Zeitschrift: Berichte der Schweizerischen Botanischen Gesellschaft = Bulletin de la

Société Botanique Suisse

Herausgeber: Schweizerische Botanische Gesellschaft

Band: 70 (1960)

Artikel: L'ovule anatrope : Ranunculaceae

Autor: Bersier, J.-D.

DOI: https://doi.org/10.5169/seals-49482

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

L'ovule anatrope: Ranunculaceae

Par J.-D. Bersier

Conservatoire et Jardin botaniques de la Ville de Genève

Manuscrit reçu le 26 mars 1960

Introduction

Dans le cadre d'une étude sur les ovules campylotropes (1, 2, 3), il s'est révélé nécessaire d'étudier, à titre de comparaison, un type d'ovule qui fût nettement anatrope et d'en décrire le développement, des stades les plus jeunes de l'ovogenèse à la maturité de la graine. A cet effet nous avons choisi les Renonculacées, car l'ovule y est de facon classique considéré comme typiquement anatrope. D'autre part, il était intéressant de s'adresser à une famille de caractère archaïque (5, p. 496).

Matériel et méthodes

Le matériel étudié provient du Jardin botanique de Genève et comprend les espèces suivantes:

I. Anemoneae:	Ranunculus acer L. Ranunculus bulbosus L. Ranunculus illyricus L. Ranunculus montanus Willd.	Nº 397 Nº 401 Nº 403 Nº 399
II. Helleboreae:	Trollius europaeus L. Nigella damascena L. Aconitum lycoctonum L. Actaea spicata L.	Nº 124 et 402 Nº 99 Nº 98 Nº 91

Nous avons éclairci les fleurs, boutons floraux et graines in toto dans du chlorallactophénol d'Amann (7, p. 225). Les ovaires sont disséqués sous la loupe binoculaire, puis les ovules, montés entre lame et lamelle, sont observés sous le microscope à contraste de phase. Les dessins sont réalisés à l'aide de la chambre claire qui respecte exactement les angles et les formes.

Les lettres a, b, c, d, e, f et g, en regard de chaque figure, indiquent l'âge de la fleur: a, les plus jeunes stades, où l'ovule est un mamelon in-

différencié; b, jeune bouton où les sépales dépassent en longueur les pétales; c, les pétales dépassent les sépales; d, bouton juste avant l'anthèse; e, anthèse; f, post-anthèse; g, graine.

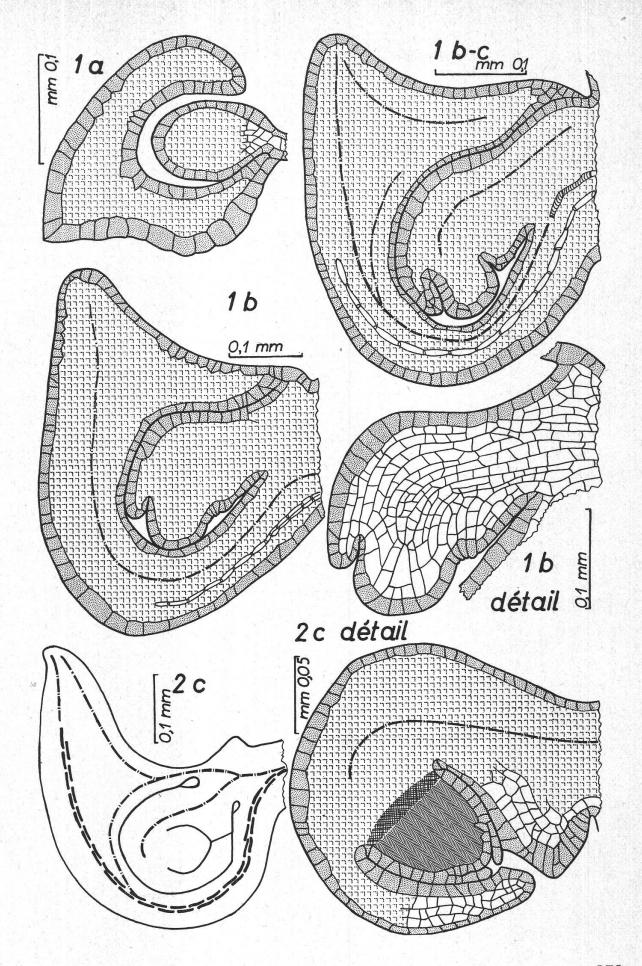
Observations

I. Anemoneae

Ranunculus bulbosus L. (1)

a) A ce stade, la feuille carpellaire est encore ouverte. Elle entoure

l'ovule, qui n'est qu'un mamelon de tissu non différencié.


- b) Le carpelle se referme en se soudant en arrière de l'ovule, à la base du funicule. L'ovule a déjà subi un début de courbure: le nucelle forme un angle de 90° avec le funicule. Un tissu prévasculaire (formé de cellules allongées, mais non encore lignifiées) est présent dans le carpelle; il n'est pas encore différencié dans l'ovule. Les replis tégumentaires externes apparaissent en premier et sont parallèles à l'axe du nucelle et perpendiculaire au funicule. La lèvre distale du tégument externe est plus développée que la lèvre proximale. Notons l'apparition de la cellule archésporiale.
- b-c) L'ovule est à peine plus âgé. Le tissu prévasculaire continue son développement dans le carpelle: il commence à se lignifier vers la base; il apparaît dans l'ovule. L'ovule subit une courbure de plus en plus marquée: l'angle nucelle-funicule se ferme. Le tégument externe s'allonge. L'hypostase se dessine à la base du nucelle.

Ranunculus acer L. (2)

c) A ce stade plus avancé, la vascularisation du carpelle est en place. L'ovule est presque complètement renversé le long du funicule. Le tégument externe entoure complètement le nucelle. L'épithélium du sac nucellaire se dédouble et donne naissance au tégument interne: ce processus de formation du tégument interne semble particulier à cette espèce.

Ranunculus illyricus L. (9)

e) A l'anthèse, le faisceau funiculaire est entièrement lignifié; il est doublé d'un vaisseau libérien unique. Ce faisceau libéro-ligneux est rectiligne d'abord, puis légèrement recourbé vers son sommet; il se termine en dessous de l'hypostase. L'axe du nucelle (de l'hypostase au micropyle) est devenu, par renversement, parallèle au faisceau funiculaire. Le tégument interne est bistratifié par dédoublement de l'assise primitive. Chez le R. illyricus, des cellules épithéliales allongées apparaissent sur le funicule et rappellent une caroncule.

Ranunculus montanus Willd. (8)

c et e) Les observations sur cette espèce confirment celles faites sur $R.\ bulbosus,\ R.\ acer$ et $R.\ illyricus$. Cependant la vascularisation est plus précoce.

II. Helleboreae

Les observations sur les diverses Helléborées correspondent aux résultats obtenus avec les Anémonées: apparition très précoce (stade b) de la courbure anatrope; elle s'accentue pour devenir presque totale au stade c; elle aboutit à un renversement complet au stade d: l'axe du nucelle est dès lors parallèle à celui du funicule; pendant la maturation, l'allongement du nucelle rend ce caractère particulièrement évident.

Conclusions

- 1. Les Renonculacées ont un ovule typiquement anatrope: le nucelle bascule sur sa base de telle sorte que son axe, d'abord perpendiculaire à celui du funicule, lui devient ensuite parallèle. Cette courbure est très précoce: elle apparaît avec la naissance du tégument extérieur. Le nucelle reste rectiligne ce qui n'est pas le cas chez un ovule campylotrope ou amphitrope: c'est le funicule qui se courbe, juste en dessous de l'hypostase.
- 2. Les caractères archaïques de la famille nous permettent de considérer l'ovule anatrope comme une forme primitive, fondamentale. En ce qui concerne les Légumineuses, cette conclusion est d'une grande importance pour apprécier la valeur philogénétique des formes.
- 3. Différents auteurs, Westermaier (8), van Wisselingh (9), Goebel (4), Netolizki (6), ont remarqué que l'anatropie ne s'accompagnait pas d'une soudure du tégument extérieur au funicule: «Eine solche (Verwachsung) müßte sich, wenigstens in manchen Fälle darin

Légende (des figures pages 173 et 175)

nu. = nucelle

épi. = épithélium

hy. = hypostase

par. = parenchyme

xyl. = xylème

phl. = phloème

tpv. = tissu prévasculaire

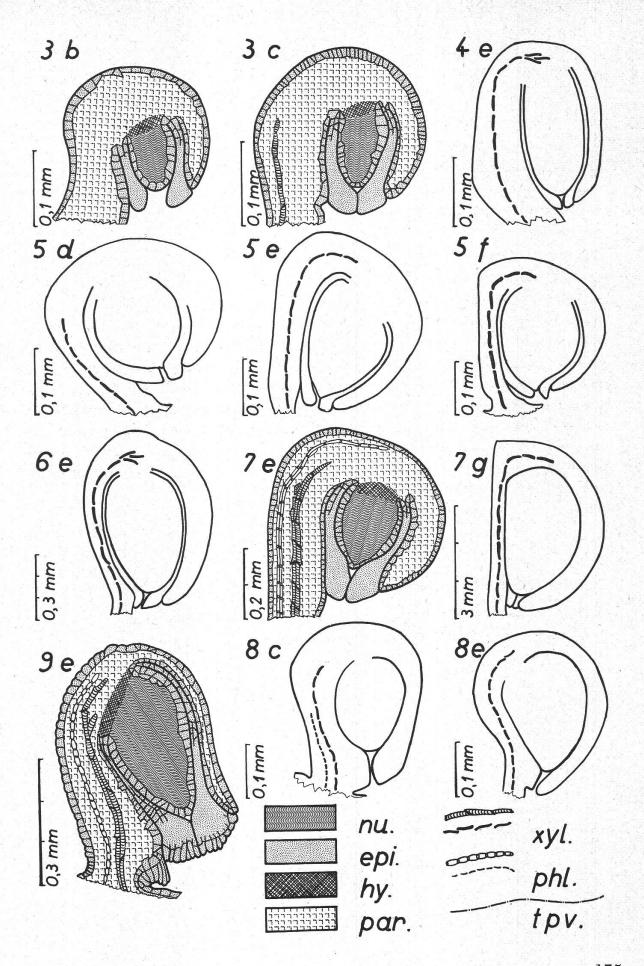
1. Ranunculus bulbosus L.

2. Ranunculus acer L.

3. Trollius europaeus L. (402)

4. Trollius europaeus L. (124)

5. Aconitum lycoctonum L.


6. Nigella damascena L.

7. Actaea spicata L.

8. Ranunculus montanus Willd.

9. Ranunculus illyricus L.

Voir explication des lettres a, b, c, d, e, f et g dans le texte

äußern, daß die Kutikula des Funikulusstückes und des Außenintegumentes an der Stelle gegenseitiger Berührung sichtbar sein würde, was aber bisher zu keiner Zeit der Entwicklung beobachtet wurde.» Dans la plupart des ovules en effet, la structure du raphé (portion du funicule adjacente à l'ovule) est semblable à celle des tissus tégumentaires voisins.

En suivant le développement des ovules des Renonculacées, du mamelon primordial à la graine, on comprend qu'il n'y a pas soudure mais plissement. Au cours de ce plissement, la lèvre proximale du tégument extérieur se développe peu et sa base, reposant sur le raphé, reste largement ouverte, ce qui explique la continuité des tissus.

4. Dans des travaux ultérieurs, nous nous référerons à l'ovule des Renonculacées comme étant un ovule anatrope typique. Il existe dans la littérature anatomique bon nombre d'indications qui pourraient être citées en complément des développements décrits ici. Cependant le développement de l'ovule n'a jamais été considéré pour lui-même dans ces travaux, mais en fonction de l'embryogénie, de la vascularisation florale, etc. Il s'ensuit qu'il était difficile de trouver des références cohérentes sur la formation de l'ovule anatrope. Il sera maintenant intéressant de comparer l'ovule typiquement anatrope des Renonculacées avec les formes campylotropes et amphitropes des Légumineuses (3) et des Rhoeadales (étude en cours). Il sera également intéressant de comparer les Renonculacées à une famille où l'ovule est orthotrope.

L'équipement optique, qui a permis ce travail, a été acquis grâce à l'aide du Fonds national suisse de la recherche scientifique; nous exprimons notre gratitude au Conseil national de la recherche. Nous remercions également M. le professeur Ch. Baehni, directeur des Conservatoire et Jardin botaniques de la Ville de Genève, pour l'aide généreuse qu'il nous a accordée, ainsi que M. G. Bocquet, conservateur de l'herbier Boissier, dont les directives nous ont été précieuses. Nos remerciements enfin à M^{me} D. Piemontesi qui s'est chargée de la mise au point des dessins.

Bibliographie

- Bocquet, G. 1958: La structure de l'ovule campylotrope. Actes Soc. Helv. Sci. Nat. 138, 135.
- 2. 1959: The campylotropous ovule. Phytomorphology 9, 222.
- 3. et Bersier, J.-D., 1959: Les formes d'ovules chez les Légumineuses. Actes Soc. Helv. Sci. Nat. 139, 158.
- 4. Goebel, K. 1928: Organographie der Pflanzen. Ed. 3. Jéna.
- 5. Lawrence, G.H.M. 1951: Taxonomy of vascular plants. New York.
- 6. Netolizki, F. 1926: Anatomie der Angiospermensamen. Band X, S. 25. Berlin.
- 7. Vautier, S. 1949: La vascularisation florale chez les Polygonacées. Candollea 12, 219.
- 8. Westermaier, R. 1896: Zur Physiologie und Morphologie der Angiospermensamenknospe. Sonderabdruck aus Beitr. zur wiss. Bot. I, 2. Stuttgart.
- 9. van Wisselingh, C. 1922: Pharm. Weekblaad, Nr. 21-22.