Zeitschrift: astro sapiens : die Zeitschrift von und für Amateur-Astronomen

Band: 1 (1991)

Heft: 4

Artikel: Im Fadenkreuz

Autor: Hägi, Markus

DOI: https://doi.org/10.5169/seals-896898

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Im Fadenkreuz

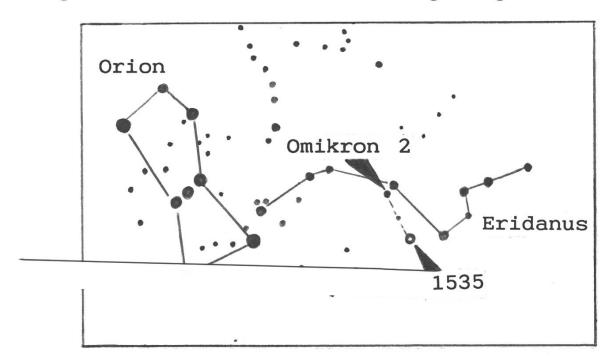
Markus Hägi

Es gab viele Gründe, eine bitterkalte, klare Winternacht unter der warmen Bettdecke zu verbringen, da bestanden bisher keine Zweifel. Kontaktlinsen, die am Okular anfroren, der warme Tee, der innert Minuten zum Eisklotz wurde, das Teleskop, dessen mit Eis beschlagene Optik herrlich-neblige Bilder lieferte oder die Elektronik, die längst den Geist aufgegeben hatte. Auch die sonderbar an den Händen klebenden Metallteile liessen nicht die gewünschte Freude aufkommen.

Leider helfen in diesem Winter alle Ausreden nichts mehr. Denn als Leser von astro sapiens werden Sie sich die neuen Fadenkreuzobjekte, allen Plagen zum Trotz, anschauen müssen.

Omikron 2 (Eridanus)

Alle "normalen Sterne" (Hauptreihensterne, das heisst rund 90% aller Sterne unserer Galaxie) produzieren Energie, in dem sie durch Kernreaktionen Wasserstoff in Helium umwandeln. Der gewaltige Strahlungsdruck, der dabei entsteht, bewahrt den Stern vor einem drohenden Kollaps durch die stets vorhandene Gravitationskraft. Wenn der Wasserstoffvorrat im Zentrum zur Neige geht und sich dort immer mehr Helium ansammelt, wandert das ato-

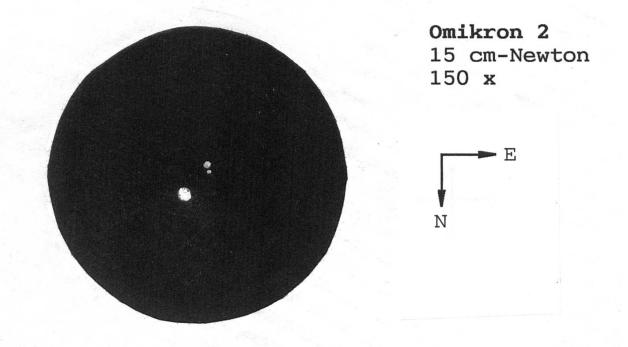

astro sapiens 4/91 7

mare Feuer im Stern von innen nach aussen. sinkt durch das Weafallen die Kernreaktionen Temperatur und der Strahlungsdruck. Die Gravitationskraft gewinnt die Oberhand und so beginnt der schrumpfen. Durch diese Kontraktion steigt die Dichte, der Druck und damit verbunden auch die Temperatur wieder Ein weiterer an. Kernfusionsprozess setzt ein: Heliumkerne fusionieren im Zentrum zu schwereren Elementen aussen während weiter noch immer Wasserstoff-Helium-Fusion im Gange ist. Energieproduktion in den äusseren Schichten des Sterns wird damit so gross, dass er sich Irgendwann werden zum Roten Riesen aufbläht. Innern keine Kernreaktionen mehr möglich sein, so dass sich das Innere des Sterns zu einem Weissen Zwerg zusammenzieht, während die abgestossen Hüllen werden. Weisser Zwerg ist also ein toter Stern, keine Kernfusionen mehr vollziehen kann und so ausschliesslich der Gravitationskraft ausgeliefert ist. Er besitzt deshalb typischer extrem hohe Dichte. Ein Weisser Zwerg zeichnet sich weiter durch eine geringe Grösse (durchschnittlich 1/50 des Durchmessers Sonne), niedrige Leuchtkraft und Temperaturen aus. Es ist nur die Resthitze der Kontraktion, die Weisse Zwerge für Milliarden Jahre sichtbar bleiben lässt.

Nicht alle Sterne werden früher oder später zu Ist ein Stern schwerer Weissen Zwergen. 1.4 Sonnenmassen. SO wird ein vielleicht Neutronenstern oder auch Schwarzes Loch entstehen. Ein beliebiger Stern also von Anfang an leichter als Sonnenmassen sein oder er muss während seines

8 astro sapiens 4/91

Lebens soviel Materie abstossen, dass er irgendwann unter diese Grenze gelangt.



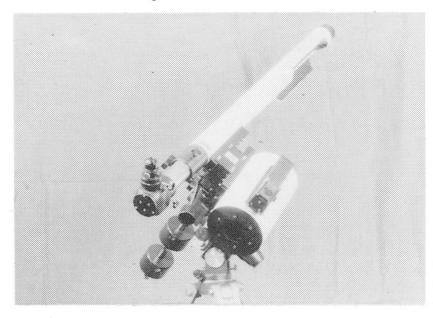
langgestreckten Sternbild Eridanus, vom brillianten Orion, unweit können selbst mit kleinen Teleskopen ein solches Dichtemonster beobachten. Unter dem Omikron 2 (oder auch 40 Eridani) verbirgt sich ein interessanter Dreifachstern, der uns 16 Lichtjahren Entfernung recht nahe steht. Die beiden Hauptkomponenten A und B sind 82.8 Bogensekunden voneinander entfernt und bilden damit ein sehr weites Paar. Die A-4.5 ist ein heller Komponente mag Hauptreihenstern, der in etwa die gleiche Grösse, Masse und damit auch Dichte besitzt wie unsere Sonne.

Bei der 9.7 mag hellen B-Komponente handelt es sich um den wohl am leichtesten zu beobachtenden Weissen Zwergstern. Dieser ist nur rund zweimal so gross wie unsere Erde, besitzt aber etwa die halbe Sonnenmasse! Die

astro sapiens 4/91

Dichte dieses Sterns beträgt damit das 65'000fache der Sonnendichte. Bei den
Mittellandsuppenbedingungen, wie sie von Ende
September bis Ende März allzu oft vorzufinden
sind, ist der Weisse Zwerg im 15cm-Teleskop
nicht ohne weiteres erkennbar, denn der grosse
Helligkeitsunterschied der beiden Komponenten
schafft Probleme. Bei 30-facher Vergrösserung
ist er neben dem hellen, gelben Hauptstern als
feines, weisses Sternchen auszumachen.

Mit einer 100-150-fachen Vergrösserung wird man in etwa 9 Bogensekunden Abstand vom Weissen Zwerg die 10.8 mag helle C-Komponente des Dreifachsterns Omikron 2 erkennen können. Diese (lichtschwächste) Komponente, ein sogenannter Roter Zwerg, ist fast halb so gross und nur einen Fünftel so schwer wie unsere Sonne. Damit ist dieser Stern einer der leichtesten überhaupt. Rote Zwerge sind Hauptreihensterne und stellen im Gegensatz zu


10

110 mm

Ein starkes Trio

Drei Teleskope, die Ihre Aufmerksamkeit verdienen

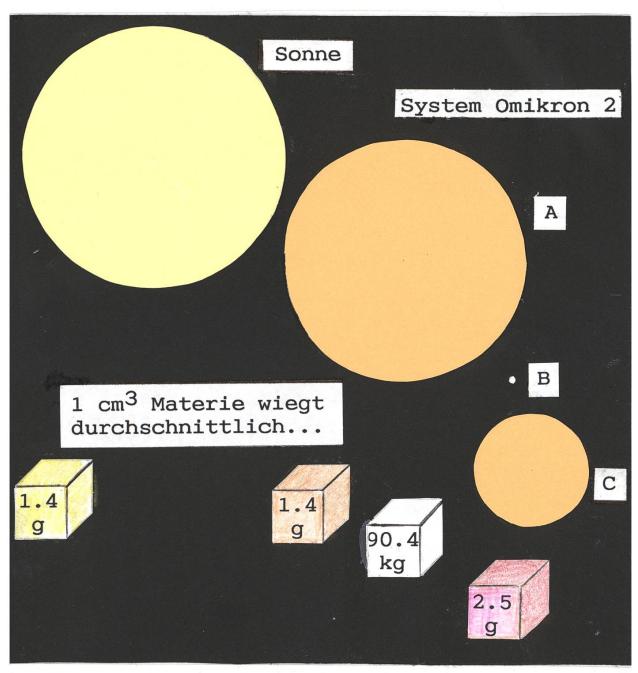
110mm sind auch nicht gerade viel gegenüber den 8" der Schmidt-Cassegrains, werden Sie sich denken. Sicher, doch eben diese 110mm sind der Garant für erfolgreiche Deep Sky Beobachtungen, da ab dieser Öffnung die Strukturen solcher Objekte so richtig zur Geltung kommen. 110mm Öffnung in der Hand von Spezialisten, die Ihnen beweisen wollen dass die 8" der Schmidt-Cassegrains ganz schön in den Schatten gestellt werden können.

K 110/2720 mit 2"-Okularauszug und AOK SPS Montierung

Newton RFN 110/550

Klein und handlich ist die Devise, doch nicht zu klein, um ein echter Newton mit all seinen Vorzügen zu sein. Als Leichtgewicht gerne auf Reisen, möchte er auch mal fotografisch den Ton angeben - das Zeug dazu hat er ja mitbekommen.

Refraktor RFR 110/600

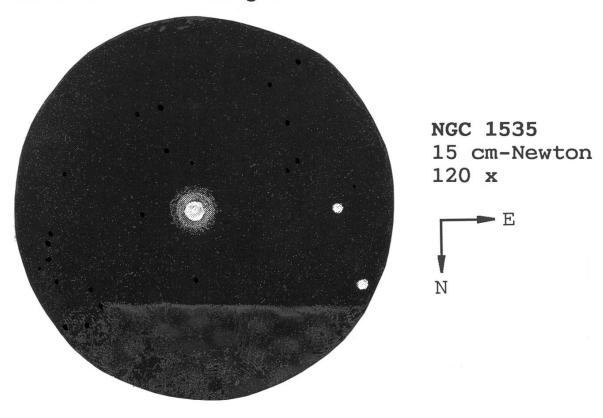

Unglaublich, was es da zu sehen gibt! Was Sie sonst nur von Fotografien her kennen, kommt mit diesem Deep Sky Teleskop klar zum Vorschein. Wo bei anderen Fernrohren Schluss ist, fängt hier der Spass erst richtig an. Man sieht es dem Okularauszug dabei förmlich an, dass hier nichts vignettiert!

Schiefspiegler K 110/2720

Eine Bildgüte wie im Traum! Das Teleskop mit dem grössten brauchbaren Vergrösserungsbereich von 40x bis 300x. Ein Teleskop, dass so gut ist, dass es gleich drei verführerische Versionen gibt. Ob da 8" noch standhalten können?

mit AOK dabei....

ASTROOPTIK KOHLER Bahnhofstr. 63 CH-8620 Wetzikon AOK direkt: 01/930'10'75 (Büro und Werkstatt) Weissen Zwergen nichts allzu Besonderes dar; 70% aller Sterne sind Rote Zwerge und nur 10% sind Weisse Zwerge.



Das System Omikron 2 im Grössen- und Dichtevergleich mit der Sonne.

An der Starparty 1991 bot Omikron 2 im 15cm-Refraktor einen unvergesslichen Anblick. Vor allem die beiden Zwergsterne lieferten einen faszinierenden Farbkontrast (orange-weiss), der offensichtlich nur bei guten Bedingungen zur Geltung kommt. Im 25cm-Newton erscheint der Dreifachstern lediglich etwas heller.

NGC 1535 (Eridanus)

Ziehen wir das Teleskop von Omikron 2 fünf Grad in der Deklination nach Süden, so stossen wir auf den weniger bekannten planetarischen Nebel NGC 1535. Befindet sich dieser in einer tiefklaren Nacht hoch am Himmel so haben wir es mit einem sehr interessanten Objekt zu tun. Der amerikanische Astronom Brian Skiff nennt ihn "einen der besten planetarischen Nebel für Amateur-Beobachtungen".

astro sapiens 4/91

Der ca. 2'150 Lichtjahre entfernte, 9.6 mag helle Nebel sollte bei 50 bis 75-facher Vergrösserung aufgesucht werden. Geübte Beobachter werden ihn sehr schnell anhand seiner bläulichen Farbe aufspüren.

15cm-Teleskop fällt ein helles, auf, das einige Scheibchen Bogensekunden Durchmesser hat und sich somit deutlich von den umliegenden Sternen abhebt. Bei längerem Hinsehen ist ein eigenartiges schwaches Leuchten erkennbar, welches das zentrale Scheibchen wie eine hauchfeine Schale umgibt. Der gesamte Nebel hat eine Ausdehnung von 48 x 42 Bogensekunden und erscheint im 15cm-Newton 120-facher Vergrösserung unter am drücklichsten. Bei ruhiger Luft und mit enormer Einbildungskraft kann mitten im hellen, zentralen Scheibchen 12.6 der mag helle Zentralstern erahnt werden. Erst im 25cm-Newton ist dieser direkt sichtbar.

Koordinaten (Äquinoktium 2000.0)

Objekt	Rektaszension	Deklination
Omikron 2	4 h 15 min	-7° 39`
NGC 1535	4 h 14 min	-12° 44`