleinert werden, sodass unähnliche Objekte einander angenähert werden. Dies kann
zwar verhindert werden, wenn statt der Standardabweichung zwischen allen Emzel-
objekten die Standardabweichung zwischen den Objekten innerhalb der Gruppen
als Einheit gewählt wird, was aber erst möglich ist, wenn die Objekte bereits m Gruppen
eingeteilt sind. Man muss daher von einer provisorischen Gruppierung ausgehen, um
die Standardabweichung innerhalb der Gruppen zu berechnen Nach Anpassung der
Koordinateneinheiten wird dann die Gruppenemteilung überprüft, was dann wiederum
eine Neuberechnung der Standardabweichungen bedingt usw Derartige iterative
Verfahren sind sehr aufwendig, wenn eine grossere Zahl von Objekten klassifiziert werden

muss
Diese Schwierigkeiten können umgangen werden, indem anstelle des Abstands im

Koordinatensystem ein anderes Mass fur die Ähnlichkeit gewählt wird Em derartiges
Mass ist von Jardme & Sibson (1971) beschrieben worden Da die Darstellung dieser
Autoren fur einen Nicht-Mathematiker kaum verstandlich ist, soll im folgenden
versucht werden, das Prinzip, auf welchem dieses Ahnlichkeitsmass beruht, anhand des

Beispiels der Zweige von Vaccimum und Lonicera zu erläutern Zu diesem Zweck
betrachten wir die Blatter eines Zweiges als Stichprobe der vom zugehörigen Strauch
je gebildeten oder in Zukunft möglicherweise zu bildenden Blatter Es hat dann einen
Sinn, die Wahrscheinlichkeit zu betrachten, dass eine bestimmte Blattform von diesem
Strauch verwirklicht wird Der Einfachheit halber nehmen wir zunächst an, dass die
Blattformen m eine endliche Anzahl N von Klassen Fj, F2 Fj\j eingeteilt worden
seien. Es sei nun P^i die Wahrscheinlichkeit, dass ein Blatt aus der Klasse F! vom
Strauch A realisiert wird, und Pgj die Wahrscheinlichkeit, dass ein Blatt aus der
gleichen Klasse vom Strauch B realisiert wird. Wenn man nun ein Blatt aus der Klasse
Fj vor sich hat, von dem man weiss, dass es entweder vom Strauch A oder vom Strauch
B stammt, so ist man umso sicherer, dass es vom Strauch A stammt, je grosser das
Verhältnis Pai/PBi 1SU In der Informationstheorie bezeichnet man die Grosse log
(PAi/PBi) als diejenige Information zugunsten der Hypothese, dass das Blatt von
Strauch A stammt, und nicht von Strauch B, welche m der Kenntnis steckt, dass das
Blatt zur Blattform-Klasse Fj gehört (vgl Kullback 1968). Summiert man die Grosse
PAI (PAi/Pßi) uber alle Klassen Fb welche vom Strauch A realisiert werden
können, so erhalt man die mittlere Information einer Blattform des Strauches A
zugunsten der Hypothese, dass ein Blatt von Strauch A und nicht von Strauch B

stammt. Diese Summe ist dann und nur dann null, wenn P^i und Pjjj fur alle
Blattformen ubereinstimmen Dann kommt nämlich jede Blattform an beiden Strauchern
gleich häufig vor, sodass die Blattform keine Information zur Beantwortung der
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Frage liefert, von welchem der beiden Straucher ein bestimmtes Blatt stammt
Bildet man die analoge Summe fur den Strauch B und addiert die beiden Summen,
so erhalt man eine Grosse, welche von Kullback Divergence" genannt wird, weil
sie umso mehr von null abweicht, je mehr die Wahrscheinlichkeiten der beiden
Straucher divergieren Schwierigkeiten entstehen, wenn m einer der Klassen Fj
eine der beiden Wahrscheinlichkeiten Pai oder Pßj null ist, weil die Division nur
fur von null verschiedene Divisoren definiert ist Jardme & Sibson verwenden daher

im Nenner des Wahrscheinlichkeitsverhaltmsses das arithmetische Mittel der beiden
Wahrscheinlichkeiten P ,\i und Pßi, sodass sie das folgende Mass fur die Divergenz
zwischen den beiden Strauchern erhalten, das sie als „Informationsradius" bezeichnen

D (A, B) 2
i=l

Pm log
2PAI

PAi+Pßi
+ Pgx log

2PBI "

PAi+Pßi _

(1)

Betrachtet man anstelle einer endlichen Anzahl von diskreten Klassen von
Blattformen eine unendliche Zahl von kontinuierlich ineinander ubergehenden Blattformen,
so hat man anstelle der Wahrscheinlichkeiten Wahrscheinlichkeitsdichten zu setzen und
die Summe ist durch em Integral zu ersetzen

Wird ausser der Blattform ein weiteres Merkmal beobachtet, so kann fur dieses

Merkmal m analoger Weise ebenfalls ein Informationsradius berechnet werden Wenn
dieses Merkmal von der Blattform unabhängig ist, so ergibt die Summe der beiden
Informationsradien den Informationsradius zwischen den Strauchern A und B unter
Berücksichtigung beider Merkmale Auf diese Weise können sowohl quantitative, als

auch quahtative Merkmale berücksichtigt werden, sodass em Divergenzmass erhalten
werden kann, welches auf der Gesamtheit der beobachteten Merkmale beruht

Wenn man dieses Verfahren m der Praxis anwenden will, so muss man die
Wahrscheinlichkeitsverteilungen auf Grund von Stichproben schätzen Am einfachsten ist
dies bei qualitativen Merkmalen, also z B bei der Frage, ob der Blattrand gezahnt
oder ganzrandig ist Die Schätzung der Wahrscheinlichkeit geschieht dann einfach
dadurch, dass man die Zahl der Blatter mit gezahntem Rand durch die Gesamtzahl
der beobachteten Blatter dividiert Wenn bei Strauch A, wie dies bei Lomcera der Fall
ist, alle Blatter ganzrandig sind, und bei Strauch B, wie bei Vaccimum, alle Blatter
gezahnt, dann nimmt die Divergenz zwischen den beiden Strauchern den grosstmog-
hchen Wert an, nämlich log 2 Sind hingegen bei beiden Sträuchern alle Blatter gezahnt
oder bei beiden Strauchern alle Blatter ganzrandig, so nimmt der Informationsradius
den klemstmoglichen Wert, null, an Hat man an den zu vergleichenden Objekten
lauter qualitative Merkmale beobachtet, von denen man annehmen kann, dass sie bei
einem Objekt entweder immer vorhanden sind, oder immer fehlen, so setzt man fur
jedes Merkmal, m welchem die verglichenen Objekte übereinstimmen, eine null, und
fur jedes Merkmal, in welchem die Objekte sich unterscheiden, eine eins Die Summe
dieser Nullen und Emsen, multipliziert mit dem Logarithmus von 2, ergibt dann den

Informationsradius Arbeitet man, wie dies m der Informationstheorie üblich ist,
mit Logarithmen zur Basis 2, dann ist der Logarithmus von 2 gleich ems, und man
erhalt em in der numerischen Taxonomie oft gebrauchtes Distanzmass, die sogenannte
„City Block Distance"
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Schwieriger wird die Schätzung bei quantitativen Merkmalen, da die
Wahrscheinlichkeitsverteilung unendlich viele verschiedene Formen annehmen kann.

Wenn angenommen werden darf, dass die Verteilung durch eine Gauss'sche
Normalverteilung beschrieben werden kann, genügt die Schätzung von Mittelwert und
Standardabweichung zur Charakterisierung der Verteilung. Der Informationsradius
kann dann einer Tabelle aus dem Buch von Jardine & Sibson entnommen werden. Die
Addition der Informationsradien mehrerer quantitativer Merkmale ist aber nur dann

zulässig, wenn die Merkmale statistisch voneinander unabhängig sind. In unserem
Beispiel sind Blattlänge und Blattbreite eindeutig miteinander korreliert, indem längere
Blätter im allgemeinen auch eine grössere Breite besitzen. Die Informationsradien für
Blattlänge und Blattbreite dürfen daher nicht einfach addiert werden. Durch Berechnung

der sog. Hauptkomponenten (principal components) kann man in einem solchen
Fall statistisch voneinander unabhängige Variabein erhalten. Das Verfahren ist in den
Büchern über multivariate Statistik beschrieben.

Es ist den Morphologen schon lange bekannt, dass zwei an einem Organ gemessene
Strecken oft angenähert auf einer Geraden liegen, wenn sie in ein doppelt logarithmisches

Koordinatensystem eingetragen werden (siehe z.B. Pearsall, 1927, Schüepp,
1945, 1963). Man spricht dann von Allometrie. Wenn die Steigung der Geraden

gleich eins ist, bedeutet dies, dass die beiden Strecken zueinander in einem konstanten
Verhältnis stehen. Wenn man in einem solchen Fall die Koordinatenachsen so dreht,
dass die eine Koordinatenachse parallel zu der den Messpunkten angepassten
Geraden steht, und die andere Achse senkrecht dazu, so sind die neuen Koordinaten der

Messpunkte miteinander praktisch unkorreliert. Wenn man zudem annehmen darf,
dass diese Koordinaten praktisch normal verteilt sind, dann dürfen nach der Drehung
des Koordinatensystems die Verteilungen in den beiden Koordinatenrichtungen als

statistisch voneinander unabhängige Normalverteilungen betrachtet werden, und
die Informationsradien, die aus der Tabelle von Jardine & Sibson abgelesen worden
sind, dürfen zueinander addiert werden.

Auf Fig. 3 sind die Messungen an den Blättern der beiden Vaccinium-Zweige
und des Lonicera-Zweiges in einem doppelt logarithmischen Koordinatensystem
dargestellt. Für jeden Zweig kann eine Gerade mit der Steigung eins gefunden werden,
um die sich die Messpunkte fast symmetrisch gruppieren. Für alle Punkte auf einer
solchen Geraden gilt die Gleichung:

log 1 log b + const.

Daraus folgt:

log 1 — log b log 1/b const.

d.h. Punkten auf der Geraden entsprechen Blätter mit dem gleichen Verhältnis der
Länge zur Breite. Legt man durch einen Punkt der Geraden eine zweite Gerade senkrecht

zur ersten, so entsprechen den Punkten dieser zweiten Geraden Blätter mit dem

gleichen Produkt Länge mal Breite, also mit annähernd derselben Blattfläche. Wird
nun das Koordinatensystem so gedreht, dass die eine Achse parallel zur ersten Geraden,
und die andere Achse parallel zur zweiten Geraden liegt, dann entspricht im neuen
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Lange
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Fig. 3:

Lange und Breite der auf Fig. 1 abgebildeten
Blatter in doppelt logarithmischem Massstab.

Schwarze Kreise:
Lonicera nigra
Grosse weisse Kreise:
Grossblattriges Vaccinium Myrtillus
Kleine weisse Kreise:
Kleinblättriges Vaccinium Myrtillus

Koordinatensystem der einen Koordinate ein bestimmtes Verhältnis Länge zu Breite,
und der andern Koordiante ein bestimmtes Produkt Länge mal Breite. Nimmt man
nun an, dass die Logarithmen von Blattbreite und Blattlänge normal verteilt seien,
dann lässt sich die Wahrscheinlichkeitsverteilung von Blattbreite und Blattlänge mit
Hilfe von Mittelwert und Standardabweichung des Logarithmus des Verhältnisses
Länge/Breite und des Logarithmus des Produkts Länge mal Breite vollständig
beschreiben. Diese vier Grössen genügen auch, um den Informationsradius nach Jardine
& Sibson zu bestimmen. In der Tabelle 1 sind die betreffenden Werte für jeden der
drei Zweige zusammengestellt. Die Frage, ob die Annahme der Normalverteilung
berechtigt ist, kann mit dem Test von Shapiro & Wilk (1965) geprüft werden. Wenn
diese Frage verneint werden muss, empfehlen Jardine & Sibson, den Koordinatenraum
in Klassen einzuteilen und dann die Anzahl der Messpunkte in jeder dieser Klassen
auszuzählen. Der Informationsradius kann dann nach der Formel (1) berechnet werden.
Da man in der Praxis selten über sehr grosse Stichproben verfügt, muss diese Einteilung
ziemlich grob gewählt werden (vgl. Cochran 1961). Da bei diesem Vorgehen das
Ergebnis durch die willkürliche Wahl der Klassengrenzen beeinflusst wird, so ist dieser
Weg bloss als ein Notbehelf zu betrachten. Eine andere Möglichkeit besteht darin, dass
man versucht, eine geeignete Transformation zu finden, welche die Daten eher normal
verteilt macht.
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Tabelle 1

Mittelwert und Standardabweichung der Logarithmen des Verhältnisses Länge zu Breite
und des Produkts Länge mal Breite der Blätter der drei Zweige von Fig. 1.

log 1/b log. 1 • b
Mittel Standardabw. Mittel Standardabw.

Lonicera (L) 0.3539 0.07841 0.5693 0.3796
Vaccinium, grossbl. (Mj) 0.1924 0.03284 0.4900 0.1986
Vaccinium, kleinbl. (M2) 0.1461 0.04936 - 0.2529 0.2028

Auf Grand der Werte von Tabelle 1 erhält man die in Tabelle 2 zusammengestellten
Informationsradien für die drei möglichen Paarungen von je zwei verschiedenen Zweigen:

Tabelle 2

Informationsradien zwischen je zwei Zweigen von Fig. 1.

Paarung log 1/b log 1 • b Summe

L, M 0.7255 0.1658 0.8913
l,m2 0.8078 0.7201 1.5279
M1, M2 0.2248 0.8948 1.1196

Der Informationsradius stellt eine Alternative zur Distanz im Koordiantenraum
dar, die in dem Fall angewendet werden kann, dass die zu gruppierenden Objekte
selbst Kollektive sind. Sind jedoch Einzelobjekte zu gruppieren, so kommen die
Ähnlichkeitsmasse von Goodall (1966) und von Gower (1971) in Frage.

Die Aufgabe besteht nun darin, ähnliche Objekte in Gruppen („Clusters")
zusammenzufassen. Zur Lösung dieser Aufgabe ist eine ganze Reihe von Methoden
entwickelt worden, die unter der Bezeichnung „Automatische Klassifikation" oder
„Cluster Analysis" zusammengefasst werden. Das einfachste Verfahren, das zudem
vom mathematischen Standpunkt in einem gewissen Sinne optimal ist (Jardine &
Sibson), ist das sogenannte „Single Linkage"-Verfahren. Es besteht darin, dass
zunächst die beiden ähnlichsten Objekte vereinigt werden, dann die beiden nächst
ähnlichen usw. Auf diese Weise können allmählich auch ziemlich unähnliche Objekte
in derselben Gruppe vereinigt sein, wenn sie nämlich durch eine Reihe von Zwischengliedern

verbunden sind.
Wendet man dieses Verfahren auf die dritte Kolonne von Tabelle 2 an, so muss

man zuerst den Lonicera-Zv/eig mit dem grossblättrigen Heidelbeerzweig vereinigen,
weil dieses Paar den kleinsten Informationsradius (0.8913) hat. Der nächstgrössere
Informationsradius (1.1196) gehört zur Paarung der beiden Heidelbeerzweige. Im
zweiten Schritt wird daher der kleinblättrige Vaccinium-Zweig mit der Gruppe der
beiden andern Zweige vereinigt. Weil jetzt alle Objekte miteinander verbunden sind,
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ist damit das Verfahren abgeschlossen Das Ergebnis wird meist m der Form eines
Dendrogramms (Fig 4A) dargestellt Der Massstab links vom Dendrogramm entspricht
dem mittleren Informationsradius, d h dem Informationsradius, geteilt durch die
Anzahl der Merkmale, bei welchem die Vereinigung geschieht Je weiter oben die
Gabelung hegt, welche zwei Objekte verbindet, umso grosser ist also der betreffende
Informationsradius, d h umso mehr unterscheiden sich die durch die betreffende
Gabel verbundenen Objekte

Das Dendogramm Fig 4A ist recht unbefriedigend ausgefallen, da m ihm zwei
Objekte, welche systematisch in zwei verschiedene Familien gehören, zuerst vereinigt
worden sind, und die beiden zur gleichen Art gehörenden Objekte erst nachher
Diese Situation kann verbessert werden, indem weitere Merkmale zugezogen werden,
sodass mehr Information zur Klassifizierung der Objekte zur Verfugung steht In
unserem Beispiel ist die Zahnung des Blattrandes em geeignetes Merkmal, weil alle
Blatter desZomcera-Zweiges ganzrandig sind, und alle Vaccinium Blatter gezahnt
Der Informationsradius fur dieses Merkmal betragt daher fur eine Paarung eines
Lomcera-Zweigs mit einem Vaccinium-Zweig ems und fur die Paarung der beiden
Kaccmzwm-Zweige null Dieser Betrag ist zu den Werten der dritten Kolonne von
Tabelle 2 zu addieren, sodass man die Summen der Informationsradien erhalt fur die
Paarung (L, Mj) 1 8913, fur die Paarung (L, M2) 2 5279 und fur die Paarung (Mj, M2)
den Wert 1 1196 Mit diesen Werten erhalt man das Dendrogramm Fig 4B Die beiden
Vaccinium-Zweige sind jetzt naher zusammengeruckt, der Abstand zu Lomcera ist
aber noch nicht sehr bedeutend

Verwendet man nur die Information aus dem Verhältnis der Blattlange zur
Blattbreite (Kolonne 1 von Tabelle 2), so ergibt sich das Dendrogramm Fig 4C, fugt
man die Information der Zahnung des Blattrandes hinzu, erhalt man das Dendrogramm

Fig 4D, m welchem die nahe Beziehung der beiden Vaccinium Zweige im
Gegensatz zum Lomcera Zweig klar zum Ausdruck kommt Man kann aus diesem

Beispiel verschiedenes lernen Die Verfahren der automatischen Klassifikation ergeben
nicht etwa automatisch eine richtige Darstellung der Verwandtschaftsbeziehungen
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Flg. 5

Obere Reihe
Blatter von
Eurhynchium striatum.
Untere Reihe
Blatter von
Eurhynchium angustirete
(' E Zetterstedtn)

Voraussetzung dafür, dass brauchbare Resultate erzielt werden, ist vielmehr, dass die
wesentliche Information mit den Daten eingegeben wird Ferner muss man sich
darüber klar sein, dass Information, welche fur die Klassifikation nicht wesentlich ist,
die Verwandtschaftsbeziehungen verschleiern kann In unserem Beispiel ist die
Blattflache ein solches unwesentliches Merkmal, das ja sehr stark durch die Wachstums-
bedmgungen am Standort beemflusst werden kann Durch Weglassen dieses Merkmals
kommen die Verwandtschaftsbeziehungen viel klarer zur Geltung

Unterscheidung ahnlicher Sippen

Zwei Fragen können mit Hilfe biometrisch-statistischer Methoden untersucht
werden, wenn es darum geht, ähnliche Sippen voneinander zu unterscheiden
1. Liegen überhaupt klar voneinander abgegrenzte Sippen vor7 2 Wie sind die
einzelnen Individuen den Sippen zuzuordnen, wenn möglichst wenig Fehlbestimmungen
vorkommen sollen9 Wie hier im einzelnen vorgegangen werden kann, soll wiederum
anhand eines Beispiels erläutert werden.

Storm er (1942) hat die Laubmoosart Eurhynchium striatum in zwei Kleinarten
aufgespalten, welche sich durch ihre Blattform unterscheiden (Fig. 5). Fur die Form
mit zugespitzten Blattern behielt er den Namen E striatum bei; die stumpfblattnge
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Form nannte er E.Zetterstedtii. Nach Koponen (1967) muss die letztere Form
E.angustirete (Broth.) Koponen heissen. E. striatum hat im Norden Europas eine
ausgesprochen atlantische Verbreitung und steigt in Norwegen nicht über 300 m in
die Höhe (Störmer 1969), die Verbreitung von E.angustirete hingegen ist eher
kontinental (Koponen 1964). In der Schweiz und den angrenzenden Gebieten ist
E.angustirete vor allem in der Montanstufe anzutreffen, und steigt nicht unter 600 m
hinunter, während E. striatum eher in der collinen Stufe vorkommt und höchstens
ausnahmsweise über 800 m hinaufsteigt. Es handelt sich also offensichtlich um zwei
Sippen mit verschiedenen klimatischen Ansprüchen, sodass deren Unterscheidung
für pflanzengeographische und pflanzensoziologische Untersuchungen von Bedeutung
ist. Da man oft Formen antrifft, welche schwer einzuordnen sind, hat die Aufspaltung

nicht allgemeine Anerkennung gefunden.
Für eine statistische Untersuchung der Unterschiede sind Messungen notwendig.

Nach Störmer unterscheiden sich die beiden Arten vor allem durch das Verhältnis der
Blattlänge zur Blattbreite, sowie durch den Winkel der Blattspitze. Beim Vergleichen
einer grösseren Anzahl von Blättern fällt als weiteres Merkmal auf, dass die
Blattkontur bei E.angustirete konvex ist, bei E.striatum hingegen an der Blattspitze konkav.
Konstruiert man ein gleichseitiges Dreieck mit der grössten Blattbreite als Basis und
der Blattspitze als Spitze (auf Fig. 5 rechts eingezeichnet), so ist der Spitzenwinkel
dieses Dreiecks bei E. striatum grösser als der Winkel der Blattspitze, bei E. angustirete
hingegen ist der Blattspitzenwinkel grösser als der Dreieckswinkel. Zur Bestimmung
des Dreieckswinkels genügt die Messung der Länge der grössten Blattbreite und des
Abstands der Blattspitze von der grössten Breite: dieser Abstand, dividiert durch die
halbe Breite, ergibt den Tangens des halben Dreieckwinkels.

Schliesslich ist die Länge der Zellen in der Blattspitze bei E. striatum grösser als
bei E. angustirete.

64 Proben aus dem Formenkreis von Eurhynchium striatum im weiteren Sinn
wurden untersucht. Von jeder dieser Proben wurden 4 Blätter vom Moosstämmchen
abgelöst, und daran die folgenden Messungen ausgeführt: Länge und Breite der
Blätter, Abstand der grössten Breite von der Blattspitze, Winkel der Blattspitze,
Länge von je 4 Zellen in der Blattspitze. Aus diesen Daten wurden für jede Probe
die folgenden Werte berechnet:

1. Der Mittelwert des Verhältnisses der Länge zur Breite der Blätter.
2. Mittelwert des Verhältnisses des Abstands der Blattspitze von der grössten Breite

zur halben Breite Tangens des halben Spitzenwinkels des in Fig. 5 rechts
eingezeichneten Dreiecks).

3. Mittelwert des Tangens des halben Blattspitzenwinkels.
4. Mittlere Zellenlänge in der Blattspitze in jum.

Jede Probe ist damit durch 4 Zahlen charakterisiert, welche als Koordinaten
eines Punktes in einem 4-dimensionalen Koordinatenraum aufgefasst werden können.

Wenn von jeder dieser 64 Proben bekannt wäre, zu welcher der beiden Kleinarten
sie gehört, so könnte man das vorliegende Datenmaterial dazu verwenden, um eine
Trennfunktion (Discriminant Function) zu berechnen. Das Ergebnis der Berechnung
würde uns dann ermöglichen, weitere Proben, deren Zugehörigkeit nicht bekannt
ist, zu bestimmen. Da die Zugehörigkeit der Proben in unserem Fall nicht bekannt
ist, soll versucht werden, ausgehend von einer provisorischen Zuordnung eine provi-
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sorische Trennfunktion zu berechnen. Diese Trennfunktion soll dann dazu dienen,
die Zuordnung der einzelnen Proben zu überprüfen und nötigenfalls zu korrigieren.
Die korrigierte Zuteilung der Proben ermöglicht dann wiederum, eine verbesserte
Trennfunktion zu berechnen. Dieses Verfahren kann solange fortgesetzt werden, bis
keine der Proben mehr ihre Zuordnung wechselt, wenn sie mit der zuletzt berechneten
Trennfunktion bewertet wird.

Für die erste provisorische Einteilung sind graphische Darstellungen sehr nützlich.
Wenn jede Probe nur durch zwei Messungen repräsentiert wird, kann man mit der
Darstellung in der Koordinatenebene auskommen. In dieser Darstellungsweise sind
die zusammengehörigen Objekte oft als Punktwolken mehr oder weniger klar
erkennbar. Für mehrdimensionale Koordinatenräume ist die Darstellung als „Profil"
geeignet (vgl. Hartigan, 1975). Im folgenden soll gezeigt werden, wie die
Profildarstellung dazu benutzt werden kann, um auf einfache Weise eine provisorische
Trennfunktion zu berechnen.

Ein Profil besteht aus einer Reihe von k parallelen Skalen, von denen jede eine
der k Koordinaten repräsentiert. Ein Punkt im k-dimensionalen Koordinatenraum
wird durch einen Streckenzug dargestellt, der die Koordianten des betreffenden
Punktes miteinander verbindet. Der Massstab der Skalen wird mit Vorteil so gewählt,
dass die den Punkten entsprechenden Streckenzüge möglichst weit auseinanderrücken,

und die Richtung, in welcher die Koordinatenwerte zunehmen, so, dass
möglichst wenig Streckenzüge sich überkreuzen.

Aus den 64 Proben wurde eine Stichprobe von 15 Proben zufällig ausgewählt.
Diese 15 Proben sind auf Fig. 6 als Profil dargestellt. Die Reduktion der Anzahl der
Proben wurde aus zwei Gründen vorgenommen: 1. lässt sich leider nur eine be-
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schrankte Anzahl von Punkten m einem Profildiagramm darstellen, weil sonst die

Darstellung bald unübersichtlich wird, 2. wenn nur ein Teil des Datenmaterials zur
Berechnung der provisorischen Trennfunktion verwendet wird, kann mit dem Rest

eine unabhängige statistische Überprüfung der arbiträren provisorischen Einteilung
vorgenommen werden.

Die auf Fig. 6 dargestellten Proben lassen sich mit Ausnahme der mit A-A
bezeichneten Probe m zwei klar getrennte Gruppen einteilen. Diese Gruppen können
nun dazu verwendet werden, um eine provisorische Trennfunktion zu berechnen.
Die von R.A. Fisher (1936) vorgeschlagene lineare Trennfunktion hat die folgende
Form

Y bixi + b2X2 + + bpXp (2)

Die Koeffizienten bi erhalt man durch Auflösung des folgenden linearen Gleichungssystems

(siehe z.B. Linder, 195 1, Kap. 64)

bi Sji +b2 S12 + • + bpSip di
bi S21 + b2 S22 + • + bpS2p d2 (3)

bl Spi + b2 Sp2 + + bp Spp - dp

wobei

S], S (x^-XJA) (X,A - X,A) + S (Xiß - Xiß) (xjß - xjß)
A B

xiA Wert der l-ten Koordinate eines Objekts der Gruppe A

xiB Wert der l-ten Koordinate eines Objekts der Gruppe B

XiA Mittelwert der l-ten Koordinate m der Gruppe A

xjj Mittelwert der l-ten Koordinate m der Gruppe B

di XjA - XxB 2 x^/nA - S Xjß/nB
A B

nA Anzahl Objekte m der Gruppe A

nß Anzahl Objekte in der Gruppe B

Sjj / (nA + nß — 2) ist eine Schätzung fur das Produkt wobei 0i fur die

Standardabweichung der l-ten Koordinate, und p2j fur den Korrelationskoeffizienten
zwischen der l-ten und der j-ten Koordinate steht. Wenn die Koordinaten nicht
miteinander korreliert sind, vereinfacht sich das Gleichungssystem auf

bi Su di (4)

Die Rechnung kann nun ganz erheblich vereinfacht werden, indem anstelle der
arithmetischen Mittel x2 Medianwerte verwendet werden. Der Medianwert einer
Stichprobe ist derjenige Wert, welcher von ebensovielen Werten uberschritten wie unterboten

wird. Bei einer ungeraden Zahl von Werten m der Stichprobe stimmt er mit
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dem mittelsten Wert uberem, bei einer geraden Anzahl liegt er m der Mitte zwischen
den beiden mittleren Werten. In einem Profildiagramm kann er leicht durch Abzählen
erhalten werden und eine Schätzung fur die Distanz dj kann man durch Abmessen
der Distanz zwischen den Medianwerten der zu unterscheidenden Gruppen erhalten.

Als Mass der Streuung kann die Spannweite W! zwischen dem grossten und dem
kleinsten Wert einer Stichprobe ebenfalls leicht am Diagramm abgelesen werden.
Bei normal verteilten Grössen ist die Spannweite im Mittel proportional zur
Standardabweichung, resp. zu \/s^. Tabellen mit den entsprechenden Proportionalitätsfaktoren

sind von Pearson & Hartley (1958) publiziert worden. Für die Schätzung
der bx m Formel (4) ist dieser Proportionalitatsfaktor jedoch unwichtig, da es fur die
Trennfunktion belanglos ist, wenn alle Koeffizienten bj mit demselben Faktor
multipliziert werden (vgl. z.B. Linder, 1951, S. 241). Wenn die Voraussetzungen fur
die Gleichungen (4) zutreffen, kann man daher sofort die Trennfunktion (2) so
hinschreiben (vgl. Rao 1952, p. 306).

di &2 dp
y - + -~^yX2 + +^-xp (5)

wi W2 wp

Sind jedoch die Koordinaten miteinander korreliert, so benotigt man noch
Schätzungen der Korrelationskoeffizienten Py. Auch dies kann aus dem Profildiagramm

ohne grossen Rechenaufwand erhalten werden, indem man auszahlt, wie oft
sich die Linien, welche die Koordinaten der Variablen verbinden, schneiden. Die
Zahl der Schnittpunkte sei k. Der Ausdruck

t 1 -4k/(n(n- 1)) (6)

entspricht dann dem Rang-Korrelationskoeffizienten nach Kendall (1962). Der
Ausdruck (6) bedarf einer Korrektur, falls Bindungen (ties) vorkommen. Diese sind
auf dem Diagramm daran zu erkennen, dass mehrere Punkte auf einer Achse
zusammentreffen. Gehen von einem Punkt auf einer Achse m verschiedene Linien aus,
so ist zur Anzahl k die Hälfte der zwischen m Linien möglichen Anzahl Schnittpunkte
zu addieren, also m(m-l)/4. Schneiden sich hingegen m Linien zwischen zwei Achsen
in einem Punkt, so ist der Beitrag dieses Schnittpunkts zu k gleich m(m-l)/2.

Wenn man annehmen darf, dass man es mit normal verteilten Daten zu tun hat,
kann der Rangkorrelationskoeffizient t dazu verwendet werden, um den Korrelations-
koeffizienten pjj zu schätzen, Kendall (1962) gibt Formeln fur den Erwartungswert
und die Varianz von t als Funktion von p an. Die Verteilung von t kann durch eine
sogenannte Polya-Verteilung approximiert werden (Huber, 1974). Auf Grund dieser
Angaben kann man Vertrauensgrenzen fur p konstruieren. Fig. 7 zeigt solche Grenzen
fur den Fall, dass 2 Stichproben vom Umfang 6 oder 10 zur Verfugung stehen. Jede
Stichprobe liefert dann einen t-Wert, das Diagramm gilt fur den Mittelwert aus diesen
beiden t-Werten. Die Darstellung zeigt, dass selbst für die geringe Vertrauenswahr-
schemlichkeit von 50% die Grenzen recht weit auseinanderhegen, was bedeutet, dass
die genaue Lage von p ziemlich unsicher ist. Die übliche Methode der Schätzung des
Korrelationskoeffizienten („Produkt-Moment-Korrelation") erzielt aber bei so kleinen
Stichproben keine wesentlich grossere Präzision der Schätzung.
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Fig. 7:

Vertrauensgrenzen für den Korrelationskoeffizienten p, in Abhängigkeit von t,
dem Mittelwert aus zwei Rang-Korrelationskoeffizienten nach Kendall.
Umfang der Stichproben 6 oder 10. Vertrauenswahrscheinlichkeiten von 50% und 90%.

Wir haben nun alle Elemente zusammen, um das Gleichungssystem (3) aufzustellen.
Die Auflösung eines derartigen Systems war noch bis vor kurzem ohne den Einsatz
eines Gross-Computers eine ziemlich mühsame Angelegenheit. Heute gibt es aber
bereits Taschenrechner mit einsetzbaren fertigen Programm-Paketen, welche imstande
sind, lineare Gleichungssysteme automatisch zu lösen.

In der Tabelle 3 sind die im Profildiagramm (Fig. 6) abgelesenen Werte der Mediane,
Spannweiten zwischen grösstem und kleinstem Stichprobenwert, sowie Anzahl
Überschneidungen zusammengestellt.
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Tabelle 3

Am Profildiagramm (Fig. 6) abgelesene Werte:

a) Medianwerte

b/1 tg a i 2 tg ß Zell-Lange
in ßm

Gruppe A (n 6) 0.815 0.630 0.536 31.6
Gruppe B (n 8) 0.643 0.270 0.374 48.1

Differenz 0.172 0.360 0.162 -16.5

b) Spannweite zwischen grosstem und kleinstem Wert

b/1 tg et / 2 tg ß Zell-Lange
in ßm

Gruppe A (n 6) 0.107 0.24 0.071 3.9
Gruppe B (n 8) 0.116 0.09 0.071 18.2

Mittel 0.1115 0.165 0.071 11.05
Standardabweichung 0.041 0.061 0.026 4.087

c) Überschneidungen

Gruppe A: oberhalb der Diagonale, Gruppe B: unterhalb der Diagonale.

b/1 tg a f 2 tg ß Zell-Lange

b/i _ 8 2 3

tg a/2 13 - 8 9

tgß 6 7 - 3

Zell-Lange 18 11 12 -

dj Kendall-Rangkorrelation
Gruppe A: oberhalb der Diagonale; Gruppe B: unterhalb der Diagonale.

b/1 tg ck/2 tg ß Zell-Lange

b/1 -0.07 0.73 -0.60
tg a/2 0.07 _ -0.07 0.20
tg ß 0.57 0.50 — -0.60
Zell-Lange 0.29 -0.21 -0.14 -
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Tabelle 4 enthält die mit Hilfe der Formel (6) aus der Zahl der Überschneidungen
berechneten Rangkorrelationskoeffizienten, sowie die entsprechenden auf Fig. 7

abgelesenen Werte des gewöhnlichen Korrelationskoeffizienten.

Tabelle 4

Korrelation zwischen Kendall-Rangkorrelation.

Gruppe A Gruppe B Mittel p

b/1 und tg otf2
b/1 und tg ß

b/1 und Zell-Lange
tg a/2 und tg ß

tg a/2 und Zell-Lange
tg ß und Zell-Lange

-0.07 0.07
0.73 0.57

-0.60 0.29
-0.07 0.50

0.20 -0.21
-0.60 -0.14

0.00 0.00
0.65 0.83

-0.16 -0.20
0.22 0.32
0.00 0.00

-0.37 -0.52

Schätzungen für die Werte von a erhält man, indem man die mittlere Spannweite
durch 2.7 dividiert (Pearson & Hartley, 1958, table 20). Damit sind alle Grundlagen
vorhanden, um die Koeffizienten PijCT^j des Gleichungssystems (3) zu berechnen.
Die erste Zeile von (3) erhält man folgendermassen:

1.00(0.041) (0.041) 0.0016
0.00(0.041) (0.061) 0.00
0.83(0.041) (0.026) 0.00088

-0.20(0.041) (4.087) 0.034

In analoger Weise werden die übrigen Koeffizienten berechnet, sodass man die
folgenden Gleichungen erhält (die Werte sind stark gerundet, da es sich ja nur um
Näherungswerte handelt):

0.002 bi + 0.0009 b3 - 0.034 b4 0.17
0.004 b2 + 0.0005 b3 0.36

0.001 bi+ 0.0005 b2 + 0.0007 b3 - 0.056 b4 0.16
-0.034 bi- 0.056 b3 + 16.7 b4 -16.5

Die Auflösung dieses Gleichungssystems liefert die folgende Trennfunktion:

y 102 b/1 + 98 tg a/2 — 68 tgß — Zell-Länge m ßm (7)

Durch Einsetzen der Messwerte m die Trennfunktion (7) erhält man für jede
Probe einen Wert von y. Diese Werte sind m Tabelle 5 in Form eines sog. „stem and
leaf plot" (Tukey, 1977) dargestellt.
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Tab eile 5

Werte der Trennfunktion (7).
I: Proben, welche zur Berechnung der Trennfunktion gedient haben.
II: übrige Proben.

I II
Zehner Einer Zehner Einer

0 5 9 0 2 7
1 3 6 7 8 1 455579
2 2 6 2 0002333669
3 3 2 3 4 8

4 4 2 4 7
5 5 2 9
6 6 2 2 4 5
7 01148 7 00013455557
8 9 8 0445789
9 9 8

10 10 2

11 11 7
12 12 7

Diese Darstellungsweise vereinigt in sich eine graphische Darstellung mit einer
tabellarischen Zusammenstellung des Datenmaterials. Die einzelnen Zahlenwerte
werden in Zehner- und Eineranteil aufgespalten, und die Einerziffer wird in der
richtigen Zehnerzeile eingetragen. So bedeuten z.B. die 4 Eintragungen in Zeile 1

der Gruppe I rechts vom Strich, dass im Zahlenmaterial die 4 Werte 13, 16, 17 und
18 aufgetreten sind. Die linke Hälfte des Diagramms stellt die 14 Proben dar, welche
zur Berechnung der Trennfunktion gedient haben, die rechte Hälfte den Rest der
Proben.

Die linke Gruppe wird durch die Trennfunktion sehr deutlich in zwei Teilgruppen
getrennt. Dies darf abernicht als Beweis betrachtet werden, dass zwei klar getrennte
Arten vorliegen, da ja die Trennfunktion so berechnet worden ist, dass eine möglichst
gute Trennung zustande kommt. Eine entsprechende Aufspaltung findet man aber
auch beim Rest der Proben. Da diese Proben bei der Berechnung der Trennfunktion
nicht verwendet worden sind, liefern sie eine unabhängige Bestätigung für das
Zerfallen in zwei morphologisch verschiedene Sippen. Engelmann & Hartigan (1969)
haben einen statistischen Test publiziert, um zu prüfen, ob eine Stichprobe, welche
anscheinend in zwei Gruppen zerfällt, in Wirklichkeit aus einer normal verteilten
Grundgesamtheit stammen könnte. Da nicht normal verteilte Grundgesamtheiten
in der Natur häufig vorkommen, bedeutet die Verwerfung der Hypothese einer
normal verteilten Grundgesamtheit noch nicht ohne weiteres, dass damit das
Zerfallen in zwei Gruppen nachgewiesen sei. Ein schärferer Test kann folgendermassen
durchgeführt werden: wenn tatsächlich zwei getrennte Gruppen vorliegen, so ist zu
erwarten, dass im Intervall zwischen den Gruppen die Dichte der y-Werte geringer ist,
als in den Gruppenschwerpunkten. Dies kann gegen die „Nullhypothese" getestet
werden, dass im ganzen Intervall zwischen dem grössten und dem kleinsten
beobachteten y-Wert die Wahrscheinlichkeitsdichte gleich gross ist. Die 14 Proben, die
zur Berechnung der provisorischen Trennfunktion gedient haben, ergaben y-Werte
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zwischen 5 und 26, sowie zwischen 70 und 89 Die Lange dieser beiden Intervalle
betragt 48% des ganzen Intervalls zwischen 5 und 89 Wenn die Nullhypothese
zutrifft, ist daher zu erwarten, dass 52% aller Werte, welche zwischen 5 und 89
hegen, im mittleren Intervall hegen, und nur 48% m den beiden seitlichen Intervallen
45 der Proben, welche nicht zur Berechnung der provisorischen Trennfunktion
gedient hatten, haben y-Werte zwischen 5 und 89. Unter der Nullhypothese ist der
Erwartungswert im mittleren Intervall gleich 0 52 x 45 23 6, m den beiden
seitlichen Intervallen 0 48 x 45 21 4, beobachtet werden aber im mittleren Abschnitt
15 und m den beiden seitlichen Intervallen zusammen 30 Werte Man kann die
Wahrscheinlichkeit, dass im mittleren Abschnitt nicht mehr als 15 Werte hegen, wenn
die Nullhypothese zutrifft, mit Hilfe der Bmommalverteilung berechnen Diese
Wahrscheinlichkeit betragt 0 0078 Dies bedeutet, dass es unwahrscheinlich ist, das
beobachtete Resultat zu erhalten, wenn Gleichverteilung herrscht Einheitliche Populationen
haben aber m der Regel eine mehr oder weniger glockenförmige Verteilung mit
erhöhter Wahrscheinlichkeitsdichte m der Mitte Das beobachtete Ergebnis wird dann
noch unwahrscheinlicher In der Tat erhalt man mit dem Test von Engelmann &
Hartigan, der von der Nullhypothese einer Normalverteilung ausgeht, eine Wahrscheinlichkeit

von weniger als 0 001 Man darf also mit ziemlicher Sicherheit annehmen,
dass das vorliegende Material aus einer zweigipfligen Verteilung stammt

Mit Hilfe der provisorischen Trennfunktion ist es somit gelungen, zu zeigen,
dass es sich lohnt, eine bessere Trennung der beiden Komponenten mit Hilfe der
aufwendigeren Methode von R A Fisher zu versuchen Man trennt zu diesem Zweck
das Material in zwei Gruppen, indem man denjenigen Wert der provisorischen
Trennfunktion verwendet, bei welchem sich die deutlichste Lücke zeigt und berechnet fur
diese Aufteilung dann das Gleichungssystem (3) Die Auflosung dieses Systems
hefert die folgende Trennformel

y - 50 3 b/1 + 12 3 tg a/2 + 207 4 tg ß - Zell-Lange (8)

Die Koeffizienten dieser neuen Trennformel unterscheiden sich ganz wesentlich
von denjenigen der provisorischen Formel (7) Verwendet man aber Formel (8) zur
Einteilung m zwei Gruppen, so muss nur eine einzige Probe anders eingeteilt werden,
als mit der Formel (7) Nach Umteilung dieser Probe kann man das Gleichungssystem
(3) erneut berechnen und erhalt dann eine dritte Trennformel

y -18 6 b/l + 5 58 tga/2+110 8 tg0- 0 776 Zell-Lange m/xm (9)

Die Koeffizienten dieser Formel unterscheiden sich nicht mehr stark von
denjenigen von Formel (8) Die Verwendung von Formel (9) macht auch keine neuen
Umteilungen notwendig Die Verteilung der y-Werte der Trennfunktion (9) sind auf
Fig 8 in der Form eines Wahrschemlichkeitsdiagramms dargestellt Auf der Ordinate
sind die y-Werte der Trennfunktion aufgetragen, die Abszissenwerte sind „Probits"
Dies sind von der Normalverteilung abgeleitete Grossen Jeder Wahrscheinlichkeit p
ist ein Probit-Wert zugeordnet Dies ist derjenige Zahlenwert, der von einer Normal-
verteilung mit dem Mittelwert 5 und der Standardabweichung ems gerade mit der
Wahrscheinlichkeit p unterschritten wird Probit-Werte können einer statistischen
Tabellensammlung entnommen werden (z B Documenta Geigy-Tabellen, Fisher &
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Fig. 8:

3 4 5 6

Beziehung zwischen dem Wert y der
Trennfunktion und Probit-Werten

j (Wahrscheinlichkeitsdiagramm).
Die obere Gerade entspricht den Proben
von Eurhynchium angustirete

E. Zetterstedtii), die untere Gerade
I den Blättern von Eurhynchium striatum

sens, strict. Der Schnittpunkt der beiden
Geraden ergibt den Trennpunkt, und

I erlaubt, die Wahrscheinlichkeit einer
fr°b" I Fehlklassifikation zu schätzen.

Yates oder Pearson & Hartley). Es gibt aber auch sog. Wahrscheinlichkeitspapier,
bei welchem der Wahrscheinlichkeits-Massstab so verzerrt wird, dass man sich den
Umweg über die Probit-Werte sparen kann.

Ein Wahrscheinlichkeitsdiagramm wird nun so hergestellt, dass zunächst die
n Werte, deren Verteilung dargestellt werden sollen, nach aufsteigender (oder
absteigender) Grösse geordnet werden. Dem i-ten derart geordneten Wert wird dann
der Probit-Wert zu p (i — 1/2) / n zugeordnet. Stichproben aus einer normal
verteilten Grundgesamtheit ergeben auf diese Weise eine Punkteschar, welche
angenähert auf einer Geraden liegen.

In Fig. 8 ist die eine Gruppe nach aufsteigender Grösse und die andere Gruppe
nach absteigender Grösse der y-Werte angeordnet. Diese Anordnung hat den Vorteil,
dass sie eine graphische Schätzung des Trennpunkts und der Wahrscheinlichkeit
einer Fehlklassifikation erlaubt (Huber, 1964). In beiden Gruppen weicht die
Punkteschar nur wenig von einer Geraden ab, was zeigt, dass die y-Werte in beiden
Fällen annähernd normal verteilt sind. Die Ordinate des Schnittpunkts der beiden
Geraden ergibt nämlich den Trennpunkt, und die Abszisse kann zur Abschätzung
der Fehlerwahrscheinlichkeit verwendet werden.

Der Schnittpunkt hat eine Ordinate von 11.0 und eine Abszisse von 7.44.
Wenn man 11.0 als Trennpunkt wählt, dann werden alle Proben, welche zur oberen
Gruppe gehören, und einen y-Wert kleiner als 11.0 besitzen, und alle Proben, welche
zur unteren Gruppe gehören, und einen y-Wert grösser als 11.0 besitzen, falsch
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klassifiziert. Wenn die y-Werte normal verteilt sind, dann ist die Wahrscheinlichkeit
fur das Auftreten solcher Werte gleich gross, wie die Wahrscheinlichkeit eines Wertes

grösser als 7.44 bei einer Normalverteilung mit dem Mittelwert 5 und der
Standardabweichung 1. Einer Tabelle der Normalverteilung kann man entnehmen, dass diese

Wahrscheinlichkeit kleiner als 1% ist.
Eine Abschätzung der Wahrscheinlichkeit von Fehlklassifikationen kann auch auf

rechnerischem Weg erhalten werden (siehe z.B. Lachenbruch 1967, Lachenbruch &
Mickey 1968). Der Vorteil der graphischen Methode besteht dann, dass durch sie

zugleich die Voraussetzung der Normalverteilung überprüft werden kann.
Die lineare Trennfunktion ist optimal, wenn die Daten aus einer multivanaten

Normalverteilung stammen, und wenn die Varianzen und die Korrelationskoeffizienten
m beiden Gruppen gleich gross sind. Sind diese Voraussetzungen nicht erfüllt, so ist
m vielen Fällen die lineare Trennfunktion immer noch brauchbar, manchmal kann
allerdings die Zahl der Fehlklassifikationen derart ansteigen, dass komplizierte
Verfahren angewandt werden müssen (vgl. Krzanowski 1977). Man kann dann versuchen,
die Variablen derart zu transformieren, dass die Voraussetzungen mindestens
annähernd erfüllt sind, oder dann berechnet man quadratische Trennfunktionen
(Gilbert 1969, Wahl & Kronmal 1977). Letzteres ist vor allem dann am Platz, wenn
die Varianzen m den beiden Gruppen verschieden gross sind

Was m unserem Beispiel durch die Berechnungen gewonnen wurde, ist einerseits
der Nachweis, dass sich das Material tatsächlich m zwei morphologisch verschiedene
Gruppen zerlegen lasst, und andererseits eine Vorschrift, wie die einzelnen Proben
den Gruppen zuzuordnen sind, sodass nur eine kleine Zahl von Fehlklassifikationen
zu erwarten ist.

Ob nun diese beiden Gruppen als Arten zu betrachten sind, ist letzten Endes eine
biologische Frage, welche auch mit biologischen Methoden zu untersuchen ist Diese

Untersuchung wird aber durch die Trennfunktion sehr erleichtert, weil sie es ermöglicht,
mit sicher bestimmten Proben zu arbeiten.

Zusammenfassung

Es wird eine Ubersicht über die einschlagige mathematisch-statistische Literatur
gegeben.

Anhand eines einfachen Beispiels wird versucht, einige Prinzipien statistischer
Klassifizierungsmethoden zu erläutern.

Am Beispiel von 2 Kleinarten der Laubmoosgattung Eurhynchium (E. striatum
(Hedw.) Schrmp. und E.angustirete (Broth.) Koponen) wird gezeigt, wie man mit
Hilfe von Trennfunktionen (Discriminant Functions) den Grad der Trennung
zweier Sippen prüfen, und eine Vorschrift für die Klassifizierung erhalten kann.

Als Hilfsmittel wird ein graphisches Verfahren vorgestellt, welches erlaubt, mit
geringem Rechenaufwand Trennfunktionen zu berechnen.
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Summary

The use of statistical methods in taxonomy.

A short review of the bibliography is given.
A simple example is used to demonstrate some principles of statistical classification

methods.
The problem of discrimination of two moss species (Eurhynchium striatum (Hedw.)

Schimp. and E.angustirete (Broth.) Koponen) is used to demonstrate the application
of discriminant functions.

A simple graphical method using profiles is described, which allows a quick
calculation of discriminant functions.

Keywords: Numerical Taxonomy, Discriminant Funktions, Eurhynchium,
Rank Correlation.
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