Zeitschrift: Bulletin du ciment

Herausgeber: Service de Recherches et Conseils Techniques de l'Industrie Suisse du

Ciment (TFB AG)

Band: 3 (1935)

Heft: 3

Artikel: Le gunitage, un moyen de protection efficace contre la rouille

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-145074

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN DU CIMENT

MARS 1935 3^{ème} ANNÉE NUMÉRO 3

Le gunitage, un moyen de protection efficace contre la rouille

Le procédé consistant à projeter un mortier sous pression (gunitage) sur des constructions métalliques permet de les protéger efficacement et d'une façon durable contre les attaques de la rouille. L'application de ce procédé par les CFF pour la réfection des ponts.

Au béton l'avenir!

2

Par suite de la suppression progressive des passages à niveau on a dû construire sur les voies de chemin de fer suisses un grand nombre de ponts-routes. Les plus anciens sont en général des constructions métalliques dont le tablier était constitué primitivement par une couche de ballast non isolée, reposant sur des fers Zorès. Le métal, exposé aux infiltrations d'eaux et à l'action des fumées de locomotives, est plus ou moins fortement rongé par la rouille. A cet égard les ponts-routes en fer sur les grandes gares se trouvent dans une situation extrêmement défavorable car l'attaque par les fumées est très intense du fait de la circulation presque ininterrompue des locomotives et parce que sur ces ponts le trafic des véhicules s'accroit sans cesse.

L'entretien de ces ouvrages est absolument impossible sans une interruption momentanée de la circulation des locomotives. Mais a peine a-t-on, durant un court arrêt du trafic, nettoyé et repeint à neuf une partie du pont, que la fumée brûlante de la prochaine locomotive détériore déjà la peinture fraîche et encore humide. Par conséquent la peinture ne peut que ralentir la destruction par la rouille sans être à même de l'empêcher complètement. Ces ponts métalliques sont donc voués à une destruction certaine si on ne recourt pas à des moyens de protection plus efficaces.

L'électrification de la plus grande partie de notre réseau de chemins de fer n'a pas, comme on pourrait le croire, aplani ces difficultés mais les a au contraire encore augmentées. Du fait que la ligne de contact doit être située au minimum à 4,80 m au-dessus du rail, la distance comprise entre la ligne de contact et le point le plus bas de l'ouvrage n'est plus que de 25 à 30 m. Il n'est par conséquent pas possible de monter une plate-forme de travail dans un intervalle si étroit pour exécuter les réparations et les peinturages nécessaires; on en est réduit à se servir d'échafaudages mobiles (fig. 1) ce qui nécessite l'interruption du courant et la mise à la terre de la ligne de contact. Il en résulte que dans les gares on ne peut travailler la plupart du temps, que pendant quelques heures de nuit et même, au-dessus de certaines voies, que quelques heures par semaine. Des réparations, qui doivent être exécutées dans des conditions si difficiles, reviennent bien entendu très cher. C'est pour quoi il est préférable, malgré la traction électrique, de ne plus construire de ponts métalliques au-dessus des L'entretien des anciens passages sur voies, fortement attaqués par la rouille, au moyen de peinturages à l'huile successifs est notoirement insuffisant; il faut recourir à des moyens plus efficaces: à l'enrobement ou au gunitage de la construction portante c'est-à-dire à un revêtement en mortier ou en béton de ciment.

Le procédé qu'on applique très souvent aujourd'hui dans l'industrie électrique et qui consiste à remplacer la peinture par un

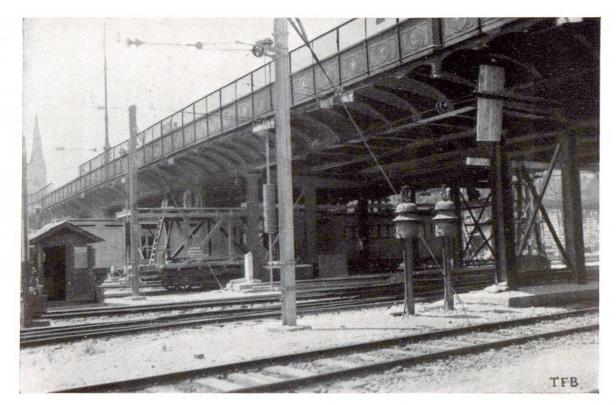


Fig. 1 Le pont métallique avant la réfection

enduit métallique ne rouillant pas, n'entre pas en considération pour l'entretien des ponts et en particulier des vieux ponts. Il est d'une part quasi impossible de dérouiller à fond toutes les parties métalliques d'un pont et d'autre part il faut renoncer à un enduit métallique de qualité régulière et recouvrant bien, vu les conditions d'exécution particulièrement difficiles.

Le gunitage (projection de mortier sous pression) présente sur le peinturage et l'enduit métallique des avantages considérables. Pour appliquer ce procédé avec succès, point n'est besoin de nettoyer le métal à fond et il est reconnu que la gunite est étanche, comme le prouve sa résistance extraordinairement élevée (jusqu'à 800 kg/cm²) ce qui lui permet de protéger efficacement la construction métallique de l'humidité et des gaz aggressifs. La gunite constitue aussi vis-à-vis des efforts mécaniques un moyen de protection bien supérieur à la peinture et aux autres enduits. Lorsqu'on doit par exemple renforcer certains éléments porteurs, fortement rouillés, par des pièces métalliques soudées qui en général affectent sensiblement la beauté de l'ouvrage et dont l'entretien n'est pas facile, la gunite permet de les cacher à la vue tout en les préservant de la rouille. En outre le béton et le revêtement à la gunite protège la construction métallique des brusques changements de température et par là d'un retrait ou d'un allongement exagéré avec leurs conséquences désagréables.

L'entretien des très nombreux panneaux protecteurs en tôle, construits durant l'électrification, s'est avéré très onéreux, c'est pourquoi on les remplace aujourd'hui, partout où cela est possible, par des parapets en béton armé.

Se basant sur les expériences résumées ci-dessus, les C.F.F. ont construit, durant ces dernières années, nombre de passages sur voie,

en béton et ont prévu la reconstruction de nombreux ouvrages anciens. Les données qui suivent relatent en quelques mots la réfection d'un pont de grandes dimensions.

Le pont-route de Münchenstein

au-dessus de la gare de Bâle (fig. 1) a été construit durant les années 1905/06. Il a une longueur de 90 m, une largeur de 18 m et traverse en 6 ouvertures de 10 à 20 m de portée, de nombreuses voies de chemin de fer. Sur le pont même la circulation des véhicules routiers et des tramways est très intense. Cet ouvrage repose sur deux culées, une pile en maçonnerie et quatre appuis métalliques. Le tablier se compose d'un gros pavage posé sur un tapis de sable et d'une dalle en béton de 25 cm d'épaisseur, mais de très mauvaise qualité, isolée par des plaques de mammouth. Il est porté par des entretoises en fers profilés, réparties entre les 6 poutres principales rivetées qui sont enrobées complètement, à part les ailes et les semelles de la membrure inférieure. Les trottoirs, formés d'un tapis d'asphalte et d'une mince dalle en béton, s'appuient sur des consoles métalliques visibles, qui sont rivées extérieurement aux poutres longitudinales de bord. Les parapets sont constitués par des panneaux de tôle ouvragés et retenus par des montants en fonte; depuis l'électrification ils sont surmontés de treillis de protection en métal.

Jusqu'au début de la guerre mondiale il n'a pas été nécessaire d'effectuer des travaux de réfection; pendant la guerre le temps à manqué pour les exécuter et après la guerre on ne disposait pas des crédits nécessaires. Après l'électrification, l'exécution des travaux d'entretien s'est révélée, comme nous l'avons expliqué plus haut, si difficile qu'elle fut renvoyée d'année en année. Il n'est par

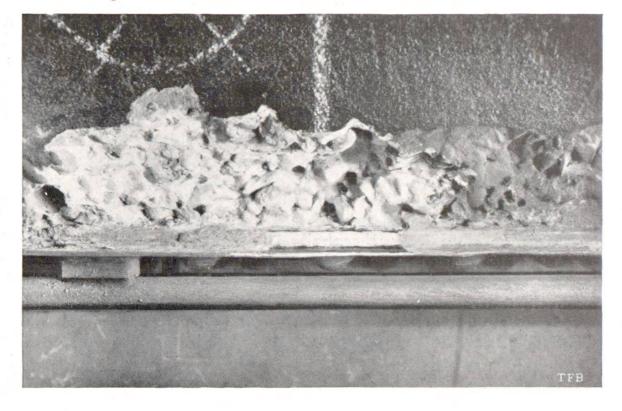


Fig. 3
Gunitage des membrures inférieures

conséquent pas étonnant qu'après 30 ans le pont se trouve dans un état très défectueux. Les parapets étaient partout rouillés; les consoles des trottoirs, les ailes inférieures des entretoises et des poutres principales avaient en de nombreux endroits subi, du fait de la rouille, une diminution de section de 50 % et plus; les cornières des membrures inférieures, recouvertes de béton poreux, étaient fortement attaquées par la rouille.

Ces constatations faites, il ne pouvait être question d'un nettoyage et d'un nouveau peinturage, il a fallu mettre à nu les ailes inférieures des poutres métalliques au moyen de perforatrices et dérouiller avec soin le métal par martelage et jet de sable; les profils, dont la section présentait un affaiblissement dangereux, ont été renforcés par des fers ronds soudés (fig. 2) puis on a procédé au gunitage de toute la construction métallique (fig. 3 et 4). Les trottoirs, y compris les parapets et les consoles métalliques, ont été reconstruits en béton armé. La couche isolante du tablier fut renouvelée et protégée par une dalle de mortier et de béton armés recouverte, sur la chaussée, d'un macadam au goudron et, sur les trottoirs, d'un tapis d'asphalte. L'ouvrage ressemble aujourd'hui à s'y méprendre, à un pont en béton armé (fig. 5) et on escompte que les prochaines réparations devront être faites au plus tôt dans trente ans.

Les travaux en béton ont été exécutés par la S. A. Ed. Zublin & Cie., Bâle, le gunitage par l'entreprise Ing. Max. Greuter & Cie., Zurich, spécialisée dans ce genre de travaux, l'isolation de la dalle en béton par la «Abag», Bâle, en collaboration avec la «Asphalt-

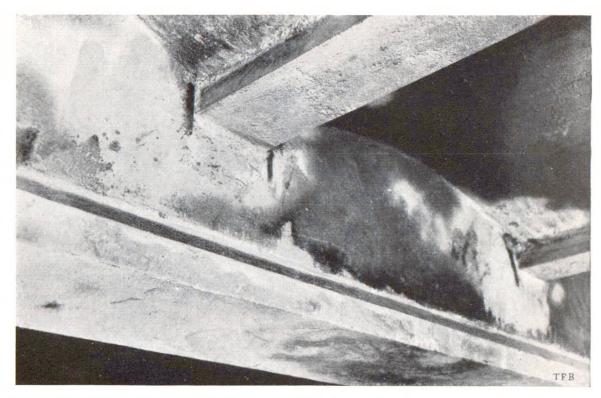


Fig. 4 Entretoises et poutre principale enrobées de gunite

emulsion S. A.», Zurich, et les travaux de soudage par la maison Preiswerk & Esser, Bâle.

Au cours de cette année on prévoit la réfection du pont de Ste Marguerite à Bâle, suivant le même procédé. Cet ouvrage, un peu plus vieux mais construit de façon analogue au pont de Münchenstein, sera en même temps élargi.

Fig. 5 L'ouvrage reconstruit a l'apparence d'un pont en béton armé

Pour tous autres renseignements s'adresser au SERVICE DE RECHERCHES ET CONSEILS TECHNIQUES DE LA E. G. PORTLAND HAUSEN près BRUGG.