Zeitschrift: Bulletin du ciment

Herausgeber: Service de Recherches et Conseils Techniques de l'Industrie Suisse du

Ciment (TFB AG)

Band: 64 (1996)

Heft: 1

Artikel: Pavés en béton
Autor: Hermann, Kurt

DOI: https://doi.org/10.5169/seals-146396

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Pavés en béton

La diversité des formes, structures de surface et couleurs des pavés en béton ouvre d'intéressantes possibilités d'aménagement de places, zones piétonnes, entrées de garage, places de parc, etc.

Les pavés en béton sont connus depuis plus de 90 ans, les premiers ayant été réalisés aux Pays-Bas. Mais ce n'est qu'au cours de ces trois dernières décennies qu'ils se sont vraiment répandus. On en pose chaque année plus de 500 millions de m² dans le monde entier, dont 200 millions en Allemagne seulement [1, 2].

Exigences relatives aux pavés en béton

En Suisse, les pavés en béton ne sont pas normalisés. C'est pourquoi l'on se réfère souvent à la norme DIN 18501 «Pflastersteine aus Beton» [3]. Les exigences qui y figurent sont entre autres les suivantes:

- Les pavés en béton doivent avoir une structure fermée et des faces latérales planes.
- Leurs hauteurs doivent être de préférence de 60, 80, 100, 120 ou

Pavés à emboîtement sur une place de jeux.

Photo: Hunziker Matériaux SA

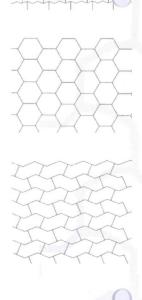
140 mm, et leur longueur maximale de 280 mm; les écarts admissibles sont de \pm 3 mm pour les longueur et largeur, et de \pm 5 mm pour la hauteur.

- Leur résistance moyenne à la compression doit atteindre 60 N/mm² au moins (moyenne de cinq mesures); aucune des cinq valeurs ne doit se situer en-dessous de 50 N/mm².
- Ils doivent résister au gel et aux fondants chimiques.

Un projet de norme pour pavés en béton (future EN 1338) existe en version allemande depuis 1994, mais cette norme ne sera probablement adoptée qu'en 1996 au plus tôt [4].

Diversité des formes et couleurs

Les pavés en béton sont des articles en béton typiques: de petit format, ils sont fabriqués en grandes séries sur des chaînes de production automatiques. Mais nous ne nous étendrons pas ici sur leur fabrication. Notre propos est de traiter des pavés finis et de leurs utilisations.


Les pavés étant démoulés et transportés tout de suite après la fabrication,

Pose de pavés en béton à la machine.

Photo: FOTarena, Berne

ils doivent témoigner d'une bonne résistance à vert (0,2 à 0,5 N/mm²). C'est pourquoi ils sont fabriqués principalement avec un béton de consistance terre humide, donc avec un béton à bas rapport eau/ciment. Pour des pavés résistant au gel et aux fondants chimiques, le rapport e/c est de 0,42

au maximum [5]. Les pavés en béton sont vendus en plusieurs formes: ils peuvent être carrés, rectangulaires, hexagonaux ou cruciformes. Il en existe en outre qui peuvent être posés en cercle, et on en trouve de nombreuses sortes à emboîtement. Les figures en présentent quelques exem-

ples. A la diversité des formes s'ajoute celle des couleurs, lesquelles s'obtiennent par l'adjonction de pigments inorganiques, généralement des oxydes de fer (voir le «Bulletin du ciment» consacré aux pigments [6]). Rouge, brun, anthracite et jaune sont par exemple des couleurs standard. Les

Pose de pavés en béton en pratique

Fouille

- Fouille environ 30 cm plus large que le pavage prévu.
- Tenir compte lors de la fouille déjà d'une pente transversale (min. 1,5 %) permettant un écoulement rapide de l'eau de surface.

Plate-forme

- Mettre en place un coffrage composé d'un matériau approprié (tout-venant, gravier 0/30 mm, cailloutis), qui servira de couche de base et de couche filtrante et antigel.
- Compacter avec un rouleau ou un appareil vibrant.

 Recouvrir copieusement de sable la surface compactée (recommandation).

Lit de gravillon

- Utiliser un gravillon 3/6 mm ou un mélange gravillon/sable.
- Compacté, le lit de gravillon doit être d'une épaisseur de 3 à 5 cm; prendre en considération que la vibration faite après la pose des pavés compacte le lit de gravillon sur 0,5 à 1 cm.
- Il ne faut pas marcher sur la couche de gravillon, ni la compacter; aplanir à la règle

Largeur de fouille Pavage env. 300 mm joints 1–3 mm, remplis de sable Lit de gravillon 3 à 5 cm Couche de fondation en fonction de la nature du sol et de la charge prévisible due au trafic

Pose des pavés

- Poser les pavés à joints serrés (largeur 1–3 mm).
- Contrôler les joints tous les 2 à 3 m, au cordeau ou à la règle.
- Lors de la pose, mélanger les pavés des différentes palettes (influence des différences de couleur et de structure réduite).
- Ne pas poser les pavés ayant des défauts visibles.
- Commencer toujours la pose dans un coin; pour les surfaces conoïdes, commencer dans le coin dont les côtés forment un angle droit.
- Surfaces à forte pente: commencer si possible au point le plus bas, mais toujours dans un coin formant angle droit.
- Ajustement à des puits, caniveaux, bordures fixes, murs, etc.: couper les pavés aux dimensions voulues au moyen de machines appropriées.
- Égaliser par étapes les pavés posés dans le lit de gravillon, à la plaque vibrante ou au rouleau vibrant (avec revêtement de protection). Procéder en allant du bord vers le milieu.
- Remplir les joints avec un sable cohérent aussi fin que possible (0/2 mm). Remettre une ou deux fois du sable à quelques jours d'intervalle améliore la fermeture des joints.
- Ne pas vibrer à la machine sur les toitsterrasses et les balcons. Un écoulement dans les règles de l'art est très important.

Sources: recommandations de fabricants de pavés en béton Dessin: Hunziker Matériaux SA / ZSD, S. Einfalt fabricants de pavés désignent toutefois fréquemment les couleurs avec
plus de fantaisie: rouge brique, brun
terre, terre de bruyère, jaune Jura, etc.
La structure de la surface, bien que
laissée le plus souvent naturellement
rugueuse, est un autre élément de
diversité. Elle peut être modifiée par
lavage, bouchardage ou sablage,
ce qui, par rapport à des pavés non
traités, améliore en général les caractéristiques d'emploi [5].

Pose des pavés

L'aspect et la structure des stabilisations de surfaces composées de pavés en béton dépendent beaucoup du terrain (sol naturel) ou de l'infrastructure, lesquels doivent être de nature à supporter la charge prévisible due au trafic. Il n'existe toutefois pas de directives universellement applicables à ce sujet. Les sols solides et ingélifs n'exigent pas de couches de base et de protection contre le gel séparées. Les sols fortement cohérents (argile) doivent en revanche être stabilisés, ou bien remplacés ou recouverts par un matériau ingélif et solide.

L'évacuation de l'eau de surface est un point important, car jusqu'à 25 % des eaux pluviales peuvent pénétrer par les joints. C'est pourquoi, en présence de couches de base imperméables, il faut prévoir un drainage sous le lit de gravillon.

Les pavés en béton offrent de nombreuses possibilités d'aménagement.

Les pavés peuvent être posés un à un à la main, ou à l'aide d'appareils de pose. Avec les appareils de pose manuels, on prend sur la palette la moitié d'une couche de pavés, et avec les machines de pose une couche entière, que l'on pose à l'endroit voulu. Les rendements journaliers dépendent du type de pavés, de la topographie du terrain et de l'organisation du chantier. Ils se situent aux environs de 200 à 300 m²/jour avec les appareils de pose manuels, et aux environs de 300 à 600 m²/jour avec les machines de pose. Des conseils donnés par des fabricants suisses de pavés en béton figurent dans l'encadré «Pose de pavés en béton en pratique». Ils s'appliquent à des pavages dont la charge due au trafic est relativement faible, par exemple pour des places d'accès, places de parc et pistes cyclables, pour lesquels des pavés de 60 mm d'épaisseur suffisent généralement. En cas de fortes charges dues au trafic surtout, il faut utiliser des pavés à emboîtement.

Pavés en béton ayant à supporter de lourdes charges

Avec des pavés en béton bien posés, on obtient une répartition des charges assez semblable à celle obtenue avec un revêtement souple bitumineux [7]. A l'étranger surtout, les pavés en béton sont souvent utilisés même pour des aires soumises à de très lourdes charges. En Angleterre par exemple, on utilise des pavés en béton pour stabiliser les aires de circulation d'aéroports, et pour le nouvel aéroport de Hongkong, il est prévu de poser plus de 400 000 m² de pavés sur les aires de stationnement des avions [8]. Quatre exemples venant d'Allemagne figurent dans le tableau 1, qui font voir l'utilisation de pavés en béton dans des conditions très diverses.

Efflorescences

Les pavés en béton posés à l'extérieur présentent presque toujours des efflorescences [9]. Celles-ci peuvent apparaître déjà pendant le durcissement du béton (efflorescences primaires).

Tab. 1 Utilisations de pavés en béton en Allemagne [14].

Mais les efflorescences importantes sont celles dites secondaires, qui apparaissent après la pose des pavés. Elles sont dues à l'hydroxyde de calcium qui se forme lors de l'hydratation du ciment: de l'eau pénètre dans les pores de la pâte de ciment durcie et dissout l'hydroxyde de calcium. Cette solution peut parvenir à la surface du béton, et lorsque l'eau s'évapore, l'hydroxyde de calcium initial subsiste sous forme d'une mince couche de chaux de couleur blanche.

Par réaction avec le dioxyde de carbone contenu dans l'air, cette couche de chaux se transforme en carbonate de calcium difficilement soluble, que l'on remarque sous forme d'efflorescence blanchâtre. Ce phénomène est particulièrement gênant sur les pavés teintés.

$$Ca(OH)_2$$
 + CO_2 + H_2O \Rightarrow $CaCO_3$ + 2 H_2O

Les efflorescences secondaires apparaissent principalement lorsque le ter-

rain est mal drainé, et que les pavés reposent de ce fait longtemps dans l'eau. Elles atteignent un maximum après environ une année, puis sont désagrégées par les intempéries, pour finalement disparaître après quelque deux ans. La désagrégation des efflorescences secondaires par les intempéries est due à la réaction du calcium de carbonate, difficilement soluble, avec le dioxyde de carbone contenu dans l'air et l'eau. Il se forme alors de l'hydrocarbonate de calcium, facilement soluble dans l'eau.

CaCO ₃	+ CO ₂	+ H ₂ O	\Rightarrow Ca(HCO ₃) ₂
carbonate	dioxyde	eau	hydrocarbonate
de calcium	de carbone		de calcium

Pour l'élimination des efflorescences par traitement avec de l'acide muriatique dilué ou avec des produits spéciaux, la plus grande prudence est requise. D'une part, travailler avec des acides n'est pas sans danger, et d'autre part, la surface des pavés étant rendue rugueuse, des changements de teinte inégalement répartis peuvent apparaître [10]. De plus, l'acide dilué peut attaquer des matériaux se trouvant près des pavés. Il est beaucoup plus judicieux d'éliminer la mince couche de chaux (hydroxyde

Bibliographie

- [1] Krömer, R., «Erfolgsstory Betonpflaster gemeinsam geht's weiter», Betonwerk + Fertigteil-Technik 61 [2], 60–66 (1995).
- [2] Krömer, R., «Erfolgsstory Betonpflasterstein wie geht's weiter?», Betonwerk + Fertigteil-Technik 60 [8], 31–34 (1994).
- [3] DIN 18501 (édition 1982): «Pflastersteine aus Beton».
- [4] Pesch, L., «Auf dem Weg zum «Euro-Pflasterstein» – Gedanken zur CEN-Bauprodukt-Normung am Beispiel von CEN 1338», Betonwerk + Fertigteil-Technik 60 [8], 54–62 (1994).
- [5] Bilgeri, P., «Betonwaren» in «Handbuch Betonfertigteile, Betonwerkstein, Terrazzo», Beton-Verlag, Düsseldorf (1991), pages 367–419.
- [6] Hermann, K., «Les ajouts: les pigments», Bulletin du ciment **63** [9], 2–7 (1995).
- [7] Ghafoori, N., and Sukandar, B. M., «Abrasion resistance of concrete block pavers», ACI

- Materials Journal 92 [1], 25-36 (1995).
- [8] Knapton, J., «Pflastersteine für Flughäfen eine weltweite Chance», Betonwerk + Fertigteil-Technik 61 [9], 100–101 (1995).
- [9] Kresse, P., «Ausblühungen und ihre Verhinderung», Betonwerk + Fertigteil-Technik 57 [10], 73–88 (1991).
- [10] «Ausblühungen auf Beton Ärger, der vorübergeht», prospectus de Bayer AG, Leverkusen (1991).
- [11] Muth, W., «Ökologische Flächenbefestigung mit Betonpflaster», Betonwerk + Fertigteil-Technik 60 [5], 114–123 (1994).
- [12] *Hermann, K.*, «Béton poreux», Bulletin du ciment **61** [14], 1–8 (1993).
- [13] Meyer, B., «Rasengittersteine für durchlässige Plätze», Bulletin du ciment 57 [20], 1–8 (1989).
- [14] «Neue Wege aus Beton Betonpflaster», édité par le Bundesverband der Deutschen Zementindustrie, Cologne (sans date de parution).

de calcium) par lavage à l'eau, avant qu'elle se soit transformée en carbonate de calcium difficilement soluble.

Aspects écologiques

Sur les routes et places, il n'est pas raisonnable d'évacuer les eaux pluviales au moyen de canalisations les amenant à des stations d'épuration. Elles doivent plutôt s'infiltrer sur place dans le sol, lequel ne doit en conséquence pas être scellé par des revêtements imperméables à l'eau. Pour résoudre ce problème, des revêtements permettant l'infiltration en nappe sont proposés, et réalisés. Il peut s'agir par exemple de gazon empierré, de bitume filtrant, de béton poreux, ou de pavage drainant [11]. Pour obtenir des pavages drainants,

Pavés en béton en milieu rural.

on utilise pour la pose des pavés des distanceurs qui permettent de réaliser des joints de 10 à 35 mm de largeur, que l'on remplit de sable. Il faut également mentionner les pavésdrains en béton [12], qui, dans la zone des racines d'arbres, assurent l'arrivée d'eau et d'air, mais doivent également convenir pour les zones piétonnes, les places et les pistes cyclables. Les pavés drainants ne sont toutefois pas unanimement appréciés. On leur reproche une moindre

résistance à la compression, une per-

méabilité diminuant avec le temps (concrétion, colmatage des pores par la poussière et la saleté), et une résistance au gel insuffisante [5, 11]. Une autre solution est d'utiliser des pavés en béton avec évidements, par exemple des dalles alvéolées, dont il a déjà été traité dans le «Bulletin du ciment» [13].

Photo: Hunziker Matériaux SA

Les pavés en béton, éléments d'aménagement

Comparés aux revêtements fermés, les surfaces composées de pavés en béton présentent quelques avantages. Ils sont d'une grande durabilité, et on les entretient à peu de frais. Les pavés défectueux peuvent être remplacés séparément. Lorsque des conduites enterrées doivent être réparées ou remplacées, il est facile d'enlever les pavés et de les remettre en place ensuite. Et finalement, grâce à la diversité de leurs formes, couleurs et structures, non seulement ils se prêtent à de multiples utilisations, mais ils sont également utilisables pour aménager des espaces extérieurs.

en béton assurent l'arrivée d'eau et d'air dans la zone des racines d'arbres.

Les pavés-drains

Kurt Hermann, TFB Wildegg