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Geometrische Betrachtungen
über Wachstum und Formwechsel

Von Otto Schüepp, Basel.

Eingegangen am 8. Oktober 1946.

1. Das Wachstumsbild der Knospe von Hippuris.

Durch Fixieren und Schneiden, Färben oder Aufhellen gewinnen
wir aus einer lebenden Knospe ein totes, erstarrtes Bild. Askenasy
hat 18S0 gezeigt, wie aus dem ruhenden Bild die Verteilung der Wachs¬

tumsintensität erschlossen werden kann, ausgehend von der Tatsache,
daß der Vegetationspunkt periodisch in Zeitabständen eines Plastochrons

neue Stengelteile und Blätter abgliedert und sich zugleich selber

regeneriert. So quellen immer neue Teile aus dem Scheitel S (Figur 1 a)
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hervor. Blattspitzen und Blattachseln wandern auf divergierenden
Verschiebungskurven vom Scheitel hinweg (S c h ü e p p 1926, S. 22). Aus
ihrer zunehmenden Größe erschließen wir das Wachstum; umgekehrt
sollen wir imstande sein, rückwärts aus der Wachstumsverteilung den
Formwechsel herzuleiten.

Längs der Axe folgen sich Stengelglieder in großer Zahl mit
allmählichem Übergang von einer flachen Scheibe zu einem gestreckten
Zylinder. Die parabolische ScheitelWölbung setzt sich fort in die
zunächst konkave, von Glied 12 an wiederum konvexe Verschiebungskurve
der Blattachseln. Innerhalb des Scheitelkegels sind die Zellwände
geordnet nach durchlaufenden Periklinen parallel zur Oberfläche und
nach in den verschiedenen Schichten gegeneinander versetzten
Antiklinen senkrecht zur Oberfläche (Figur 1 b). Im Tangentialschnitt (1 c)
schließen junge Blätter lückenlos zusammen; zwischen ältere (1 d) sind
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Figur 2.

Blüten eingeschaltet, in denen die Samenanlagen sichtbar sind. In einer
Blüte 16 (Figur 1 e) überragt das Staubgefäß den Griffel; in einer älteren
Blüte 27 (Figur 1 f, schwächer vergrößert) überragt die Griffelspitze das
Staubgefäß.
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Figur 2 faßt die Resultate der Ausmessung einer solchen Knospe

zusammen. Gemessen wurde auf Zeichnungen nach aufgehellten Präparaten

in 25-, 50-, 100-, 200- und 400facher Vergrößerung. Auf der Ordinate

folgen sich die Glieder 1—30 von oben nach unten in ihrer Stellung

im Raum und damit auch in ihren gleichen Altersabständen. Auf der

Abszisse folgen sich im logarithmischen Maßstab (S c h ü e p p 1923)

die gemessenen Längen. Die Meßpunkte ordnen sich in Zickzacklinien;

wir führen dies zurück auf Variabilität in der Dauer des Plastochrons,

in der Anlagegröße der Teile bei ihrer Abgliederung aus der Basis des

Vegetationspunktes, auf Unterschiede im Wachstumsverlauf der

aufeinanderfolgenden gleichnamigen Organe und auf die Messungsfehler.

Trotz dieser Störungen können wir wohl aus den Messungen an einer

Knospe auf die ideale Größenkurve und Wachstumskurve der Organe

schließen.
Innerhalb eines Plastochrons vergrößert sich Organ n zu Organ

in -)- 1); in derselben Zeit wächst der anlagenfreie Vegetationspunkt in

Minimalgröße zum Vegetationspunkt in Maximalgröße, mit Einschluß

des jüngsten Sproßgliedes (Figur lb). Die Verlängerung des

Vegetationskegels (VP lang in Figur 2) erfolgt bedeutend rascher als die

Verlängerung der jüngsten Stengelglieder 1 bis 11. Ähxdich rasch wie der

Scheitelkegel wachsen die jüngsten Blätter; unter « Blatt-Bogen » sind

die Profillinien je einiger Blätter der Blattquirle 1 bis 4 zusammengefaßt;

für die Blätter 3 bis 26 ist die Mittellinie gemessen. Die Blätter
wachsen rascher in die Länge als die zugehörigen Stengelglieder. A lang
und G lang mißt die Gesamtlänge junger Blüten von der Basis bis zum

Scheitel des Andröceums A oder des Gynöceums G; bei Blüte 23

übergipfelt der Griffel das Staubgefäß. Am langsamsten und recht gleichmäßig

nimmt die Stengeldicke zu.

Unterschiede im Wachstum, von denen Figur 2 einige Beispiele

gibt, bewirken den Formwechsel der Teile. Es verändern sich die

Winkel. Aus der quadratischen Anordnung der jungen Blätter 5, 6, 6, 7

in Figur 1 c wird die rhombische Anordnung der älteren Blätter 20, 21,

21, 22 in Figur 1 d. Es verändern sich zugleich die Größenverhältnisse.
Es verändert sich das Größenverhältnis zweier nebeneinanderliegender
Teile wie Andröceum und Gynöceum der Blüten 16 und 27 in Figur 1 ef.

Oder es verändert sich das Größenverhältnis zweier Dimensionen eines

und desselben Gliedes, wie Länge und Breite eines Blattes. Ein
bestimmtes Größenverhältnis wird im logarithmischen Maßstab durch eine

bestimmte Länge wiedergegeben; die Veränderung der Verhältnisse läßt

sich daher wohl aus Figur 2 ablesen. Deutlicher kommen sie zum
Ausdruck im Schema Figur 3, wo zwei zu vergleichende wachsende Größen,

beide im logarithmischen Maßstab, als Abszisse und Ordinate abgetragen
werden.
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Zwischen zwei wachsenden Größen x und y, die beide in geometrischer

Progression, mit konstanter relativer Geschwindigkeit, wachsen,
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Figur 3.

besteht die Beziehung (Huxley und T e i s s i e r 1936, Schüenp
1945)

y — b • xa

b ist eine Konstante, welche von den Anfangsgrößen abhängt; a ist das
Verhältnis der beiden Wachstumsgeschwindigkeiten. Im Spezialfälle der
isometrie des Wachstums wird a I; das Größenverhältnis y : x bleibt
unverändert; es findet kein Formwechsel statt. Alle Punkte für das Paar
wachsender Größen x und y liegen auf einer Isometriegeraden im Winkel
45° zu den Axen des Koordinatensystems. In Figur 3 sind zu Vergleichszwecken

die drei Isometriegeraden 10 : 1, 1:1 und 1 :10 eingetragen.
Im allgemeinen wird a von 1 abweichen; es herrscht Allometrie. Bei
einfacher, « geradliniger » Allometrie liegen die Punkte xy unserer
Darstellung mit logarithmischem Maßstab auf einer flacheren oder steileren
Geraden.

Wir finden für das Verhältnis B/St, Blattlänge : Stengelgliedlänge
eine gebrochene gerade Linie. Durch rascheres Wachstum der Blattlänge
verschiebt sich das Verhältnis B/St von 1 : 1 auf 10 : 1; letzteres bleibt
im weiteren Wachstumsverlauf erhalten. Wir finden im Schema eine
« Verschiebung » des Größenverhältnisses von einer Isometrielinie hin-
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über auf eine andere. Dem entspricht eine tatsächliche gegenseitige
Verschiebung der Teile im Raum. Die jungen Blätter liegen dicht
aufeinander; sie sind durch eine hyponastische Krümmungstendenz
gegeneinander und gegen den Stengel gepreßt (Schüepp 1917). Sie sind
dadurch nicht am «gleitenden Wachstum» verhindert. Stufenweise
schieben sich die äußeren Blätter über die inneren und über die Stengelspitze

nach oben vor. Auch die Allometrie im Wachstum von Staubgefäß

und Stempel bewirkt eine Verschiebung; das Verhältnis Ä/G lang
verschiebt sich zugunsten des Stempels. Die Kreuzung der Allometrie-
linie mit der Isometrielinie 1 :1 zeigt den Moment an, in welchem die
Griffelspitze den Scheitel des Staubbeutels überholt.

Vom Studium nebeneinanderliegender Teile gehen wir über zum
Studium verschiedener Dimensionen eines und desselben Organs. St lg/
breit Stengel glied Länge : Breite ist ein Beispiel für veränderliche
Allometrie. Die Meßpunkte ordnen sich in eine Kurve, welche mit ihrer
konvexen Krümmung die Isometriegerade 1 : 10 berührt. Auf ein
Überwiegen des Breitenwachstums in den jüngsten Stengeigliedern 1 bis 11

folgt ein Überwiegen des Längenwachstums in den älteren Gliedern. Für
die Form des einzelnen Stengelgliedes folgt daraus, daß die flache
Scheibengestalt sich zunächst verschärft ausprägt, um dann allmählich
in die gestreckte Stabform übergeführt zu werden. Für die Gesamtform
des Stengels folgt daraus der doppelte Wechsel in der Krümmung der
Stengeloberfläche, konvex-konkav-konvex, auf den wir in Figur 1 a

aufmerksam wurden, und den wir in sehr vielen Knospenlängsschnitten
antreffen. Das Überwiegen des Längenwachstums über das
Dickenwachstum ist der wesentliche Charakterzug der « Rippenmeristeme »

(Schüepp 1926, Seite 18); es erzeugt die Stabformen der Stengel
und Blattrippen.

Die Darstellungsweise von Figur 3 erweist sich in den Fällen als
besonders wertvoll, in welchen der Altersunterschied zweier Entwick
lungsstadien unbekannt bleibt. So wissen wir zwar, daß im Plastochron
der Vegetationskegel aus seiner Minimalgröße in die Maximalgröße, in
welcher eine jüngste Anlage miteingeschlossen ist, übergeht. Aber wir
wissen nicht, in welcher Zeit ein innerer Teil des Vegetationskegels,
z. B. der in Figur 1 b schraffierte Teil, zum Ganzen heranwächst. Wir
wissen nur, daß dabei nacheinander die Antiklinen 1 1, 2 2, 6 6
erreicht werden. Damit können wir doch einige interessante Wachstumsvergleiche

durchführen. Wir betrachten das Verhältnis M/Ant.,
vergleichen also die Mantellinie vom Scheitelpunkt S bis zu einer Antikline
mit der Länge dieser Antikline. Zuerst, beim schraffierten Initialteil,
übertrifft die Breite längs der Antikline 1 1 gemessen weit die Länge
der Mantellinie S 1; durch stärkeres Wachstum der Mantellinie wird
zuletzt fast Gleichheit beider Abmessungen erreicht. Ebenso überwiegt
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nach der Linie M/Ax. das Wachstum der Mantellinie von S an gegenüber

dem Längenwachstum der Axe von S an.

Innerhalb des stationären Umrisses der Mantellinie findet ein starker
Formwechsel statt. Im Initialteil innerhalb der Antikline 11 gehört zu
einer flachen Scheitelwölbung ein tief ins Innere hineingreifender Komplex

von Meristemzellen; daraus wird durch Ausdehnung bis zur Antikline

6 6 eine hochgewölbte Kuppel mit flacher Basis. Dieser
Formwechsel findet statt im gemeinsamen « symplastischen» Wachstum der
Tunikaschichten und des Korpus. Anzeichen eines Gleitens der Schichten

aufeinander sind nicht vorhanden. Das Wachstum der Teile des

Vegetationskegels und das Wachstum dieser Teile nach verschiedenen
Richtungen ist so aneinander angepaßt, daß das Ganze harmonisch sich
fortbildet und aus seinem Zentrum regeneriert. Welches sind die
ursprünglichen Wachstumstendenzen, und wie wirken sie zusammen

Ausgedehnte vergleichende, messende Untersuchungen an verschiedenen

Typen von Vegetationspunkten sind erwünscht. Einige
geometrische Beziehungen sollen im folgenden abgeklärt werden an Hand
des Schemas konfokaler Parabeln, das J. Sachs 1878 auf den
Vegetationspunkt der Angiospermen angewandt hat.

2. Wachstum innerhalb der Hülle eines Rotationssparaboloides.

Figur 4 besteht aus einer Anzahl von Parabeln mit gemeinsamer
Axe und dem gemeinsamen Brennpunkt F. Wenn wir den Brennpunkt
zum Nullpunkt des Koordinatensystems machen, gilt für alle Parabeln
die Gleichung k

Die Halbparameter p sind gleich den Ordinaten über dem Brennpunkt.

p 1 und das positive Vorzeichen in der Klammer ergeben die
umhüllende Parabel mit dem Scheitel links; Werte von p 0,25, 0,5,
1. 2, 4, 8, 16 und negative Vorzeichen in der Klammer ergeben die Reihe
der antiklinen Schnittparabeln mit dem Scheitel nach rechts.

Aus den Gleichungen der verschiedenen Parabeln bestimmen
wilderen Scheitelpunkte sowie Abszissen und Ordinaten der Schnittpunkte
(Tabelle I, Zeilen 1 bis 3).

Für die weiteren Berechnungen verlegen wir den Nullpunkt nach
den einzelnen Scheitelpunkten, z. B. nach S in Figur 4 für die
umhüllende Parabel. Die Gleichung der Parabel lautet dann einfacher
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Der Parabelbogen vom Scheitelpunkt aus bis zu einem der Punkte A
mit den Koordinaten xy hat die Länge

'y + vV+y2i=i\A,a+ j» + 1

Durch Rotation eines solchen Bogenstückes um die Axe entsteht
eine Fläche von der Größe i

F
2 n /

~vp3
(2x + p)

Diese Fläche umschließt mit der Ebene ihres Grenzkreises ein,
Volumen

lV: jixy3

Die Tabelle 1 enthält, auf Grund dieser Formeln berechnet, in Zeile
4 bis 9 die Mantellinien der umhüllenden Parabel SA0 bis SA6, den Um-

Figur 4.

fang U der Rotationskreise der Punkte A0 bis A„, die Länge der Anti-
Minen A auf den Schnittparabeln S0A0 bis SeA6, die Oberflächen 0 auf
der umhüllenden Parabelfläche vom Scheitel S bis zu den Kreisen durch
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A0 bis A0, die QuerSchnittsflächen Q der antiklinen Schnittparabeln
innerhalb der Randkreise A0A0 bis ACA0, die aus der Addition zweier
Parabelsegmente gewonnenen Volumen vom Scheitel aus bis zu einer
der sechs Querschnittsflächen.

Tabelle 1.

0 l 2 3 4 5 6

1. Scheitel xg —l 'XSn — + 0,125 + 0,25 + 0,5 + 1 + 2 + 4 + 8

2. Schnittpunkte ll<K - 0,875 — 0,75 1 o"ot 0 + 1 + 3 + 7

3. ^An 0,707 1 1,41 2 2,83 4 5,66

4. Mantellinie M 0,707 1,04 1,52 2,30 3,60 5,92 10,3

5. Umfang U 4,44 6,28 8,88 12,6 17,8 25,1 35,5
6. Antikline A 1,28 1,48 1,80 2,30 3,05 4,16 5,77

i. Oberfläche 0 1,62 3,33 7,01 COIC 35,2 85,3 217

8. Querschnitt Q 3,16 5,33 8,78 15,3 2*,l 52,1 104

9. Volumen V 0,834 1,96 4,71 12,6 37,7 125 452

10. VR- 1,27 1,82 2,65 3,91 5,93 9,23 14,8

11.
V/« 1,78 2,31 2,96 3,91 5,29 7,22 1,02

12.
3/VL 0,941 1,25 1,68 2,32 3,35 5,01 7,68

13. -vR- 0,56 0,57 0,58 0,59 0,61 0,64 0,70

14. u,vR. 3,49 3,43 3,36 3,21 3,00 2,72 2,41

15. \/°'vR- 1,35 1,48 1,58 1,68 1,77 1,84 1,92

Wir fassen die Figur 4 auf als Darstellung des Wachstums eines
dauernd fortwach senden Scheitelkegels. Im Wachsen aller Teile
erneuert sich das Ganze immer wieder aus seinen inneren Abschnitten.
Scheitelpunkt S und Brennpunkt F sind « Initialpunkte ». Von S aus
wandert der Punkt A auf der Umrißparabel als « Verschiebungskurve »;
von F aus wandert der Punkt Sn auf der Axe. Zugleich werden die
Antiklinen AuSnAn als « Zuwachszonen » vom Scheitel weggeschoben.
Über die Zeitabstände, in welchen die wandernden Punkte und Quer-
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.schnittslinien die in Figur 4 markierten Stationen passieren, machen
wir keine bestimmte Voraussetzung. Wir achten nur darauf, daß gleichzeitig

z. B. die Länge der Mantellinie SA5, der Axe FS5, der Antikline
A5S5 und die daraus durch Rotation entstehenden Flächen und Volumen
durchlaufen werden. Das ermöglicht uns die Durchführung eines
Wachstumsvergleiches wie in Figur 3.

In Figur 5 vergleichen wir verschiedene Längen mit der Länge des

Axenabschnittes vom Brennpunkt F an gemessen. Wie die willkürlich
gewählten Werte von p, bilden auch die Axenabschnitte FSn eine
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Figur 5.

geometrische Reihe; im logarithmischen Maßstab der Figur werden
daraus gleiche Abstände auf der Richtung der Abszissenaxe. Tragen
wir dieselben Werte noch einmal auf in der Ordinatenrichtung, so kommen

wir für die Axe, verglichen mit sich selber, auf die Isometrie-
linie 1:1. Mit dem Axenwachstum vergleichen wir Wachstum des
Radius und des Umfangs der Rotationskreise der Punkte A. Es entstehen
zwei unter sich parallele Allometriegeraden flacherer Neigung. Radius
und Umfang wachsen langsamer als die Axe; einer Verdoppelung der
Axe (Zeile 1 der Tabelle) entspricht eine Multiplikation des Radius mit

/ T

1,41 ^ 2 • (Zeile 3). Für die Mantellinie M ergibt sich eine Kurve,

welche eine im Vergleich zur Axe steigende Wachstumsgeschwindigkeit
anzeigt. Solange die Mantellinie nur einen kleinen Teil der
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Scheitelkuppe überspannt, innerhalb von SA<, unserer Figur, muß die
Mantellinie dem Radius gleich sein; je mehr sich die Mantellinie über
SA6 hinaus auf die Flanken des Paraboloids erstreckt, um so mehr
werden sich die Werte der Mantellinie denjenigen der Axe annähern.
Die Geraden für Radius und Axe sind Assymptoten der Kurve für die
Mantellinie. Ebenso sind die Horizontale 1 und die Isoinetrielinie 1 : 1

Assymptoten der Allometriekurve der Antikline. Denn kürzere
Antiklinen, welche der gezeichneten Linie A0S0 vorausgehen, liegen immer
näher an SF 1; längere Antiklinen außerhalb A6S6 werden dem Radius
immer ähnlicher.

Für die folgenden Betrachtungen wesentlich ist das gegenseitige
Verhältnis zwischen Mantellinie und Antikline; die Mantellinie wächst
durchwegs rascher als die Antikline. Die Mantellinie beginnt mit kleinen
Werten und überholt die Antikline beim Wertepaar SA3 S3A3. Die
Mantellinie, die in ihrer eigenen Parabelbahn fortwächst, krümmt sich
stärker und stärker; die aufeinanderfolgenden Antiklinen werden flacher
und flacher. Mit dem Überwiegen des Wachstums der Mantellinie gegenüber

dem Wachstum der Antikline ist in bestimmter Weise der
Formwechsel im wachsenden Scheitel verknüpft.
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Wir bedenken, daß wir zwar in Schnittfigüren Längen messen, daß
aber bei den allermeisten physiologischen Betrachtungen Oberflächen
und Volumen viel wichtiger sind als bloße Längen. Im Stoffwechsel ge-
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schieht die Stoffaufnahme und die Stoffausseheidung durch Oberflächen
hindurch; sie ist abhängig von den besondern Strukturen und
Permeabilitätseigenschaften und zugleich von der Ausdehnung der betreffenden
Oberflächen. Beim Wachstum ist bedeutungsvoll das Flächenwachstum
der jungen Zellmembran oder bei geschichteten Yegetationspunkten das

Flächenwachstum der Tunikaschichten. Das Volumen ist bedeutsam für
den Stoffverbrauch zum Wachtstum, bei der Atmung, ebenso für das

Fassungsvermögen von Speicherorganen. Darum vergleichen wir in
Figur 6 Oberflächen- und Volumenwachstum mit dem als Abszisse
aufgetragenen Längenwachstum der Axe.

Wir wollen Größen mit verschiedenen Dimensionen, Längen,
Flächen und Volumen miteinander in Beziehung setzen. Wir messen diese
Größen in verschiedenen Einheiten, cm, cm', cm3. Wir dürfen nicht ohne
weiteres ihre Maßzahlen im gleichen Koordinatensystem als Ordinaten
eintragen.

Für den Morphologen ist der einfachste Fall das « isomorphe »

Wachstum, die Größenzunahme ohne irgendeine Formveränderung, das

Wachstum zu « ähnlichen » Körpern mit gleichen Winkeln und
unveränderten Streckenverhältnissen. Multiplizieren wir beim isomorphen
Wachstum alle Längen mit dem Faktor f, so wachsen alle Flächen um
den Faktor f2 und alle Volumen um den Faktor fs. Das Wachstum eines

organisierten Körpers unter genauer Erhaltung seiner äußeren und
inneren Formen bedeutet eine eingreifende Veränderung der physiologisch

wichtigen Beziehungen zwischen Längen, Flächen und Volumen.
Isomorphes Wachstum ist ein Spezialfall, der in der lebenden Natur
kaum zu finden sein wird. Die Leichtigkeit, mit der wir in Fernrohr,
Mikroskop oder Projektionsapparat Bilder perspektivisch vergrößern
oder verkleinern, darf uns nicht vergessen lassen, daß in der Natur
Form und Große in untrennbarem Zusammenhang stehen.

Für die entwicklungsphysiologisch-morphologische Betrachtung
gilt es, zweckmäßige Maßeinheiten zu wählen. Wenn bei isomorpher
Vergrößerung die Längen um den Faktor f zunehmen, so wachsen auch die

Quadratwurzeln aus den Flächen und die Kubikwurzeln aus den Volumen

um denselben Faktor f. Wir berechnen darum in Tabelle 1 aus den

Zeilen 7 bis 9 die Zeilen 10 bis 12. Wir charakterisieren die Größe
irgendeiner Fläche durch die Seite eines gleichgroßen Quadrates und
irgendein Volumen durch die Kante eines inhaltsgleichen Würfels. So

dürfen wir in Figur 6 Flächen- und Volumenwachstum mit
Längenwachstum der Axe vergleichen.

Die Kurven für die Oberfläche und für die Querschnittsfläche

Kurven für Mantellinie und Antikline. Das perikline, tangentiale Wachs-

zueinander in der gleichen Beziehung wie in Figur 5 die
s _
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tum der Oberfläche überwiegt gegenüber dem antiklinen Wachstum der
Querschnittsfläche. Der Initialteil mit kleiner und flacher freier
Oberfläche SA0 ist nach innen begrenzt durch die größere, stark gewölbte
antikline Fläche S0A0. Die Flächen SA3 und S0A3 sind gleich groß
und gleich gekrümmt. Die Außenfläche SA6 überwiegt in Ausdehnung
weit die zugehörige Schnittfläche S6A6. Das Wachstum parallel zur
Oberfläche überwiegt das Wachstum des Querschnittes. Das ist ein
Grundcharakter des « Plattenmeristems » (S c h ü e p p 1926, Seite 18),
der in jungen Blattspreiten deutlich sich auswirkt. Am Scheitel
verbindet sich diese Bevorzugung des Flächenwachstums mit einem starken
FormWechsel.

In Figur 6 ist auch eine Kurve für das Volumen, dargestellt durch
- 3 y

i j I 3; I

seine Kubikwurzel w V, eingetragen. Die Kurven \ 0 undi/V
divergieren langsam nach rechts. Das Oberflächenwachstum überwiegt gegen-
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Figur 7.

über dem Volumenwachstum. Das Wachstum ist verbunden mit einem
Formwechsel mit der Richtung auf größere Oberflächenentwicklung.

In den Figuren 5 und 6 wurden verschiedene wachsende Größen
mit dem Längenwachstum der Axe verglichen. Statt dessen können
nach Figur 7 beliebige zwei Größen untereinander verglichen werden.
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Hervorgehoben ist noch einmal die Beziehung von Oberfläche und Volu-
/~~! /»r]men. y/ 0 / y/ V ist ein fast gerade, schwach konkav gegen die Iso-

metrielinie 1 :1 gekrümmte und schwach gegen dieselbe geneigte Allo-
metrielinie. Im Verlauf eines starken Wachstums, mit Zunahme des Volumens

von 0,834 auf 452, seiner Kubikwurzel von 0,941 auf 7,68, verschiebt
/

I
3 /

I

sich das formbestimmende Verhältnis y/ 0 : V nur von 1,35 auf 1,92

(Zeilen 9, 12 und 15 der Tabelle 1). Die Intensität des Formwechsels,
bezogen auf das gleichzeitige Wachstum, ist gering.

Die beiden Kurven U jyj 0 und MJ0 in Figur 7 beginnen

links unten als zwei Isometrielinien und verlängern sich nach rechts oben

in zwei konvergierende Allometriekurven. Sie sagen, daß das Wachstum
des Umfangs A„An mehr und mehr gegenüber dem Wachstum der
Oberfläche zurückbleibt, während das Wachstum der Mantellinie SAn mehr
und mehr gegenüber dem FlächenWachstum überwiegt. Für die nächste

Umgebung des Scheitelpunktes, soweit als die Scheitelfläche annähernd
als Ebene betrachtet werden kann, müssen Mantellinie gleich Kreisradius

r, Umfang gleich 2nr und Wurzel aus der Kreisfläche gleich \]* -r
isometrisch wachsen. Das Zurückbleiben des Umfanges gegenüber der
Mantellinie ist notwendig mit der zunehmenden Krümmung der Scheitelfläche

verknüpft. Innerhalb der Mantelfläche können wir unterscheiden
Längenwachstum parallel zu den Mantellinien und dazu senkrecht
Breitenwachstum parallel zum Umfang. Nahe dem Scheitelpunkt sind beide

gleich; mit zunehmender Entfernung überwiegt mehr und mehr das

Längenwachstum gegenüber dem Breitenwachstum. Zwei Deutungen
sind mathematisch gleichberechtigt: Durch die, Verteilung des

Oberflächenzuwachses auf Länge und Breite wird der Zuwachs an die
vorausbestimmte Krümmung der Oberfläche angepaßt, oder die
vorausbestimmte Verteilung des Zuwachses auf Länge und Breite ruft die

Krümmung der Fläche hervor.

Wir haben bisher keine bestimmteren Annahmen gemacht über den
zeitlichen Verlauf des Wachstums. Verschiedene Annahmen sind möglich

und stehen mit Tabelle 1 und Figur 4 in Einklang. Das wird deutlich,

wenn wir in dreierlei Weise einen Auszug aus Talteile 1 machen
und die drei Fälle A, B und C in Figur 8 verkleinert darstellen. In
Figur 8 A sind die Antiklinen 0, 2, 4 und 6 aus Figur 4 übertragen; in
Figur 8 B die Antiklinen 0, 2 und 5, in Figur 8 C die Antiklinen 0, 3

und 5. Wir stellen uns vor, daß wir damit die Lagen einer Antikline in
gleichen Zeitabständen angeben. Jede Figur enthält einen Initialteil in

41
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Minimalgröße und Segmente I, II und III im Altersabstand eines
Plastochrons. Während der Initialteil zur Maximalgröße inkl. Segment I
heranwächst, ist aus Segment I Segment II geworden, aus Segment II

Segment III usf. Die Zahlen der Tabelle 2 sind für die Scheitelteile
direkt aus Tabelle 1 entnommen, für die Segmente als Differenzen aus
den Zahlen von Tabelle 1 errechnet. Die Nebenkolonnen f der Tabelle
geben die Wachstumsfaktoren (Schüepp 1945, Seite 326), mit
welchen die Größen für die Dauer eines Plastochrons zu multiplizieren

sind.

Tabelle 2.

Axenlänge f Oberfläche : y' O f
3

Volumen: y V f

A Scheitel minimal
Seheitel maximal

0,125
0,5

4 1,27

2,65
2,1

0,94
1,68

1,8

Segment I
Segment II
Segment III

0,375
1,5
6

4

4

1,38
3,28
8,83

2,4
2,7

0,74
1,68
4,32

2,3
2,6

1? Scheitel minimal
Seheitel maximal

0,125
0,5

4 1,27
2,65

2,1
0,94
1,68

1,8

Segment I
Segment II

0,375
3,5

9,3
1,38

6,59
4,8

0,74
3,33

4,5

C Scheitel minimal
Scheitel maximal

0,125
1

8 1,27

3,91
3,1

0,94
2,32

2,5

Segment I
Segment II

0,875
3

3,4
2,64
5,32

2,0
1,38

2,68
1,9

Im Fall A ist für den Scheitelteil und für die Segmente
gleichmäßiges Wachstum der Axe mit dem Faktor 4 angenommen. Dazu
gehört ein vom Scheitel gegen die Segmente leicht zunehmendes Wachs-
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(um der Oberfläche mit Faktoren 2,1 bis 2,7 und ebenso ein zunehmendes

Wachstum des Volumens mit Faktoren 1,8 bis 2,6.
Fall B zeigt gleiches Wachstum des Scheitelteils; dagegen ist das

Wachstum von Segment I zu Segment II stark beschleunigt. Fall C

nimmt stärkeres Wachstum des Scheitelteils und stark verzögertes
Wachstum der Segmente an.

Es ist demnach nicht möglich, aus dem Schema der konfokalen
Periklinen und Antiklinen auf die Verteilung des Wachstums zwischen
scheitelnahen und scheitelfernen Teilen des Paraboloids zu schließen.
Dagegen bleiben unsere früheren Schlüsse bestehen; in jeder Zeile der
Tabelle 2 überwiegt der Wachstumsfaktor f für Oberfläche gegenüber
dem Faktor für Volumen.

Genauere Vorstellungen über die Verteilung des Wachstums
zwischen Spitze und Basis des Scheitelkegels sind nur möglich auf Grund
weiterer Beobachtungen. Eine periodisch arbeitende Scheitelzelle liefert
Segmentreihen mit konstanten Altersabständen. Gleichmäßige Größe
und Struktur aller Meristemzellen wie bei Hippuris macht gleichmäßiges
VolumenWachstum an Spitze und Basis des Vegetationspunktes
wahrscheinlich. Prüfung der relativen Häufigkeiten von Kernteilungsfiguren
kann eine solche Vermutung bestätigen oder berichtigen.

Analoge Probleme entstehen für zugespitzte Einzelzellen, für Pilz-
hyphen, Pollenschläuche, Wurzelhaare, Haare an Stengeln und Blättern,
verzweigte Idioblasten im Grundgewebe, Bastfasern (Foster 1945,

Schoch-Bodmer 1945). Wo keine Unterschiede von Wanddicke,
Wandstruktur oder Protoplasmabelag nachgewiesen sind, wird man
zunächst an eine gleichmäßige Wachstumsverteilung nach Figur 8 A
denken; dabei müßte in manchen Fällen ein Gleiten auf den Wänden
von Nachbarzellen angenommen werden. Besteht Verteilung des Wachstums

nach Figur 8 C oder eine noch stärkere Konzentration des Wachstums

auf die nächste Umgebung des Scheitelpunktes, so kann an «Inter-
positionswachstum » mit geringem Gleiten gedacht werden.

Wir gelangen damit von rein geometrischen Betrachtungen zu
entwicklungsphysiologischen Fragestellungen. Wir finden im
Vegetationskegel der Angiospermen eine innere Struktur, die geordnet ist in
Beziehung zur Oberfläche, mit periklin gelagerten Zellflächen der
Tunika, periklin eingestellten Spindeln der Kernteilungsfiguren und
antiklinen, neu eingeschalteten Teilungswänden. Zugleich ist die Struktur

geordnet .in Beziehung auf die Längsaxe, mit vom « Brennpunkt »

aus divergierenden Längsreihen von Zellen im Korpus. Das Wachstum
aller Teile nach den verschiedenen Wachstumsrichtungen steht so in
Harmonie, daß sich das Ganze ständig aus dem Scheitel heraus regeneriert.

Es bestehen keine Anzeichen für ein Gleiten der Zellschichten
aufeinander; wir rechnen mit « symplastischem » Wachstum der Teile.
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Dabei machen die Teile, während sie wachsen, langsam, aber doch
ausgiebig, einen Formwechsel durch. Wie wird dafür gesorgt, daß die
Wachstumstendenzen der Teile so zusammenpassen, daß das Ganze sich
harmonisch fortbildet Wir fragen wohl besser : Wie passen sich die
wachsenden Teile im Wachsen aneinander an, so daß das Ganze harmonisch

wächst
Die Wachstumstendenzen der Teile denken wir uns in Beziehung

zu ihrer Struktur, der sichtbaren oder der bisher noch nicht sichtbaren.
Den periklinen Schichten der Tunika werden wir eine Tendenz zum
l lächenwachstum zuschreiben. Das Überwiegen des periklinen
Flächenwachstums gegenüber dem antiklinen Dickenwachstum und gegenüber
dem allgemeinen Volumenwachstum kann Ursache für den Form Wechsel
sein. Innerhalb der Dermatogenfläche ordnen sich die Zellen in radiale
Reihen um den zentralen Scheitelkomplex. Das Verhältnis von radialem
Längenwachstum zu tangentialem Breitenwachstum kann eine weitere
Ursache für den Formwechsel sein. Im Korpus denken wir uns eine
Tendenz zu vorherrschendem Längenwachstum wirksam.

Die geometrische Analyse deckt uns eine Reihe von quantitativen
Beziehungen zwischen den Wachstumsgrößen auf, unter welchen wir die
ursprünglichen aktiven Wachstumstendenzen heraussuchen sollen. Wir
linden mehr solche Beziehungen, als uns unmittelbar nötig scheint. Das
Problem scheint dadurch erschwert, daß wir zu viele Bestimmungsstücke
für die Form erhalten. Wir fragen uns: Was ist wichtiger : die Beziehung
Oberfläche—Volumen, oder Oberfläche—Querschnitt, oder Länge—Querschnitt,

oder innerhalb der Oberfläche Fläche—Umfang oder Länge—
Breite Und wir fragen: Wie erfolgt zwischen mehr oder weniger
widerstrebenden Wachstumstendenzen der harmonische Ausgleich

Wir begannen mit einer Betrachtung des Knospenbildes von Hip-
puris vulgaris und konzentrierten unsere Aufmerksamkeit auf
geometrische Beziehungen zwischen den Wachstumsgrößen in einem Schema,
aus konfokalen Parabeln. Sind wir dabei nicht in Gefahr, zu vergessen,
daß ein Vegetationskegel eine « Anlage » ist, aus welcher die erblich
vorherbestimmte Mannigfaltigkeit der Stengel- und Blattformen einer
Pflanzenart hervorgehen wird Wir stehen vor der alten Streitfrage :

Präformation oder Epigenesis Bei der Geburt, beim Ausschlüpfen aus
dem Ei, bei der Entfaltung der Blätter aus der Knospenhülle werden
vorausgebildete, präformierte Gestalten enthüllt, sichtbar gemacht, zur
Außenwelt in Beziehung gesetzt. Dem aktiven Leben im Austausch von
Stoff und Energie mit der Außenwelt geht die Präformation im Verborgenen

voraus. Die ontogenetische Forschung entdeckt das epigenetische
Werden der Formen aus dem formlosen Anfangszustand der Eizelle,
des Embryos, des Vegetationspunktes. Der präformistisch denkende
Forscher sieht aber schon in einem unscheinbaren Zellhöcker das, was
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daraus werden wird, und spricht von der « Anlage » zu einem Blatt; das

Ziel der erwachsenen Form scheint den Weg zur Verwirklichung
derselben zu bestimmen; die Erbanlage müßte eine Art Bauplan der wert
denden Form enthalten. Vererbungsforschung und Cytologie finden aber

nur Gene für bestimmte Eigenschaften in den Chromosomen lokalisiert.
Sie sagen uns nicht, wie die räumliche Ordnung der Gestaltung im
Verlaufe der Ontogenie zustande kommt. Das Regenerationsexperiment
lehrt, daß die Determination, die Vorausbestimmung bestimmter Zellen

zu bestimmten Gestalten im Laufe der Ontogenie eintritt und
fortschreitet. Der Gegensatz präformistischer Betrachtungsweise, welche
nach der Art der Anlage der späteren, ausgereiften Gestalten sucht, und
der epigenetischen Betrachtungsweise, welche den in der Gegenwart
sich abspielenden Formbildungsprozeß für sich betrachtet, losgelöst von
seiner Stellung in der ganzen Lebensgeschichte der Art, wird sich nicht
leichter auflösen lassen als in der Physik der Gegensatz zwischen Wellentheorie

und Korpuskeltheorie des Lichtes. Der Biologe muß bereit sein,
auf denselben Vorgang im embryonalen Werden der Gestalt gleichzeitig
präformistische und epigenetische Betrachtungsweise anzuwenden. Bei
den vorliegenden Studien über Wachstum und Formwechsel geht es für
einmal um einen Vorstoß in der Richtung der epigenetischen Einsicht.

3. Wachstum und Formwechsel von Linsenkörpern.

Wenn an den Flanken des Vegetationskegels von Hippuris die

Blätter angelegt werden, so verlängert sich deren Profillinie sehr rasch,
ähnlich dem Längenwachstum des Scheitelkegels (Figur 2 Blatt-Bogen
und VP lang). Das Wachstum des Bogens überwiegt stark gegenüber
dem Wachstum seiner Sehne (Figur 3, Blatt B/S, vergleichbar mit
Vegetationspunkt M/Ant., Mantellinie zu Antikline). Dabei ist zu bedenken,
daß die Masse des Blattes aus dem Innern des Scheitelkegels stammt
lind über die Sehnen, das heißt über die Verbindungslinien der
Blattachseln hinaus, ins werdende Blatt verlagert wird. Figur 9 b deutet
diesen Vorgang für drei Blattanlagen an. Die Form jüngster Anlagen
kann schematisch aufgefaßt werden als Sammellinse, begrenzt von sibei

Kugelflächen, welche sich am Schnittrand• rechtwinklig treffen. Für
einen so definierten Linsenkörper können wir die Zusammenhänge
zwischen Wachstum verschiedener Dimensionen und Formwechsel
rechnerisch verfolgen und lernen dabei einiges, das für viele verwandte Fälle
gültig bleibt.

Wir legen in Figur 9 a an die Axe MM' bei M den Zentriwinkel a.

Durch die Wahl dieses Winkels ist die Form des Körpers vollständig
bestimmt. Wir schlagen um M eine Kugel mit dem Radius r. Durch die
Wahl von r wird die Größe des Körpers vollständig bestimmt. Der Kegel
mit dem Zentriwinkel a schneidet ein Kugelsegment heraus mit der
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Oberfläche 0, dem Umfang des Randkreises U und dessen Radius q. Am
Umfang schließen wir rechtwinklig zu r die Mantellinie r' eines zweiten
Kegels an und legen um dessen Spitze M' die zweite Kugel, welche die
Grenze zwischen Rindengewebe und Blattgewebe bestimmt. Der Linsen¬

körper mit dem Volumen V ist die Summe zweier Kugelsegmente mit
den Höhen h und h\ Aus r und a berechnen wir leicht alle übrigen
Größen.

Für Rechnung und geometrische Konstruktion sind der Radius r
und der Winkel a die gegebenen, bequemen Ausgangsgrößen. Für
entwicklungsphysiologische Betrachtungen wird man vielmehr die freie
Oberfläche 0 und das Volumen V des Körpers als ursprünglich gegebene
und formbestimmende Größen betrachten. Für den Übergang von
physiologischer zu morphologischer Betrachtung sind wieder die Maßzahlen
für Flächen und Volumen durch ihre Wurzeln zu ersetzen. Wir bestimmen

also auch

Figur 9.

r' r • tg a

q r • sin a
h r • (1 — cos a)
h' — r • tg a (1 — sin a)

Umfang U 2 n r • sin a

Oberfläche 0 2 n • r2 • (1 — cos a)

Volumen V — — • r3 • 2 • (1 — cos a) -j- 2 • tg a • (1 — sin a) — sin a tg a

— r • y/-^-' y/2 ' (1 — cos a) -)- 2 • tg3a • (1 — sin a) — sin a tg a
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Durch Division fällt der Faktor r aus der Rechnung heraus, und

wir finden einen für die Form charakteristischen Quotienten, abgeleitet

aus den Zahlen für Oberfläche und Volumen und gleich einer Funktion
des formbestimmenden Winkels o.

v/o1 n/s"'V( 1 — cos a)

\/V' \J~T ' \J2 ' ^ — cos a) + 2 tg3 a ^ — sin ~~ sin a'tg °

Dieser Formquotient läßt sich berechnen entweder aus Oberfläche

und Volumen oder aus dem Zentriwinkel a. Er ist unabhängig von der

absoluten Größe, die durch den Radius r bestimmt wird. In gleicher
Weise erhalten wir einen Formquotienten für die Beziehungen zwischen

Umfang und Oberfläche:

V / 2 n • sin a
II _V

^0 1 — cos a

Die Tabelle 3 umfaßt Werte der beiden Formquotienten für Winkel

v0n —80° bis +180°. Negative Zentriwinkel beziehen sich auf Linsenkörper

mit eingesenkter freier Oberfläche wie in Figur IIA. Bei
positiven Zentriwinkeln verfolgen wir Formen mit starker Aufwölbung bis

fast zur vollen Kugel wie in Figur 11 C. Die Zahlen der Tabelle 3 dienen

zur Zeichnung der Funktionskurven in Figur 10.

Tabelle 3.

Zentriwinkel a U: y 0
3

y o : y v Zentriwinkel a U: y 0
3

yö~: y v

— 80 2,716 0,323 60 3,070 1,812

— 70 2,904 0,461 70 2,904 1,866

— eo 3,070 0,644 80 2,716 1,913

— 50 3,213 0,804 90 2,507 1,959

— 40 3,331 0,946 100 2,279 2,001

— 30 3,424 1,072 110 2,033 2,037

— 20 3,491 1,187 120 1,772 2,071

— 10 3,530 1,291 130 1,498 2,103

0 3,545 1385 140 1,221 2,133

10 3,530 1,472 150 0,917 2,155

20 3,491 1,552 160 0,630 2,176

30 3,424 1,625 170 0,309 2,185

40 3,331 1,693 180 0 2,199

50 3,213 1,756
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Der Wert U j y/ 0 erreicht ein Maximum für den Winkel a 0°,

das heißt für die ebene Kreisfläche. Positive und negative Winkel a, das
heißt Ausstülpung oder Einstülpung der freien Oberfläche ergeben
dieselbe Beziehung zwischen Umfang und Fläche. Die Abnahme des Um-
fangs^ im Vergleich zur Wurzel aus der Fläche ist notwendig verbunden
mit einer Wölbung: durch die V ölbung wird im Rahmen des Umfanges
für eine größere Fläche Platz geschaffen.

u/vo

—//
Nv\\

\\\

W!w

\\\\\\

1 1
I 11

1

1 1 11111 i 11

\\\\
i i

i
i i i i i\

Figur 10.

Die Kurve ^0 jy/ V steigt stetig an, auch beim Übergang von den

negativen Winkelwerten zu den positiven. Hohlformen wie in Figur 11 A
haben kleine, erhabene Formen wie in Figur 11 C haben große
Oberflächenwerte.

In der Konstruktion der Figur 9 a, in der Berechnung der Tabelle 3
und in der Zeichnung der Figur 10 sind wir vom Radius r und vom
Winkel a ausgegangen. Durch die Berechnung der Formquotienten
konnte r eliminiert werden, so daß in Tabelle 3 und Figur 10 nur noch
der Winkel a als unabhängige Variable auftritt, a allein bestimmt die
Form; r sagt, in welcher Größe die Form ausgeführt wird. Aber man
kann schwerlich r und a als physiologisch einfach bestimmte Größen
ansehen. Für die physiologische Betrachtung müssen wir einen andern
Ausgangspunkt wählen als für die mathematische Konstruktion.
Vermutlich werden Oberfläche und Volumen, in unserer Rechnung vertreten

/"' 3 /~1durch y O und w V, in einfacher Weise den ursprünglichen
Wachstumstendenzen zugeordnet sein. Wir werden von bestimmten Werten und
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einem bestimmten Wachstum von Oberfläche und Volumen ausgehen
und von diesen aus den Formwechsel abzuleiten suchen. Wir fragen:
Wie muß eine Linse (deren Flächen am Rande zueinander senkrecht
stehen) ihre Form verändern, wenn zwischen Oberfläche und Volumen
ein bestimmtes Wachtumsverhältnis vorgeschrieben ist

Tabelle 4.

1 I Ii III IV V

1. Oberfläche 0, f 1,95 9,60 18,72 3«,50 71,18 138,81
2. Volumen V, f 2 10,35 20,70 41,40 82,80 165,60

3. n/1 3,10 4,33 6,04 8,44 11,78

4. 2,18 2,75 3,46 4,36 5,49

5. vo'Vt' 1,42 1,58 1,75 1,93 2,15

6. Zentriwinkel a 5° 23° 0' 48° 30' 84° 45' 145° 30'
7. Radius r 20 6,08 4,15 3,53 3,48

8. Radius des Schnitt-
krei-es q 1,74 2,39 3,11 3,52 1,97

9. Höhe h-bh' 1,67 2,07 2,59 3,37 5,31
10. Umiang U 5,46 7,51 9,75 11,04 6,19

Wir beginnen mit einem beliebigen Ausgangskörppr, z. B. mit dem
Zentriwinkel 5° und dem Radius 20, und berechnen dazu nach den
Formeln auf Seite 646 Werte für r', q, h, h', U, 0 und V (Tabelle 4,
Kolonne 1). Dann lassen wir Oberfläche und Volumen beliebig wachsen,
z. B. die Oberflächen durch wiederholte Multiplikation mit dem Faktor
1,95 und die Volumen durch wiederholte Multiplikation mit 2 (Tabelle 4,

Zeilen 1 und 2). Aus y/0 und y/V gewinnen wir die form bestimmenden

Quotienten y/ 0 :y/V (Zeilen 3, 4 und 5 der Tabelle). Aus der

Kurve in Figur 10 oder durch Interpolation aus der Tabelle 3 finden wir
zu jedem Wert des Oberflächen-Volumen-Quotienten den zugehörigen

Zentriwinkel a (Zeile 6). Aus dem Wert für y/o und dem Wert für a

errechnen wir den Kugelradius

' y/o : y/2 n (1 cos a)
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Aus a und r (Zeilen 6 und 7) ergeben sich leicht alle übrigen
Maßzahlen (Zeilen 8 bis 10); ebenso lassen sich die Stadien I bis V in
richtiger Form und richtigem Größenverhältnis zeichnen (Figur 11,
Kolonne C). Die zwei andern Serien der Figur 11 beginnen mit demselben
Ausgangskörper wie C; sie sind berechnet mit gleichem Volumeuwachs-

Figur 11.

tum mit dem Wachstumsfaktor 2. Die drei Serien unterscheiden sich nur
im Wachstum der freien Oberfläche. Diese wächst in A mit dem Faktor
1,25, in B mit dem Faktor 1,65, in C mit dem Faktor 1,95.

Zur Diskussion der drei Fälle diene neben den Zahlen der Tabelle 4

für Fall C die Zusammenstellung der Allometrielinien für alle drei Fälle
in Figur 12. In kräftigen, geraden Linien ist die Verschiebung des Ober-
flächen-Volumen-Wertes dargestellt. Alle drei Körper beginnen mit dem
Verhältnis 3,10 : 2,18 1,42 (Tabelle 4, Kolonne 1, Zeilen 3 bis 5). Die
drei Linien divergieren vom gemeinsamen Ausgangspunkt. A weicht ab

zuungunsten der Oberfläche; B folgt fast der Isometrierichtung mit
geringer Abweichung zugunsten der Oberfläche; für C ist die Oberfläche
stark begünstigt. Figur 11 zeigt, wie sich das auf den Formwechsel
auswirkt. Der Körper B wächst nahezu isomorph; exakte Isomorphie müßte

3 '2
eintreten bei einem Wachstumsfaktor für die Oberfläche f0 v / 2
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1,5874. Ein. WachsturnsVerhältnis OY 1,5874 : 2 ist aber ein Spezialfall,

dessen genaue Verwirklichung in der Natur wir nie, dessen
annähernde Verwirklichung wir selten erwarten werden. Der Spezialfall
des isomorphen Wachstums interessiert uns als Grenze zwischen den
beiden entgegengesetzten Möglichkeiten eines Vberwiegens des Volumen-
wachstums (A) oder des Oberfidchenwachstums (B und C).

B und C machen denselben Formwechsel durch, unterscheiden sich
aber in der Intensität des Formwechsels bezogen auf gleiches
Volumenwachstum. Der Körper B hat sich nach viermaliger Verdoppelung des

Volumens noch nicht soweit umgeformt wie der Körper C nach einer

Verdoppelung. B erreicht zuletzt mit der Oberfläche 71,16 und dem

Volumen 165,60 ein OV-Verhältnis von 1,54; C aber erreicht mit der
Oberfläche 138,81 und dem Volumen 165,60 das OV-Verhältnis 2,15

(Zeilen 1, 2 und 5 der Tabelle 4). In der Darstellung von Figur 12 gehört
bei der OV-Allometriegeraden Fall B zu einer ausgiebigen Verlängerung
in der Richtung des Wachstums nach rechts und nach oben nur eine

leichte Verschiebung seitwärts gegen die schräge Linie 10 : 1, das heißt

gegen größere Oberflächenausbildung. Für die Allometriegerade des

Falles C ist bei gleichem Volumenzuwachs diese seitliche Verschiebung
nach stärkerem Überwiegen der Oberfläche viel auffälliger.
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Mit den beiden Linsenkörpern B und C vergleichen wir noch einmal
das Paraboloid nach der An^chauungsfigur 4 und der ÜV-Allometrielinie
in Figur 7. Der Winkel der Allometrielinie für das Paraboloid gegen die
Isometrierichtung 45° ist größer als der Winkel für Linsenkörper B, aber
kleiner und mit dem Wachstum abnehmend im Vergleich zum Linsenkörper

C. Das Paraboloid war uns Schema für den Vegetationskegel;
der Linsenkörper C eignet sich als Schema für jüngste Blattanlagen
(Figur 9 b, 1—3). Es würde sich ergeben, daß der Formwechsel der
jungen Blattanlagen mit größerer Intensität vor sich geht als der
Formwechsel im Scheitelkegel. Wenn einmal vergleichende Untersuchungen
in größerem Umfange vorliegen werden, wird der Vergleich der Intensität

des Formwechsels mit dem Wachstum für das Verständnis der
formbildenden Vorgänge wichtig werden. Vorderhand läßt sich nur
vermuten, daß sich die embryonalen Vorgänge durch besonders intensiven
Formwechsel auszeichnen werden.

In Figur 12 müssen die Allometrielinien für das OV-Formverhältnis
gerade sein, weil wir bei der Berechnung einfache Wachstumsverhältnisse

zwischen Oberfläche und Volumen zur Voraussetzung machten
(Tabelle 4, Zeilen 1 und 2). Notwendigerweise müssen dann andere
Verhältnisse von der geradlinigen Allometrie abweichen; es kann sein, daß
uns solche Abweichungen bei der Betrachtung der Anschauungsfigur 11
mehr in die Augen fallen. Wir achten auf die flöhe h. den senkrechten
Abstand der Flächenmittelpunkte oder die Dicke der Linsen und
vergleichen ihn mit dem Radius g des Randkreises, in welchem sich die
Flächen schneiden. Die Allometrielinien h/g divergieren stark. Im Fall A,
bei schwachem Wachstum der Oberfläche und Einsenkung derselben
überwiegt die Zunahme der Dicke stark gegenüber der Vergrößerung
von Radius (und Umfang) des Randkreises. Fall B weicht auch in dieser
Betrachtungsweise wenig von der Isometrie ab. In Fall C ist die starke
Oberflächenentwicklung zuerst, in Stadien 1 bis 3 verknüpft sowohl mit
Erweiterung des Randkreises mit dem Radius q als auch mit Vergrößerung

des Zentriwinkels a zuletzt, von Stadium 4 auf 5 vergrößert sich
die Oberfläche trotz Verkleinerung des Randkreises durch die starke
Zunahme des Zentriwinkels (Tabelle 4, Zeilen 6, 8 und 9). Während die

Allometrielinie y/0 jy/ V gerade verläuft, krümmt sich die Linie hfg

in scharfem Bogen.

Der Vergleich von Umfang mit Oberfläche, U. zeigt im

Beginn drei fast gleichgerichtete, fast isometrisch laufende Linien. Wieder
ist Fall G ausgezeichnet durch den Übergang in eine scharf gekrümmte
Kurve; im Fortwachsen der Oberfläche bleibt der Umfang zurück und
nimmt schließlich ab, nachdem der Zentriwinkel 90° überschritten hat
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(Tabelle 4, Zeilen 3, 6 jrnd 10). Vorgänge mit Abnehmen gewisser Größen

werden bei Pflanzen schwer zu finden sein; sicher aber spielen sie
eine Rolle bei der Formbildung an tierischen Embryonen, man denke an
den Verschluß eines Urmundes.

Allgemein wichtig ist die Tatsache, daß an ein und demselben
wachsenden Gegenstand gleichzeitig Allometriegerade und Allometrie-
kurven abgelesen werden können, je nach der Wahl der zwei Größen,
welche bei der Konstruktion einer Allometrielinie miteinander in
Beziehung gesetzt werden. Man wird bei der Analyse eines gegebenen
Tatsachenmaterials nach den Allometriegeraden, also nach den einfachen
Wachstumsverhältnissen suchen und hinter diesen einfachen Verhältnissen

die aktiven, formbestimmenden Wachstumstendenzen vermuten.
Von physiologischen Gesichtspunkten aus wird man namentlich auf
Oberflächen und Volumen achten.

4. Zusammenfassung.

In Anknüpfung an das Knospenbild von Hippuris werden in
geometrischen Betrachtungen die Beziehungen zwischen Wachstum und
Formwechsel am Paraboloid und an Linsenkörpern dargestellt.

Die Allometrie zwischen verschiedenen, nur stellenweise verbundenen

Teilen, wie Stengel und Blatt, wirkt sich aus in Verschiebungen
der Teile, die wachsend aneinander vorbeigleiten.

Die Allometrie zwischen verschiedenen Dimensionen eines einfach
aufgebauten Teiles, wie Länge und Breite der Stengelglieder, wirkt sieh

aus in einem einfachen Formwechsel, z. B. im Übergang aus einer
kreisförmigen Scheibe in einen zylindrischen Stab.

Die Allometrie zwischen symplastisch wachsenden Teilen eines

zusammengesetzten Gebildes, z.B. eines geschichteten Vegetationskegels,
ist verknüpft mit intensivem Formwechsel innerhalb des stationären
Umrisses bei der Regeneration des Ganzen aus dem Scheitel heraus und bei
der Bildung von Blattanlagen.

Im Spezialfall des isomorphen Wachstums, der biologisch
unwahrscheinlich ist, verschiebt sich das Verhältnis zwischen Längen, Flächen
und Volumen. Für den morphologischen Vergleich zweckmäßig ist die
Darstellung von Flächen durch die Quadratwurzeln und von Volumen
durch die Kubikwurzel ihrer Maßzahlen.

Im Paraboloid überwiegen das Wachstum der periklinen Mantellinie

gegenüber der Antikline, das Wachstum der freien Oberfläche
gegenüber der antiklinen Querschnittsfläche, das Wachstum der freien
Oberfläche gegenüber dem Volumen. Innerhalb der Oberfläche bleibt das
Wachstum des Umfanges zurück gegenüber dem Wachstum der Mantellinie.

In bezug auf die Verteilung des Wachstums zwischen scheitel-
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nahen und scheitelfernen Teilen sind im Paraboloid verschiedene Fälle
möglich.

An Linsenkörpern aus Kugelsegmenten mit rechtwinkliger Schneidung

der Ränder bestimmt ein Zentriwinkel a die Form, ein Kugelradius

r die Größe. Zwei von der Größe unabhängige Formquotienten

Umfang—Oberfläche, U : 0 und Oberfläche—Volumen, y/ 0 : \J V

werden als Funktion des Zentriwinkels dargestellt. Es wird untersucht,
welche Formveränderungen aus einfachen Annahmen über Oberflächen-
und Volumenwachstum als notwendige Folgen eintreten. Figur 11 stellt
in drei Kolonnen Körper mit gleichem Volumenwachstum, aber mit
verschiedenem OberflächenWachstum dar. Die Wachstumsverhältnisse
Oberfläche : Volumen sind A 1,25 :2, B 1,65 : 2 und C 1,95 : 2.

Die geometrischen Betrachtungen weisen hin auf einen möglichen
Fortschritt in der Erforschung und im Verständnis der Formbildung.
Bisher treiben wir vorwiegend « Entwicklungsgeschichte » und denken
die Formen « präformiert», auch da, wo sie vor den Augen des Mikro-
skopikers aus ungeformten Zuständen sich neu bilden. Wir sollten
vielmehr die « Ontogenie » erforschen, das Entstehen, die « Epigenesis » der
Formen. Einfache Allometrie zwischen eng verbundenen Teilen, z. B.
zwischen perikliner und antikliner Wachstumsrichtung, zwischen
Oberflächen- und Volumenwachstum eines Körpers erscheint als ein
wirksames Mittel zu eingreifender Umbildung der Formen.

Die große Mannigfaltigkeit der Formen bei gleichzeitiger fester
erblicher Bestimmung derselben müssen wir aber darauf zurückführen,
daß in der Natur einfache Mittel in genauer und sicherer Abstufung, in
geordnetem Zusammenwirken eingesetzt werden.

Resume.

On a etudie Pallometrie de la croissance, en partant d'un schema
d'un point vegetatif construit avec des paraboles confocales. La
croissance de la surface, representee par la racine carree de celle-ci, l'em-
porte sur la croissance en volume, representee par la racine cubique de
cette derniere (figures 4 et 7).

Le changement de forme des ebauches des jeunes feuilles s'explique
par la croissance d'un corps lenticulaire. Le rapport des formes surface-
volume, represente par le quotient (racine carree de la surface : racine
cubique du volume) permet de trouver I'angle qui determine la forme
et 1'on peut en deduire le rayon r qui determine la grandeur. Selon la
mesure de la croissance en surface, on obtient une formation dicferente
en direction et en intensite (figure 11).
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