Zeitschrift: Berichte des Geobotanischen Institutes der Eidg. Techn. Hochschule,

Stiftung Rübel

Herausgeber: Geobotanisches Institut der Eidg. Techn. Hochschule, Stiftung Rübel

Band: 59 (1993)

Artikel: Sag' mir, wo die Blumen sind

Autor: Landolt, Elias

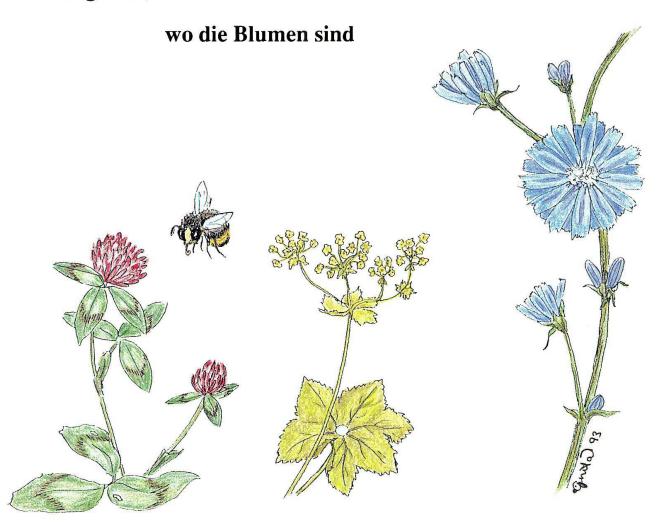
DOI: https://doi.org/10.5169/seals-377786

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus


Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sag' mir,

Abschiedsvorlesung von Elias Landolt, 16. Februar 1993 (mit Zeichnungen von Anita Hegi)

Eigentlich sollte ich nach über 40 Jahren geobotanischer Tätigkeit wissen, wo die Blumen sind. Die Geobotanik ist ja die Lehre von den Beziehungen der Pflanzen zur Umwelt. Unser Institut (Fig. 1) untersucht seit seiner Gründung durch Prof. Eduard Rübel (Fig. 2) im Jahre 1918, wo die Pflanzen und damit auch ihre auffälligste Erscheinungsform, die Blumen, wachsen. Das setzt einerseits die Kenntnis von Eigenschaften, Aussehen, Bedürfnissen und Verhalten der Pflanzen voraus, andererseits die Analyse der vielfältigen Einwirkungen der Umgebung, die aus dem Klima, dem Boden, den Lebewesen und darunter vor allem dem Menschen mit seinem direkten und indirekten Wirken besteht. Wenn wir diese Beziehungen ganz oder teilweise kennen, können wir vom Vorhandensein von Pflanzen Rückschlüsse auf Klima, Boden und andere Umweltfaktoren ziehen. Umgekehrt sind wir in der Lage, wenn Klima- und Bodenfaktoren eines Gebietes bekannt sind, Aussagen zu machen, welche Pflanzen wir dort finden können.

Indessen sind unsere Voraussagen auch heute noch oft ungenau. Es sind vor allem drei Gründe, warum wir die Blumen nicht finden können:

1. Wir kennen die Blumen gar nicht, die wir suchen

Für die meisten Pflanzen sind die Bedürfnisse, die sie an die Umwelt stellen, nicht oder nur unvollständig bekannt. Zehntausende von Arten sind noch gar nicht beschrieben und können vielleicht gar nie beschrieben werden, weil sie der Mensch vorher zerstört. Selbst in Mitteleuropa, wo die Flora oft als längst bekannt angenommen wird, unterscheiden wir jedes Jahr neue Arten, die man früher nicht richtig erkannt hat: die Pflanzen sahen zu unbedeutend oder zu gewöhnlich aus, oder wir waren methodisch zur Erkennung nicht in der Lage. Heute haben wir ein neues Verständnis der Art und kennen Methoden, die es erlauben, einen tieferen Einblick in die Mikroevolution der Lebewesen zu erlangen. Man hat die Artenkenntnis und alle Wissenschaftsrichtungen, die damit zusammenhängen, lange vernachlässigt und unzulässigerweise geglaubt, dass die Naturvorgänge einzig von den Molekülen her begreifbar seien.

2. Wir sind von der Komplexität des Ökosystems, in dem die Blumen leben, überfordert

Die Ökosystemforschung steht immer noch in den Anfängen. Wir können zwar Modelle aufstellen, die uns helfen das Beziehungsgefüge zwischen Pflanzen und Umwelt zu quantifizieren. Aber oft sehen wir gar nicht alle Faktoren, die mitwirken. Insbesondere die komplexen Interaktionen zwischen

Fig. 1. Geobotanisches Institut ETH an der Zürichbergstrasse 38.

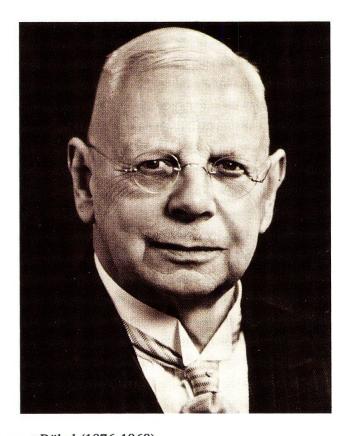


Fig. 2. Eduard August Rübel (1876-1960)

verschiedenen Organismen sind kaum richtig fassbar.

3. Wir haben die Blumen zerstört

Wir ändern unsere Umwelt nach unseren wirklichen oder vermeintlichen Bedürfnissen, oder wir bedrängen sie, weil es zu unbequem oder zu aufwendig ist, Rücksicht zu nehmen, oder weil wir die Konsequenzen unseres Tuns gar nicht zur Kenntnis nehmen wollen. Dadurch werden die Lebensräume für viele Arten zerstört.

An drei Beispielen aus meiner Tätigkeit möchte ich das komplizierte Beziehungsgefüge zwischen Pflanzen und Umwelt, die heutige akute Gefährdung für viele Pflanzen und für unsere gesamte Umwelt aufzeigen und Hinweise geben, wie wir die verlorene Natur wiederfinden können.

1. Wasserlinsen: Vielfalt der Beziehungen

2. Rote Listen: Akute Gefährdung

3. Stadtflora: Anpassung und Lebenskraft

1. Wasserlinsen (Lemnaceae)

Wo sind die Blumen?

Als ich nach meinem Studium vor 40 Jahren in Kalifornien mit Untersuchungen an Wasserlinsen (Lemnaceae) begann, stand das Problem der ökologisch-systematischen Differenzierung innerhalb eines geschlossenen Verwandtschaftskreises im Vordergrund. Mein Ziel war es, abzuklären, wie unter dem Einfluss von verschiedenartigen Aussenbedingungen und ausgehend von einem vorgegebenen genetischen Pool sich verschiedene morphologisch-ökologische Rassen und Arten herausbilden können. Dazu galt es einmal, die Arten kennenzulernen, was wegen ihrer Kleinheit nicht so einfach ist (die kleinen Kugeln auf Fig. 3 sind kaum 1 mm im Durchmesser), und sie ökologisch zu charakterisieren. Die wenigen morphologischen Merkmale überlappen sich und können nur in Kombination zur Identifizierung der Arten verwendet werden. Neben der Ausmessung der äusseren Merkmale unter dem Binokular, müssen die Pflanzen präpariert werden, um die inneren Strukturen zu erkennen (Fig. 4). Man kann Inhaltsstoffe analysieren: z.B. Flavonoide, Enzymsysteme, Desoxyribonukleinsäuren (DNS) usw. (Fig. 5 zeigt Resultate der Isoenzym-Elektrophorese für Glutamatdehydrogenase bei verschiedenen Wolffiella-Arten).

Die sichere Identität der untersuchten Organismen ist die Voraussetzung jedes biologischen Experimentes. Wir kennen zahlreiche Beispiele, wo an und für sich interessante Ergebnisse auf Organ-, Zell- oder Molekularstufe wissenschaftlich wertlos sind, weil das verwendete Pflanzenmaterial nicht genau identifiziert oder zur Nachbestimmung aufbewahrt wurde. Eine Wiederholung und Überprüfung der Resultate wird dadurch verunmöglicht.

Warum kommen nun in der Natur Wasserlinsen oder einzelne Arten davon an einem Ort vor und am anderen nicht? Genügend Nährstoffe, das richtige Klima und viele andere Faktoren spielen eine Rolle. Wir treffen Seen ohne jede Wasserlinse (Fig. 6) und im gleichen Gebiet Gewässer, die grün davon bedeckt sind (Fig. 7). In bestimmten Gegenden, so am Paraná gedeihen die Lemnaceen üppig in Überschwemmungswäldern (Fig. 8) oder in Rio sogar an feuchten Felswänden (Fig. 9), in anderen fehlen sie an entsprechenden Orten unter scheinbar ähnlichen Bedingungen. Einzelne Arten wachsen dicht, aber geographisch eng begrenzt, in saisonalen Tümpeln (Zimbabwe) (Fig. 10), eine andere Art ist nur unter einem bestimmten Baum (*Melaleuca*) (Fig. 11) in Südostasien und Nordaustralien anzutreffen, wie wenn ausgeschiedene allelopathische Stoffe dieser Pflanze die Konkurrenz fernhalten könnten.

Für die Kenntnis, wo man Wasserlinsen finden kann, waren zusätzlich physiologische Eigenschaften abzuklären, wie etwa Wachstumsraten unter verschiedenen genau definierbaren Klimabedingungen (Fig. 12) und Nährstoff-

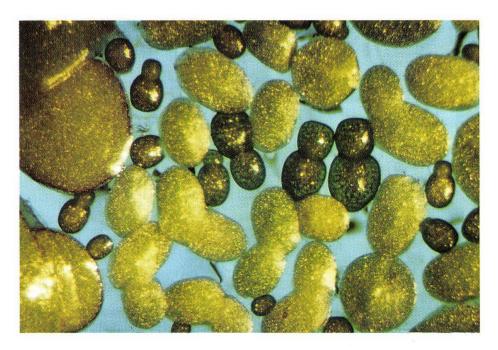


Fig. 3. Wasserlinsen (in der Reihenfolge der abnehmenden Grösse: Spirodela polyrrhiza, Lemna minuta und Wolffia columbiana). Photo: W.R. Armstrong.



Fig. 4. Durchsichtspräparat von Lemna minor. (LANDOLT 1986).

Fig. 5. Resultate der Isoenzym-Elektrophorese für Glutamatdehydrogenase bei verschiedenen *Wolffiella*-Stämmen). (CRAWFORD und LANDOLT, nicht publ.)

Fig. 6. Wassergraben mit Lotus-Blumen (aber ohne Wasserlinsen) (Malaysia).

Fig. 7. Teich mit Wasserlinsen (Spirodela punctata) in Kalifornien. Photo W.R. Armstrong.

Fig. 8. Überschwemmungsflächen des Rio Paraná (Argentinien) mit Salix humboldtiana.

Fig. 9. Lemna valdiviana an feuchten Felsen bei Rio de Janeiro.

Fig. 10. Wolffiella rotunda und W. repanda in einem austrocknenden Tümpel im Nordosten von Zimbabwe. (Photo W. Lämmler)

Fig. 11. Lemna tenera in einem von Melaleuca beschatteten Gewässer im Kakadu-Nationalpark in Nordaustralien.

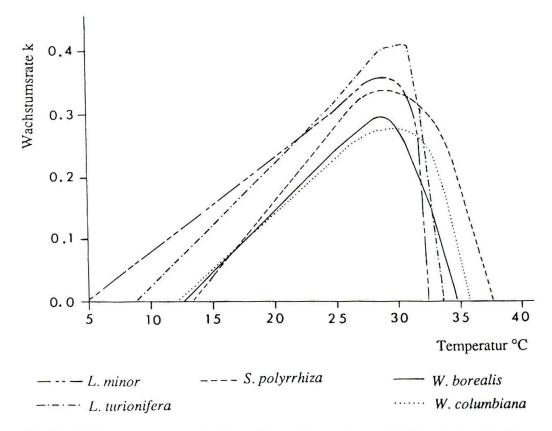


Fig. 12. Wachstumsrate verschiedener Wasserlinsen-Arten in Abhängigkeit der Temperatur. (DOCAUER 1983).



Fig. 13. Wachstumsrate in Abhängigkeit von der Konzentration der Nährlösung. Versuch mit *Lemna gibba* (Stamm 6566) und *Wolffia arrhiza* (Stamm 6862) bei 24°C und kontinuierlicher Belichtung von 2000 Lux. (LANDOLT 1957).

Tab. 1. Vergleich der physiologischen Grenzwerte von *Spirodela polyrrhiza* für fünf Nährstoffe mit ökologischen Grenzwerten in stehenden Gewässern mit Lemnaeen.

1 - physiologische Angaben (nach Eyster 1966, Lüönd unveröff., ZIMMERMANN 1981)

2 - ökologische Messungen (nach LANDOLT und WILDI 1977, LANDOLT 1981, unveröff.).

	Minimum		Maximum		
	1	2	1	2	
K	0.2	1.3	2000	100	
Ca	0.5	3.2	2000	168	
	0.04	0.8	1200	168	
Mg Ca/Mg	0.05	0.12	>70	65	
N	0.004	0.02	1000	16.9	
P	0.003	0.000	1500	9.9	

konzentrationen (Fig. 13). Messungen an Gewässern in der Natur mit und ohne Lemnaceen ergänzten unsere Erkenntnisse über die Ökologie dieser Pflanzen. So konnten Beziehungen hergestellt werden zwischen den physiologischen und den ökologischen Eigenschaften (Tab. 1). Die Variationbreite zwischen minimalem Nährstoffbedarf und Nährstofftoleranz ist in der Natur geringer als im Labor, da bei den Messungen der natürlichen Gewässer nur Mittel- und nicht Extremwerte vorliegen.

Schliesslich wurde versucht, die Gesamtverbreitung, die sich aufgrund von Herbarbelegen ermitteln lässt, mit dem Auftreten von klimatischen Parametern zu deuten. Als Beispiel erwähne ich hier die Dreifurchige Wasserlinse (*Lemna trisulca*) (Fig. 14). Ihre Verbreitung kann durch die folgenden Faktoren eingegrenzt werden:

- Länge der Vegetationsperiode (*L. trisulca* braucht mindestens 50 Tage mit Mitteltemperaturen über 10°C)
- Sommertemperaturen (die obere Grenze der mittleren Temperaturen im Juni, Juli und August beträgt für *L. trisulca* 22°C)
- Martonn'scher Ariditätsfaktor. Dieser berechnet sich aus dem Quotient "Mittlere jährliche Niederschlagsmenge in °C durch mittlere Jahrestemperatur in cm + 10". Er ist ein Mass für die Nährionenkonzentration (hier vor allem Calcium und Magnesium) der Gewässer. *L. trisulca* wächst nur, wenn der Faktor zwischen 1 und 6 beträgt.

Die Gesamtverbreitung (Fig. 15) lässt sich auf diese Weise erklären. Wo die Funde auf der Karte ausserhalb des Areals liegen, sind lokale Faktoren dafür verantwortlich, wie z.B. Gebirgsklima und warme oder kühle Quellen.

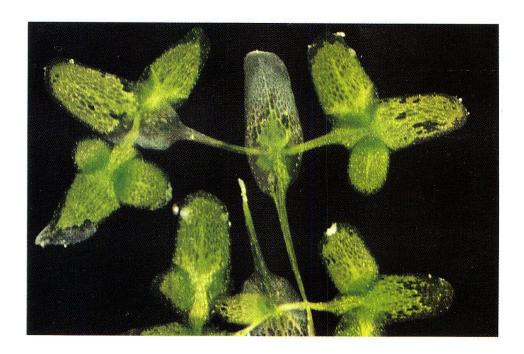


Fig. 14. Lemna trisulca. Photo H. Sigg.

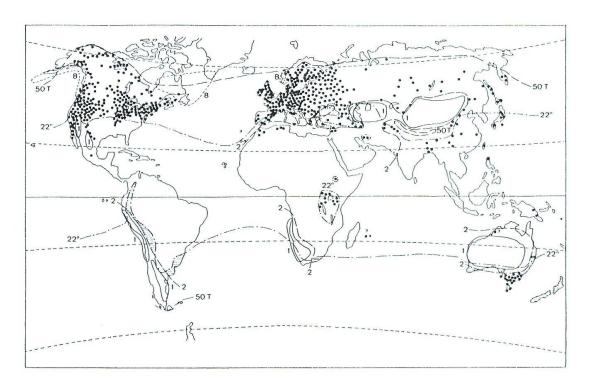


Fig. 15. Gesamtverbreitung von Lemna trisulca (LANDOLT 1984). 50 T: Tage mit Mitteltemperaturen über 10°C; 22°C: mittlere Sommertemperatur; 1, 2 und 8: Martonn'sche Faktoren

Auch im regionalen Rahmen hält sich die Art weitgehend an diese Faktorenbegrenzung (Fig. 16). Ausnahmen sind hier vor allem auf lokal hohe Mineralkonzentrationen (z.B. Quellen in Kalkgebieten) zurückzuführen. Interessant ist, dass die Pflanzen am Rande ihrer physiologisch-ökologischen Lebensmöglichkeiten viel empfindlicher für Störfaktoren wie Wasserverunreinigung usw. sind und deshalb dort zuerst verdrängt werden.

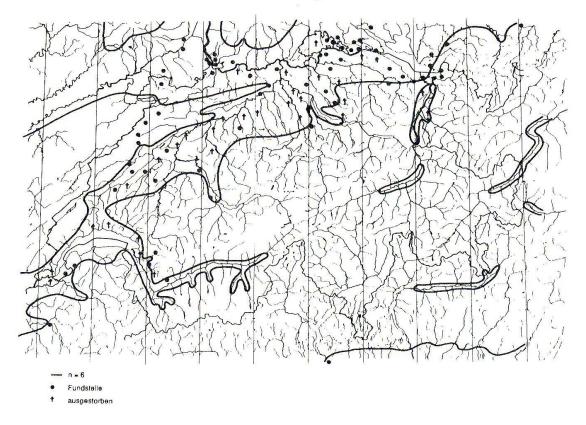


Fig. 16. Verbreitung von Lemna trisulca in der Schweiz (LANDOLT 1989).

Für die Wasserlinsen können wir also mittel- und grossräumig ziemlich genau sagen, wo sie zu finden sind. Aber im Einzelnen ist es sehr viel schwieriger, weil günstige Klima- und Nährstoffbedingungen nicht allein entscheiden. Schliesslich sind die Pflanzen Teil eines Ökosystems, in dem vor allem auch vielseitige biotische Wechselbeziehungen eine Rolle spielen (Fig. 17). Und diese sind im Ökosystem derart kompliziert, ineinander verflochten und mit Rückkoppelungen versehen, dass eine Voraussage oft nicht möglich ist.

Auf einige besondere Beziehungen sei noch hingewiesen. Wind und Wasserbewegung verfrachten die Wasserlinsen ans Ufer, wo sie rasch vertrocknen. Lemnaceen sind beliebte Futterpflanzen für zahlreiche Säugetiere, Vögel und Fische. In einem Teich mit vielen Enten oder dichtem Fischbesatz sind sie

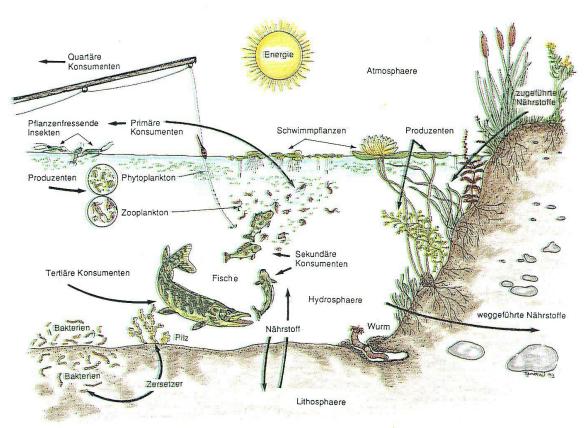


Fig. 17. Ökosystem mit Wasserlinsen an einem Ufer. (nach STILING 1992, abgeändert)

rasch ausgeräumt oder auf seichte Ufersäume zurückgedrängt. Viele Schnekken- und über 40 Insektenarten ernähren sich fakultativ oder obligatorisch von Wasserlinsen. Auch gewisse Pilzkrankheiten können sich einstellen. Mit anderen Wasserpflanzen stehen die Lemnaceen in Konkurrenz und werden oft schnell überwachsen, so dass sie kein Licht mehr erhalten. Sie vermögen sich zwar von organischen Stoffen zu ernähren - man kann sie beispielsweise im Dunkeln mit Zucker kultivieren -, aber meist sind nicht genügend energiereiche Stoffe im Wasser für ein Überleben vorhanden. Einzelne Arten, wie Seerosen (Nymphaea) (Fig. 18) und Tausendblatt (Myriophyllum) (Fig. 19) scheiden allelopathische Stoffe aus, die ein Aufkommen der Lemnaceen verhindern (Elakovich 1989a,b).

Wir können also, und dies gilt allgemein, relativ genau den Lebensraum einer Pflanze umschreiben, wir können die Art etwa mit ökologischen Zeigerwerten charakterisieren; aber ob die Art an einem bestimmten, für sie möglichen Standort dann auch wirklich auftritt, braucht oft sehr viel intensivere Abklärungen. Und schliesslich sind auch in ökologischen Systemen nicht alle Vorgänge voraussehbar, sie sind dem Chaos unterworfen.

Fig. 18. Seerosen (Nymphaea), verhindern durch das Ausscheiden von chemischen Stoffe das Wachstum von Konkurrenten. Photo H. Sigg.

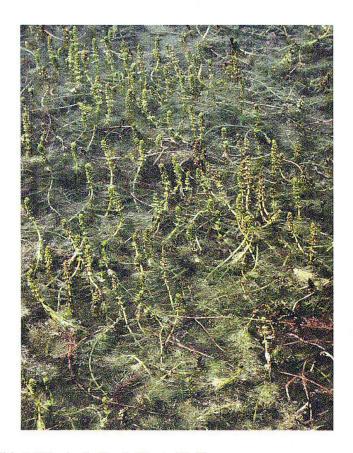


Fig. 19. Tausendblatt (Myriophyllum). Photo H. Sigg.

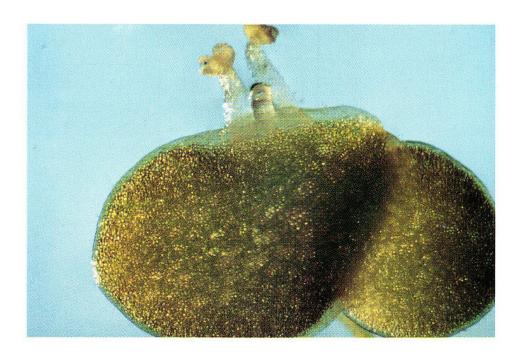


Fig. 20. Blühende Lemna gibba. Photo W.R. Armstrong.

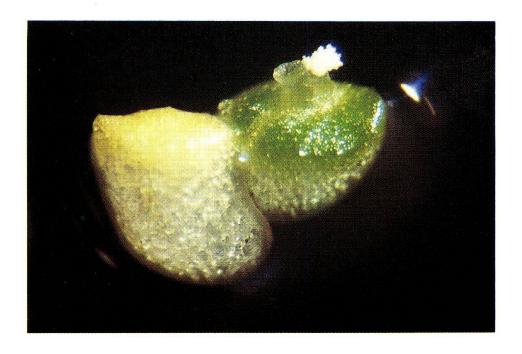


Fig. 21. Blühende Wolffia australiana. Photo H. Sigg.

Die Wasserlinsen umfassen die kleinsten Pflanzen auf unserer Welt. Nur wenige Leute können sich vorstellen, dass diese kleinen grünen Glieder auch Blumen hervorbringen. Allerdings sieht man Blüten in vielen Gegenden nur selten. Es ist, wie wenn die Pflanzen sich ihrer kaum sichtbaren Blumen schämten und sich deshalb lieber durch Sprossung vermehrten. Die vegetative Vermehrung hat den Vorteil, dass eine sich in ihrem Lebensraum als günstig erwiesene genetisch bedingte Merkmalskombination stabil bleibt und nicht stets durch die bei der sexuellen Fortpflanzung entstehende Vermischung in ihrem momentanen Erfolg abgeschwächt wird. Eine gewisse genetische Variabilität kann aber erhalten werden dank der für Blütenpflanzen ganz ungewöhnlich hohen Vermehrungsrate, die unter optimalen Umständen bis zu einer Verdoppelung der Gliederzahl pro Tag führen kann. Auf diese Weise entstehen immer wieder Mutationen, einzeln oder in seltenen Fällen auch in Kombination, die eine beschränkte Anpassung an veränderte Umweltbedingungen ermöglichen.

Die Fähigkeit zu blühen besitzen indessen die meisten Stämme noch. Man muss sie nur etwas kitzeln, z.B. mit Ethylendiamin-di-ortho-hydroxyphenylessigsäure (EDDHA), und die Blüten erscheinen nach zwei Wochen. Einen gewissen Minimalismus kann man diesen Pflanzen nicht absprechen. Die Blüten sind zwar funktionsfähig, aber im Extrem auf einen einsamigen Fruchtknoten mit einem halben Staubblatt beschränkt. Es braucht eine Lupe, um diese Blumen zu sehen und etwas Begeisterung, um sie auch noch schön zu finden. (Fig. 20 und 21).

Die Leute bezeichnen die Wasserlinsen abschätzig als Algen oder als grünes Zeug. Während meines Amerika-Aufenthaltes vor 40 Jahren wollten alle, die von meinen Untersuchungen erfuhren, wissen, ob man diese Pflanzen essen kann. Ich musste natürlich verneinen und versuchte zu erklären, dass mich das Problem der ökologisch-systematischen Differenzierung an und für sich interessiere. Die Antwort bewirkte dann bei den Fragestellern ein zwar wohlwollendes aber doch leicht mitleidiges Lächeln, als wollten sie sagen: "Das mag ja recht interessant sein, aber was nützt das". Entgegen meiner Erwartungen wurde mir in der Schweiz zumindest von Nichtfachleuten, Bekannten, Freunden und Politikern die genau gleiche Frage nach dem Nutzen gestellt. Nach Erläuterung der Forschungsziele erschien ein ähnliches Lächeln auf ihren Zügen, teilweise vermischt mit der geheimen Verwunderung, dass wir mit unseren Steuern solche Tätigkeiten unterstützen. In der Folge habe ich mir abgewöhnt meinen Mitmenschen zu erzählen, dass ich mit Wasserlinsen arbeite. Kam jemand darauf zu sprechen, so versuchte ich die Untersuchungen als

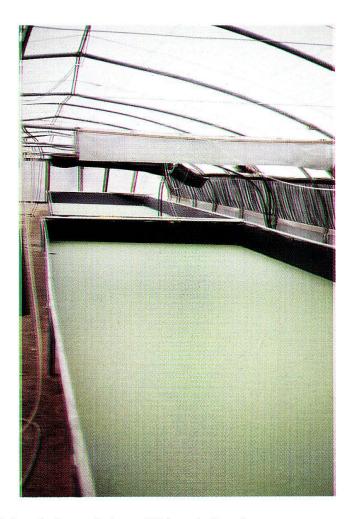


Fig. 22. Gewächshauskultur auf einem Kibbutz in Israel.

Freizeitbeschäftigung herunterzuspielen.

Heute sind die Wasserlinsen über den Ruf als merkwürdige, zufällige Auswüchse der Natur weit erhaben. Sie erfreuen sich eines sehr hohen Proteinund Vitamingehaltes, sind nutzbar als Futter für Vögel, Rindvieh und Fische, können zur Abwasserreinigung verwendet werden und bilden ideale Testobjekte für physiologische und toxikologische Untersuchungen. Voraussetzung für eine erfolgreiche Anwendung ist aber die Kenntnis ihrer Systematik und Ökologie und das Wissen über die Besonderheiten, Ansprüche und Empfindlichkeiten der einzelnen verwendeten Stämme. Kürzlich war ich in Israel zu Besuch und schaute mir die dortige Forschung mit Wasserlinsen an. Im Weizmann-Institut werden bestimmte Desoxyribonukleinsäure-Moleküle (DNS) in die armen Wasserlinsen eingeschossen und ihre Eigenschaften auf diese Weise verändert. Grosse Gewächshauskulturen (Fig. 22) auf einem Kibbutz die-

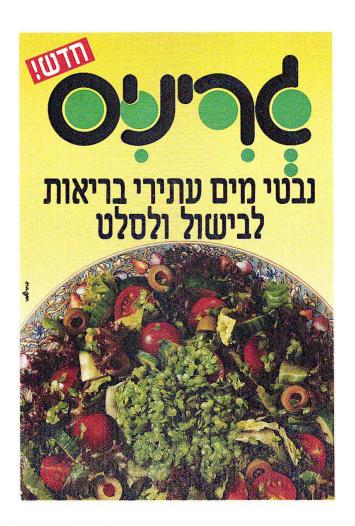
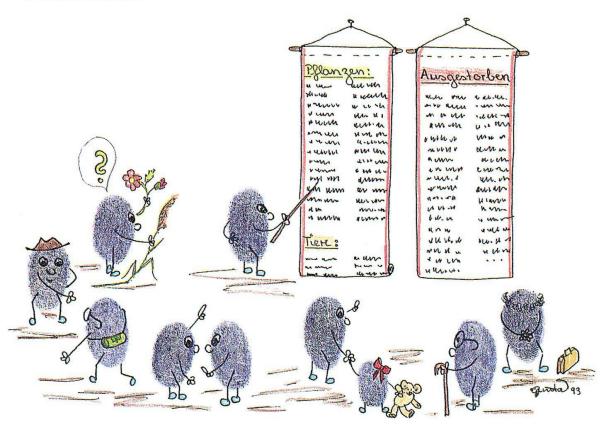
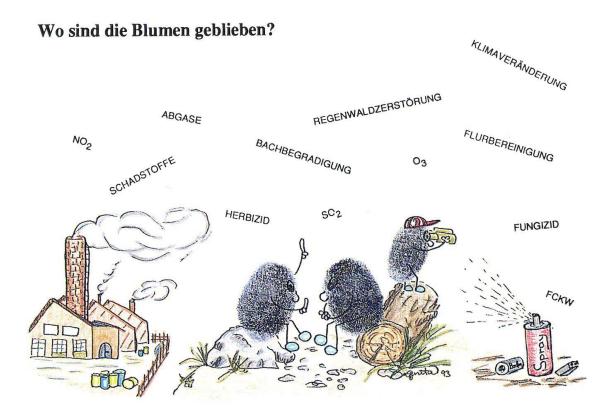




Fig. 23. Plakat auf dem Supermarkt.

nen der kommerziellen Anzucht der Linsen, und auf dem Supermarkt kann man sie als Delikatesse kaufen (Fig. 23). Ich habe von ihnen gegessen, zubereitet als Salat, als Gemüse, als Küchlein und als Auflauf, und sie waren gut. Und so weiss ich nun zuguterletzt, dass ich meine Arbeit an nützlichen Wesen durchgeführt habe. Heute könnte ich auf die Frage, ob man diese Pflanzen essen kann, überzeugend mit "ja" antworten. Aber diese Frage wird mir nicht mehr gestellt; ich bin ja im Ruhestand und habe weder Einrichtungen noch Platz zur Verfügung, hier weiter zu arbeiten.

2. Rote Listen

Die Erhaltung der Flora und Vegetation in unserer näheren und weiteren Umgebung ist eines der wichtigsten Forschungsziele des Geobotanischen Institutes an der ETH. Sie setzt die Kenntnis des Verhaltens der Pflanzen und der Ursachen für die heutigen Veränderungen voraus. So widmet sich ein grosser Teil unserer Projekte diesem Problemkreis. Im Zusammenhang mit der Unterstützung eines unserer Naturschutzprojekte äusserte das BUWAL (Bundesamt für Umwelt, Wald und Landschaft) den Wunsch, dass ihm dafür Rote Listen für die Blütenpflanzen in der Schweiz und in den einzelnen Regionen erarbeitet würden. Rote Listen sind Aufzählungen von Organismen, die in einem Gebiet aus irgendeinem Grunde bedroht oder bereits verschwunden sind. Aufgrund dieser Listen können allenfalls Massnahmen zu ihrem Schutz und zu ihrer Erhaltung ergriffen werden.

Die in Fig. 24 dargestellten Kurven der in Abhängigkeit der Zeit aussterbenden Arten zeigen ganz deutlich, dass der Mensch heute pro Zeiteinheit dreitausend- bis zehntausendfach mehr Arten ausrottet, als die Natur neue erzeugen kann. Und das Aussterben von Arten ist nur ein Symptom für unsere umweltzerstörerische Tätigkeit. Wir vernichten die Lebensmöglichkeiten, das gilt sowohl für die tropischen Regenwälder wie für unsere einheimischen Wiesen (Fig. 25).

Fig. 24. Natürliche und vom Mensch verursachte Aussterberate auf der Welt. (BUWAL 1991).

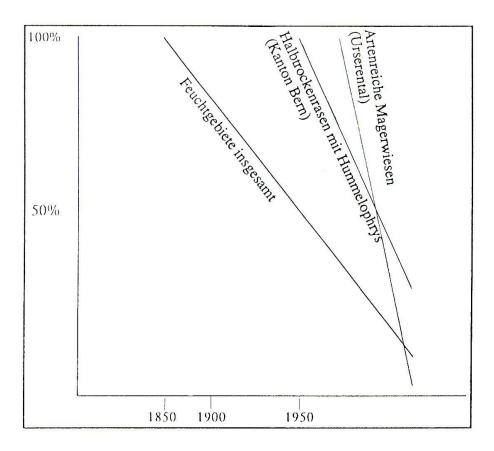


Fig. 25. Rückgang von Lebensräumen in der Schweiz. (BUWAL 1991).

Die Roten Listen (Tab. 2, Fig. 26) zeigen auf, dass etwa im östlichen Mittelland 50% der Pflanzenarten verschwunden oder gefährdet sind.

Unsere Wiesen waren früher bunt (Fig. 27), heute langweilig (Fig. 28); die Obstgärten bereicherten die Landschaft (Fig. 29), heute sind sie biologisch arm und und monoton (Fig. 30); in den Äckern blühten manche Blumen (Fig. 31); heute sind die Felder sauber und leblos (Fig. 32). Die Auenlandschaften (Fig. 33) mit ihrer Dynamik umfassten viele ökologische Nischen; heute sind die Flüsse eingedämmt (Fig. 34) und begradigt und die Landschaft ausgeräumt; die Arten der Auen wurden zurückgedrängt oder verschwanden, wie das Beispiel des Kleinen Rohrkolbens (*Typha minima*) zeigt (Fig. 35).

Wir schieben der Landwirtschaft oder der Industrie die Schuld in die Schuhe, oder der Bevölkerungsvermehrung. Aber im Grunde ist jeder von uns mitbeteiligt. Mit unserer Überheblichkeit der Natur gegenüber, mit unserem verschwenderischen Konsumverhalten, mit dem Verlangen nach stets mehr und Grösserem zerstören wir die Umwelt. Unsere selbstsüchtige Einäugigkeit

Tab. 2. Prozente der gefährdeten Pflanzenarten in den verschiedenen Regionen der Schweiz (Fig. 26). (Landolt 1991).

Ex - ausgestorben, E - stark gefährdet, V - gefährdet, R - selten, A - attraktiv (weder direkt gefährdet noch selten, aber oft abgerissen oder gesammelt und deshalb in der Schweiz oder in den betreffenden Kantonen geschützt), (Ex) - ausgestorben, aber kaum je richtig eingebürgert, (R) - selten, jedoch nur unbeständig oder neu eingeschleppt.

	1.1	1.2	1.3	2.1	2.2	3.1	3.2	4.1	4.2	5	CH
Ex	4.8	11.2	8.4	8.7	5.3	6.8	2.5	6.0	4.0	7.7	2.9
	13.7	20.8	17.4	24.0	27.2	14.1	14.1	12.7	10.7	13.6	12.2
E V R	10.7	11.4	15.0	17.5	16.4	9.1	9.4	8.6	7.8	8.2	9.2
R	11.1	6.6	4.2	5.6	7.4	9.1	8.2	11.1	8.6	12.1	8.2
A	1.4	1.2	1.7	1.1	1.5	1.8	2.0	1.6	1.9	1.6	2.1
(Ex)	0.6	1.4	1.2	1.0	0.9	1.1	0.4	1.0	0.6	0.6	0.1
(R)	4.4	5.9	5.2	6.1	6.9	4.1	4.8	3.5	3.5	3.0	3.4
U	52.9	41.1	46.6	35.7	34.1	53.6	58.1	55.1	62.4	52.7	61.7
Ex, E, V	29.3	43.5	40.8	50.3	48.9	30.0	26.1	27.4	22.6	29.7	24.3
Ex, E,											
V, R	40.4	50.2	45.1	55.9	56.3	39.1	24.3	38.5	31.2	41.8	32.6

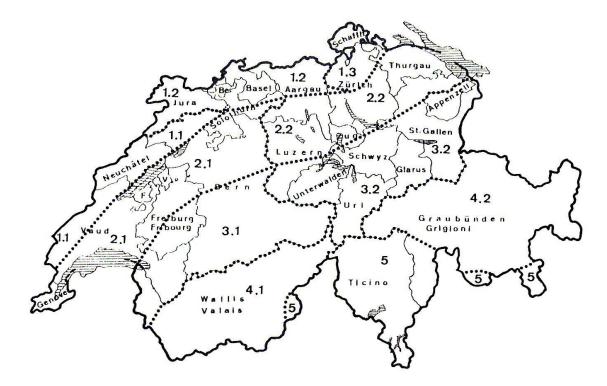


Fig. 26. Einteilung der Schweiz in Regionen.
1.1 - Westjura, 1.2 - Nordjura, 1.3 - Nordotsschweiz, 2.1 - westl. Mittelland, 2.2 - östl. Mittelland, 3.1 - westl. Nordalpen, 3.2 - östl. Nordalpen, 4.1 - westl. Zentralalpen, 4.2 - östl. Zentralalpen, 5 - Südalpen

Fig. 27. Bunte Wiesen. Photo H. Sigg.

Fig. 28. Heutige Wiesen. Photo A. Gigon.

Fig. 29. Obstgärten früher. Photo A. Gigon.

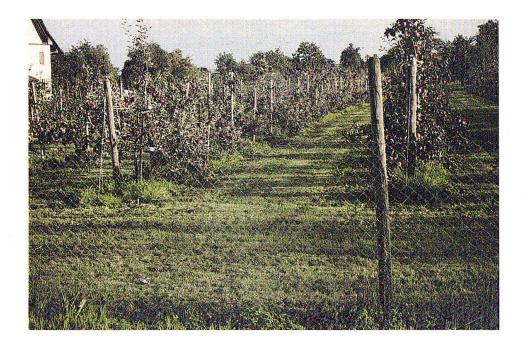


Fig. 30. Obstgärten heute. Photo A. Gigon.

Fig. 31. Äcker früher.

Fig. 32. Äcker heute.

Fig. 33. Naturnahe Auenlandschaft (Hinterrhein bei Rhäzüns)

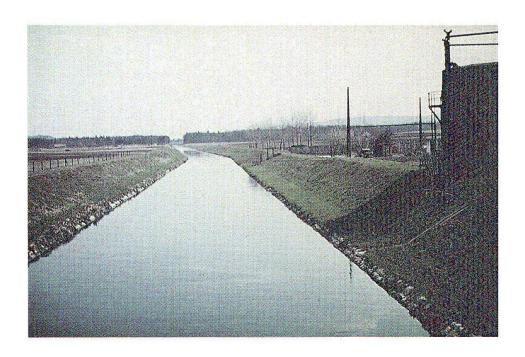



Fig. 34. "Meliorierte" Auenlandschaft (Glatt bei Oberglatt)

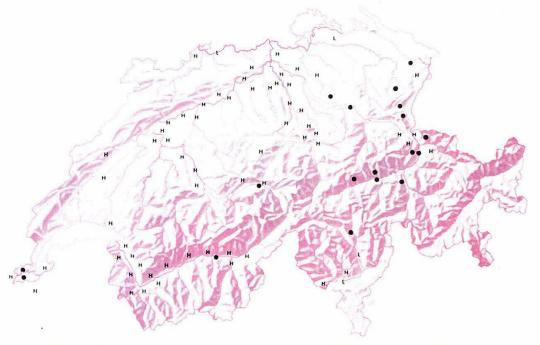


Fig. 35. Kleiner Rohrkolben (*Typha minima*) (Photo H. Sigg) mit Verbreitungskarte aus Welten und Sutter (1982). Die Art ist gesamtschweizerisch stark gefährdet. H, L = Frühere Vorkommen, in Herbarien (H) oder in der Literatur (L) belegt.

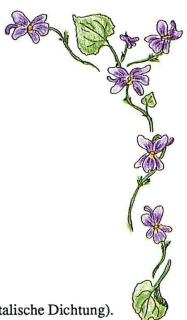
lässt uns vergessen, dass wir nur Teil eines Ganzen sind. Wir sind geprägt vom alttestamentlichen Gedankengut, wonach die Erde dem Menschen untertan ist, und Pflanzen und Tiere nur dazu geschaffen wurden, um uns zu dienen. Wir wurden erzogen im altgriechischen Glauben von der Erhabenheit des Geistes über die triviale Natur, in der Philosophie von Bacon und Descartes über die Wünschbarkeit nach vollständiger Beherrschung der nur automatisch reagierenden Natur. Und davon können wir nur schwer loskommen. Wir sind nicht damit zufrieden, gut und ohne Sorgen leben zu können; wir sind unersättlich geworden und sehen nicht, dass die Erde begrenzt ist, dass wir eigentlich geschwisterlich teilen sollten und dass wir langfristig nur überleben können, wenn wir uns als Teil der Natur fühlen und uns nachhaltig in ein stabiles Gesamtsystem einordnen. Unser Tun und Verhalten führt dazu, dass die Blumen verschwinden und die Tiere und schliesslich auch der Mensch damit. Trotz all der grossartigen Errungenschaften und technischen Hilfsmittel kann der Mensch, ohne dass er seine Haltung ändert, letztlich diesem Schicksal nicht ausweichen. Diese Aussicht muss uns ins Bewusstsein kommen, und wir müssen einen Weg finden, der das Wohlergehen der gesamten Erde zum Ziele hat. Ansätze zu einem verständnisvolleren Umgang mit der Natur sind heute bei uns selbst auf gesetzlicher Ebene vorhanden. Ich denke an die Gesetze über den Natur- und Heimatschutz und über den Tierschutz, die nicht nur wie das Umweltschutzgesetz oder das Raumplanungsgesetz dazu da sind, die lebensnotwendigen Grundlagen des Menschen zu erhalten, sondern die die Natur, Pflanzen und Tiere, vor dem Menschen schützen wollen.

Wenn wir jetzt, losgelöst von allen übrigen Umweltproblemen, uns fragen, was uns verleitet, dem Blumensterben Einhalt zu bieten, so werden wir dies in erster Linie vernunftmässig begründen, etwa mit den folgenden Argumenten:

- Jeder Organismus kann dem Menschen auf irgendeine Weise nützlich sein. Bis heute hat der Mensch 7'000 Pflanzenarten als Nahrung verwendet; heute lebt der Mensch allerdings zur Hauptsache nur noch von 20 Arten. Aber man rechnet damit, dass rund 75'000 Arten geniessbare Teile enthalten oder zumindest als Heilpflanzen oder als Rohstofflieferanten gebraucht werden können.
- Jeder Organismus hat eine ganz bestimmte Stellung im Ökosystem; fehlt er, so kann die Stabilität des Systems darunter leiden (Bestrebungen in der Landwirtschaft durch höhere Biodiversität den Einsatz von Pestiziden zu reduzieren, dienen beispielsweise der Stabilitätserhöhung).

Die Bedeutung für die Erholung und für kulturhistorische Abklärungen sind weitere Motive. Allerdings können alle diese Gründe nicht voll überzeugen. Organismen lassen sich teilweise ersetzen, und die Technik vermag neue chemische Stoffe synthetisieren und unstabile Ökosysteme stützen. Mit Vernunftgründen allein haben wir oft einen schweren Stand. Dass der Mensch neben dem analysierenden Geist auch eine gefühlsmässige und eine seelische Komponente hat, wird von uns Wissenschaftern gerne übersehen oder unterdrückt. Blumen sind aber Symbole des Gefühls, der Liebe und der seelischen Anteilnahme. Und der Wert der Blumen und aller anderer Organismen liegt in dieser tiefen Beziehung.

Schiller hat das mit den folgenden Worten ausgedrückt:



Was hätte auch eine unscheinbare Blume, eine Quelle, ein bemooster Stein, das Gezwitscher der Vögel, das Summen der Bienen usw. für sich selbst so gefälliges für uns?
Was könnte ihm sogar einen Anspruch auf unsere Liebe geben?

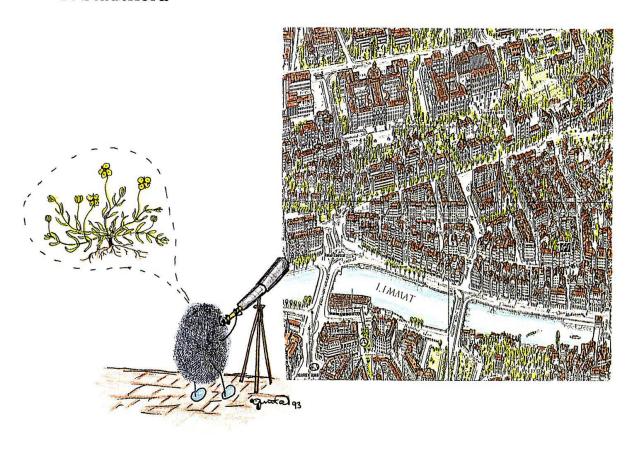
Es sind nicht diese Gegenstände,
es ist eine durch sie dargestellte Idee,
was wir in ihnen lieben.
Wir lieben in ihnen das stille schaffende Leben,
das ruhige Wirken aus sich selbst,
das Dasein nach eigenen Gesetzen,
die innere Notwendigkeit,
die ewige Einheit mit sich selbst."

(F. v. Schiller 1796: Abhandlung über naive und sentimentalische Dichtung).

Und noch etwas einfacher und einprägsamer wird dies in einem Indianerspruch ausgesagt:

"Reisse die Blumen auf der Prärie und im Walde nicht sinnlos ab.

Tust Du es, dann bekommen die Blumen keine Kinder, und bleiben die Blumenkinder aus, dann gibt es in einiger Zeit keine Blumenstämme mehr. Und sterben die Blumenstämme aus, wird die Erde traurig.

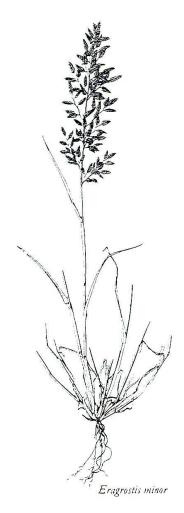

(Aus Drewermann 1992: Der tödliche Fortschritt. 2. Aufl. Herder).

und die Welt wäre unvollständig und unvollkommen

ohne sie."

Die Blumen sind Teil unseres Lebens. Wir sind oder waren von ihnen umgeben, wir freuen uns an ihren Formen und Farben und träumen oder träumten von ihnen. Sie erhöhen unser Wohlbefinden und gehören zu unserer Heimat. Symbolisch spielen sie seit jeher eine grosse Rolle, etwa in der Mythologie der alten Griechen. Sie sind nach Abt (1986) Ausdruck von Gefühlen und Liebe bei allen wichtigen Übergängen im Leben, so etwa bei der Geburt, der Hochzeit und beim Tod. Im Laufe der langen Evolution ist der Mensch auf seine Umwelt, auf den Reichtum der Blumen geprägt worden. Wenn diese fehlen, so verliert er Wurzeln. Dass diese Verankerungen in der Natur bereits heute für viele gelockert sind, ist die Folge unseres utilitaristischen, nur von Vernunft geprägten Denken, das auch unserem Fortschritt und unserer Technik zugrunde liegt. Nur gelegentlich ergreift uns das Heimweh, das Verlangen, die Anonymität und Langeweile unserer Zivilisation zu verlassen, die Sehnsucht nach der Natur, nach den Blumen, nach dem verlorenen Paradies.

3. Stadtflora



Dass die Natur sich selbst durch Beton und Plastik nicht einfach verdrängen lässt, zeigt sich am Beispiel der Stadtflora. Wer sich die Zeit nimmt, bewusst durch die Stadt zu wandern, kann hier soviel Naturwunder erleben wie an den Victoria-Fällen oder im Gran Canion.

Jahrzehntelang legte ich den Weg von der Altstadt bis ins Institut an der Zürichbergstrasse zu Fuss zurück, beschäftigt mit kleineren oder grösseren Alltagssorgen. Man hätte annehmen können, dass ich mit jeder Einzelheit vertraut gewesen wäre. Indessen sah ich eines Tages zwischen den Randsteinen des Trottoirs ein kleines Gras spriessen, das mir nur deshalb und eher ärgerlich auffiel, weil ich es nicht kannte. Es war das Kleine Liebesgras (Eragrostis minor) (Fig. 36), das sich erst seit wenigen Jahren in der Stadt breit machte und dessen rasche Ausbreitung ich verfolgen konnte. Von da an schaute ich öfters an den Strassenrand, auf das Pflaster, in die Hinterhöfe, ins Industrieareal und an die Gartenmauer. Und ich lernte wieder staunen. Was da alles grünt und blüht oder sich bewegt, hätte ich nicht für möglich gehalten. Viele Arten, die auf der Roten Liste des Mittellandes stehen, zeigten ihre Blumen an der Ufermauer, zwischen Bauruinen oder im Geleiseschotter. Weil damals an der ETH gerade das Studium für Umweltnaturwissenschaften im Aufbau war, beschloss ich, dieser Vielfalt von der pflanzlichen Seite etwas auf die Spur zu kommen, um den Studenten das Wirken der Natur, die Funktion und Zusammensetzung von Ökosystemen direkt vor dem Hörsaal demonstrieren zu können. Ich durchwanderte am Abend oder über das Wochenende die Stadt mit all ihren verschiedenen Lebensräumen und notierte mir das Vorkommen der vielen für mich oft fremden Pflanzenarten. Eine Reihe von Diplomarbeiten und Dissertationen entstanden oder sind noch im Gange. Es zeigte sich, dass die Stadt mit ihrem besonderen warmen Klima, mit ihren vielerlei Funktionen und Kompartimenten auch eine Vielfalt an ökologischen Nischen aufweist, die zu einer erstaunlichen Biodiversität führt. Wir müssen den Organismen gegenüber nur etwas mehr Toleranz und etwas weniger Perfektionismus üben, sie wachsen und blühen lassen. Die unsinnige Unterscheidung zwischen nützlichen und schönen Pflanzen auf der einen Seite und hässlichen und schädlichen auf der anderen Seite ist zumindest in der Stadt unnötig. Zugegeben, es gibt Organismen, die eine bestimmte Tätigkeit erschweren und die deshalb einzuschränken sind. Dies lässt sich jedoch meist mit einfachen Massnahmen bewerkstelligen, ohne dass das ganze Ökosystem mit Pestiziden oder durch Versiegelung zerstört werden muss.

Auch die Stadtflora kann nur im Zusammenhang mit ihrer Geschichte verstanden werden. Ein stärkerer Einfluss des Menschen begann etwa vor 6000

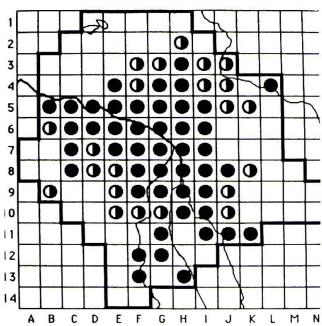


Fig. 36. Eragrostis minor und ihre Verbreitung in der Stadt Zürich. (Zeichnung aus HESS et al. 1967-1972)

• selten • nicht selten

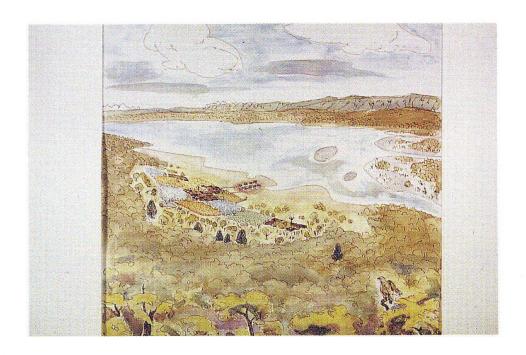


Fig. 37. Pfahlbausiedlung auf dem Gebiet der Stadt Zürich vor 6000 Jahren (aus JACOMET et al. 1989)

Fig. 38. Die Stadt Zürich vor 150 Jahren. Aussicht von der Waid. Aquarell von F. Schmid (aus PESTALOZZI 1925)

Jahren, zur Zeit des späten Neolithikums (Fig. 37). Weitflächige städtische Verhältnisse entwickelten sich aber erst seit etwa 150 Jahren (Fig. 38).

Die Stadt enthält heute 1100-1200 verschiedene Arten (Tab. 3, Fig. 39) von wilden oder verwilderten Blütenpflanzen, ungefähr doppelt so viele wie eine intensiv land- und forstwirtschaftlich bewirtschaftete Fläche von gleicher Grösse im Mittelland. Aus dem Vergleich mit früheren Angaben und Ergebnissen der Pollenanalyse ergibt sich, dass die Flora in den letzten 7000 Jahren etwa 650 neu zugewanderte Arten erhalten und etwa 150 Arten verloren hat. Man soll mich jetzt nicht falsch verstehen. Die erfreuliche Artenzunahme zeigt, dass für einige Biotope, die der Mensch in der Landschaft bewusst oder gedankenlos zerstört hat, in der Stadt Ersatz gefunden werden kann; indessen trägt sie überhaupt nichts dazu bei, die durch das Abholzen der tropischen Re-

	Total	Artenverlust	Neue Arten		
vor 7000 Jahren	650				
spätes Neolithikum	750		100		
Mittelalter	850	20	120		
1839	950	20	120		
1905	1050	30	150		
1990	1100	70	150		

Tab. 3. Artenzahlen in der Stadt Zürich (Verluste und Gewinne). (Aus LANDOLT 1992).

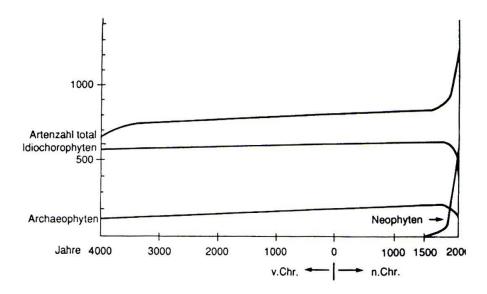
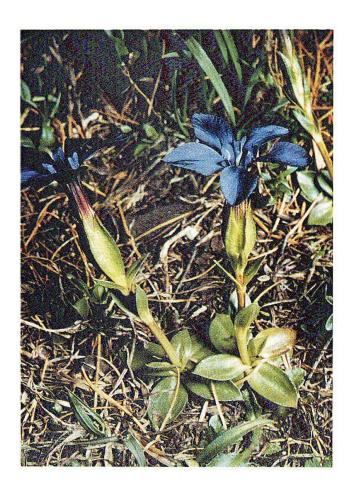



Fig. 39. Ungefähre Artenzahlen von Gefässpflanzen auf dem Gebiet der Stadt Zürich. (Aus LANDOLT 1992).

Idiochorophyten: ursprünglich einheimische Arten. Archaeophyten: zwischen 5000 v.Chr. und 1500 n.Chr. eingewanderte Arten. Neophyten: Seit 1500 eingewanderte Arten.

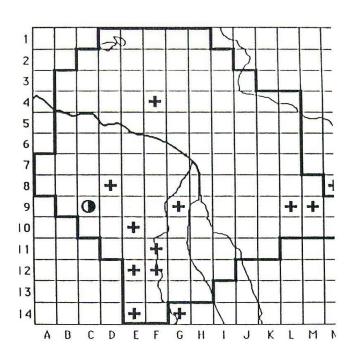
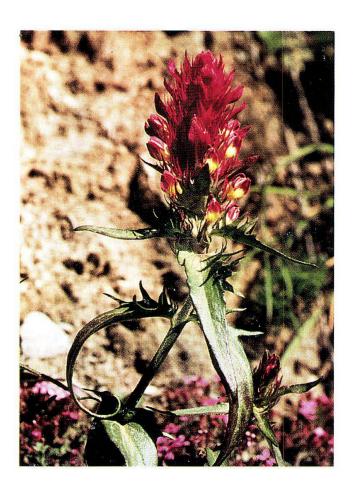
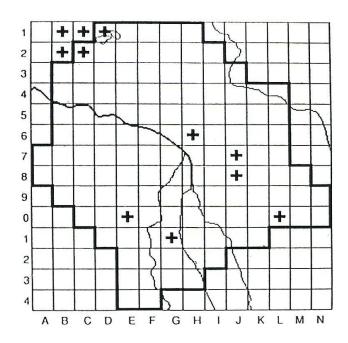




Fig. 39. Gentiana verna und ihre Verbreitung in Zürich. • selten + ausgestorben

Fig. 40. *Melampyrum arvense* (Photo H. Sigg) und ihre Verbreitung in Zürich. + ausgestorben

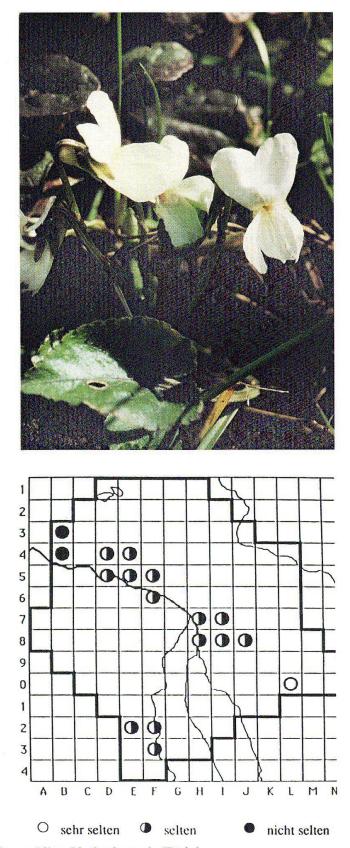


Fig. 41. Viola alba und ihre Verbreitung in Zürich.

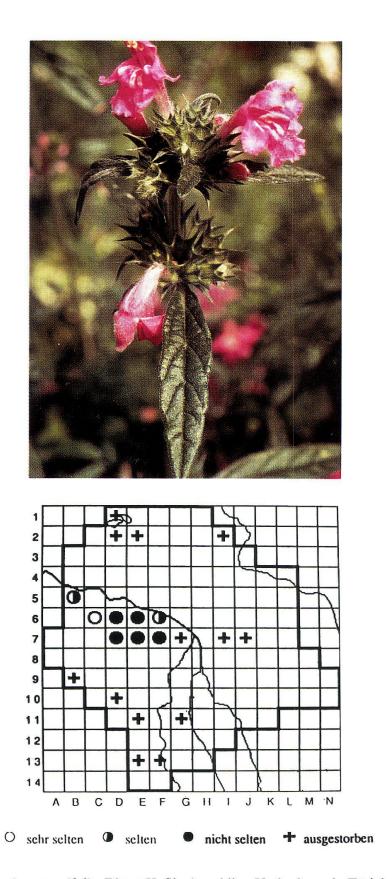


Fig. 42. Galeopsis angustifolia (Photo H. Sigg) und ihre Verbreitung in Zürich.

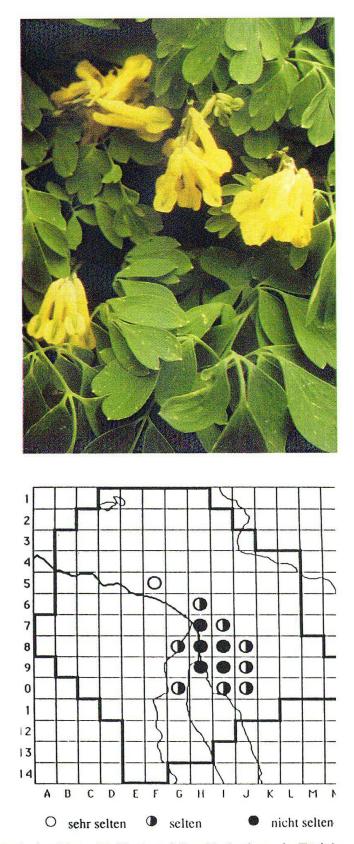


Fig. 43. Corydalis lutea (Photo H. Sigg) und ihre Verbreitung in Zürich.

Regenwälder oder durch die massive Verschmutzung von Gewässern verloren gegangenen Organismen zu ersetzen.

Auch bei uns gibt es viele Arten, die früher häufig waren und heute ganz oder fast völlig verschwunden sind, z.B. der Frühlingsenzian (Gentiana verna) (Fig. 39) in Riedwiesen oder der Acker-Wachtelweizen (Melampyrum arvense) (Fig. 40) auf Äckern. Ökologische Ausgleichsflächen und Naturschutzgebiete sind auch in städtischen Gebieten notwendig.

Die floristische Kartierung der Stadt deckt viele enge Beziehungen auf zwischen dem Vorkommen von Pflanzen und einzelnen Klima- oder Bodenfaktoren. Sie zeigt auch, welche Arten der Roten Listen in ökologischen Nischen der Stadt ein Überleben finden. So wächst das Weisse Veilchen (Viola alba) (Fig. 41) in der Stadt nur an sonnigen Südhängen. Ursprünglich auf warme lichte Wälder beschränkt, besiedelt es heute ersatzweise Parkrasen, die nicht zu früh im Frühling gemäht werden. Der Schmalblättrige Hohlzahn (Galeopsis angustifolia) (Fig. 42), der früher um die Stadt herum auf Äckern verbreitet war und dort heute vollständig fehlt, hat im Bahnschotter einen neuen Lebensraum gefunden. Als Beispiel für eine verwilderte Gartenpflanze, die der Bereicherung dient, sei der an Mauern der warmen Innenstadt gedeihende Gelbe Lerchensporn (Corydalis lutea) (Fig. 43) erwähnt, der in Kalkgeröllhalden der Südalpen heimisch ist.

Das Beispiel der Stadtflora zeigt, dass wir zwar unsere Umgebung weitgehend steril gestaltet haben, dass der Stadtmensch die Beziehungen zur Natur teilweise verloren hat und deshalb glaubt, diese nur in fernen Landen wiederzufinden, dass aber bei einiger Toleranz, guten gesetzlichen Grundlagen und initiativer öffentlicher Verwaltung, sich viele Blumen in der Stadt sehr wohl behaupten und das Leben der Bewohner qualitativ verbessern können. Wir müssen nur versuchen, die Natur auch im Versteckten und Kleinen wieder zu erkennen und nicht nur in Superlativen zu denken. Wir müssen lernen, uns zu bescheiden, und dann werden wir die Blumen wieder finden und uns daran erfreuen.

Mit diesen Ausführungen nehme ich offiziell Abschied von der Hochschule, die mich während Jahrzehnten beherbergt und ernährt hat, und an der ich mit viel Freude und Anregung, Studentinnen und Studenten in die Beziehungen zwischen Pflanzen und Umwelt einführen und die Pflanzen als ganze Organismen in ihren Eigenschaften, ihrem Verhalten und ihren Beziehungen zur Umwelt erforschen durfte. Es war eine schöne Zeit, und ich werde mich gerne und oft daran zurückerinnern. Ohne den bereitwilligen Einsatz aller Mitarbeiter, ohne die tatkräftige Hilfe von Kollegen, Freunden, Vorgesetzten und Untergebenen wäre ich erfolglos geblieben. Allen, die mich in meiner Tätigkeit wohlwollend und unterstützend begleitet haben, danke ich von Herzen.

Literatur

- ABT Th., 1986: Planung ohne Schatten? Vom Umgang mit komplexen Problemen. 36 S. (Mskr.).
- BUWAL, 1991: Zur Lage der Umwelt in der Schweiz. Umweltbericht 1991. EDMZ Bern. 259 S.
- DOCAUER D.M., 1983: A nutrient basis for the distribution of the Lemnaceae. Ph.D.Thesis. Univ.Michigan. 223 S.
- DREWERMANN E., 1992: Der tödliche Fortschritt. 2. Aufl. Herder, Freiburg i.Br. 407 S.
- ELAKOVICH S.D., 1989a: Allelopathic aquatic plants for aquatic weed management. Biologia Plantarum 31, 479-486.
- ELAKOVICH S.D., 1989b: Allelopathic potential of sixteen aquatic and wetland plants. J. Aquat. Plant Management 27, 78-84.
- EYSTER C., 1966: Optimization of the physiological activity (growth rate) of the giant duckweed, Spirodela polyrrhiza. Final report. Monsanto Res.Corp.Dayton Lab., Dayton, Ohio. 200 S. (Polycopy)
- HESS H.E., LANDOLT E. und HIRZEL R., 1967-72: Flora der Schweiz und angrenzender Gebiete. Birkhäuser, Basel. 3 Bde. 2690 S.
- JACOMET S., BROMBACHER Ch. und DICK M., 1989: Archäobotanik am Zürichsee. Ackerbau, Sammelwirtschaft und Umwelt von neolithischen und bronzezeitlichen Seeufersiedlungen im Raum Zürich. Ber. Zürch. Denkmalpflege, Monogr. 7. Orell Füssli, Zürich. 348 S.
- LANDOLT E., 1957: Physiologische und ökologische Untersuchungen an Lemnaceen. Ber, Schweiz. Bot. Ges. 67, 271-410.
- LANDOLT E., 1981: Distribution pattern of the familiy Lemnaceae in North Carolina. Veröff.Geobot.Inst.ETH, Stiftung Rübel, Zürich 77, 112-148.
- LANDOLT E., 1984: Verbreitungsmuster in der Familie der Lemnaceae und ihre ökologische Deutung. Verh.Ges.Ökol. (Bern 1982) 12, 241-253.
- LANDOLT E., 1986: The family of Lemnaceae a monographic study (vol. 1) Veröff.Geobot.Inst.ETH, Stiftung Rübel, Zürich 71, 566 S.
- LANDOLT E., 1989: Geographisch-ökologisches Vorkommen der Lemnaceae-Arten in der Schweiz im Rahmen ihrer Gesamtverbreitung. Flora (1989) 182, 87-98.
- LANDOLT E., 1991: Gefährdung der Farn- und Blütenpflanzen in der Schweiz mit gesamtschweizerischen und regionalen roten Listen. EDMZ, Bern. 185 S.
- LANDOLT E., 1992: Veränderungen der Flora der Stadt Zürich in den letzten 150 Jahren. Bauhinia 10, 149-164.
- LANDOLT E. und WILDI O., 1977: Ökologische Felduntersuchungen bei Wasserlinsen (Lemnaceae) in den südwestlichen Staaten der USA. Ber.Geobot.Inst.ETH, Stiftung Rübel, Zürich 44, 104-146.
- PESTALOZZI F.O., 1925: Zürich Bilder aus fünf Jahrhunderten. Berichtshaus Zürich. 283
- STILING P.D., 1992: Introductory Ecology. Prentice Hall, Englewood Cliffs, NJ., USA. 597 S.
- Welten M. und Sutter R. 1982: Verbreitungsatlas der Farn- und Blütenpflanzen der Schweiz. (2 Bde.) Birkhäuser, Basel. 716 S., 698 S.
- ZIMMERMANN M.-A., 1981: Einfluss von Calcium und Magnesium auf das Wachstum von mitteleuropäischen Lemnaceen-Arten. Ber.Geobot.Inst.ETH, Stiftung Rübel, Zürich 48, 120-160.

Nach der Vorlesung fand im Dozentenfoyer der ETH (K-Stock) ein **Abschiedtrunk**

statt.

