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Ber. Schweiz. Bot. Ges. 89 (3/4), 227-250 (1979)

Uber den Gebrauch mathematisch-statistischer
Methoden in der Taxonomie

von Hans Huber

Manuskript eingegangen am 28. Juni 1979

Einleitung

Da die taxonomischen Einheiten durchwegs Kollektive variabler Objekte sind,
wire die Verwendung biometrisch-statistischer Verfahren zur Beschreibung und
Unterscheidung dieser Kollektive durchaus am Platz. Seit R.A.Fisher im Jahre 1936
seine ,,Discriminant Functions® eingefiihrt hat, sind zwar eine ganze Reihe von wei-
teren Verfahren beschrieben worden, welche fiir Probleme der Klassifikation variabler
Objekte brauchbar sind. Trotzdem werden diese Verfahren von den Taxonomen nur
selten angewendet, und in den wenigen Fillen, in denen dies doch geschieht, werden
dann leider oft statistische Methoden gewihlt, welche entweder dem Problem nicht
angepasst sind oder die vorhandene Information nur sehr schlecht ausniitzen. Durch
die geringe Aussagekraft der damit gewonnenen Resultate wird dann der Eindruck
erweckt, dass statistische Methoden nicht viel zur Lésung der Probleme der beschrei-
benden Taxonomie beitragen konnen.

Fir diesen Sachverhalt diirften unter anderem folgende Griinde verantwortlich sein:
1. Die Kenntnis geeigneter Methoden dringt bei der heutigen Spezialisierung der
Wissenschaften nur schwer von einem Fachgebiet in ein anderes iiber. Erschwerend
wirkt hierbei die nur den Fachgenossen gelidufige Fachsprache mit. 2. Zum Ver-
stindnis der einschldgigen Publikationen werden meist ziemlich fortgeschrittene
mathematische Kenntnisse vorausgesetzt. 3. Die Anwendung der Verfahren ist meist
mit einem recht hohen Rechenaufwand verbunden. 4. Formunterschiede lassen sich
oft nur schwer numerisch erfassen.

In der vorliegenden Arbeit soll zunichst durch eine Ubersicht iiber die fiir taxo-
nomische Probleme brauchbaren biometrisch-statistischen Methoden der Zugang zur
einschligigen Literatur erleichtert werden. Sodann soll ein graphisches Verfahren
beschrieben werden, welches mit geringem Rechenaufwand erlaubt, Gliederungen in
einem komplexen Formenkreis zu erkennen.

227



Literaturiibersicht

Bei taxonomischen Untersuchungen wird jeweilen an jedem untersuchten
Exemplar eine Mehrzahl von Merkmalen beobachtet. Um derartige komplexe
Beobachtungen statistisch zu verarbeiten, muss man spezielle Verfahren anwenden,
die in elementaren Einfithrungen in die statistische Methodik hdchstens am Rande
behandelt werden (siehe z.B. Linder, 1951, Kap. 6). Diese Verfahren werden
unter der Bezeichnung ,multivariate Verfahren“ zusammengefasst.

Zur Einfithrung in diese Methoden kommen fiir den Biologen die Werke von
Kramer (1972), Cooley & Lohnes (1962), Quenouille (1952), und Seal (1964) in
Betracht. Fur ein tieferes Eindringen sind die Werke von Anderson (1958), Morrison
(1967), Rao (1952, 1965) beizuziehen; von diesen Biichern setzt dasjenige von
Morrison am wenigsten Vorkenntnisse voraus. Eine Einfiihrung in die etwas andere
Betrachtungsweise der franzosischen Schule findet man in Cailliez & Pages (1976).
Eine besondere Richtung in der multivariaten Statistik befasst sich mit dem Problem,
wie man eine Menge von Objekten in Gruppen dhnlicher Objekte gliedern kann.
Diese Richtung wird in der angelsichsischen Literatur meist als ,Cluster Analysis®
bezeichnet. Fiir den Biologen durfte die geeignetste Einfithrung in dieses Gebiet die
Biicher von Sokal & Sneath (1963) und Sneath & Sokal (1973) sein. Cole (1969)
hat eine Reihe von Beitrdgen eines Symposions iiber diesen Fragenkomplex heraus-
gegeben. Eine Beschreibung der Methoden findet man bei Hartigan (1975). Jardine
& Sibson (1971) behandeln den Fragenkomplex vom mathematisch-theoretischen
Standpunkt aus, leider ist dieses Buch aber sehr schwer verstindlich geschrieben.
Einige Gedankenginge daraus sollen daher im folgenden Kapitel anhand eines ein-
fachen Beispiels erldautert werden. Eine neue Darstellung des ganzen Sachgebietes soll
demnichst im 2. Band des von Krishnaiah herausgegebenen ,Handbook of Statistics*
erscheinen, Eine kiirzere Ubersicht ist von Cormack (1971) verfasst worden. Eine
andere Gruppe multivariater Methoden befasst sich mit dem Problem der optimalen
Trennung verschiedener Populationen. Eine ausfihrliche Bibliographie, sowie eine
Reihe einschligiger Arbeiten sind in dem Von Cacoullos (1973) herausgegebenen
Band zusammengestellt. Uber den neuesten Stand auf diesem Sachgebiet referiert
Lachenbruch (1979). Die Anwendung multivariater Methoden bei einer Reihe von
biologischen Problemen wird im Buch von Blackith & Reyment (1971) besprochen.

Gruppierung von dhnlichen Objekten

Figur 1 stellt zwei Zweige von Vaccinium Myrtillus und einen Zweig von Lonicera
nigra dar. Die Blitter dieser Zweige kann man als Einzelobjekte betrachten und damit
eine Cluster-Analyse durchfithren. Da man genau weiss, zu welchem Zweig jedes Blatt
gehort, kann auf diese Weise die Brauchbarkeit des gewéhlten Verfahrens iiberpriift
werden.

Damit eine statistische Bearbeitung iiberhaupt moglich ist, muss die Form der Blatter
irgendwie numerisch erfasst werden. Dies soll zunédchst nur durch die Messung von Lange
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Fig. 1:

Drei Zweige, deren Blitter im Text

zur Veranschaulichung gewisser Prinzipien
statistischer Klassifizierungsmethoden
dienen.

L; Lonicera nigra

Mq: grossblattriges Vaccinium Myrtillus
Mgy: kleinblittriges Vaccinium Myrtilius

und Breite eines jeden Blattes geschehen. Die Ergebnisse dieser Messungen lassen

sich in ein rechtwinkliges Koordinatensystem eintragen (Fig. 2). Jedem Blatt entspricht
in dieser Darstellung ein Punkt. Wie man sieht, nehmen die Punkte, die zu verschie-
denen Zweigen gehdren, voneinander getrennte Gebiete ein. Daraus folgt, dass die
beiden Messungen geniigend Information enthalten, um die Blitter der verschiedenen
Zweige voneinander zu unterscheiden.

Zur Entscheidung, welche Objekte zu einer Gruppe zu vereinigen sind, bendotigt
man ein Mass fiir die Ahnlichkeit zwischen zwei Objekten. Ein oft verwendetes der-
artiges Ahnlichkeitsmass ist die Distanz zwischen den diesen Objekten zugeordneten
Punkten im Koordinatenraum.

Ein Blick auf Fig. 2 zeigt, dass gewisse Punkte, welche zu Lonicera-Blittern ge-
héren, nur eine geringe Distanz zu Punkten haben, welche zu Vaccinium-Blittern
gehoren. Andererseits gibt es am gleichen Lonicera-Zweig Blitter, deren zugehdrige
Punkte in der Koordinatenebene weit entfernt voneinander liegen. Eine Gruppierung
auf Grund der Distanzen im Koordinatensystem wiirde infolgedessen zu einer ganz
unnatiirlichen Einteilung fithren.

Wie man auf Fig. 2 sehen kann, lassen sich die Punkte der Lonicera-Blitter von
den Punkten der Vaccinium-Blitter durch eine Gerade (A-A) durch den Nullpunkt
trennen. Alle Punkte einer Geraden durch den Nullpunkt des Koordinatensystems
haben dasselbe Verhiltnis Linge zu Breite. Bei Punkten oberhalb der Geraden ist
dieses Verhiltnis grosser, und bei Punkten unterhalb der Geraden kleiner als auf der
Geraden. Da alle Punkte, welche zu Lonicera-Blittern gehdren, oberhalb der Geraden
A-A liegen, und alle Punkte, welche zu Vaccinium-Blittern geh6ren, unterhalb der
Geraden liegen, folgt daraus, dass das Verhiltnis der Linge zur Breite bei den Lonicera-
Blattern grosser ist, als bei den Vaccinium-Blittern, ohne dass eine Uberschneidung
vorkommt, Dieses Verhiltnis ist somit ein besseres Mass zur Bestimmung der Zuge-
horigkeit der einzelnen Blitter, als das Zahlenpaar (Linge, Breite), aus welchem das
Verhiltnis gebildet wird.
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Linge und Breite der auf Fig. 1 abgebildeten
Blitter,

Schwarze Kreise:

Lonicera nigra

Grosse weisse Kreise:

Grossblittriges Vaccinium Myrtillus

Kleine weisse Kreise:

Kleinblattriges Vaccinium Myrtillus

Breite
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Man ersieht aus diesem Beispiel, dass es nicht geniigt, wenn die Messungen die
notwendige Information enthalten, wesentlich ist auch, in welcher Form diese Infor-
mation dargestellt wird.

Die Sicherheit der Unterscheidung ldsst sich natiirlich durch Hinzuziehen weiterer
Merkmale verbessern. So sind z.B. die Vaccinium-Blatter gezdhnt, die Lonicera-Blitter
hingegen ganzrandig. Man kann nun das Merkmal gezdhnt-ganzrandig so kodieren,
dass gezdhnte Blidtter den Wert eins und ganzrandige Blatter den Wert null erhalten.
Betrachtet man nun diese Zahlen als dritte Koordinate, so kommen die Lonicera-
Bldtter in eine andere Ebene zu liegen, als die Vaccinium-BIitter., Dadurch wird der
Abstand der Punkte der beiden Gattungen vergrossert,

Es stellt sich nun aber das Problem, wie gross die Einheit auf der dritten Koordinaten-
achse, verglichen mit einem Centimeter auf den beiden anderen Achsen, gewidhlt werden
soll. Je grosser man diese Einheit wihlt, umso grosser wird auch der Abstand zwischen
den Punkten der beiden Gattungen, umso mehr Gewicht bekommt also das Merkmal
»gezidhnt oder ganzrandig®. Das gleiche Problem kann schon auftauchen, wenn gleich-
artige Masse (z.B. Lingen) in ein Koordinatensystem eingetragen werden. Wenn z.B. die
eine Koordinate die Linge eines Blattes, und die andere Koordinate den Durchmesser
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der Epidermiszellen auf der Blattoberfliche darstellt, wire es falsch, fiir beide Achsen
denselben Massstab zu wihlen, weil der Zelldurchmesser verglichen mit der Blattlinge
verschwindend klein ist, und daher gar nicht mehr ins Gewicht fallen wiirde.

Um zu erreichen, dass alle Merkmale ihr gebiihrendes Gewicht erhalten, muss fir
die Blattlinge eine wesentlich lingere Strecke als Einheit gewihlt werden, als fir die
Zelldurchmesser, In solchen Fillen wird oft die Standardabweichung aller Messungen
der betreffenden Koordinate als Lingeneinheit gewihlt. Dies hat zur Folge, dass die
Streuung in jeder Koordinatenrichtung gleich gross wird. Dies ist jedoch nicht unbedingt
wiinschenswert, weil gerade in derjenigen Richtung, in welcher grosse Unterschiede
zwischen den verschiedenen Gruppen bestehen, eine grosse Streuung vorhanden ist.
Die Wahl der Standardabweichung als Einheit bewirkt dann, dass diese Unterschiede
verkleinert werden, sodass unihnliche Objekte einander angenihert werden. Dies kann
zwar verhindert werden, wenn statt der Standardabweichung zwischen allen Einzel-
objekten die Standardabweichung zwischen den Objekten innerhalb der Gruppen
als Einheit gewdhlt wird, was aber erst mdglich ist, wenn die Objekte bereits in Gruppen
eingeteilt sind. Man muss daher von einer provisorischen Gruppierung ausgehen, um
die Standardabweichung innerhalb der Gruppen zu berechnen. Nach Anpassung der
Koordinateneinheiten wird dann die Gruppeneinteilung iiberpriift, was dann wiederum
eine Neuberechnung der Standardabweichungen bedingt usw. Derartige iterative Ver-
fahren sind sehr aufwendig, wenn eine gréssere Zahl von Objekten klassifiziert wer-
den muss.

Diese Schwierigkeiten kénnen umgangen werden, indem anstelle des Abstands im
Koordinatensystem ein anderes Mass fiir die Ahnlichkeit gewihlt wird. Ein derartiges
Mass ist von Jardine & Sibson (1971) beschrieben worden. Da die Darstellung dieser
Autoren fiir einen Nicht-Mathematiker kaum verstindlich ist, soll im folgenden ver-
sucht werden, das Prinzip, auf welchem dieses Ahnlichkeitsmass beruht, anhand des
Beispiels der Zweige von Vaccinium und Lonicera zu erliutern. Zu diesem Zweck
betrachten wir die Bldtter eines Zweiges als Stichprobe der vom zugehdrigen Strauch
je gebildeten oder in Zukunft moglicherweise zu bildenden Blitter. Es hat dann einen
Sinn, die Wahrscheinlichkeit zu betrachten, dass eine bestimmte Blattform von diesem
Strauch verwirklicht wird. Der Einfachheit halber nehmen wir zuniichst an, dass die
Blattformen in eine endliche Anzahl N von Klassen F, Fo . .. Fy eingeteilt worden
seien. Es sei nun P ; die Wahrscheinlichkeit, dass ein Blatt aus der Klasse Fj vom
Strauch A realisiert wird, und Pgj die Wahrscheinlichkeit, dass ein Blatt aus der
gleichen Klasse vom Strauch B realisiert wird. Wenn man nun ein Blatt aus der Klasse
Fj vor sich hat, von dem man weiss, dass es entweder vom Strauch A oder vom Strauch
B stammt, so ist man umso sicherer, dass es vom Strauch A stammt, je grosser das
Verhiltnis P A j/PRj ist. In der Informationstheorie bezeichnet man die Grdsse log
(PAi/PBj) als diejenige Information zugunsten der Hypothese, dass das Blatt von -
Strauch A stammt, und nicht von Strauch B, welche in der Kenntnis steckt, dass das
Blatt zur Blattform-Klasse Fj gehort (vgl. Kullback 1968). Summiert man die Grosse
PAT log (PAj/PBj) iiber alle Klassen Fj, welche vom Strauch A realisiert werden
konnen, so erhilt man die mittlere Information einer Blattform des Strauches A
zugunsten der Hypothese, dass ein Blatt von Strauch A und nicht von Strauch B
stammt. Diese Summe ist dann und nur dann null, wenn P A und Pg; fiir alle Blatt-
formen iibereinstimmen. Dann kommt nimlich jede Blattform an beiden Striuchern
gleich hdufig vor, sodass die Blattform keine Information zur Beantwortung der
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Frage liefert, von welchem der beiden Striucher ein bestimmtes Blatt stammt.

Bildet man die analoge Summe fiir den Strauch B und addiert die beiden Summen,

so erhilt man eine Grosse, welche von Kullback ,.Divergence® genannt wird, weil

sie umso mehr von null abweicht, je mehr die Wahrscheinlichkeiten der beiden
Straucher divergieren. Schwierigkeiten entstehen, wenn in einer der Klassen F;

eine der beiden Wahrscheinlichkeiten P A j oder Pgj null ist, weil die Division nur

fiir von null verschiedene Divisoren definiert ist. Jardine & Sibson verwenden daher
im Nenner des Wahrscheinlichkeitsverhiltnisses das arithmetische Mittel der beiden
Wahrscheinlichkeiten P A j und PRj, sodass sie das folgende Mass fiir die Divergenz
zwischen den beiden Striuchern erhalten, das sie als ,Informationsradius“ bezeichnen:

n

2PAj PBi
D(A,B)= X [:P ilog —————+Ppjlog——7F+— (D
2 LAV Paj+Pg; BB Pa;+ Py

Betrachtet man anstelle einer endlichen Anzahl von diskreten Klassen von Blatt-
formen eine unendliche Zahl von kontinuierlich ineinander iibergehenden Blattformen,
so hat man anstelle der Wahrscheinlichkeiten Wahrscheinlichkeitsdichten zu setzen und
die Summe ist durch ein Integral zu ersetzen.

Wird ausser der Blattform ein weiteres Merkmal beobachtet, so kann fiir dieses
Merkmal in analoger Weise ebenfalls ein Informationsradius berechnet werden. Wenn
dieses Merkmal von der Blattform unabhingig ist, so ergibt die Summe der beiden
Informationsradien den Informationsradius zwischen den Strauchern A und B unter
Beriicksichtigung beider Merkmale, Auf diese Weise kdnnen sowohl quantitative, als
auch qualitative Merkmale beriicksichtigt werden, sodass ein Divergenzmass erhalten
werden kann, welches auf der Gesamtheit der beobachteten Merkmale beruht.

Wenn man dieses Verfahren in der Praxis anwenden will, so muss man die Wahr-
scheinlichkeitsverteilungen auf Grund von Stichproben schdtzen. Am einfachsten ist
dies bei qualitativen Merkmalen, also z.B. bei der Frage, ob der Blattrand gezahnt
oder ganzrandig ist. Die Schitzung der Wahrscheinlichkeit geschieht dann einfach
dadurch, dass man die Zahl der Bldtter mit gezihntem Rand durch die Gesamtzahl
der beobachteten Blitter dividiert. Wenn bei Strauch A, wie dies bei Lonicera der Fall
ist, alle Bldtter ganzrandig sind, und bei Strauch B, wie bei Vaccinium, alle Blitter
gezdhnt, dann nimmt die Divergenz zwischen den beiden Strauchern den grosstmog-
lichen Wert an, nimlich log 2. Sind hingegen bei beiden Strauchern alle Bldtter gezdhnt
oder bei beiden Strduchern alle Bldtter ganzrandig, so nimmt der Informationsradius
den kleinstmoglichen Wert, null, an. Hat man an den zu vergleichenden Objekten
lauter qualitative Merkmale beobachtet, von denen man annehmen kann, dass sie bei
einem Objekt entweder immer vorhanden sind, oder immer fehlen, so setzt man fiir
jedes Merkmal, in welchem die verglichenen Objekte iibereinstimmen, eine null, und
fiir jedes Merkmal, in welchem die Objekte sich unterscheiden, eine eins. Die Summe
dieser Nullen und Einsen, multipliziert mit dem Logarithmus von 2, ergibt dann den
Informationsradius. Arbeitet man, wie dies in der Informationstheorie iiblich ist,
mit Logarithmen zur Basis 2, dann ist der Logarithmus von 2 gleich eins, und man
erhilt ein in der numerischen Taxonomie oft gebrauchtes Distanzmass, die sogenannte
,City Block Distance®.
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Schwieriger wird die Schitzung bei quantitativen Merkmalen, da die Wahrschein-
lichkeitsverteilung unendlich viele verschiedene Formen annehmen kann.

Wenn angenommen werden darf, dass die Verteilung durch eine Gauss’sche Normal-
verteilung beschrieben werden kann, geniigt die Schdtzung von Mittelwert und
Standardabweichung zur Charakterisierung der Verteilung. Der Informationsradius
kann dann einer Tabelle aus dem Buch von Jardine & Sibson entnommen werden. Die
Addition der Informationsradien mehrerer quantitativer Merkmale ist aber nur dann
zuldssig, wenn die Merkmale statistisch voneinander unabhéingig sind. In unserem
Beispiel sind Blattlinge und Blattbreite eindeutig miteinander korreliert, indem lingere
Blitter im allgemeinen auch eine grossere Breite besitzen. Die Informationsradien fiir
Blattlinge und Blattbreite diirfen daher nicht einfach addiert werden. Durch Berech-
nung der sog. Hauptkomponenten (principal components) kann man in einem solchen
Fall statistisch voneinander unabhiingige Variabeln erhalten. Das Verfahren ist in den
Biichern {iber multivariate Statistik beschrieben. '

Es ist den Morphologen schon lange bekannt, dass zwei an einem Organ gemessene
Strecken oft angenihert auf einer Geraden liegen, wenn sie in ein doppelt logarith-
misches Koordinatensystem eingetragen werden (siehe z.B. Pearsall, 1927, Schiiepp,
1945, 1963). Man spricht dann von Allometrie. Wenn die Steigung der Geraden
gleich eins ist, bedeutet dies, dass die beiden Strecken zueinander in einem konstanten
Verhiltnis stehen. Wenn man in einem solchen Fall die Koordinatenachsen so dreht,
dass die eine Koordinatenachse parallel zu der den Messpunkten angepassten Ge-
raden steht, und die andere Achse senkrecht dazu, so sind die neuen Koordinaten der
Messpunkte miteinander praktisch unkorreliert. Wenn man zudem annehmen darf,
dass diese Koordinaten praktisch normal verteilt sind, dann diirfen nach der Drehung
des Koordinatensystems die Verteilungen in den beiden Koordinatenrichtungen als
statistisch voneinander unabhingige Normalverteilungen betrachtet werden, und
die Informationsradien, die aus der Tabelle von Jardine & Sibson abgelesen worden
sind, diirfen zueinander addiert werden.

Auf Fig. 3 sind die Messungen an den Blittern der beiden Vaccinium-Zweige
und des Lonicera-Zweiges in einem doppelt logarithmischen Koordinatensystem
dargestellt. Fiir jeden Zweig kann eine Gerade mit der Steigung eins gefunden werden,
um die sich die Messpunkte fast symmetrisch gruppieren. Fiir alle Punkte auf einer
solchen Geraden gilt die Gleichung:

log 1 =log b + const.

Daraus folgt:
log 1 — log b =1log 1/b = const.

d.h. Punkten auf der Geraden entsprechen Blitter mit dem gleichen Verhéltnis der
Linge zur Breite. Legt man durch einen Punkt der Geraden eine zweite Gerade senk-
recht zur ersten, so entsprechen den Punkten dieser zweiten Geraden Blitter mit dem
gleichen Produkt Linge mal Breite, also mit annihernd derselben Blattfliche. Wird

nun das Koordinatensystem so gedreht, dass die eine Achse parallel zur ersten Geraden,
und die andere Achse parallel zur zweiten Geraden liegt, dann entspricht im neuen
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Koordinatensystem der einen Koordinate ein bestimmtes Verhiltnis Linge zu Breite,
und der andern Koordiante ein bestimmtes Produkt Linge mal Breite. Nimmt man
nun an, dass die Logarithmen von Blattbreite und Blattlinge normal verteilt seien,
dann lasst sich die Wahrscheinlichkeitsverteilung von Blattbreite und Blattlinge mit
Hilfe von Mittelwert und Standardabweichung des Logarithmus des Verhiltnisses
Lénge/Breite und des Logarithmus des Produkts Linge mal Breite vollstindig be-
schreiben. Diese vier Grossen geniigen auch, um den Informationsradius nach Jardine
& Sibson zu bestimmen. In der Tabelle 1 sind die betreffenden Werte fiir jeden der
drei Zweige zusammengestellt. Die Frage, ob die Annahme der Normalverteilung
berechtigt ist, kann mit dem Test von Shapiro & Wilk (1965) gepriift werden. Wenn
diese Frage verneint werden muss, empfehlen Jardine & Sibson, den Koordinatenraum
in Klassen einzuteilen und dann die Anzahl der Messpunkte in jeder dieser Klassen
auszuzidhlen. Der Informationsradius kann dann nach der Formel (1) berechnet werden.
Da man in der Praxis selten iiber sehr grosse Stichproben verfiigt, muss diese Einteilung
ziemlich grob gewidhlt werden (vgl. Cochran 1961). Da bei diesem Vorgehen das Er-
gebnis durch die willkiirliche Wahl der Klassengrenzen beeinflusst wird, so ist dieser
Weg bloss als ein Notbehelf zu betrachten. Eine andere Méglichkeit besteht darin, dass
man versucht, eine geeignete Transformation zu finden, welche die Daten eher normal
verteilt macht.
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Tabelle 1

Mittelwert und Standardabweichung der Logarithmen des Verhiltnisses Linge zu Breite
und des Produkts Linge mal Breite der Blitter der drei Zweige von Fig. 1.

log 1/b log.1-b

Mittel Standardabw. Mittel Stapdardabw.
Lonicera (L) 0.3539 0.07841 0.5693 0.3796
Vaccinium, grossbl. (M) 0.1924 0.03284 0.4900 0.1986
Vaccinium, kleinbl, (Mz) 0.1461 0.04936 —0.2529 0.2028

Auf Grund der Werte von Tabelle 1 erhidlt man die in Tabelle 2 zusammengestellten
Informationsradien fir die drei moglichen Paarungen von je zwei verschiedenen Zweigen:

Tabelle 2

Informationsradien zwischen je zwei Zweigen von Fig. 1.

Paarung log 1/b log1-b Summe

L,M; 0.7255 0.1658 0.8913
L,Mjy 0.8078 0.7201 1.5279
Mi, My 0.2248 0.8948 1.1196

Der Informationsradius stellt eine Alternative zur Distanz im Koordiantenraum
dar, die in dem Fall angewendet werden kann, dass die zu gruppierenden Objekte
selbst Kollektive sind. Sind jedoch Einzelobjekte zu gruppieren, so kommen die
Ahnlichkeitsmasse von Goodall (1966) und von Gower (1971) in Frage.

Die Aufgabe besteht nun darin, d4hnliche Objekte in Gruppen (,,Clusters“) zu-
sammenzufassen. Zur Lésung dieser Aufgabe ist eine ganze Reihe von Methoden
entwickelt worden, die unter der Bezeichnung ,Automatische Klassifikation“ oder
,Cluster Analysis“ zusammengefasst werden. Das einfachste Verfahren, das zudem
vom mathematischen Standpunkt in einem gewissen Sinne optimal ist (Jardine &
Sibson), ist das sogenannte ,Single Linkage“-Verfahren. Es besteht darin, dass zu-
néachst die beiden dhnlichsten Objekte vereinigt werden, dann die beiden niichst
dhnlichen usw. Auf diese Weise kdnnen allmihlich auch ziemlich unihnliche Objekte
in derselben Gruppe vereinigt sein, wenn sie nimlich durch eine Reihe von Zwischen-
gliedern verbunden sind.

Wendet man dieses Verfahren auf die dritte Kolonne von Tabelle 2 an, so muss
man zuerst den Lonicera-Zweig mit dem grossblittrigen Heidelbeerzweig vereinigen,
weil dieses Paar den kleinsten Informationsradius (0.8913) hat. Der nichstgrossere
Informationsradius (1.1196) gehdrt zur Paarung der beiden Heidelbeerzweige. Im
zweiten Schritt wird daher der kleinblittrige Vaccinium-Zweig mit der Gruppe der
beiden andern Zweige vereinigt. Weil jetzt alle Objekte miteinander verbunden sind,
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ist damit das Verfahren abgeschlossen. Das Ergebnis wird meist in der Form eines
Dendrogramms (Fig. 4A) dargestellt. Der Massstab links vom Dendrogramm entspricht
dem mittleren Informationsradius, d.h. dem Informationsradius, geteilt durch die
Anzahl der Merkmale, bei welchem die Vereinigung geschieht. Je weiter oben die
Gabelung liegt, welche zwei Objekte verbindet, umso grosser ist also der betreffende
Informationsradius, d.h. umso mehr unterscheiden sich die durch die betreffende
Gabel verbundenen Objekte.

Das Dendogramm Fig. 4A ist recht unbefriedigend ausgefallen, da in ihm zwei
Objekte, welche systematisch in zwei verschiedene Familien gehOren, zuerst vereinigt
worden sind, und die beiden zur gleichen Art gehdérenden Objekte erst nachher.

Diese Situation kann verbessert werden, indem weitere Merkmale zugezogen werden,
sodass mehr Information zur Klassifizierung der Objekte zur Verfiigung steht. In
unserem Beispiel ist die Zdhnung des Blattrandes ein geeignetes Merkmal, weil alle
Blitter des Lonicera-Zweiges ganzrandig sind, und alle Vaccinium-Blitter gezdhnt.

Der Informationsradius fiir dieses Merkmal betrigt daher fiir eine Paarung eines
Lonicera-Zweigs mit einem Vaccinium-Zweig eins und fiir die Paarung der beiden
Vaccinium-Zweige null. Dieser Betrag ist zu den Werten der dritten Kolonne von
Tabelle 2 zu addieren, sodass man die Summen der Informationsradien erhilt: fiir die
Paarung (L, M) 1.8913, fiir die Paarung (L, M2) 2.5279 und fiir die Paarung (M1, M7)
den Wert 1.1196. Mit diesen Werten erhilt man das Dendrogramm Fig. 4B. Die beiden
Vaccinium-Zweige sind jetzt niher zusammengeriickt, der Abstand zu Lonicera ist
aber noch nicht sehr bedeutend.

Verwendet man nur die Information aus dem Verhiltnis der Blattlinge zur
Blattbreite (Kolonne 1 von Tabelle 2), so ergibt sich das Dendrogramm Fig. 4C; fiigt
man die Information der Zihnung des Blattrandes hinzu, erhilt man das Dendro-
gramm Fig. 4D, in welchem die nahe Beziehung der beiden Vaccinium-Zweige im
Gegensatz zum Lonicera-Zweig klar zum Ausdruck kommt. Man kann aus diesem
Beispiel verschiedenes lernen: Die Verfahren der automatischen Klassifikation ergeben
nicht etwa automatisch eine richtige Darstellung der Verwandtschaftsbeziehungen.
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Fig. 5:
Obere Reihe:
Blitter von
Eurhynchium striatum.
Untere Reihe:
Bldtter von
Eurhynchium angustirete
(= E. Zetterstedtii).

Voraussetzung dafiir, dass brauchbare Resultate erzielt werden, ist vielmehr, dass die
wesentliche Information mit den Daten eingegeben wird. Ferner muss man sich dar-
iiber klar sein, dass Information, welche fiir die Klassifikation nicht wesentlich ist,

die Verwandtschaftsbeziehungen verschleiern kann. In unserem Beispiel ist die Blatt-
fliche ein solches unwesentliches Merkmal, das ja sehr stark durch die Wachstums-
bedingungen am Standort beeinflusst werden kann. Durch Weglassen dieses Merkmals
kommen die Verwandtschaftsbeziehungen viel klarer zur Geltung.

Unterscheidung dhnlicher Sippen

Zwei Fragen konnen mit Hilfe biometrisch-statistischer Methoden untersucht
werden, wenn es darum geht, dhnliche Sippen voneinander zu unterscheiden:
1. Liegen iiberhaupt klar voneinander abgegrenzte Sippen vor? 2. Wie sind die ein-
zelnen Individuen den Sippen zuzuordnen, wenn méglichst wenig Fehlbestimmungen
vorkommen sollen? Wie hier im einzelnen vorgegangen werden kann, soll wiederum
anhand eines Beispiels erliutert werden.

Stormer (1942) hat die Laubmoosart Eurhynchium striatum in zwei K leinarten
aufgespalten, welche sich durch ihre Blattform unterscheiden (Fig. 5). Fiir die Form
mit zugespitzten Blittern behielt er den Namen E. striatum bei; die stumpfblittrige
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Form nannte er E. Zetterstedtii. Nach Koponen (1967) muss die letztere Form

E. angustirete (Broth.) Koponen heissen. E. striatum hat im Norden Europas eine
ausgesprochen atlantische Verbreitung und steigt in Norwegen nicht iiber 300 m in
die Hohe (Stérmer 1969), die Verbreitung von E. angustirete hingegen ist eher
kontinental (Koponen 1964). In der Schweiz und den angrenzenden Gebieten ist
E.angustirete vor allem in der Montanstufe anzutreffen, und steigt nicht unter 600 m
hinunter, wihrend E. striatum eher in der collinen Stufe vorkommt und hochstens
ausnahmsweise iiber 800 m hinaufsteigt. Es handelt sich also offensichtlich um zwei
Sippen mit verschiedenen klimatischen Anspriichen, sodass deren Unterscheidung

fiir pflanzengeographische und pflanzensoziologische Untersuchungen von Bedeutung
ist, Da man oft Formen antrifft, welche schwer einzuordnen sind, hat die Aufspal-
tung nicht allgemeine Anerkennung gefunden.

Fiir eine statistische Untersuchung der Unterschiede sind Messungen notwendig.
Nach Stormer unterscheiden sich die beiden Arten vor allem durch das Verhiltnis der
Blattlinge zur Blattbreite, sowie durch den Winkel der Blattspitze. Beim Vergleichen
einer grosseren Anzahl von Bldttern fillt als weiteres Merkmal auf, dass die Blatt-
kontur bei E. angustirete konvex ist, bei E. striatum hingegen an der Blattspitze konkav.,
Konstruiert man ein gleichseitiges Dreieck mit der grossten Blattbreite als Basis und
der Blattspitze als Spitze (auf Fig. 5 rechts eingezeichnet), so ist der Spitzenwinkel
dieses Dreiecks bei E. striatum grosser als der Winkel der Blattspitze, bei E. angustirete
hingegen ist der Blattspitzenwinkel grosser als der Dreieckswinkel. Zur Bestimmung
des Dreieckswinkels geniigt die Messung der Linge der grossten Blattbreite und des
Abstands der Blattspitze von der gréssten Breite: dieser Abstand, dividiert durch die
halbe Breite, ergibt den Tangens des halben Dreieckwinkels.

Schliesslich ist die Ldnge der Zellen in der Blattspitze bei E. striatum grosser als
bei E. angustirete.

64 Proben aus dem Formenkreis von Eurhynchium striatum im weiteren Sinn
wurden untersucht. Von jeder dieser Proben wurden 4 Blidtter vom Moosstimmchen
abgeldst, und daran die folgenden Messungen ausgefiithrt: Linge und Breite der
Blitter, Abstand der gréssten Breite von der Blattspitze, Winkel der Blattspitze,
Linge von je 4 Zellen in der Blattspitze. Aus diesen Daten wurden fiir jede Probe
die folgenden Werte berechnet:

1. Der Mittelwert des Verhiltnisses der Linge zur Breite der Blitter.

2. Mittelwert des Verhiltnisses des Abstands der Blattspitze von der grossten Breite
zur halben Breite (= Tangens des halben Spitzenwinkels des in Fig. 5 rechts ein-
gezeichneten Dreiecks). -

3. Mittelwert des Tangens des halben Blattspitzenwinkels.

4., Mittlere Zellenlinge in der Blattspitze in um.

Jede Probe ist damit durch 4 Zahlen charakterisiert, welche als Koordinaten
eines Punktes in einem 4-dimensionalen Koordinatenraum aufgefasst werden kénnen.
Wenn von jeder dieser 64 Proben bekannt wire, zu welcher der beiden Kleinarten
sie gehdrt, so konnte man das vorliegende Datenmaterial dazu verwenden, um eine
Trennfunktion (Discriminant Function) zu berechnen. Das Ergebnis der Berechnung
wiirde uns dann ermdglichen, weitere Proben, deren Zugehérigkeit nicht bekannt
ist, zu bestimmen. Da die Zugehdrigkeit der Proben in unserem Fall nicht bekannt
ist, soll versucht werden, ausgehend von einer provisorischen Zuordnung eine provi-
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sorische Trennfunktion zu berechnen. Diese Trennfunktion soll dann dazu dienen,

die Zuordnung der einzelnen Proben zu iiberpriifen und nétigenfalls zu korrigieren.
Die korrigierte Zuteilung der Proben erméglicht dann wiederum, eine verbesserte
Trennfunktion zu berechnen. Dieses Verfahren kann solange fortgesetzt werden, bis
keine der Proben mehr ihre Zuordnung wechselt, wenn sie mit der zuletzt berechneten
Trennfunktion bewertet wird. ,

Fiir die erste provisorische Einteilung sind graphische Darstellungen sehr niitzlich.
Wenn jede Probe nur durch zwei Messungen reprisentiert wird, kann man mit der
Darstellung in der Koordinatenebene auskommen. In dieser Darstellungsweise sind
die zusammengehorigen Objekte oft als Punktwolken mehr oder weniger klar er-
kennbar. Fiir mehrdimensionale Koordinatenriume ist die Darstellung als ,Profil“
geeignet (vgl. Hartigan, 1975). Im folgenden soll gezeigt werden, wie die Profil-
darstellung dazu benutzt werden kann, um auf einfache Weise eine provisorische
Trennfunktion zu berechnen.

Ein Profil besteht aus einer Reihe von k parallelen Skalen, von denen jede eine
der k Koordinaten reprisentiert. Ein Punkt im k-dimensionalen Koordinatenraum
wird durch einen Streckenzug dargestellt, der die Koordianten des betreffenden
Punktes miteinander verbindet. Der Massstab der Skalen wird mit Vorteil so gewihlt,
dass die den Punkten entsprechenden Streckenziige moglichst weit auseinander-
riicken, und die Richtung, in welcher die Koordinatenwerte zunehmen, so, dass
moglichst wenig Streckenziige sich iiberkreuzen.

Aus den 64 Proben wurde eine Stichprobe von 15 Proben zufillig ausgewihlt.
Diese 15 Proben sind auf Fig. 6 als Profil dargestellt. Die Reduktion der Anzahl der
Proben wurde aus zwei Griinden vorgenommen: 1. lisst sich leider nur eine be-
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Profildarstellung von Messungen an Blidttern von

15 Proben von Eurhynchium striatum sens, lat.
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schrinkte Anzahl von Punkten in einem Profildiagramm darstellen, weil sonst die
Darstellung bald uniibersichtlich wird; 2. wenn nur ein Teil des Datenmaterials zur
Berechnung der provisorischen Trennfunktion verwendet wird, kann mit dem Rest
eine unabhingige statistische Uberpriifung der arbitriren provisorischen Einteilung
vorgenommen werden.

Die auf Fig. 6 dargestellten Proben lassen sich mit Ausnahme der mit A-A be-
zeichneten Probe in zwei klar getrennte Gruppen einteilen. Diese Gruppen kénnen
nun dazu verwendet werden, um eine provisorische Trennfunktion zu berechnen.
Die von R.A. Fisher (1936) vorgeschlagene lineare Trennfunktion hat die folgende
Form:

Y =bix] +bax3+...+bpxp (2)

Die Koeffizienten bj erhilt man durch Auflosung des folgenden linearen Gleichungs-
systems (siehe z.B. Linder, 1951, Kap. 64):

by S11+b2812+...+bpS1p=d]
by S21+b28S22+...+bpS2p=d3 (3)

wobel
Sij = Z (XA -%iA) (XA — Fja) + 2 (xiB — XiB) (XjB — XjB)
A B

XjA = Wert der i-ten Koordinate eines Objekts der Gruppe A
xig = Wert der i-ten Koordinate eines Objekts der Gruppe B

XiA = Mittelwert der i-ten Koordinate in der Gruppe A

XiB = Mittelwert der i-ten Koordinate in der Gruppe B
di = XjA — XiB = 2 XjA/NA — Z X{B/NB
A B
nA = Anzahl Objekte in der Gruppe A
ng = Anzahl Objekte in der Gruppe B

Sjj / (nA + ng — 2) ist eine Schitzung fiir das Produkt pj;0i0j wobei 0j fir die
Standardabweichung der i-ten Koordinate, und pjj fiir den Korrelationskoeffizienten
zwischen der i-ten und der j-ten Koordinate steht. Wenn die Koordinaten nicht mit-
einander korreliert sind, vereinfacht sich das Gleichungssystem auf

bj Sij = dj (4)

Die Rechnung kann nun ganz erheblich vereinfacht werden, indem anstelle der
arithmetischen Mittel X; Medianwerte verwendet werden. Der Medianwert einer Stich-
probe ist derjenige Wert, welcher von ebensovielen Werten iiberschritten wie unter-
boten wird. Bei einer ungeraden Zahl von Werten in der Stichprobe stimmt er mit
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dem mittelsten Wert iiberein, bei einer geraden Anzahl liegt er in der Mitte zwischen
den beiden mittleren Werten. In einem Profildiagramm kann er leicht durch Abzédhlen
erhalten werden und eine Schitzung fiir die Distanz d; kann man durch Abmessen
der Distanz zwischen den Medianwerten der zu unterscheidenden Gruppen erhalten.
Als Mass der Streuung kann die Spannweite wi zwischen dem grdssten und dem
kleinsten Wert einer Stichprobe ebenfalls leicht am Diagramm abgelesen werden.
Bei normal verteilten Gréssen ist die Spannweite im Mittel proportional zur Standard-
abweichung, resp. zu \/S_H‘ Tabellen mit den entsprechenden Proportionalitdts-
faktoren sind von Pearson & Hartley (1958) publiziert worden. Fiir die Schitzung
der bj in Formel (4) ist dieser Proportionalititsfaktor jedoch unwichtig, da es fiir die
Trennfunktion belanglos ist, wenn alle Koeffizienten bj mit demselben Faktor
multipliziert werden (vgl. z.B. Linder, 1951, S. 241). Wenn die Voraussetzungen fiir
die Gleichungen (4) zutreffen, kann man daher sofort die Trennfunktion (2) so
hinschreiben (vgl. Rao 1952, p.306):

dq do dp
y ST X1t X2t ..t Xp (5)
w1 ) Wp

Sind jedoch die Koordinaten miteinander korreliert, so bendtigt man noch
Schitzungen der Korrelationskoeffizienten pjj. Auch dies kann aus dem Profildia-
gramm ohne grossen Rechenaufwand erhalten werden, indem man auszédhlt, wie oft
sich die Linien, welche die Koordinaten der Variablen verbinden, schneiden. Die
Zahl der Schnittpunkte sei k. Der Ausdruck

t = 1-4k/(n(n— 1) ' (6)

entspricht dann dem Rang-Korrelationskoeffizienten nach Kendall (1962). Der
Ausdruck (6) bedarf einer Korrektur, falls Bindungen (ties) vorkommen. Diese sind
auf dem Diagramm daran zu erkennen, dass mehrere Punkte auf einer Achse zu-
sammentreffen. Gehen von einem Punkt auf einer Achse m verschiedene Linien aus,
so ist zur Anzahl k die Hilfte der zwischen m Linien méglichen Anzahl Schnittpunkte
zu addieren, also m(m-1)/4. Schneiden sich hingegen m Linien zwischen zwei Achsen
in einem Punkt, so ist der Beitrag dieses Schnittpunkts zu k gleich m(m-1)/2.

Wenn man annehmen darf, dass man es mit normal verteilten Daten zu tun hat,
kann der Rangkorrelationskoeffizient t dazu verwendet werden, um den Korrelations-
koeffizienten pjj zu schitzen, Kendall (1962) gibt Formeln fiir den Erwartungswert
und die Varianz von t als Funktion von p an. Die Verteilung von t kann durch eine
sogenannte Polya-Verteilung approximiert werden (Huber, 1974). Auf Grund dieser
Angaben kann man Vertrauensgrenzen fiir p konstruieren. Fig. 7 zeigt solche Grenzen
fiir den Fall, dass 2 Stichproben vom Umfang 6 oder 10 zur Verfiigung stehen. Jede
Stichprobe liefert dann einen t-Wert, das Diagramm gilt fiir den Mittelwert aus diesen
beiden t-Werten. Die Darstellung zeigt, dass selbst fiir die geringe Vertrauenswahr-
scheinlichkeit von 50% die Grenzen recht weit auseinanderliegen, was bedeutet, dass
die genaue Lage von p ziemlich unsicher ist. Die iibliche Methode der Schitzung des
Korrelationskoeffizienten (,Produkt-Moment-K orrelation®) erzielt aber bei so kleinen
Stichproben keine wesentlich gréssere Prizision der Schiitzung,.
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Fig. 7:

Vertrauensgrenzen fiir den Korrelationskoeffizienten p, in Abhingigkeit von t,

dem Mittelwert aus zwei Rang-Korrelationskoeffizienten nach Kendall,

Umfang der Stichproben 6 oder 10. Vertrauenswahrscheinlichkeiten von 50% und 90%.

Wir haben nun alle Elemente zusammen, um das Gleichungssystem (3) aufzustellen.
Die Auflésung eines derartigen Systems war noch bis vor kurzem ohne den Einsatz
eines Gross-Computers eine ziemlich miihsame Angelegenheit. Heute gibt es aber
bereits Taschenrechner mit einsetzbaren fertigen Programm-Paketen, welche imstande
sind, lineare Gleichungssysteme automatisch zu 15sen. ,

In der Tabelle 3 sind die im Profildiagramm (Fig. 6) abgelesenen Werte der Mediane,
Spannweiten zwischen grésstem und kleinstem Stichprobenwert, sowie Anzahl Uber-
schneidungen zusammengestellt,
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Tabelle 3
Am Profildiagramm (Fig. 6) abgelesene Werte:

a) Medianwerte

b/1 tga/?2 tg B8 Zell-Linge
in ym

Gruppe A (n=6) 0.815 0.630 0.536 31.6
Gruppe B (n=38) 0.643 0.270 0.374 48.1
Differenz 0.172 0.360 0.162 - —16.5
b) Spannweite zwischen grésstem und kleinstem Wert

b/1 tga/2 tg B8 Zell-Linge

in um

Gruppe A  (n=6) 0.107 0.24 0.071 3.9
Gruppe B (n=28) 0.116 0.09 0.071 18.2
Mittel 0.1115 0.165 0.071 11.05
Standardabweichung 0.041 0.061 0.026 4,087
¢) Uberschneidungen
Gruppe A: oberhalb der Diagonale; Gruppe B: unterhalb der Diagonale.

b/1 tga/2 tg g Zell-Linge
b/1 = 8 2 3
tg /2 13 — 3 9
tg p 6 7 - 3
Zell-Linge 18 11 12 -
d) Kendall-Rangkorrelation
Gruppe A: oberhalb der Diagonale; Gruppe B: unterhalb der Diagonale.

b/1 tg of2 tg B Zell-Linge
b/1 - —0.07 0.73 —0.60
tg of2 0.07 %5 —0.07 0.20
tg 8 0.57 0.50 — —0.60
Zell-Linge 0.29 —0.21 —0.14 —
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Tabelle 4 enthilt die mit Hilfe der Formel (6) aus der Zahl der Uberschneidungen
berechneten Rangkorrelationskoeffizienten, sowie die entsprechenden auf Fig. 7 abge-
lesenen Werte des gewohnlichen Korrelationskoeffizienten.

‘Tabelle 4
Korrelation zwischen Kendall-Rangkorrelation.

Gruppe A Gruppe B Mittel P
b/1 und tg /2 —0.07 0.07 0.00 0.00
b/1 und tg 8 0.73 0.57 0.65 0.83
b/1 und Zell-Linge —0.60 0.29 —0.16 —0.20
tg @/2 und tg B —0.07 0.50 0.22 0.32
tg @/2 und Zell-Linge 0.20 —-0.21 0.00 0.00
tg 8 und Zell-Linge —0.60 —-0.14 —0.37 —0.52

Schitzungen fiir die Werte von ¢ erhidlt man, indem man die mittlere Spannweite
durch 2.7 dividiert (Pearson & Hartley, 1958, table 20). Damit sind alle Grundlagen
vorhanden, um die Koeffizienten pjj0i0j des Gleichungssystems (3) zu berechnen.
Die erste Zeile von (3) erhidlt man folgendermassen:

1.00(0.041) (0.041) = 0.0016

0.00(0.041) (0.061) = 0.00

0.83(0.041) (0.026) = 0.00088
—0.20(0.041) (4.087) = 0.034

In analoger Weise werden die iibrigen Koeffizienten berechnet, sodass man die
folgenden Gleichungen erhilt (die Werte sind stark gerundet, da es sich ja nur um
.Nidherungswerte handelt):

0.002 by + 0.0009b3 — 0.034bg =  0.17

0.004by + 0.0005 b3 = 036
0.001 bj+ 0.0005by + 0.0007b3 — 0.056bsg =  0.16
—0.034 b 0.056b3 + 16.7bg = —16.5

Die Auflésung dieses Gleichungssystems liefert die folgende Trennfunktion:
y = 102 b/1+98 tg a/2 — 68 tgl — Zell-Liinge in um (7)

Durch Einsetzen der Messwerte in die Trennfunktion (7) erhilt man fiir jede
Probe einen Wert von y. Diese Werte sind in Tabelle 5 in Form eines sog. ,stem and

leaf plot“ (Tukey, 1977) dargestellt.
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Tabelle 5

Werte der Trennfunktion (7).
I: Proben, welche zur Berechnung der Trennfunktion gedient haben,
II: iibrige Proben.

I II
Zehner  Einer Zehner Einer
0 59 0 27
1 3678 1 455579
2 26 2 0002333669
3 3 2348
4 4 247
5 5 29
6 6 2245
7 01148 7 00013455557
8 9 8 0445789
9 9 8
10 10 2
11 11 7
12 12 7

Diese Darstellungsweise vereinigt in sich eine graphische Darstellung mit einer
tabellarischen Zusammenstellung des Datenmaterials. Die einzelnen Zahlenwerte
werden in Zehner- und Eineranteil aufgespalten, und die Einerziffer wird in der
richtigen Zehnerzeile eingetragen. So bedeuten z.B. die 4 Eintragungen in Zeile 1
der Gruppe I rechts vom Strich, dass im Zahlenmaterial die 4 Werte 13, 16, 17 und
18 aufgetreten sind. Die linke Hilfte des Diagramms stellt die 14 Proben dar, welche
zur Berechnung der Trennfunktion gedient haben, die rechte Hilfte den Rest der
Proben.

Die linke Gruppe wird durch die Trennfunktion sehr deutlich in zwei Teilgruppen
getrennt. Dies darf aber nicht als Beweis betrachtet werden, dass zwei klar getrennte
Arten vorliegen, da ja die Trennfunktion so berechnet worden ist, dass eine moglichst
gute Trennung zustande kommt. Eine entsprechende Aufspaltung findet man aber
auch beim Rest der Proben. Da diese Proben bei der Berechnung der Trennfunktion
nicht verwendet worden sind, liefern sie eine unabhingige Bestitigung fiir das Zer-
fallen in zwei morphologisch verschiedene Sippen. Engelmann & Hartigan (1969)
haben einen statistischen Test publiziert, um zu priifen, ob eine Stichprobe, welche
anscheinend in zwei Gruppen zerfillt, in Wirklichkeit aus einer normal verteilten
Grundgesamtheit stammen konnte. Da nicht normal verteilte Grundgesamtheiten
in der Natur hiufig vorkommen, bedeutet die Verwerfung der Hypothese einer
normal verteilten Grundgesamtheit noch nicht ohne weiteres, dass damit das Zer-
fallen in zwei Gruppen nachgewiesen sei. Ein schirferer Test kann folgendermassen
durchgefiihrt werden: wenn tatsichlich zwei getrennte Gruppen vorliegen, so ist zu
erwarten, dass im Intervall zwischen den Gruppen die Dichte der y-Werte geringer ist,
als in den Gruppenschwerpunkten. Dies kann gegen die ,Nullhypothese® getestet
werden, dass im ganzen Intervall zwischen dem gréssten und dem kleinsten beob-
achteten y-Wert die Wahrscheinlichkeitsdichte gleich gross ist. Die 14 Proben, die
zur Berechnung der provisorischen Trennfunktion gedient haben, ergaben y-Werte
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zwischen 5 und 26, sowie zwischen 70 und 89. Die Linge dieser beiden Intervalle
betrigt 48% des ganzen Intervalls zwischen 5 und 89. Wenn die Nullhypothese
zutrifft, ist daher zu erwarten, dass 52% aller Werte, welche zwischen 5 und 89
liegen, im mittleren Intervall liegen, und nur 48% in den beiden seitlichen Intervallen.
45 der Proben, welche nicht zur Berechnung der provisorischen Trennfunktion
gedient hatten, haben y-Werte zwischen 5 und 89. Unter der Nullhypothese ist der
Erwartungswert im mittleren Intervall gleich 0.52 x 45 = 23.6, in den beiden seit-
lichen Intervallen 0.48 x 45 = 21.4, beobachtet werden aber im mittleren Abschnitt
15 und in den beiden seitlichen Intervallen zusammen 30 Werte. Man kann die
Wahrscheinlichkeit, dass im mittleren Abschnitt nicht mehr als 15 Werte liegen, wenn
die Nullhypothese zutrifft, mit Hilfe der Binominalverteilung berechnen. Diese Wahr-
scheinlichkeit betrigt 0.0078. Dies bedeutet, dass es unwahrscheinlich ist, das beob-
achtete Resultat zu erhalten, wenn Gleichverteilung herrscht. Einheitliche Populationen
haben aber in der Regel eine mehr oder weniger glockenférmige Verteilung mit er-
hohter Wahrscheinlichkeitsdichte in der Mitte. Das beobachtete Ergebnis wird dann
noch unwahrscheinlicher. In der Tat erhilt man mit dem Test von Engelmann &
Hartigan, der von der Nullhypothese einer Normalverteilung ausgeht, eine Wahrschein-
lichkeit von weniger als 0.001. Man darf also mit ziemlicher Sicherheit annehmen,
dass das vorliegende Material aus einer zweigipfligen Verteilung stammt.

Mit Hilfe der provisorischen Trennfunktion ist es somit gelungen, zu zeigen,
dass es sich lohnt, eine bessere Trennung der beiden Komponenten mit Hilfe der
aufwendigeren Methode von R.A. Fisher zu versuchen. Man trennt zu diesem Zweck
das Material in zwei Gruppen, indem man denjenigen Wert der provisorischen Trenn-
funktion verwendet, bei welchem sich die deutlichste Liicke zeigt und berechnet fiir
diese Aufteilung dann das Gleichungssystem (3). Die Aufldsung dieses Systems
liefert die folgende Trennformel:

y = —503b/1+123tga/2+207.4 tg8 — Zell-Linge (8)

Die Koeffizienten dieser neuen Trennformel unterscheiden sich ganz wesentlich
von denjenigen der provisorischen Formel (7). Verwendet man aber Formel (8) zur
Einteilung in zwei Gruppen, so muss nur eine einzige Probe anders eingeteilt werden,
als mit der Formel (7). Nach Umteilung dieser Probe kann man das Gleichungssystem
(3) erneut berechnen und erhilt dann eine dritte Trennformel:

y = —18.6b/1+558 tga/2+110.8 tgf — 0.776 Zell-Linge in um  (9)

Die Koeffizienten dieser Formel unterscheiden sich nicht mehr stark von den-
jenigen von Formel (8). Die Verwendung von Formel (9) macht auch keine neuen
Umteilungen notwendig. Die Verteilung der y-Werte der Trennfunktion (9) sind auf
Fig. 8 in der Form eines Wahrscheinlichkeitsdiagramms dargestellt. Auf der Ordinate
sind die y-Werte der Trennfunktion aufgetragen, die Abszissenwerte sind ,Probits“.
Dies sind von der Normalverteilung abgeleitete Grossen. Jeder Wahrscheinlichkeit p
ist ein Probit-Wert zugeordnet. Dies ist derjenige Zahlenwert, der von einer Normal-
verteilung mit dem Mittelwert S und der Standardabweichung eins gerade mit der
Wahrscheinlichkeit p unterschritten wird. Probit-Werte kdénnen einer statistischen
Tabellensammlung entnommen werden (z.B. Documenta Geigy-Tabellen, Fisher &
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Fig. 8:
Beziehung zwischen dem Wert y der
Trennfunktion und Probit-Werten
(Wahrscheinlichkeitsdiagramm).
Die obere Gerade entspricht den Proben
von Eurhynchium angustirete
(= E. Zetterstedtii), die untere Gerade
den Bldttern von Eurhynchium striatum
sens. strict. Der Schnittpunkt der beiden
Geraden ergibt den Trennpunkt, und

| erlaubt, die Wahrscheinlichkeit einer
Probit | Fehlklassifikation zu schitzen.

Yates oder Pearson & Hartley). Es gibt aber auch sog. Wahrscheinlichkeitspapier,
bei welchem der Wahrscheinlichkeits-Massstab so verzerrt wird, dass man sich den
Umweg liber die Probit-Werte sparen kann.

Ein Wahrscheinlichkeitsdiagramm wird nun so hergestellt, dass zunichst die
n Werte, deren Verteilung dargestellt werden sollen, nach aufsteigender (oder ab-
steigender) Grosse geordnet werden. Dem i-ten derart geordneten Wert wird dann
der Probit-Wert zu p = (i — 1/2) / n zugeordnet. Stichproben aus einer normal
verteilten Grundgesamtheit ergeben auf diese Weise eine Punkteschar, welche
angendhert auf einer Geraden liegen.

In Fig. 8 ist die eine Gruppe nach aufsteigender Grésse und die andere Gruppe
nach absteigender Grosse der y-Werte angeordnet. Diese Anordnung hat den Vorteil,
dass sie eine graphische Schitzung des Trennpunkts und der Wahrscheinlichkeit
einer Fehlklassifikation erlaubt (Huber, 1964). In beiden Gruppen weicht die
Punkteschar nur wenig von einer Geraden ab, was zeigt, dass die y-Werte in beiden
Fidllen annihernd normal verteilt sind. Die Ordinate des Schnittpunkts der beiden
Geraden ergibt nimlich den Trennpunkt, und die Abszisse kann zur Abschitzung
der Fehlerwahrscheinlichkeit verwendet werden.

Der Schnittpunkt hat eine Ordinate von 11.0 und eine Abszisse von 7.44.

Wenn man 11.0 als Trennpunkt wihlt, dann werden alle Proben, welche zur oberen
Gruppe gehdren, und einen y-Wert kleiner als 11.0 besitzen, und alle Proben, welche
zur unteren Gruppe gehdren, und einen y-Wert grésser als 11.0 besitzen, falsch
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klassifiziert, Wenn die y-Werte normal verteilt sind, dann ist die Wahrscheinlichkeit
fiir das Auftreten solcher Werte gleich gross, wie die Wahrscheinlichkeit eines Wertes
grosser als 7.44 bei einer Normalverteilung mit dem Mittelwert 5 und der Standard-
abweichung 1. Einer Tabelle der Normalverteilung kann man entnehmen, dass diese
Wahrscheinlichkeit kleiner als 1% ist.

Eine Abschitzung der Wahrscheinlichkeit von Fehlklassifikationen kann auch auf
rechnerischem Weg erhalten werden (siehe z.B. Lachenbruch 1967, Lachenbruch &
Mickey 1968). Der Vorteil der graphischen Methode besteht darin, dass durch sie
zugleich die Voraussetzung der Normalverteilung iiberpriift werden kann.

Die lineare Trennfunktion ist optimal, wenn die Daten aus einer multivariaten
Normalverteilung stammen, und wenn die Varianzen und die Korrelationskoeffizienten
in beiden Gruppen gleich gross sind. Sind diese Voraussetzungen nicht erfiillt, so ist
in vielen Fillen die lineare Trennfunktion immer noch brauchbar, manchmal kann
allerdings die Zahl der Fehlklassifikationen derart ansteigen, dass komplizierte Ver-
fahren angewandt werden miissen (vgl. Krzanowski 1977). Man kann dann versuchen,
die Variablen derart zu transformieren, dass die Voraussetzungen mindestens an-
nidhernd erfiillt sind, oder dann berechnet man quadratische Trennfunktionen
(Gilbert 1969, Wahl & Kronmal 1977). Letzteres ist vor allem dann am Platz, wenn
die Varianzen in den beiden Gruppen verschieden gross sind.

Was in unserem Beispiel durch die Berechnungen gewonnen wurde, ist einerseits
der Nachweis, dass sich das Material tatsdchlich in zwei morphologisch verschiedene
Gruppen zerlegen ldsst, und andererseits eine Vorschrift, wie die einzelnen Proben
den Gruppen zuzuordnen sind, sodass nur eine kleine Zahl von Fehlklassifikationen
zu erwarten ist.

Ob nun diese beiden Gruppen als Arten zu betrachten sind, ist letzten Endes eine
biologische Frage, welche auch mit biologischen Methoden zu untersuchen ist. Diese
Untersuchung wird aber durch die Trennfunktion sehr erleichtert, weil sie es ermoglicht,
mit sicher bestimmten Proben zu arbeiten.

Zusammenfassung

Es wird eine Ubersicht iiber die einschligige mathematisch-statistische Literatur
gegeben,

Anhand eines einfachen Beispiels wird versucht, einige Prinzipien statistischer
Klassifizierungsmethoden zu erliutern.

Am Beispiel von 2 Kleinarten der Laubmoosgattung Eurhynchium (E. striatum
(Hedw.) Schimp. und E. angustirete (Broth.) Koponen) wird gezeigt, wie man mit
Hilfe von Trennfunktionen (Discriminant Functions) den Grad der Trennung
zweier Sippen priifen, und eine Vorschrift fiir die Klassifizierung erhalten kann.

Als Hilfsmittel wird ein graphisches Verfahren vorgestellt, welches erlaubt, mit
geringem Rechenaufwand Trennfunktionen zu berechnen.
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Summary

The use of statistical methods in taxonomy.

A short review of the bibliography is given.

A simple example is used to demonstrate some principles of statistical classification
methods. ‘

The problem of discrimination of two moss species (Eurhynchium striatum (Hedw.)
Schimp. and E. angustirete (Broth.) Koponen) is used to demonstrate the application
of discriminant functions.

A simple graphical method using profiles is described, which allows a quick
calculation of discriminant functions.

Keywords: Numerical Taxonomy, Discriminant Funktions, Eurhynchium,
Rank Correlation.
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