Zeitschrift: Berichte der Schweizerischen Botanischen Gesellschaft = Bulletin de la

Société Botanique Suisse

Herausgeber: Schweizerische Botanische Gesellschaft

Band: 42 (1933)

Heft: 2

Artikel: Ueber die Beziehungen zwischen der Wasserbilanz und einigen

osmotischen Zustandsgrössen

Autor: Ursprung, A.

DOI: https://doi.org/10.5169/seals-28403

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ueber die Beziehungen zwischen der Wasserbilanz und einigen osmotischen Zustandsgrössen.

Von A. Ursprung, Freiburg.

Eingegangen am 9. Mai 1933.

Über die Abhängigkeit der osmotischen Zustandsgrössen von der Wasserbilanz sind bisher nur ziemlich rohe, qualitative Untersuchungen veröffentlicht worden; ich erinnere z.B. an das Ansteigen der Saugkraft bei Trockenheit, an das Fallen bei Regen oder an die tagesperiodischen Schwankungen.¹

Quantitative Versuche erfordern neben der Bestimmung der Zustandsgrössen auch die gleichzeitige Messung der Wasserbilanz. Diese Bilanzuntersuchungen erfolgen am besten durch Ermittlung der Volumänderung jener Zellen, deren Saugkraftänderung man misst; doch ist dieser Weg in der Regel nicht gangbar. Mit Potometer und Waage können wir für bewurzelte oder abgeschnittene Pflanzen bzw. Pflanzenteile die Bilanzänderung des Versuchsobjektes ermitteln, daraus aber keine sicheren Rückschlüsse auf das quantitative Verhalten bestimmter Einzelzellen ziehen. Der Sinn der Bilanzänderung eines Organs ergibt sich gewöhnlich aus dem Sinne der Dimensionsänderung (Dicke, Umfang usw.). Aus der Grösse der Dimensionsänderung lassen sich meist auch gewisse Schlüsse ziehen auf die Grösse der Bilanzänderung. Doch ergeben sich hieraus in der Regel noch keine quantitativen Angaben über die Volumänderung bestimmter Einzelzellen.

Einige Voruntersuchungen sind vor mehreren Jahren zusammen mit St. Vi dié ausgeführt worden und sollen nun kurz beschrieben werden.

Als wichtigste Versuchspflanze diente Geranium Robertianum. Die Bestimmung der Saugkraft Sz_n erfolgte mit der vereinfachten Methode an Blattstreifen, lieferte also einen Durchschnittswert für die betreffenden Spreitengewebe. Die Saugkraft bei Grenzplasmolyse Sz_g wurde an der unteren Blattepidermis ermittelt. Das Osmotikum war stets Rohrzucker.

Zur Messung von Absorption und Transpiration wurde die bewurzelte Versuchspflanze in einem geeigneten Potometer befestigt, das an einer ausreichend empfindlichen Waage hing. Zweckmässig angebrachte Schirme

¹ A. Ursprung, Einige Resultate der neuesten Saugkraftstudien. Flora 1925, 18 und 19, 566.

A. Ursprung, Osmotische Zustandsgrössen. Handwörterb. d. Naturw., 2. Aufl. 1932, 7, 493.

schützten Potometer und Wurzel vor direkter Besonnung. Ein genau gleiches Potometer ohne Pflanze erlaubte die Eliminierung der Temperaturfehler. Alle erforderlichen Vorsichtsmassregeln, Eichungen usw. waren natürlich getroffen, doch kann auf die Technik nicht näher eingegangen werden.

Folgende meteorologische Faktoren wurden dicht neben der Versuchspflanze bestimmt: relative Luftfeuchtigkeit mit Haarhygrometer, Lufttemperatur im Schatten, Evaporation mit horizontaler Kitasato-Kerze in Verbindung mit horizontaler Kapillare, Gesamtstrahlung mit Schwarzkugelthermometer, Temperatur der Potetometerflüssigkeit.

Die Ablesung der verschiedenen Instrumente geschah stets in dem Moment, in welchem Blatteile zu den osmotischen Untersuchungen entnommen wurden. Die Angaben über Temperatur und relative Luftfeuchtigkeit beziehen sich daher nur auf diese Zeitpunkte, während Evaporation, Transpiration und Absorption sich auf die ganze zwischen zwei Ablesungen liegende Periode erstrecken. Die erhaltenen Bilanzwerte gelten für die Pflanze, die Saugkraftwerte aber nur für die Blattspreite. Beim Vergleich der beiden Zustandsgrössen ist ferner zu beachten, dass Szn ein Mittel darstellt für alle Gewebe des Blattstreifens, Szg aber nur einen Epidermiswert.

I.

Tabelle 1 enthält die Versuchsresultate für Geranium. Es bedeutet: T = Transpiration in mg pro Stunde, A = Absorption in mg pro Stunde, E = Evaporation in mm der Atmometerkapillare pro Stunde, $Sz_n = mitt$ lere Saugkraft von Blattstreifen in Atm., $Sz_g = Saugkraft$ der unteren Epidermis bei Grenzplasmolyse, $t_w = Wurzeltemperatur$ gemessen als Temperatur der Potometerflüssigkeit in C^o , I = maximale Insolation zwischen zwei Ablesungen, gemessen mit Schwarzkugelthermometer im Vakuum in C^o (Schwärzung etwas defekt, so dass nur mehr Vergleichswerte zulässig), $t_1 = Lufttemperatur$ im Schatten in C^o , rF = relative Luftfeuchtigkeit in O_0 gemessen mit Haarhygrometer, Sd = Sättigungs-defizit der Luft in mm Hg, P = Potometerflüssigkeit.

Beginnen wir mit einem verhältnismässig einfachen physikalischen Vorgang, der Evaporation. Die Verdunstungsgeschwindigkeit, d. h. die Wassermenge, die in der Zeiteinheit von einer ebenen Wasseroberfläche verdunstet, besitzt wohl nahe Beziehungen zum Sättigungsdefizit Sd, ist aber demselben, wie auch aus Tabelle 1 hervorgeht, nicht proportional. Es hängt dies mit verschiedenen Umständen zusammen. Einmal wird Sd = E_t - e_t gesetzt, wo e_t = $E_t \cdot \frac{rF}{100}$. Hierin bedeutet E = Span-

nung des gesättigten Wasserdampfes bei der Lufttemperatur t, e_t = wirklich vorhandene Dampfspannung bei der Lufttemperatur t. Tatsächlich ist aber die Verdunstungsgeschwindigkeit der Grösse E_{t^1} — e_t propor-

tional, wo t1 die Temperatur der Wasseroberfläche bedeutet, die in unserem Atmometer nicht bestimmt wurde, aber offenbar je nach den Aussenfaktoren

toren toren in kann. Neben der Insolation sind natürlich auch die Luftströmungen zu berücksichtigen. Wie gross der durch das Sättigungsdefizit nicht erfasste Einfluss von Wind und Strahlung auf die Evaporation sein kann, zeigt der folgende Laboratoriumsversuch, in welchem der Wind durch einen Ventilator, die Strahlung durch eine Heizplatte erzeugt wurde. Dabei ist die Evaporation ohne Wind und Strahlung = 1 gesetzt (vgl. untenstehende Tabelle). Auch die noch nicht berücksichtigte Gestalt und Lage der Wassermenisken an der Peripherie der Tonkerze muss von Bedeutung sein. Dagegen können wir die Beziehungen zur Grösse, Gestalt, Farbe usw. der verdunstenden Fläche übergehen, weil stets dasselbe Atmometer benützt wurde; ebenso brauchen wir den Luftdruckschwankungen keine Beachtung zu schenken. Die mangelhafte Übereinstimmung zwischen Evaporation und Sättigungsdefizit ist übrigens zum-Teil nur vorgetäuscht, indem die Evaporation auf die ganze Zeitperiode zwischen zwei Ablesungen sich erstreckt, während das Sättigungsdefizit nur am Anfang und am Ende bestimmt wurde. Wenn man alle diese Umstände berücksichtigt, so werden die E-Schwankungen in Tabelle 1 besser verständlich. Vollständig aufklären lassen sie sich allerdings auch jetzt noch nicht, da die Angaben über die in Betracht fallenden Grössen zu unvollständig sind. Aus diesem Grunde soll auch nicht näher auf die Evaporation eingegangen werden.

E	Sd	Wind m sec	Schwarzkugel- thermometer
1	13,9	.0	22
7	13,9	3	22
10	13,9	6,5	22
15	13,9	0	65

Beim Vergleich der Transpiration mit der Evaporation (Tabelle 1) ergibt sich, dass im allgemeinen beide Grössen in gleichem Sinne variieren. Berechnen wir aus den Angaben der Tabelle 1 den Quotienten $\frac{T}{E}$, so ist zu bedenken, dass keine Reduktion auf die Einheit der Oberfläche erfolgte. Die Verdunstungsfläche ist in allen Versuchen konstant; die transpirierende Fläche ist von Pflanze zu Pflanze verschieden und nimmt bei jeder Pflanze im Laufe der Zeit in dem Masse ab, als Blattstücke zur Bestimmung der osmotischen Zustandsgrössen verwendet wurden. Ceteris paribus ist also eine Abnahme von T/E im Verlaufe eines Versuches zu erwarten. Fast regelmässig erfolgt auch eine Abnahme des Quotienten während der Nacht und eine Zunahme bei Insolation, was wohl verständlich ist, gleich wie das Fallen des Quo-

Tabelle 1. Geranium Robertianum.

14.80 S8 S2 S_{0} </th <th>Pflanze</th> <th>I</th> <th>Ħ</th> <th>П</th> <th>П</th> <th>"</th> <th>II</th> <th></th>	Pflanze	I	Ħ	П	П	"	II	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ь	H ₂ O	H20	H ₂ 0	H ₂ O	H ₂ O		
T A B Sen FW T F Sen 14 30 18g/h mg/h <	Wind	von 15-18 schwach						
14 30 EA A-T A pam. Szn $4x$ pam.	Sd mm Hg		11	- 1	1	7 - 9.	1111	17 11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	rF °/°			7	71—75			62— 63— 54— 72—
T A E A-T A fm. Szn. Szg. tw. T 14 30 mg/h mg/h mm/h A-T T Atm. Atm. Atm. O. O.<	t1 Co	18-	25	18-17	17—18	25— 26—	18 – 20 20 – 22 22 – 25 25 – 24	24-24 $24-27$ $27-19$ $19-23$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I Co	21 – 82 – 88 –		7 23—17		- 55 - 62	18— 20— 23— 25—	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t Co	22	23	18		24- 26-	21- 20- 21- 24-	25 — 25 — 30 — 119 —
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sz_g Atm.			1	4 [10.1—10.1	77	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
T A E A T T A T T A E A T T A E A T T A E A T T A E A T T A E A T T A E A T T A E A T A E A E	$ m Sz_n$ Atm.	11	11			10		7.6 7.6—11.1 11.1— 6.1 6.1— 6.7
T A E E A— mg/h mg/h mm/h 14.30 280 247 79 — 7.00 82 90 54 + 7.00 82 90 54 + 7.20 154 160 53 + 7.20 88 90 37 + 7.20 88 90 37 + 7.20 88 90 37 + 7.20 88 90 37 + 7.20 88 90 37 + 7.20 88 90 37 + 7.20 88 90 37 + 7.20 88 90 37 + 7.20 88 90 37 + 7.20 88 90 37 + 7.20 88 90 37 + 7.20 88 90 97 + 7.20 88 90 97 + 7.20 88 90 90 90 90 90 90 90 90 90 90 90 90 90	A					1.0		
T A E mg/h mg/h mm/h 14 30 280 247 79 7.00 82 90 54 7.20 154 160 53 7.20 184 71 7.20 88 90 37 15.30 135 127 44 17.00 345 347 89 17.00 345 347 89 14.00 206 193 107 16.00 170 188 88 17.00 135 157 80 16.00 170 188 88 17.00 135 157 80 18.30 157 163 163	A—T				» Э	72 +		
T mg/h 14.30 280 7.00 82 7.20 154 7.20 88 7.20 88 15.30 135 11.30 547 17.00 345 9.45 220 14.00 206 16.00 170 18.30 372	E mm/h				44	84		80 163 47 51
14.30 15.30 7.20 7.20 7.20 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30	A mg/h	247	284 160	06	127	520	231 141 193 188	157 312 72 ×3
	T mg/h	280	301 154	88	135	547 345	220 156 206 170	135 372 62 89
13. V3 14. 13. V3 10. 10. 15. V3 10. V3 10	Datum	13. VII. 26 9.00—14.30 14.30— 7.00	28. VII. 26 10.00—15.30 15.30— 7.20	29. VII. 26 15.30— 7.20	30. VII. 26 7.20—15.30	22. VII. 26 10.00 11.30 15.00 - 17.00		16.00—17.00 17.00—18.30 24. VII. 26 18.30— 7.30 7.30—11.45

Tabelle 1. Geranium Robertianum (Fortsetzung).

Pflanze	H	ΣI	A	101
Ъ	H ₂ 0	H ₂ 0	H ₂ O	
Wind		schwach "	schwach	
Sd mm Hg	5.5— 9.3 9.3— 7.9 7.9—12.2	3.9 – 4.1 4.1 – 4.4 4.4 – 5.8 5.8 – 8.5 8.5 – 8.1 8.5 – 8.1		
rF °/0	74—65 65—67 67—57	75 — 75 75 — 75 75 — 75 75 — 74 74 — 62 62 — 64 64 — 60	60 – 64 64 – 72 72 – 73 73 – 73 73 – 73 73 – 62 62 – 64	
tl Co	23—27 27—25 25 - 28	18 18-19 19-20 20-24 24-24 24-24 24-24	27 20 – 19 – 20 – 21 – 26 – 24 –	
°C Co	7 25—29 3 29—25 0 25—47	9 — 18 9 18—20 9 20—20 1 20—24 7 24—27 5 27—24 8 24—43	20 19 19 22 23 28 28	
t _w	5 23—27 6 27—26 6 26—30	1 — 19 - 19—19 0 19—20 6 20—21 6 21—27 0 27—25 6 25—28	28 - 26 - 19 - 19 - 20 - 21 - 21 - 21 - 25 - 25 - 25 - 25 - 25	
Szg Atm.	9.0-10.5 10.5- 9.6 9.6- 9.6	9.0— 8.1 8.1 — 9.0 9.0— 9.6 9.6— 9.6 9.6— 9.0	9.6— 9.0 9.0— 8.1 8.1— 8.1 8.1— 8.1 8.1 — 9.6 9.6— 9.0 9.6— 9.0	
$ m Sz_n$ Atm.	6.7 – 7.6 7.6 – 4 6 4.6 – 7.6	6.1— 5.3 5.3 — 6.1 6.1— 6.7 6.7— 7.6 7.6— 5.3		
A	1.0	1.2 1.3 0.9 1.6		
h A—T	1 - 5 + 56 - 77	+ 65 + 45 - 45 - 35 - 30 - 30 - 45 - 45 - 45 - 45 - 45 - 45 - 45 - 45		•
T A E mg/h mm/h	94 3 65 3 150	25 25 25 25 25 26 27 26 27 26 27 26 27 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26		
A h mg/	5 150) 136 3 206	365 195 195 235 235 240 213 7		
T mg/	155 80 283	300 150 270 470 132 837	82 59 190 190 320 78 78	
Datum	24. VII. 26 11.45–15.00 15.00–16.20 16.20–17.35	2 VIII. 26 7.30 - 8 30 8.30 - 9 30 9.30 - 10.30 10.30 - 11.30 14.45 - 16.10 16.10 - 17.10	3. VIII. 26 18.20— 7.20 7.20— 9.00 9.00—10.00 11.00—15.00 16.40—17.00	
				V. A. Santa

tienten bei Kultur in Rohrzucker. Die Messung von Blattemperatur, Spaltweite usw. unterblieb, da eine genauere Analyse der Transpiration nicht beabsichtigt war.

Auch Transpiration und Absorption ändern sich in der Regel in demselben Sinne. (Die Diskrepanz am 3. August, 17 Uhr, beruht vielleicht auf einem Ablesungsfehler; um 10 Uhr könnte das Ansteigen der Absorption, trotz gleichbleibender Transpiration, mit der Zunahme der Wurzeltemperatur zusammenhängen, deren Einfluss seit Vesque mehrfach konstatiert worden ist, zum Teil mag es sich um eine Nachwirkung der vorausgehenden Transpirationssteigerung handeln.) Trotzdem bleibt der Bilanzquotient, wie Tabelle 1 zeigt, nicht konstant. Die Bilanzdifferenz A—T ist tagsüber gewöhnlich —, während der Nacht +; sie kann aber auch am Tage + werden, wenn Evaporation oder Insolation schwach sind. Im allgemeinen wird die tagsüber sich einstellende Unterbilanz am Abend und während der Nacht wieder ungefähr ausgeglichen; es ergibt sich also dasselbe, wie aus den täglichen Schwankungen des Wassergehaltes, des Stammumfanges, der Blattdicke.

Durch die gleichzeitigen Bilanzmessungen wird die Analyse der Saugkraftschwankungen wesentlich erleichtert. Zunächst zeigt Tabelle 1 deutlich, dass bei Unterbilanz die Saugkraft steigt und bei Überbilanz fällt. In der Regel wird man daher auch bei Freilandpflanzen aus einem Saugkraftanstieg auf Unterbilanz, aus einem Fallen der Saugkraft auf Ueberbilanz des untersuchten Gewebekomplexes schliessen dürfen. Inwieweit spezielle Verhältnisse Abweichungen herbeiführen können, bleibt noch zu untersuchen.

Die quantitativen Beziehungen zwischen Saugkraft und Wasserbilanz gestalten sich relativ einfach bei der früher beschriebenen Impatienszelle. 1 Der Grenzplasmolysewert bleibt dort konstant, die Volumschwankung wurde für die Versuchszelle direkt ermittelt, der osmotische Wert ist dem Volumen umgekehrt proportional und die Wanddruckänderung der Volumänderung direkt proportional. In diesem durchsichtigen Falle entsprechen gleichen Volumabnahmen innerhalb des Intervalls V_s-V_g annähernd gleiche Saugkraftzunahmen. Bei unserem Geranium liegen die Dinge komplizierter, wie man leicht aus Tabelle 1 entnehmen kann. Mehrere Ursachen fallen hierfür in Betracht. Einmal bleibt der Grenzplasmolysewert nicht konstant. Ferner sind die Bilanz- und Saugkraftschwankungen nur roh vergleichbar, weil sich die Bilanz auf die ganze Zeitdauer zwischen zwei Messungen bezieht, die Saugkraft aber nur auf Anfang und Schluss. Ausserdem gilt die Bilanz für die ganze Pflanze, die Saugkraft aber nur für die Blattspreite. Auch stellt sich die Bilanz auf die veränderten Aussenfaktoren wesentlich rascher ein

¹ Vgl. z. B. A. Ursprung, Osmotische Zustandsgrössen. Handwörterb. d. Naturwiss. 1932, 7, S. 495.

als die Saugkraft, wegen der Beziehung der letzteren zum Grenzplasmolysewert.

Das auffallende Sinken von T, A, E, Sz_n im Verlaufe des Nachmittages, das von einem nochmaligen Ansteigen gefolgt wird (23. und 24. Juli, 2. und 3. August), hängt damit zusammen, dass die in einem Eckzimmer mit Süd- und Westlicht stehende Pflanze während des Sinkens der genannten Grössen von der Mauer beschattet war.

Bei der Frage, wie rasch auf eine Bilanzänderung die Saugkraftänderung erfolgt, müssen wir unterscheiden zwischen dem Beginn der Saugkraftänderung und der definitiven Neueinstellung der Saugkraft, die erst nach vollzogener Osmoregulation zu erwarten ist. Natürlich spielt hier auch die Grösse der Bilanzschwankung und die Empfindlichkeit der Saugkraftmessmethode eine wichtige Rolle. Leichter als die Schwankungen der Saugkraft lassen sich die sie begleitenden Dimensionsänderungen nachweisen.

Besondere Erwähnung verdient noch der Umstand, dass deutliche Tagesschwankungen von Bilanz und Saugkraft auch bei Wasser als Potometerflüssigkeit zu konstatieren sind, und dass auch unter dieser Bedingung starke Unterbilanz mit entsprechendem Saugkraftanstieg sich einstellen kann. Um den Einfluss der Substratsaugkraft festzustellen, bedarf es neuer Untersuchungen, bei welchen alle übrigen Faktoren konstant gehalten werden. In diesem Zusammenhange mag immerhin noch von Interesse sein ein Vergleich zwischen dem Verhalten unserer in sonnigem Zimmer stehenden Wasserkultur (Rohrzuckerlösung von 2 Atm. Saugkraft) und einem Freilandgeranium, das an sonnigem Standort gleichzeitig gemessen wurde. Die Freilandpflanze weist etwas höhere Werte auf; aber die prozentuale Schwankungsamplitude ist in beiden Fällen fast dieselbe und die Max. und Min. fallen ungefähr auf dieselbe Tageszeit.

	Wasse	rkultur	Freiland		
Datum	Sz_n	Sz_g	Sz_n	$\operatorname{Sz}_{\operatorname{g}}$	
23. VII. 26		,			
7.00	6.1	9.3	7.6	11.1	
11.30	7.6	10.1	10.1	12.1	
14.00	8.1	11.1	10.1	13.7	
17.00	7.6	10.5	7.6	11,1	
Maximale Schwankung in ⁰ / ₀ .	+33	+19	+.33	+23	

Die Saugkraft bei Grenzplasmolyse Sz_g , die sich, wie schon erwähnt, nur auf die Spreitenepidermis erstreckt, ist stets deutlich höher als das mit der vereinfachten Methode erhaltene Saugkraft (Sz_n) mittel (vgl. Tabelle 1). Fast stets variieren beide Grössen im gleichen Sinne. Natürlich hat die Bilanzschwankung nur eine Sz_n -Änderung unmittelbar

zur Folge, und es sind sehr wohl Fälle möglich, in welchen Sz_n allein variiert. Auch Tabelle 1 enthält solche Kombinationen; doch ist zu berücksichtigen, dass die Sz_g -Konstanz auch durch die Unvollkommenheit der Messmethode vorgetäuscht sein kann.

TT.

In Tabelle 2 und 3 werden je zwei Exemplare von Geranium Robertianum miteinander verglichen. Das eine Exemplar, das Sonnengeranium, stammt von sonnigem Gerölle, das andere Exemplar, das Schattengeranium, aus dem nur wenige Meter entfernten schattigen Wald. Beide Potometer befanden sich dicht nebeneinander und waren mit Wasser gefüllt; die Versuchspflanzen wurden natürlich erst nach völliger Verheilung der Wunden eingesetzt.

Auch hier wird die Evaporation aus dem Sättigungsdefizit und der Insolation qualitativ verständlich; der Verdunkelung des Laboratoriums (dunkel) entspricht (besonders unter Berücksichtigung von Sd) fast stets ein Fallen der Verdunstung.

Transpiration und Evaporation variieren meist im gleichen Sinne, falls wir beide Grössen in der Reihenfolge der Messung vergleichen. Wenn am 9. Juni bei konstanter Evaporation die Transpiration fällt, so ist dies auf Verdunkelung zurückzuführen, die immer von einer Abnahme der Transpiration begleitet wird.

Der Vergleich zweier Versuchspaare Schatten—Sonne ergab unter gleichen Aussenbedingungen das eine Mal die stärkere Transpiration beim Schattenexemplar (Tabelle 2), das andere Mal beim Sonnenexemplar (Tabelle 3). Das Resultat blieb dasselbe, als die Transpiration auf die Flächeneinheit und auf die Einheit des Frischgewichtes reduziert wurde. Das Auffallende ist hierbei die schwache Transpiration der Schattenpflanze, da in zahlreichen Vergleichsmessungen, auf die hier nicht eingegangen werden kann, ceteris paribus stets das Schattenexemplar stärker transpirierte. Soweit nun die vorliegenden Angaben einen Einblick erlauben, scheint die Diskrepanz damit zusammenzuhängen, dass das relativ schwach transpirierende Schattenexemplar in Tabelle 3 eine auffallend kleine absorbierende Oberfläche besass. Unzureichende Wasseraufnahme hat aber naturgemäss auch eine Reduktion der Wasserabgabe zur Folge.

Zahl der lebenden Wurzelspitzen pro Einheit der transpirierenden Oberstäche.

Zu Tabelle 2. Zu Tabelle 3.

Schatten	Sonne
0.8	3.0

Sonne
0.6

¹ Diese Zahlen werden hier nicht angeführt, um die Mitteilung nicht zu lang werden zu lassen.

Tabelle 2. Schatten- und Sonnenexemplar von Geranium Robertianum.

	Sc	hatten	exemp	lar	S	onnene	xempl	ar	E	I	$t_{ m w}$	tı	rF	Sd
Datum	$oxed{\mathrm{T}}{\mathrm{mg/h}}$	A mg/h	Sz _n Atm.	Szg Atm.	T mg/h	A mg/h	Sz _n Atm.	Szg Atm.		Co	Co	Co	°/o	mm Hg
13. VI. 27					in C					1				
11.00			2.6	8.1		-	3.4	8.1	_		18.5	19	74	4.3
15.00.	662	595	4.5	8.1	300	262	5.3	8.1	50	22.8	20	21	71	5.4
17.00	435	487	-		220	243	-		39	dkl	20	20	72	4.9
17.40.	1557	928	5.3		600	306	6.1	-	148	44	29	26	60	10.1
18.30	360	723	3.7		312	510	5.3		60	dkl	22	20	66	5.9
14. VI. 27				A						7				100
10.00	-	_	3.2		1 2 2	-	4.5	—		-	18	19	71	4.8
15.00	800	737	4.5		322	274	5.3	-	58	24.2	22	21	70	5.6
16.30	440	537	-	_	200	237	_	-	40	dkl	22	21	70	5.6
17.30	600	557	_	*	250	220	_		50	23	22	21	70	5.6

Tabelle 3. Schatten- und Sonnenexemplar von Geranium Robertianum.

	Sc	hatten	exemp	lar	S	onnene	exempl	ar	E	I	t_{w}	t_1	$_{ m rF}$	Sd
Datum	T mg/h	$egin{array}{c} \mathbf{A} \\ \mathbf{mg/h} \end{array}$	$rac{ m Sn_{ m Z}}{ m Atm.}$	Szg Atm.	T mg/h	A mg/h	Sz _n Atm.	Szg Atm.	mm/h		Co W	Co	°/o	mm H
7. VI. 27											4			
8.30		1	12.5		_		_			dkl	18	18	67	5.
11.30	323	198	5.0	-	290	242	5.3	_	63	19	18	18	62	5.9
15.00	86	134	3.7	-	234	234	5.3	-	56	dkl	19	19	60	6.
17.00	247	160	4.8		220	280		-	62	19.8	19	19	60	6.
8. VI. 27			15.4			10 TAN 10								A JASA
8.00	63	69	-			_	-		44	dkl	18	18	65	5.
10.30	3 10		100 mg/s/	-	_	1	-	_	_		19	19	66	5.
15.00	251	135	5.3		342	308	5.6	-	73	23	21	21	59	7.
18.00	50	94		_	160	177	-	_	43	dkl	20	20	66	5.
9. VI. 27														
8.00.	50	58	4.5	-	132	173	45		40	dkl	19	20	71	5.
11.30	151	88	-	-	214	203	100	-	46	21.2	20	20	71	5.
15.00 .	51	74	-	-	200	177		-	46	dkl	20	21	68	5.
16.00	300	234	4.5	-	700	388	5.3		220	45.5	27	24	60	8.
18.00.	60	135	3.7	-	140	188	4.5		55	dkl	21	21	59	7.
18.40.	286	60	-	[}	414	175	1	-	121	33	25	25	55	10.

Bei Verdunkelung fällt die Transpiration, bei Belichtung steigt sie an; diese Transpirationsschwankungen sind stets beim Schattenexemplar prozentual grösser als beim Sonnenexemplar. Man vergleiche hierzu auch Dietrich, doch kann an dieser Stelle auf die Literatur nicht eingegangen werden.

¹ M. Dietrich, Die Transpiration der Schatten- und Sonnenpflanzen in ihren Beziehungen zum Standort. Jahrb. f. wiss. Bot. 1925, 65, 98.

Transpiration und Absorption ändern sich auch hier wieder gewöhnlich in demselben Sinne, und ebenso pflegt, in Uebereinstimmung mit Tabelle 1, die Bilanzdifferenz A—T im Licht meist negativ, im Dunkel positiv zu sein. Wie früher, so sehen wir selbst in Wasser am Tage deutliche Unterbilanz auftreten.¹

Die Saugkraft zeigt auch in Tabelle 2 und 3 die uns bereits bekannte Abhängigkeit von der Wasserbilanz: Ansteigen bei Unterbilanz, Fallen bei Überbilanz; auch von den quantitativen Beziehungen gilt das früher Gesagte.

Kann schon die Erklärung der periodischen Saugkraftschwankungen bei demselben Individuuum bedeutende Schwierigkeiten bereiten, so trifft dies in erhöhtem Masse zu für die Erklärung der absoluten Höhe der Saugkraft. Relativ einfach gestaltet sich diese komplizierte Aufgabe beim Vergleich unserer Sonnen- und Schattenexemplare. Stets zeigt das von sonnigem Standort stammende Geranium eine höhere Saugkraft. Dies würde sich mit unsern bisherigen Erfahrungen decken, wenn die Pflanzen am natürlichen Standort gemessen worden wären. Tatsächlich befanden sie sich aber nebeneinander im Laboratorium unter denselben Aussenbedingungen. Auch das Substrat (Wasser) war in beiden Fällen dasselbe. Ebenso wenig trägt eine Reihe weiterer Faktoren zur Erklärung der Saugkraftverteilung bei. So ist die Gesamttranspiration der ganzen

zu Tal	belle 2	zu Tak	belle 3
Schatten	Sonne	Schatten	Sonne
9 623	4109	3721	4799
10 116	4460	4989	5314
0.95	0.92	0.75	0.90
-493	— 351	-1268	-515
51	26	27	22
	Schatten 9 623 10 116 0.95 -493	9 623 4109 10 116 4460 0.95 0.92 -493 -351	Schatten Sonne Schatten 9 623 4109 3721 10 116 4460 4989 0.95 0.92 0.75 -493 -351 -1268

Pflanze in dem einen Falle deutlich grösser für das Schattenexemplar, im andern Falle etwas grösser für das Sonnenexemplar. Im gleichen Sinne variiert die Gesamtabsorption A. Unregelmässig verhält sich auch

der Bilanzquotient $\frac{A}{T}$. Nicht minder versagt die Bilanzdifferenz A—T

bei der Erklärung, indem die Unterbilanz stets bei der Schattenpflanze grösser ist. Die Spreitendicke ist beim Schattenexemplar geringer, die Nervlänge pro qcm kleiner; der letztere Punkt würde ceteris paribus für eine höhere Saugkraft der Schattenspreite sprechen. Der Grenzplasmolysewert ist bei der Sonnen- und Schattenform, soweit Messungen vorliegen (Tabelle 2), gleich. Der Leitungswiderstand wurde nicht bestimmt.

Für die Saugkraft des Blattstreifens ist offenbar in erster Linie von Interesse seine Wasserbilanz. Wir erhalten sie aus den vorliegenden

¹ Man vergleiche dazu z.B. C. Montfort, Die Wasserbilanz in Nährlösung Salzlösung und Hochmoorwasser. Zschr. f. Bot. 1922, 14, 97.

Messungen am zuverlässigsten, wenn wir die Absorption A dividieren durch die Transpiration der Flächeneinheit T'. Diese Grösse $\frac{A}{T'}$ ist nun tatsächlich jeweils für das Sonnenexemplar kleiner, was mit der Saugkraftverteilung übereinstimmt.

Die morphologisch-anatomischen Differenzen zwischen den Sonnen und Schattenexemplaren decken sich mit den bisherigen Erfahrungen, können aber an dieser Stelle nicht besprochen werden.

III.

Der Einfluss der Reduktion der transpirierenden Oberfläche ist aus Tabelle 4 ersichtlich. Znm Versuche dienten 2 Schattenexemplare von Geranium Robertianum; Potometerflüssigkeit — Wasser. Bei Pflanze a wurden um 16.30 Uhr von 9 Blättern 6 abgeschnitten: dadurch fiel die Transpiration auf die Hälfte, während sie bei der Kontrollpflanze gleichzeitig anstieg. Merkwürdigerweise ist mit dem Sinken der Transpiration eine Zunahme der Absorption verbunden; eine Erscheinung, die durch neue Versuche aufzuklären ist. Mit der Verbesserung der Wasserbilanz koinzidiert, wie leicht verständlich ein Fallen der Saugkraft. Der Grenzplasmolysewert bleibt vorläufig noch konstant, zeigt aber am folgenden Tag ebenfalls ein deutliches Sinken, verbunden mit einer erneuten Sz,-Abnahme. Vom 12. Juli an variiert a in gleichem Sinne wie b. Am 13. Juli wird bei Pflanze b die Blattzahl von 14 auf 5 reduziert; wiederum fällt die Transpiration im Vergleich zur Kontrolle, gleichzeitig sinkt jetzt aber auch die Absorption. Die Unterbilanz geht über in Ueberbilanz und entsprechend nimmt die Saugkraft ab, während der Grenzplasmolysewert keine Aenderung zeigt. Diese Vorversuche sind besonders nach der quantitativen Seite hin durch weitere Experimente zu ergänzen.

Tabelle 4. Reduktion der Blattspreite bei Geranium Robertianum.

		Geran	ium a	•		Geran	ium b		
Datum	T mg/h	A mg/h	Sz _n Atm.	Szg Atm.	T mg/h	$\frac{A}{mg/h}$	Sz _n	Szg Atm.	
11. VII. 27		X							
15.30	_		3.4	7.3	_				16.30 Uhr werden bei Pflan-
16.30	500	110	6.4	8.4	400	330		- X - 2 - 3	ze a von 9 Blättern 6 ab-
18.15	253	253	6.1	8.4	480	422			geschnitten.
12. VII. 27						1	¥		
10.00	1-	-	4.5	7.8	-			- 1	
18.00	66	66	4.5	7.8	127	124	_	-	
13. VII. 27						100			
8.00.	36	38	4.5	7.5	56	57	- -		16.30 Uhr werden bei Pflan
16.00.	222	192	6.4	-	300	273	8.4	8.7	ze b von 14 Blättern 9 ab
18.30.	170	205	4.0	-	120	141	4.0	8.7	geschnitten.
14. VII. 27					100				
8.30.	44	41	4.5		25	28	4.0	8.7	

IV.

In einer weiteren Versuchsreihe wurden 2 Exemplare von Bellis perennis, ein kräftiges a und ein schwächeres b verglichen. Bei a war vor der Befestigung im Potometer ein Teil der Leitbündel durchschnitten worden. Potometerflüssigkeit — Wasser. Obschon die transpirierende Oberfläche und die Zahl der lebenden Wurzelspitzen bei a mehr als doppelt so gross ist als bei b, zeigen doch Absorption und Transpiration nur relativ geringe Unterschiede; und die Transpiration pro Flächeneinheit, wie auch die Absorption pro lebende Wurzelspitze ist bei b bedeutend grösser als bei a. Die Reduktion der Leitbahnen macht sich somit sehr deutlich bemerkbar. Die Wasserbilanz, nach einer der bisher benützten Formeln berechnet, ist stets günstiger bei Pflanze a.

Bellis perennis.

	a	b
Gesamte Absorption in mg	4625	3648
Gesamte Transpiration in mg	4458	3652
Zahl der lebenden Wurzelspitzen	350	150
Transpirierende Oberfläche in gcm	165	73
Ges. Transp./Transpirierende Oberfläche	27	50
Ges. Abs./Zahl der lebenden Wurzelspitzen	13	24
		7

Nach Tabelle 5 zeigen die Saugkräfte — und zwar sowohl Sz_n als Sz_g — bei a stets höhere Werte als bei b. Dass die Wasserbilanz keine Erklärung bringt, hängt vermutlich damit zusammen, dass sich die Bilanz auf die ganze a-Pflanze bezieht, die Saugkraft aber nur auf ein Blatt des operierten Teiles.

Der Vergleich der meteorologischen Grössen unter sich und mit der Transpiration, wie auch der Vergleich von Transpiration und Absorption bestätigt das früher Gesagte. Auch Sz_n und Bilanzdifferenz zeigen das übliche Verhalten; die Maxima der Saugkraft decken sich mit denen der Unterbilanz.

Warum Bellis viel höhere Sz_n - und Sz_g -Werte besitzt als Geranium, lässt sich aus den untersuchten Grössen nicht befriedigend erklären und soll daher auch nicht diskutiert werden.

Zusammenfassend ergibt sich, dass bei den beiden Versuchspflanzen Geranium Robertianum und Bellis perennis die Saugkraft (Sz_n) bei Unterbilanz stets anstieg, bei Ueberbilanz stets fiel. Man wird daher auch bei Freilandpflanzen, an denen die erwähnten Bilanzmessungen nicht möglich sind, in der Regel aus einem Saugkraftanstieg auf Unterbilanz, aus einem Fallen der Saugkraft auf Ueberbilanz des untersuchten Organstreifens (Blatt, Krone usw.) schliessen dürfen. Ob und unter welchen Bedingungen Abweichungen auftreten, muss durch Erweiterung und Vertiefung des vorliegenden Vorversuche festgestellt werden. Die quantita-

Tabelle 5. Bellis perennis.

					10			Bellis a							
Datu	m			T g/h	n	A ng/h		А—Т		Sz _n Atm.			Sz _g Atm.		
5. XI. 27 18.30. 6. XI. 27	— 145				-				12.7		16.0 15.3				
8.00.					100	163 208		+ 18 - 72		9.6	435 THE STATE OF LINE		7.1		
11.00 . 14.00 .				187		247		+60		15.3 11.7			3.0		
15.30.		•	A CONTRACTOR OF THE PROPERTY O	460 32			-140			23.4	CONTRACTOR SET	18.5			
18.00.		. 164 232			+ 68		12.1	A CONTROL OF THE PARTY OF THE P	14.3						
			Bellis b					E	I	$t_{ m w}$	t ₁	rF	Sd		
Datu	m , i		T mg/h	A mg/h	A—T	${\operatorname{Sz}}_n$ Atm.	Szg Atm.	mm/h	Co	Co	Co	0/0	mm Hg		
5. XI. 27															
18.30.				-	- <u> </u>	9.6	14.3		_	22	22	65	6.9		
6. XI. 27			V					100				7	1		
8.00.			121	125	+ 4	9.0	12.7	49	dkl	20	20	65	6.1		
11.00.			220	167	— 53	137	13.7	68	29	22	21	60	7.5		
14.00.			160	217	+ 57	9.0	13.7	65	dkl	24	24	60	8.9		
15.30.		•	353	A STATE OF THE STATE	-120		150	127	37	26	27	58	11.2		
18.00.			353 233 -120 17.8			9.0	13.7	52	dkl	22	22	65	6.9		

tiven Beziehungen zwischen Saugkraft und Wasserbilanz liegen relativ einfach, wenn der Grenzplasmolysewert konstant bleibt, die Volumänderung der Versuchszellen genau bekannt ist und sowohl der osmotische Wert als auch der Wanddruck sich normal verhalten. Alle diese Bedingungen sind aber gewöhnlich nicht erfüllt. Bei der üblichen Bilanzmessung bewurzelter Pflanzen mit Potometer und Waage ist ein Schluss auf die Volumänderung der zur Saugkraftmessung dienenden Zellen schwierig, weil die absorbierenden Zellen von den transpirierenden getrennt sind, und bedeutende Wasserspeicher zwischengeschaltet sein können. Eine nicht minder grosse Komplikation bilden die Osmoregulationen, über deren Grösse die Aenderungen des Grenzplasmolysewertes ein Urteil erlauben. Zur Zeit können wir also aus der Saugkraftänderung weder die Bilanzänderung quantitativ ableiten, noch umgekehrt; und auch die Untersuchung des Preßsaftes mit der kryoskopischen oder der Dampfdruckmethode führt wegen der parallelgehenden Osmoregulationen nicht zum Ziel.