Zeitschrift: ASMZ : Sicherheit Schweiz : Allgemeine schweizerische

Militärzeitschrift

Herausgeber: Schweizerische Offiziersgesellschaft

Band: 190 (2024)

Heft: 9

Artikel: Die mittleren Kaliber erleben eine Renaissance

Autor: Vischer, Moritz

DOI: https://doi.org/10.5169/seals-1063598

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Mittelkaliber-Maschinenkanonen gehören zu den vielseitigsten Waffen überhaupt. Nachdem sie vor Kurzem noch als überholt angesehen worden sind, sind sie gerade im Ukraine-Krieg wieder sehr begehrt.

Moritz Vischer

Mittelkaliber-Maschinenkanonen bewähren sich seit einem Jahrhundert vornehmlich als landgestützte Systeme im Einsatz gegen Luft- und Bodenziele, als Schiffsbewaffnung gegen Luft- und Seeziele oder als Flugzeugbordkanone. Trotz seines Erfolges stand dieses technische Konzept in den letzten Jahren unter Verdrängungsdruck durch andere Waffensysteme, wobei je nach Einsatzkontext mal grössere Kaliber, mal kleinere Kaliber und oftmals ein Komplettersatz durch Lenkwaffen nahegelegt wurde.

Trotz der vermeintlichen – meist in Simulationen errechneten und in Studien kolportierten – Überlegenheit anderer Lösungen hat sich der hervorragend ausbalancierte Fähigkeitsmix dieser Waffengattung immer wieder im realen Einsatz bewiesen. Dennoch mussten sich bis vor Kurzem die Mittelkaliber-Maschinenkanone sowie deren Befürworter und Hersteller gegen ihre prophezeite Obsoleszenz wehren.

Momentan ist von den Unkenrufen, dieser Waffentyp sei eine taktisch-technische Sackgasse des 20. Jahrhunderts, nichts mehr zu vernehmen. Vor dem Hintergrund alter und neuer Bedrohungen auf und über dem Gefechtsfeld, akzentuiert im materialintensiven Konflikt in der Ukraine, werden ihre

Vorteile wieder klar erkennbar (vgl. «Wie der Gepard zum Sprung ansetzt», ASMZ 3/2023).

Dieser Beitrag beleuchtet aus einer querschnittlichen Perspektive eine Reihe technischer Eigenschaften, welche diese taktischen Vorteile ermöglichen. Zu Letzteren gehören:

- die hohe Feuerdichte und Sättigungsresistenz;
- das breite Spektrum bekämpfbarer Ziele;
- die grosse Wirkung im Ziel, die Niederhaltefähigkeit und psychologische Wirkung;
- das breite Spektrum von Einsatzdistanzen von wenigen Metern bis mehreren Kilometern;
- die kurze Reaktionszeit durch verzugslose Schussauslösung und hohe Geschossgeschwindigkeit;
- die langfristige Kosteneffektivität trotz hoher anfänglicher Beschaffungskosten entsprechender Plattformen;

- ◀ Vielseitig: Die für Erdziele ausgelegte 30×173 mm MK44 Bushmaster II des Schweizer CV9030 kann bedingt auch gegen klassische grössere Luftziele wirken. Im Bild eine Erprobung in S-chanf im Jahr 2019. Bild: Moritz Vischer
- die Möglichkeit, kostengünstig und realitätsnah zu üben.

Vier Bauarten

Als Mittelkaliberwaffen gelten gemeinhin Rohrwaffen in einem Kaliberbereich von 20 mm bis 57 mm. Bei einer Maschinenkanone wiederum handelt es sich gemäss dem Oerlikon-Taschenbuch von 1980, dem Vademecum eines jeden Waffeningenieurs, um eine Kanone, die imstande ist, «allein durch Betätigung des Abzuges eine Geschossserie im Dauerfeuer zu verschiessen. Alle zum fortgesetzten Schiessen erforderlichen Funktionsvorgänge geschehen selbstständig. Die hierfür notwendige Energie wird entweder der Schussenergie entnommen oder neuerdings häufig als Fremdenergie zugeführt.»

Mittelkaliber-Maschinenkanonen mit Eigenantrieb lassen sich in vier weitere Gattungen herunterbrechen: Masseverriegelt, Rückstosslader, Gasdrucklader und Revolverkanonen. Diese vier Konstruktionsprinzipien zeichnen sich durch hohe Autonomie und Sicherheit aus. Die Kehrseiten sind jedoch eine aufwendige Konstruktion und insbesondere bei Gasdruckladern ein hoher Aufwand im Parkdienst. Letzterer entsteht durch die heissen Verbrennungsgase, welche unter hohem Druck und hoher Temperatur über eine Düse aus dem Rohr abgezweigt werden, um die Waffenmechanik anzutreiben.

Die Frage nach den Vorzügen einer fremd- oder eigenangetriebenen Kanone kann nicht abschliessend geklärt werden. Für viele Anwendungen ist die Wahl des Funktionsprinzips einer Maschinenkanone letztlich eine Geschmacks- und Kulturfrage. Gerade aber im Bereich der Flugabwehr ist die hohe Kadenz von Gasdruckladern, insbesondere der Revolvergeschütze, von entscheidender Bedeutung. Diese wird von fremdangetriebenen Waffen, die Gattlingkanone ausgenommen, nicht erreicht.

Entscheidende Kadenz

Die Kadenz spielt für die Wirkungen insbesondere in Bezug auf die Treffwahrscheinlichkeit eine grosse Rolle. Zum einen kann die Streuung des Systems (bestehend aus den Einzelstreuungen der Munition, der Waffe und der Waffenlafettierung) durch den mehrfachen Schuss statistisch ausgeglichen werden. Zum anderen gibt es Situationen, bei denen sich das Ziel oder die Waffe schnell bewegen. Dann ergeben sich nur sehr kurze Zeitfenster der Bekämpfung, in denen es gilt, eine grösstmögliche Feuerdichte zu erzielen.

Vor allem im Luftkampf, aber auch in der Flugabwehr ist dies von zentraler Bedeutung. Dies erklärt auch, warum automatische Kanonen erst ab Mitte der 1930er-Jahre mit dem verstärkten Aufkommen von Flugzeugen als Ziel und als Plattformen eingeführt wurden. Flugzeugbordkanonen haben sich bis heute gehalten, obschon diese seit dem Aufkommen der Luft-Luft-Lenkwaffen in den 1960er-Jahren als überholt taxiert wurden. So ist die F-35A mit einer internen 25 mm×137-GAU-22/A-Gattlingkanone ausgestattet und die anderen F-35-Versionen können auf einen externen Cannonpod zugreifen.

Als Fahrzeugbewaffnung im schwerpunktmässigen Einsatz gegen Bodenziele, etwa bei Schützenpanzern, wird hingegen eine Kadenz von rund 200 Schuss/Minute angestrebt. Eine zu hohe Kadenz würde zu einem hohen Munitionsverbrauch, einer unverhältnismässigen Abnützung des Rohres und einer hohen thermischen Belastung der Waffe führen. Je nach Konstruktionsprinzip der Kanone müssen daher Rhythmen mit Abkühlperioden eingehalten werden, um bei gewissen Waffen (vornehmlich nicht zu schliessenden Waffen) eine vorzeitige thermische Schussauslösung (englisch Cock-off) auszuschliessen und um die Rohrabnützung zu mildern.

Die Wahl des Kalibers

Die Einführung eines neuen Kalibers ist ein grosses Wagnis und Unterfangen. Die Tragweite der Entscheidung trifft Nutzer und Beschaffer gleichermassen. Vor der Einführung müssen die nötigen Qualifikationen und Sicherheitsanalysen durchgeführt werden. Zeitgleich erfolgen Untersuchungen der Versorgung, Lagerung, Verpackung und Logistik. Schlussendlich müssen auch kommerzielle Aspekte berücksichtigt werden.

Der Nutzer seinerseits muss die Einsatzdoktrin an das neue Kaliber und die neuen Fähigkeiten anpassen. Oftmals müssen auf den Schiessplätzen Änderungen vollzogen werden. Das erklärt, warum Kaliber sehr lange im Einsatz sind und warum nicht ohne Bedacht ein neues eingeführt wird. Auch aus Sicht der Industrie ist die Entwicklung eines neuen Kalibers ein immenses Unterfangen.

Aus allen diesen Gründen sind bei Mittelkalibermunition und Mittelkaliberwaffen starke Pfadabhängigkeiten zu beobachten. Mehr noch als bei der Einführung einer neuen Kanone ist die Lancierung eines gänzlich neuen Kalibers ein äusserst seltenes Ereignis. Die nötigen Investitionen in Entwicklung und Auslegung des Kalibers in den Bereichen der Innenballistik, der Waffenkinematik, der Ballistik und der Vermarktung sind ausgesprochen hoch und die Zeithorizonte bewegen sich selten unter einer Dekade. Dies zeigt sich aktuell bei der mehr als 20-jährigen Entwicklung der anglo-französischen 40 mm×255-CTA-Waffe und der dazugehörigen Munition. Auch die schweizerische Eigenentwicklung des Oerlikon 25 mm×184-KBB-Kalibers Mitte der 1980er-Jahre war – je nach Standpunkt – mutig oder vermessen, in jedem Fall aber langwierig, teuer und letztlich erfolglos.

Gewisse Tendenzen bezüglich neuer Kaliber können in der Entwicklung der Schützenpanzer-Bewaffnungen erkannt werden. So fällt auf, dass die Nutzer bei neuen Plattformen fast nie nur um eine Kaliberklasse wachsen. So tendierten Nutzer, die bislang 20-mm-Waffen verwendet hatten, zu einer Aufrüstung auf 30 mm×173 und übersprangen dabei das Kaliber 25 mm×137. Ein gutes Beispiel dafür ist Deutschland mit der 20 mm×139 RH202 (in den Schützenpanzern Marder und Luchs). Im neueren Puma verwendet es nun die 30 mm×173 MK30/2-ABM. Analog setzte die Schweiz nach der 20 mm×110-Kanone 1948/73 im Spz 63/89 im Nachfolger CV9030 auf die 30 mm×173 MK44 Bushmaster II. Die Niederlande wiederum stattete ihren YPR-765-Schützenpanzer mit der 25 mm×137 KBA aus und seinen Nachfolger CV9035 mit der 35 mm×228 Bushmaster III.

Ferner kann insbesondere bei Landsystemen ein stetiges Anwachsen der Kaliber beobachtet werden, welche sich zumeist auch in grösseren oder schwereren Plattformen niederschlägt. Seit Jahren wird an Maschinenkanonen mit Kaliber jenseits der «magischen Grenze», welche lange durch die Kaliber 35 mm×228 beziehungsweise 40 mm×365 gesetzt wurde, gearbeitet. Eine Herausforderung ist es hier, dem unausweichlichen Gewichtszuwachs von Waffe

EINSATZ UND AUSBILDUNG

Kaliber	Bezeichnung	Hersteller	Ursprung	Funktions- prinzip	Kadenz (Max Sch/ min)	Gewicht (kg)	Einsatz	Bemerkung
20×82	GA1	Denel	Armscor	Rückstosslader	700	39	_	
20×102	M621	KNDS	GIAT	Gasdrucklader	800	46	Helikopter, Fahrzeuge	elektrische Zündung
20×102	M61	General Dynamics		Gattling/ Fremdantrieb	6000	160 (mit Antrieb)	Flugzeugbordkanone	elektrische Zündung
20×102	Alexis	AIE Systems		Gasdrucklader	850	49	in Entwicklung	elektrische Zündung
20×110	HS804	HS		Gasdrucklader	800	43	Flugzeugbordkanone, Spz 63/89	obsolet
20×128	KAE	Rheinmetall	WO (als KAA)	Gasdrucklader	1000	93	Searanger 20	Neuauflage
20×128	KAB	_	WO	Gasdrucklader	1000	109	GAI-B01, Flab Kan 54	obsolet
20×139	RH202	Rheinmetall	HS	Gasdrucklader	1000	75	Spz Marder, Luchs	Dual Feed, gegurtet
23×152	2A7	TsKB-14		Gasdrucklader	1000	80	ZSU-23-2, ZSU-23-4 Shilka	, , , , , , , , , , , , , , , , , , , ,
25×137	M811	KNDS	GIAT	Fremdantrieb	400	93	Spz VCI	Dual Feed
25×137	M-242	Northrop Grumman	Hughes	Fremdantrieb	200	109	Spz Bradley	Dual Feed, gegurtet
25×137	GAU-22/A	General Dynamics		Gattling/ Fremdantrieb	3300	104	Flugzeugbordkanone F-35	
25×137	KBA	Rheinmetall	WO	Gasdrucklader	700	112	Spz, Marine, Sidam Flab, Luwa (?)	Dual Feed, gegurtet
25×137	AC25	Daycraft		Fremdantrieb	200	140	in Entwicklung	
27×145	BK27	Rheinmetall	Mauser	Gasdrucklader/ Revolver	1700	100	Flugzeugbordkanone Tornado, Eurofighter, Marine MLG-27	elektrische Zündung
30×113	M781	KNDS	GIAT	Fremdantrieb	750	65	Tiger Helikopter	
30×113	DEFA	KNDS	GIAT	Gasdrucklader/ Revolver	1100	85	Flugzeugbordkanone Mirage	elektrische Zündung
30×113	ADEN	AIE Systems	Enfield	Gasdrucklader/ Revolver	1100	87	Flugzeugbordkanone Hunter	elektrische Zündung
30×113	Venom	AIE Systems	Enfield	Gasdrucklader/ Revolver	1100	122	in Entwicklung, entsteht aus der Aden	elektrische Zündung
30×113	M230	Northrop Grumman	Hughes	Fremdantrieb	600	58	Helikopter, Fahrzeuge	
30×150	M791	KNDS	GIAT	Gasdrucklader/ Revolver	2500	110	Rafale	elektrische Zündung
30×165	2A42	KBP		Gasdrucklader	300	115	Spz BMP-2	gegurtet
30×165	2A38M	KBP		Gasdrucklader	2500	195	Flab Pz Tunguska, Pansir	gegurtet
30×170	RARDEN	BAE	Enfield	Rückstosslader	90	113	Spz Warrior	Ladeclip
30×170	KCB	WO	HS	Gasdrucklader	600	138	Marinegeschütz	obsolet
30×173	MK-44 Bushmaster	Northrop Grumman	ATK	Fremdantrieb	300	163	Spz CV9030	Dual Feed, gegurtet
30×173	MK30-2 ABM	Rheinmetall	Mauser	Gasdrucklader	200	198	Spz Puma, Lance-Turm	Dual Feed, gegurtet
30×173	GI-30	Denel		Fremdantrieb	115	ca. 200	Spz Badger	Ladeclip
30×173	KCE	Rheinmetall	WO (als KCA)	Gasdrucklader/ Revolver	1200	130	Flab Pz Skyranger 30, Marine Seasnake 30	
30×173	XGun	Leonardo		Fremdantrieb	200	173	in Entwicklung	Dual Feed, gegurtet
30×173	GAU-8	General Dynamics		Gattling/ Fremdantrieb	4200	335	Flugzeugbordkanone A-10, Goalkeeper CIWS	Aluhülse
35×228	KDA	Rheinmetall	WO	Gasdrucklader	550	675	Flab Pz Gepard	Dual Feed, gegurtet
35×228	KDC	Rheinmetall	WO	Gasdrucklader	550	430	Twin Gun	Ladestreifen
35×228	KDG	Rheinmetall	WO	Gasdrucklader/ Revolver	1000	385	Flab Pz Skyranger 35, Millenium CIWS, RG Familie	gurtlose Zuführung
35×228	BUSH III	Northrop Grumman	ATK	Fremdantrieb	70	218	Spz CV9035	Dual Feed, gegurtet
35×228	MK35	Rheinmetall		Fremdantrieb			in Entwicklung	
35×228	RH505	Rheinmetall		Fremdantrieb	400	520	nicht eingeführt	auch in 50×228
40×225	СТА	СТА	BAE/Nexter	Fremdantrieb	200	218	Spz Ajax, Jaguar und Flab Rapid Fire	
40×365	Borfors 40	BAE	Borfors	Rückstosslader	450	550	Flab	
50×228	XM913	Northrop Grumman		Fremdantrieb	100/200	300	in Entwicklung	
57×438	Borfors 57	BAE	Borfors	Rückstosslader	220	8000	Marinegeschütz	
57×347	AZP S-60	TsAKB		Rückstosslader	70	4660	Flab ZSU-57-2	

und Munition durch Massnahmen, die aus Ingenieursicht oftmals den Charakter von «Winkelzügen» haben, entgegenzuwirken. So wird bei der 40 mm×225-CTA-Munition das Geschoss vollumfänglich in der Hülse versenkt und bei der 50 mm×228 wird im Prinzip die klassische 35 mm×228-Hülse am Hülsenmund aufgeweitet. Anhänger, gar Puristen einer «reinen Kaliberlehre» mögen angesichts solcher (häretischen) Ansätze verzweifeln, jedoch wurde bei diesen beiden neuen Kalibern derart viel Geld und politische Glaubwürdigkeit investiert, dass ein Durchbruch wahrscheinlich scheint.

Auch wenn solche manchmal prekären Optimierungsversuche gelingen, bleiben doch gewisse physikalisch bedingte Probleme fortbestehen. Am offensichtlichsten und wohl am wichtigsten ist der Umstand, dass ein Zuwachs an Kalibergrösse bei unverändertem Stauraum im Fahrzeug geringere Munitionskapazität impliziert. Daraus ergibt sich die mögliche Problematik, dass die einzelnen Schüsse zwar mehr Wirkung haben, aber aus Gründen der statistischen Streuung die Treffwahrscheinlichkeit und somit letztendlich die Zerstörwahrscheinlichkeit sinkt. Dies hat bereits zu ersten Gegenbewegungen geführt, etwa mit der «Wiederentdeckung» des 25 mm×137-Kalibers für den projektierten Luftlandepanzer Luwa und weitere Spähfahrzeuge der Bundeswehr.

Ein Blick in die Zukunft

Ob sich eine Maschinenkanone für eine bestimmte Plattform eignet, kann auf Grundlage der Parameter Kaliber, Kadenz (Schuss/min), benötigte externe Leistung (W) (bei Fremdantrieb), Masse (kg) und Mündungsenergie beziehungsweise Mündungsleistung (Energie in J, Leistung in W) erfolgen. Diese Gesichtspunkte erlauben es dem Integrator, rasch abzuschätzen, welche Waffe sich für eine bestimmte Aufgabe in einem Fahrzeugturm, einer Lafette oder einer fliegenden Plattform am ehesten eignet. Ferner stellen sich Fragen bezüglich:

- der Lafettierung;
- der Rückstosseinrichtung;
- der Streuung (oftmals ein Zusammenspiel von Kanone und Lafettierung);
- der Munitionszuführung (gegurtet oder gurtgliedlos);
- der Möglichkeit, mehrere Munitionssorten im Einsatz rasch zu wechseln («Dual Feed»):
- der Abführung von Hülsen, Gurtgliedern und Versagern.

Es kann beobachtet werden, dass die Turm- und Waffenstationshersteller zunehmend jene Lösungen präferieren, bei welchen ihr Integrationsaufwand und daher ihr Risiko minimal ist. So müssen Kanonenhersteller ihre Kanonen heutzutage von Anfang an auf (allenfalls fremde) Komponenten wie Rohrwiegen, Rohrabstützungen, Munitionszuführungssysteme, Aktuatoren und Cannon Control Units abstimmen oder diese zunehmend zusammen mit der Waffe als Kit anbieten.

Alternative Konzepte wie zum Beispiel rückstossfreie oder hülsenlose Maschinenkanonen sind heute (leider) immer noch nicht eingeführt. Die erfolgversprechende rückstossfreie RMK30 von Rheinmetall versuchte Mitte der 1990er-Jahre als fremdangetriebene Revolverkanone mit hülsenloser Munition zu viele technische Neuerungen auf einmal einzuführen. Dies führte zu einem Abbruch der Entwicklung.

Die Beurteilung der zukünftigen Entwicklungs- und Verwendungsmöglichkeiten der mittelkalibrigen Maschinenkanone ist letztlich eine Interpretation ihres bereits heute auf hohem Niveau befindlichen technischen Ausreifungsgrades. Diese bedeutet einerseits ein solides Fundament, auf dem man (in kleinen Schritten) aufbauen kann, andererseits aber auch ein Bedarf an neuen, unorthodoxen Ansätzen. Die heute wieder zunehmende Zahl an Aufträgen und der damit verbundene Zuwachs an Wissensund Fähigkeitsgrundlagen werden hoffentlich bald neue Impulse bringen.

Hersteller und Typen

In der westlichen Welt sind die vier wichtigsten Hersteller von Mittelkaliber-Maschinenkanonen Rheinmetall, KNDS (ehemals Nexter und ursprünglich GIAT), Northrop Grumman (ehemals Orbita ATK und ursprünglich Hughes) und BAE (ursprünglich Bofors und Teile der Armament Development Establishment Enfield).

Rheinmetall verbindet heute die historischen Produkte der Werkzeugmaschinenfabrik Oerlikon (WO), der Hispano-Suiza (HS) und der Waffenfabrik Mauser. Daneben gibt es neue Entwicklungen der Firmen Daycraft Systems, AIE Systems, Leonardo und Denel. Deren Waffen sind aber bislang eher Randerscheinungen.

Dr. Moritz VischerProduct Manager
Rheinmetall
8050 Zürich

Die Welt ist unsicherer geworden. Krisen treten in einer immer schnelleren Abfolge auf. Dazu kommt die Rückkehr der Machtpolitik. Dies macht unmissverständlich klar, dass die Armee sich konsequent auf die Stärkung der Verteidigungsfähigkeit ausrichten muss. Damit dieser Prozess erfolgreich ist, müssen wir uns auf einsatzfähige und motivierte Angehörige der Armee verlassen können. Solche werden durch unsere Ausbildung geformt.

Unser Schweizer Milizsystem erfordert eine kurze Grundausbildungsdauer. Daher muss die Ausbildung von Bürgerinnen und Bürgern zu Soldatinnen und Soldaten innerhalb von 18 Wochen erfolgen. Die Ausbildung dient einem Hauptzweck: der Einsatztauglichkeit einer jeden Soldatin und eines jeden Soldaten für die Verteidigung. Der Einsatz hat sich mit den aktuellen militärischen Entwicklungen stark verändert. Wir beobachten aktuell zwei konkrete Trends, die wir für die Zukunft in die Ausbildung einfliessen lassen: Erstens, dass ein moderner Konflikt primär im urbanen Raum stattfindet. Zweitens, dass die technologische Entwicklung so weit ist, dass Truppenbewegungen mit grossen Verbänden nur selten unerkannt bleiben.

Wir müssen umdenken, um auf diesem «gläsernen Gefechtsfeld» zu bestehen. Wir müssen mit leichten, mobilen und vielseitig einsetzbaren Systemen truppengattungsübergreifend kämpfen können. Dies erhöht die Anforderungen an die Mannschaft und nicht zuletzt an die Kader. Wir prüfen daher, wie wir unsere Ausbildung an diese Anforderungen anpassen können. In Zukunft wird uns zwar der technologische Fortschritt mit Simulationen neue Trainingsmöglichkeiten bieten. Wesentlich bleibt jedoch das Training im Gelände und an der Waffe, mit dem die Verteidigungsfähigkeit auf das erforderliche Niveau getragen wird.