Zeitschrift: Bericht über das Geobotanische Forschungsinstitut Rübel in Zürich

Herausgeber: Geobotanisches Forschungsinstitut Zürich

Band: - (1943)

Artikel: Kausale Vegetationsforschung

Autor: Schmid, Emil

DOI: https://doi.org/10.5169/seals-377492

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

KAUSALE VEGETATIONSFORSCHUNG

Von Emil Schmid (Zürich-Rehalp).

Ohne Voreingenommenheit betrachtet erweisen sich die Lebensgemeinschaften von Pflanzen und Tieren als Gebilde komplexer Art, einerseits zu verstehen als chorologische, epiontologische Phänomene, als Ballungen von Lebewesen aus bestimmten Abstammungen und Entstehungsgebieten, anderseits als biocönologische Erscheinungen, Artenkombinationen, welche der Standort ausgewählt hat und in welchen jede Spezies die ihr mögliche Rolle spielt, so daß ein dichter Korrelationsnexus entsteht. Die Gesellschaft von Organismen auf einer südexponierten Kalkfelsflur des Submediterrangebietes z. B. wird charakterisiert durch die Herkunft der Arten aus mediterranen Stämmen und submediterraner Verbreitung und durch deren ökologisch-biocönologische Qualität als Spaltenpflanzen der trockenen Kalkfelsen, von ihnen abhängige Phytophagen usw.

Eines Anthropomorphismus machen wir uns aber schuldig, wenn wir die Lebensgemeinschaften der Pflanzen und Tiere in ihren Einzelbeständen betrachten wie die Vergesellschaftungen des Menschen und der Tiere, als umgrenzte, individuierbare Gefüge statt als nur adaptiv gebundene Artenkombinationen. Wenn wir objektiv verfahren wollen, dann müssen wir die Vegetation so erfassen, wie der Geograph sein Forschungsobjekt, die Landschaft, als ein Nebeneinander von aufeinander abgestimmten, einander sich bestimmenden Integrationen, welches analysierbar ist durch Einzelanalyse der Glieder und der Korrelationen zwischen ihnen. Dabei gehören die abiotischen Dinge, Strahlung, Feuchtigkeit, Luft, Boden, Geomorphologie usw., welche das Milieu, den Biotop, bilden, genau so zur Charakterisierung wie die Lebewesen (vgl. R. Hesse, 1924). Das Forschungsobjekt des Biocönologen ist nichts anderes als eine Mikrolandschaft (vgl. v. Kruedener, 1926). Der Biocönologe ist wie der Geograph ein Korrelationsforscher und hat es nicht mit Ganzheiten zu tun wie der Soziologe, der Zoologe, der Botaniker. Erst mit dieser grundsätzlichen Einstellung zu unserem Objekt können wir die Erforschung der ursächlichen Zusammenhänge in wissenschaftlicher Weise in Angriff nehmen. Es ergibt sich notwendig eine andere Methodik für den Geographen und Biocönologen, als für den Erforscher von integrierten Gebilden. Der

Geograph wie der Biocönologe darf ohne Rücksicht auf Ganzheitsqualitäten Einzelteil um Einzelteil seiner Objekte vornehmen und auf die Rolle hin untersuchen, welche sie im Korrelationsnexus spielen. Der Biocönologe analysiert einen Konstituenten der Lebensgemeinschaft, einen Faktor des abiotischen Milieus nach dem andern.

Zu erforschen, wie die integrierten Gefüge, unbelebte: Atome und Moleküle als Gesteine, Gewässer, Luft, belebte: Einzeller, Vielzeller, Sozietäten im tellurischen Abschnitt des Makrokosmos, beieinander sind, das ist die Aufgabe der Geographie. Zu erforschen, wie Pflanzen und Tiere miteinander im Standort leben, das ist die Aufgabe der Biocönologie.

Für den Geographen sind alle Integrationen, vom Strahlungskorpuskel bis zur Anthroposozietät, gleichwertig. Was ihn beschäftigt, sind ihre Anhäufungen kontinual als Landschaft. Das gilt auch für den Biocönologen, den Erforscher der kleinsten geographischen Objekte, nur daß er sich beschränkt auf das Zusammenleben von Pflanzen und Tieren am Standort.

Ebensowenig wie wir Landschaften klassifizieren können, Klassen bilden und daraus eine Hierarchie aufbauen, dazu sind sie viel zu diffus zusammengesetzt und zu wenig umgrenzbar, ebensowenig können wir Biocönosen klassifizieren. Weder in der Landschaft noch in der Biocönose integrieren sich die Glieder. In der Geographie gäbe es dauernde Unsicherheiten über die Umgrenzungen der "Groß- und Kleinlandschaften". Wohin das in der Biocönologie geführt hat, zeigen die endlosen Diskussionen über die Klassenbegriffe (Assoziation, Konsoziation, Soziation, Formation usw.). Befreien wir uns von dem Albdruck der ungenügenden Begriffe, von der Mystik der Ganzheitsvorstellungen!

Wie kompliziert die biocönologischen Objekte in ihren ursächlichen Zusammenhängen auch ohne diese Vorstellungen immer noch sind, zeigt schon ein kurzer Hinweis auf deren mannigfaltige Statik und Dynamik. Da ist statisch die Mannigfaltigkeit der biochemischen Konstitution, die gestufte Kompliziertheit der Integration vom Einzeller bis zur menschlichen Gesellschaft, die Staffelung der Adaption in Qualität und Quantität nach makrokosmischen, tellurischen, zonalen, lokalen und biotischen Milieufaktoren, vom Bioklimahelotismus bis zur engsten Symbiose, von der Klimaanpassung bis zur Spezialisierung auf einen ganz bestimmten Saprophytismus und dynamisch

die phylogenetische Veränderung der Organismen, ihre konstitutionelle epharmonische und ökologische Wandlung im nomothetischen Sinne, ihre ontogenetische Evolution, da sind die Altersphasen der Individuen, ihre Phänologie während des Jahres und des Tages, die Phänologie der Vermehrung und Ausbreitung, der Energie-, Betriebsstoff- und Baustoffnahme, die Veränderung der Außenfaktoren im geologischen Ablauf, während kürzerer Perioden, im Jahr und im Tag, die Entwicklung der Lebensgemeinschaften selbst im Laufe der Jahrtausende, ihre Veränderung durch Klimawechsel und andere säkuläre Einflüsse, ihre Altersphasen, die Veränderung des menschlichen Einflusses. Daß bei dieser Mannigfaltigkeit der Anlagen und Einflüsse eine Konstanz und scharfe Umgrenzung der Gemeinschaften völlig heterogener Organismen in bezug auf die artliche Zusammensetzung nicht aufkommen kann, ist nicht verwunderlich. In Wirklichkeit tritt auch eine Repetition der Artenliste der Biocönosenabschnitte nur in den artenarmen Teilen der höheren Breiten auf, während normalerweise ein diffuser Wechsel der Spezies vorhanden ist, bei mehr oder weniger Stabilität der Raumund Korrelationsstruktur-Typen.

Zum Verständnis der ursächlichen Zusammenhänge müssen auch die paläogeographischen, paläoklimatischen Verhältnisse klargelegt werden. Die unikalen, heterogenen Kombinationen von Arten aus ganz verschiedenen Vegetationsgürteln, wie sie z. B. am Alpenrande an Stellen sich finden, wo die Konkurrenz des Buchenwaldes sich nicht auswirken konnte, sind nur zu verstehen durch den Nachweis der Transgression der verschiedenen Vegetationsgürtel.

Der Biocönologe muß in erster Linie eine natürliche chorologische Gliederung nach Floren und Faunen (Großgliederung) und eine anschauliche Darstellung und Erklärung der Lebensgemeinschaften (Kleingliederung) erstreben. Nur in den wenigsten Fällen wird er dabei auf eigene biochemische und physiologische Studien zurückgreifen können. Er muß auf die Erfahrungen der Integrationswissenschaften abstellen. Auch in bezug auf die notwendigen systematischen, phylogenetischen und epiontologischen Unterlagen muß er andere Wissensgebiete heranziehen. Er ist dabei in der gleichen, für den Beziehungswissenschaftler charakteristischen Lage wie der Geograph.

Kausalanalytisch arbeiten heißt also für den Biocönologen nicht, seine Untersuchungen bis zu den untersten Integrationsstufen vorzutreiben, sondern den Korrelationsnexus zwischen den Organismen und Standortsfaktoren aufzulösen. Bei dem gewaltigen, von der Biologie bisher erschlossenen Material können wir heute wohl beginnen, den ursächlichen Zusammenhängen der biocönologischen Erscheinungen nachzugehen. Daß dabei nicht nur mit exakten und absolut eindeutigen Zahlenangaben gearbeitet wird, liegt in der Natur der höheren Integrationsstufen begründet. An ein soziologisches oder psychologisches Biocönosephänomen kann man nicht mit der Methodik der Chemie und Physik allein herankommen. Deren Methoden müssen ergänzt werden durch biochemische, physiologische, ökologische, psychologische und soziologische; denn alle diese Forschungsgebiete spielen bei den biocönologischen Erscheinungen mit herein.

Viel wichtiger sind hier zunächst die der höheren Integrationsstufe entsprechenden Kausalzusammenhänge; die Notwendigkeit, auf die unteren Stufen zurückzukommen, kann sogar völlig wegfallen. Deswegen besteht keinerlei Anlaß, eine Wertskala der Wissenschaftlichkeit des Vorgehens aufzustellen. Wer abschätzend auf die weniger "exakte" Arbeit im Gebiete der höheren Integrationsstufen herabsieht, beweist damit nur, daß ihm das Verständnis für den Grad ihrer Komplizierung abgeht, daß er geneigt ist, sich mit Vereinfachungen, welche der Sachlage nicht mehr gerecht werden, zufriedenzugeben.

Für keine Wissenschaft hat sich die positivistische Phase der Naturforschung so nachteilig ausgewirkt wie für die Biocönologie und Soziologie, weil hier keine einfachen und direkten Kausalzusammenhänge bestehen, sondern weite Umwegsreaktionen über Relais und plurivalente Potentiale, lange und schwer entwirrbare Korrelationsreihen, weil die höheren Integrationen sich dem primitiven analysierenden Zugriff entziehen, indem sie absterben, bevor sie ihre Geheimnisse preisgegeben haben.

Wie schwierig die Eruierung der ursächlichen Verhältnisse ist, zeigt das Beispiel der Bodenbildung. Es wird behauptet, jeder Biocönose entspreche ein bestimmter Boden. Das kann und will wohl auch nicht heißen, daß die Vegetation den Boden bilde; das trifft nicht einmal ganz zu bei den biogenen Böden, wie Torfboden, Tschernosiomboden, wo ja Staubsedimentierung und klimatische Ursachen wesentlich beteiligt sind. Der Boden hier ist nichts viel anderes als die Mineralisationssphäre der Biocönose, welche immer wieder in den Stoffkreislauf hereingenommen wird, im extremen Fall der tropischen Regenwälder nach Heinrich Walter sogar so vollständig, daß gar keine

Humusablagerung über den Kreislaufbedarf hinaus zustande kommt. S. Passarge behauptet sogar, daß für die Oberflächenformen einer Landschaft die Pflanzendecke, nicht das Klima maßgebend sei, wobei völlig übersehen wird, daß Klima und Bodenunterlage ausschlaggebend sind für die Auswahl der Organismen, welche in dem von ihnen gebildeten Standort siedeln. Das komplizierte Gebilde, das wir Boden nennen, ist ursächlich verbunden mit makrokosmischen Faktoren, mit der Strahlungsenergie, mit tellurischen: Wärme, Feuchtigkeit, Gefälle, Untergrund in ihren zeitlichen Veränderungen, mit den Organismen, welche sich auf ihm ansiedeln können; diese verhindern in dichter Vegetationsdecke die Abwaschung, halten das Wasser zurück, beeinflussen den Elektrolytgehalt, lagern Humusstoffe ab, bilden Tuffe usw. Der Untergrund selbst hat auslesende Wirkung auf die zur Verfügung stehenden Organismenarten, und zwar in Kuppelung mit klimatischen Faktoren wie Wärme, Feuchtigkeit. Keine dieser vielfältigen Beziehungen entzieht sich, zum mindesten theoretisch, einer kausalanalytischen Behandlung, aber diese muß nach korrelationswissenschaftlicher Methodik behandelt werden, nicht nach ganzheitlicher. Von jeder einzelnen wesentlichen Art der Biocönose muß die Rolle bei der Bodenbildung verfolgt werden, die Humusproduktion, die Mineralisation, der Humusbedarf, der Bedarf an Aufbau- und Betriebsstoffen, im Zusammenhang mit bioklimatischen, lokalklimatischen und regionalklimatischen Faktoren. Der Boden ist kein ganzheitliches Gebilde. Er ändert sich in genau ebenso diffuser Weise nach Altersphasen, nach Klimawechsel und nach dem Untergrund, wie die darauf lebende Biocönose. Eine ganzheitliche Behandlung des Kausalnexus mit Festlegung der allgemeinen Qualitäten der Böden führt uns in bezug auf die feinere Unterscheidung nach Assoziationsböden zum gleichen Chaos wie in der Assoziationssystematik.

Das Holocön, d. h. Biocönose und Biotop als untrennbare Erscheinungen, umfaßt Integrationen der verschiedensten Art, anorganische und organische. Wir haben es bei der Untersuchung der ursächlichen Zusammenhänge zu tun mit einfacheren Gebilden, deren Verhalten mit der Methodik der Chemie, Physik, Geographie, Paläogeographie, Geologie zu erfassen ist, vergleichend statistisch und experimentell mit Messung, Zählung, Berechnung und mit komplizierteren, denen auch mit den raffiniertesten biochemischen, physiologischen, ja psychologischen Methoden nicht mehr beizukommen ist. Man denke nur an

die mit einem Zentralnervensystem begabten Tiere, z. B. in ihren blütenbiologischen Korrelationen, an die menschlichen Sozietäten, welche oft in die Biocönosen hereinspielen. Wie sehr unterscheidet sich das Verhalten der Einzeller von dem der Vielzeller! Wir werden uns davor hüten, auf den höheren Stufen mit den Forschungsmitteln der niederen allein zu operieren, sondern entsprechend erweiterte Methoden anwenden; umgekehrt werden wir nicht in den tieferen Stufen Erscheinungen suchen, welche nur in den oberen zu erwarten sind. Die Kausalanalyse eines Holocöns hat über alle Integrationsstufen hinweg zu erfolgen; bei den höchsten Stufen können und müssen wir die Auflösung nach unten vernachlässigen. Nach und neben der Beobachtung und Feststellung der durch die Tatsachen begründeten Beschreibung versuchen wir auch bereits, die ursächlichen Erklärungen zu finden; eine Fragestellung regt die andere an und vertieft sie.

Da wir es nicht mit einem ganzheitlichen Gefüge zu tun haben, können wir die Biocönosen auch nicht in toto kausalanalysieren; das ist ja nicht einmal der Fall bei integrierten Objekten. Der Arzt z. B. kann eine Diagnose nicht stellen allein aus der Konstitution des Patienten. Bei einem derartig diffus zusammengesetzten Gebilde, wie es das Holocön ist, muß Einzelglied um Einzelglied hergenommen werden. Das gilt auch für das abiotische Milieu, Klima und Boden. Weder der Klimacharakter noch die für eine Biocönose spezifische Bodenart sind scharf umgrenzbare und eindeutig charakterisierbare Gebilde. Die Beziehungen zwischen den Gliedern sind immerhin viel einfacher als bei den integrierten Gefügen. Hier wirkt die Arbeitsteilung mit Kommunikation, Cooperation und Solidarität, dort sucht sich das einzelne Individuum rücksichtslos gegenüber den anderen durchzusetzen, auch wenn es sich dabei, sich anpassend, differenziert.

Wir untersuchen die Einzelglieder nur in bezug auf diejenigen Charaktere, welche für das Zusammenleben der Organismen im Biotop wesentlich sind, also die Rolle, welche die Arten im Verband spielen, ihre Korrelationen lebenswichtiger Art: Konstitutionelle, nicht epharmonische, nicht ökologische und nicht biocönotische Merkmale bleiben unerörtert. Das wird ja sogar bei der kompliziertesten Integration, der menschlichen Sozietät, so gemacht, wo es für das Verständnis der Struktur nicht nötig wird, etwa die Rassenzugehörigkeit der Teilnehmer zu ergründen, wohl aber die Rolle, welches jedes Individuum im ganzen spielt. Für die Beurteilung des Gentilsystems z. B.

ist es gleichgültig, ob die Einheiten von Montenegrinern, Sarden oder Schotten gebildet werden; nicht gleichgültig ist aber, welcher Grad der Arbeitsteilung, welche Rechtsbegriffe, welche persönlichen Freiheiten jedem Gliede zukommen.

So stellen wir fest: die Energienahme, Quantität (nur grobe Schätzung nach Minimum, Optimum, Maximum) und Qualität der Lichtenergie, den Wechsel derselben nach Jahreszeit, Tageszeit, nach Alter des aufnehmenden Individuums, ihre Beeinträchtigung durch abiotische Faktoren, z. B. Breitenlage und Meereshöhe, Exposition, durch biotische Faktoren wie Laubdach usw., die Betriebsstoffverhältnisse Luft, Wärme, Feuchtigkeit, soweit sie biocönologisch von Wichtigkeit sind, mit Angaben über Quantität, saisonmäßigen Wechsel, Veränderung durch abiotisches Milieu und biotische Einflüsse, Adaptionen an die makrokosmischen, tellurischen, zonalen, lokalen und biocönotischen Faktoren. Ferner die Aufnahme der Aufbaustoffe, welche eine ganz besonders reichliche Ausbeute biocönotisch wesentlicher Charaktere gibt. Auch hier werden quantitative Schätzungen gemacht (Gesetz des Minimums), werden konstitutionelle, epharmonische, ökologische, makrokosmische, zonale, standortliche und biotische Einflüsse unterschieden, wird differenziert nach Altersphasen, nach Modifikation der Bewirkungen durch biotische und abiotische Faktoren. Wir stellen fest: die Vermehrungs- und Ausbreitungsverhältnisse. Sie werden in gleicher Weise zur Charakterisierung herangezogen, die Biologie der sexuellen und vegetativen Vermehrung mit ihren zahlreichen Korrelationen zum abiotischen Milieu, die Biologie der Ausbreitung der Früchte und Samen.

Zur Analyse der Biocönose gehört weiter die Untersuchung der Raumstruktur. Wir fragen: Welchen Raum nimmt die Art im Minimalraum der Biocönose ein? Welche Dimensionen weist sie auf, welche Individuenzahlen, welches sind die mittleren Individuenabstände, wie wird die Raumnahme modifiziert durch abiotische Faktoren, z. B. durch die Wassertiefe bei Submersen, durch die Felsspalten in der Felsflur, durch biotische Faktoren, z. B. durch das Lichtfilter der Determinanten?

Die große Schwierigkeit, welche durch die Kuppelung der Faktoren und durch die Kuppelung der Anpassungen entsteht — es ist z. B. oft nicht zu unterscheiden, ob Licht oder Feuchtigkeitsverhältnisse, ge-

wisse xeromorphosenartige Charaktere erzeugt haben —, wird in unserem Frageschema dadurch umgangen, daß die Antworten eine einzelne Erscheinung betreffend an mehreren Stellen gegeben werden.

So entsteht von jeder der biocönologisch wesentlichen Arten ein anschauliches Modell ihrer Rolle. Wir unterscheiden zwischen Determinanten und abhängigen Arten, zwischen lebenskräftigen und schwächlichen, zwischen Spezialisten (Charakterarten) und amphicönotischen, d. h. in mehreren Biocönosen vorkommenden Arten. Die Artenmodelle sind für jede Biocönose neu zu kontrollieren, da ein und dieselbe Spezies in den verschiedenen Biocönosen, in welchen sie vorkommt, sich nicht immer gleich verhält, ganz abgesehen davon, daß verschiedene Rassen vorliegen können und daß auch die Lebenskraft verschieden sein kann. Hippocrepis comosa ist z. B. im Pinetum silvestris astragalosum im Minimum des Lichtgenusses und deshalb schwächlicher als etwa im Festucetum glaucae, wo es vollen Lebenstrieb zeigt. Auch können gewisse epharmonische Charaktere in verschiedenen Biocönosen von ganz verschiedener Wichtigkeit sein, so ist z. B. für die Kreuzotter, Pelias berus, im Flachland die Viviparie nicht nötig für die Erhaltung der Art, wohl aber im Gebirge. Auf elektrolytreichem Boden ist Helleborine atropurpurea nicht mykotroph, wohl aber auf saurem Rohhumus. Die Artenmodelle erlauben eine Typenbildung. Die Vertretung dieser Typen nach Prozenten ergibt das Typenspektrum und dieses veranschaulicht das Modell der ganzen Biocönose. In großem Umfange haben sich Modell und Typenbildungen in der Blütenbiologie als brauchbar erwiesen. Hier hat sich z. B. gezeigt, daß mit zunehmender Breite und Meereshöhe die Ausbildung spezifischer, den Erfolg des Blütenbesuches garantierender Anpassungen abnimmt. In diesem Zusammenhang sind auch die Sernander'schen Myrmekochorentypen zu erwähnen.

Wie weitgehend die Modellmethodik die ursächlichen Zusammenhänge zu klären geeignet ist, soll am Beispiel unserer Föhrenwälder angedeutet werden. Das Pinetum silvestris pyrolosum wird charakterisiert durch ein Typenspektrum, in welchem heterotrophe Arten, indirekte Saprophyten, Rohhumussiedler mit xerischen Anpassungen dominieren, Goodyera repens, Pyrola chlorantha und andere. Elektrolyte, besonders Nitrat sind im Minimum, ebenso das Wasser. Das Pinetum silvestris astragalosum ist gekennzeichnet durch das Vorherrschen von Leguminosenstauden aus den Gattungen Astragalus,

Oxytropis, Onobrychis, Lotus, Medicago, Ononis, Hippocrepis, Dorycnium und anderen mit tiefgreifenden Pfahlwurzeln, in welchen stickstoffliebende Bakterien symbiontisch leben. Die heterotrophen Orchidaceen sind ebenfalls vertreten. Alle Arten sind mehr oder weniger xerisch gebaut. Viele haben Reservestoffspeicher. Der Boden ist etwas weniger arm an Pflanzennährstoffen, den Sommer über sehr trocken. Das Pinetum silvestris ericosum weist Kleinsträucher auf, Erica carnea, Arctostaphylos Uva ursi, Vaccinium Vitis idaea u. a. mit Mykorrhiza versehene. Auch hier sind die Ernährungsverhältnisse noch mangelhaft, aber Feuchtigkeit ist reichlicher vorhanden, wodurch eine stärkere Entwicklung des biogenen Bodens zustande kommt. Es ist die Biocönose der Ca- und Mg-reichen, aber besonders stickstoffarmen Unterlagen der feuchteren Gebiete, z. B. der Dolomit- und Serpentinböden der Gebirge. Das Pinetum silvestris callunosum weist heterotrophe, oligotrophe Ericaceen, wie Calluna, Halbparasiten vom Typus der Melampyrum-Arten auf. Reservestoffspeichergewebe ist auch hier wie beim Pinetum ericosum seltener anzutreffen als bei den vorhergehend angeführten Föhrenwaldgesellschaften. Der Boden, Quarzsand, ist ausgesprochen sauer und arm an Elektrolyten, besonders auch an Stickstoff; dagegen ist Wasser reichlich vorhanden. Wir erkennen ohne weiteres die Situation dieser Föhren-Biocönosen als Hungerwälder zum Teil feuchter, zum Teil trockener Gebiete, mag die Bodenverarmung nun durch die Unterlage bedingt sein oder durch menschlichen Einfluß sich verstärkt haben. Wir erkennen, wie der determinante Baum bioklimatisch eine viel geringere Wirkung ausübt, zahlreiche Arten offener Vegetationen können sich unter ihm noch halten, wie er aber durch seine Streubildung den Boden verändert und Spezialisten sich einstellen, wie er ersetzt werden kann durch eine ähnliche Rolle spielende Arten wie etwa Pinus nigra.

Leicht ist die Aufstellung der Artenmodelle und Typen nicht. Sie erfordert eine Fülle von Kleinarbeit, die nur zum Teil schon geleistet ist. Doch gehört dieses Forschen nach der Biologie der Organismen zum Reizvollsten, das die Naturwissenschaften bieten. Allerdings befriedigt nur ein kritisches kausales Verfahren. Vogelgesang ist nicht Minnelied, sondern bedeutet Kampfbereitschaft zur Verteidigung des Territoriums, des Nahrungs- und Brutgebietes, und die Frage der mimikryartigen Erscheinungen können wir auch nicht mit dem Schmeil'schen Lehrbuch beantworten.

Die Typenbildung kann sich jeweils nur auf einen Vegetationsgürtel, höchstens auf eine Serie von solchen (z. B. die Mediterrane) beziehen. Es ist nicht angängig, in einen Typus Arten aus ganz verschiedenen Klimazonen einzubeziehen, da sonst eine Verwässerung eintritt, welche die Brauchbarkeit herabsetzt. Die niederen Breiten besitzen im allgemeinen differenziertere Organismen als die höheren und als die Gebirgslagen, auch nimmt der Artenreichtum gegen die höheren Breiten hin ab, die Individuenzahl aber zu.

Im übrigen bedient sich auch die Geologie der Typenbildung bei stratigraphischen, tektonischen und morphologischen Objekten, ebenso die Meteorologie, ferner der Soziologe, der Techniker u. a. In der Biocönologie über die Typenbildung hinauszugehen führt zu subjektiven, unwissenschaftlichen Methoden, wie wir sie in der Klassenbildung der floristisch-statistischen Methode vor uns haben. Der Typus läßt sich kausal erfassen, die Spezies aber nicht. Vergleiche z. B. den Succulententypus, vertreten durch Euphorbia und Cereus.

Für das Verständnis der Rollen innerhalb einer Biocönose und deren Aufbau und damit auch für ihre Charakterisierung ist die Kenntnis der Artzugehörigkeit minder wichtig als die Kenntnis des biocönologischen Verhaltens. Überdies gehört ja die Bestimmung der Arten und Rassen und ihre Zuteilung zu einem Vegetationsgürtel bereits zu den Vorarbeiten bei der Vegetationsanalyse. Der Vegetationsgürtel als die floristische Einheit stellt die Arten zur Verfügung, welche der Standort zu spezifischer Kombination ausliest. Die phylogenetische und chorologisch-epiontologische Seite des Phänomens ist also mit der Feststellung des Vegetationsgürtels zur Hauptsache erledigt. Es gibt zwar auch an einzelne Biocönosen ausschließlich angepaßte Rassen, die morphologisch und ökologisch nicht ohne weiteres von denjenigen anderer Biocönosen unterschieden werden können. Sie müssen deshalb durch Namennennung allein erfaßt werden. Regressive reliktische Arten sind sehr häufig ihrem biotischen Milieu gegenüber sehr indifferent und besitzen, auch wenn sie Determinanten sind, keine oder wenige spezielle Begleiter, wie z. B. Pinus peuce.

Der Weg zur Kausalanalyse führt über die Analyse der einzelnen Arten, zur Modell- und Typenbildung, zum Typenspektrum und schlußendlich zum Biocönosemodell. Wenn wir auch durch diese Methodik kein natürliches System erhalten, das wir handhaben können wie das Sippensystem, so bekommen wir doch eine natürliche Glie-

derung mit weitergehenden Möglichkeiten der kausalen Erfassung von Ökologie und Chronologie. Wir sind ferner in der Lage, die von den Physiologen erarbeiteten Materialien zu übernehmen und auch das ganze biologische Material sichtend auszuwerten. Daß dabei auch manche Vegetationsbeschreibung revalorisiert wird, welche nicht nach der floristisch-statistischen Methode gewonnen wurde, ist ein weiterer Vorteil. Durch die Typenspektren wird eine eingehende Differenzierung nahe verwandter Biocönosen ermöglicht. Wir machen die Garniturlücken ausfindig; das Modell erlaubt eine ständige Kontrolle.

Es bedeutet nicht nur für manchen Biocönologen, auch für manchen Geographen einen schmerzlichen Verzicht, wenn er die Biocönose bzw. die Landschaft nicht mehr als ganzheitliches Gefüge betrachten soll, nicht mehr als das wohlumgrenzte Fundamentalobjekt seiner Wissenschaft, das in bezug auf Umgrenzbarkeit und Individualisierung den Vergleich mit den wirklichen Integrationen aushalten kann. Dafür hat er es mit einfacheren, leichteren und mit wissenschaftlicheren Methoden erfaßbaren Kausalverhältnissen zu tun.

Alles, was den Gesamtcharakter einer Bioconose betrifft, Bioklima, Boden usw., ist immer nur summativ entstanden und relativ einfach kausal analysierbar, trotz der Länge der Korrelationsreihen, trotz der Dichte des Korrelationsfilzes. Die Ökologie einer ganzen Biocönose kann immer nur eine Ökologie der einzelnen Glieder sein. Vorstellungen, wie etwa diejenige von einer scharf umgrenzbaren Bodenbildung für jede Biocönose, sind phantastisch. Entweder handelt es sich um abiotische Milieufaktoren in der Form besonderer Artung der Unterlage, z. B. Glazialton, Moränenlehm, Löß, Quarzsand, Geröll usw., auf welchen sich dann eine ganz spezielle Artenkombination einstellt, oder um einen biogenen alten Untergrund, etwa Flachmooroder Hochmoortorf, dessen Bildung ebenfalls nicht von der rezenten Vegetation abhängig ist, oder es handelt sich um einen Boden, an dessen Bildung die darauf wachsende Biocönose weitgehend teilgenommen hat; aber dann haben wir dieselben diffusen Änderungen und Abweichungen durch den Arten- und Faktorenwechsel wie bei der artlichen Zusammensetzung der Biocönosen selbst, und der Boden ist nur zu verstehen aus der Einzelwirkung der Arten, auch dann, wenn dieselben korrelativ gebunden sind. Ein Rhododendretumboden z. B. wechselt in unendlich vielen, feinen Übergängen nach Exposition, Unterlage, Befeuchtung usw., ebenso wie nach Artenzusammensetzung, Alter der ihn besiedelnden Organismenkombination, so daß er jedem Versuch einer scharfen Abgrenzung spottet.

Wenn der Versuch, Biocönosen durch Artenlisten zu charakterisieren, in einem kleinen, in seiner Biota einheitlichen Bereich und in einem artenarmen Gebiet noch angehen mag, so muß er mißlingen in einem artenreichen Gebiet wie in den feuchten Tropen und Subtropen, wo zudem die Organismen viel stenöker sind als in den gemäßigten Breiten.

Die Objekte der Beziehungswissenschaften der Geographie und der Biocönologie werden Teil um Teil, vorwiegend induktiv untersucht, um danach eine synthetische Behandlung zu erfahren. Jeder Anfänger kann sofort an die Analyse gehen. Wenn wir das Objekt aber integrationswissenschaftlich erfassen, wie das ja heute noch vielfach gemacht wird, so belasten wir uns mit den Nachteilen eines deduktiven Vorgehens, indem wir von einem prästabilierten Standard aus operieren, das Objekt, das man durch eine Artenliste erfaßt, ist ja in seiner Vollständigkeit noch in keinem Falle bekannt. Ein subjektives Moment spielt herein, ein Circulus! Ganz abgesehen davon, daß wir dem Objekt nicht gerecht werden, indem wir zu viel ganzheitliche Qualitäten und zu wenig strukturelle und historische darin sehen wollen. Bei der vorgeschlagenen Methode ist es von geringer Bedeutung, wenn man mit dem ersten Zugriff in eine intermediäre Situation hineinlangt, da bei der eingehenden Diskussion aller Teile durch die Typen, Spektren und Modellbildung die Situation sich zwangsläufig klären muß. Während wir ohne Kenntnis der ganzen Biocönose keinen Standard aufstellen können, ist das Biocönosemodell konstruierbar auch ohne Kenntnis aller Abschnitte desselben.