Zeitschrift: ASMZ : Sicherheit Schweiz : Allgemeine schweizerische

Militärzeitschrift

Herausgeber: Schweizerische Offiziersgesellschaft

Band: 124 (1958)

Heft: 10

Artikel: Die Einmann-Panzerabwehr-Rakete Contraves-Oerlikon

Autor: Knecht, F.

DOI: https://doi.org/10.5169/seals-27914

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Einmann-Panzerabwehr-Rakete Contraves-Oerlikon

Von F. Knecht

Die enorme Entwicklung in den Nachkriegsjahren auf dem Gebiete der Fernlenkwaffen zur Abwehr von Flugzeugen hat die Möglichkeit geschaffen, eine Panzerabwehrwaffe zu entwickeln unter Zuhilfenahme all des Wissens und der Erfahrungen bezüglich Raketentechnik, welche in anderen Sektoren bis heute gesammelt wurden.

Bei der Beurteilung einer Panzerabwehrwaffe sind folgende Hauptpunkte zu beachten:

> einfache Bedienung und Wartung große Reichweite Treffgenauigkeit Wirkung im Ziel Beweglichkeit (minimales Gewicht) beste Tarnmöglichkeit keine Personal- und Material-Anhäufung.

Die Einmann-Panzerabwehr-Rakete, welche von den Firmen Contraves AG., Zürich und Werkzeugmaschinenfabrik Oerlikon Bührle & Co. entwickelt wurde, erfüllt in größtem Maße die zur Panzerbekämpfung notwendigen Voraussetzungen. Zum Beschuß von Panzern ist folgendes Personal und Material notwendig:

1 Schütze

1 Steuergerät

beliebige Anzahl von Raketen.

Der Schütze (Abb. 1) ist in der Lage, das Steuergerät und zwei Raketen mit sich zu tragen.

Die Panzerabwehr-Rakete führt eine Hohlladung mit sich und wird von einem Schützen auf das Ziel ferngelenkt. Die Lenkung erfolgt durch den Schützen mittels eines Steuergerätes, welches die Steuerbefehle über einen Draht zur Rakete leitet. Während des Fluges wickelt sich dieser Draht von einer in der Rakete eingebauten Spule ab. Diese Befehlsübermittlung durch den Draht hat den Vorteil, daß Feindstörungen, wie sie bei Radiolenkung denkbar wären, unmöglich sind. Der Schütze lenkt die Rakete dermaßen, daß sie sich während des Fluges bis zum Aufschlag immer auf der Visierlinie Auge-Ziel befindet. Bei diesem Zielverfahren spielt es deshalb keine Rolle, ob das Ziel stillsteht oder in Bewegung ist. Bei beweglichen Zielen braucht der Schütze also nicht vorzuhalten, wie dies beim Beschuß mit Rakrohr

und Kanonen der Fall ist. Ebenfalls sind Einflüsse von Temperatur, Wind und Geschwindigkeiten nirgends zu berücksichtigen.

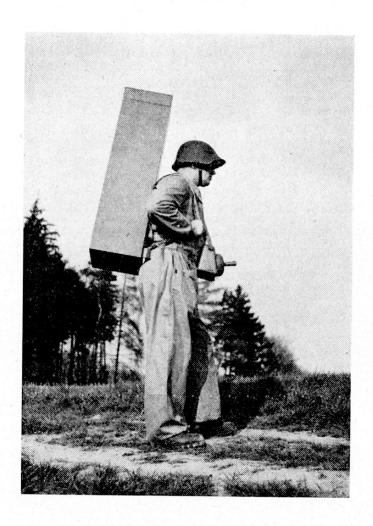


Abb. I

Der Beschuß eines Zieles geht wie folgt vor sich: Der Schütze stellt die zu verschießenden Raketen in den vermutlichen Zielrichtungen auf den Boden und begibt sich mit den Kabelenden der Raketen in Deckung (Schützenloch) Abb. 2. Diese kann bis zu 30 m von den Raketen entfernt sein. Dort schließt er das Kabel einer Rakete an seinem Steuergerät an und hält Ausschau nach Feindpanzern. Sobald einer in Sicht ist und im Wirkungsbereich der Rakete liegt, drückt der Schütze auf den Startknopf. Die Rakete startet und wird nun mit Hilfe eines Steuerknüppels, ähnlich wie in einem Flugzeug, auf das Ziel gesteuert. Ist das Ziel weit entfernt, bedient sich der Schütze eines Fernrohres auf Stativ zur Beobachtung der Rakete während ihres Fluges. Fliegt die Rakete gut in Richtung Ziel, entsichert der Schütze die Hohlladung der Rakete mittels eines Entsicherungsknopfes am Steuergerät. Nach Aufschlag der Rakete wird das Kabel der verschossenen Rakete

am Steuergerät herausgezogen und dasjenige einer weiteren Rakete angeschlossen. In diesem Moment ist die zweite Rakete startbereit.

Die Rakete kann auf Distanzen bis zu 2000 m verschossen werden und braucht für diese Distanz eine Flugzeit von zirka 24 Sekunden. Die Geschwindigkeit der Rakete beträgt 85 m/sec. und wird durch ein Triebwerk erreicht, welches funktionsmäßig zwei Stufen (Booster und Marschtriebwerk) besitzt. Die erste Stufe beschleunigt die Rakete innerhalb 0,7 sec. auf eine Geschwindigkeit von 85 m/sec., während die zweite Stufe dafür besorgt ist, diese Geschwindigkeit während des ganzen Fluges beizubehalten. Da beide Stufen in einem einzigen Triebwerk kombiniert sind, wird während des Fluges kein ausgebranntes Triebwerk abgeworfen, wie dies bei vielen mehrstufigen Raketen der Fall ist. Das Triebwerk ist ein Feststoff-Triebwerk und wird elektrisch gezündet. Die Rakete besteht aus dem Rumpf, an welchem vorne das Geschoß angeschraubt ist, der Triebwerk, Steuerelektronik, Kreisel-System und Drahtspule enthält. Am Rumpf be-

Abb. 2

festigt sind vier abnehmbare Flügel, welche mit den Steuerorganen, den sogenannten Spoilern, ausgerüstet sind (Abb. 3).

Das eingebaute Kreisel-System verhütet, daß sich die Rakete während ihres Fluges um ihre Längsachse dreht. Infolgedessen weiß die Rakete was

oben, unten, links und rechts ist. Die Steuerbefehle werden durch den Schützen mit Hilfe des Steuergerätes über den Draht in die Rakete geleitet. Die Signale werden dort in einem elektronischen Verstärker verarbeitet und

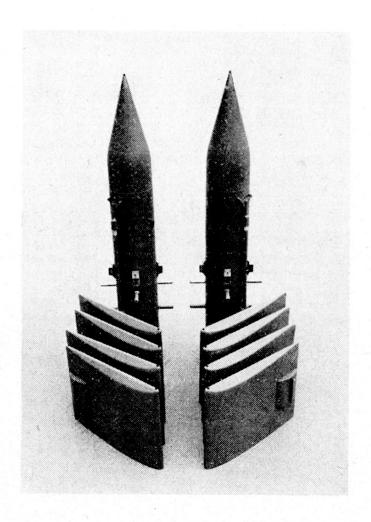


Abb. 3

bewegen die entsprechenden Steuerorgane. Der zur Steuerung notwendige Strom wird von einer im Rumpf untergebrachten Batterie geliefert. Die Rakete wird direkt vom Boden abgeschossen. Sie braucht keine Startlafette; lediglich eine teleskopartige Stütze erlaubt, die Rakete so aufzustellen, daß sie beim Start einen gewissen Elevationswinkel besitzt.

Das eigentliche Geschoß der Rakete ist eine Hohlladung, welche Panzerplatten von über 40 cm Dicke zu perforieren vermag (Abb. 4). Die Armierung der Ladung erfolgt während des Fluges, sobald der Schütze sieht, daß die Rakete gut auf das Ziel zufliegt. Mit diesem Entsicherungssystem wird erreicht, daß eine Rakete, die durch irgendwelche Umstände abstürzt, nicht explodiert. Dies ist um so wichtiger, wenn es gilt, über eigene Truppen hinweg Panzer zu bekämpfen.

Der Transport der Rakete erfolgt durch den Schützen mittels eines Be-

hälters, in welchem zwei komplette Raketen untergebracht sind (Abb. 5). Dieser Behälter wird wie ein Rucksack getragen. Sein Volumen ist infolge der abnehmbaren Flügel verhältnismäßig klein. Das Aufstecken der Flügel und Aufstellen der Rakete dauert bis 40 Sekunden.

Es ist auch ohne weiteres möglich, diese Rakete von Fahrzeugen aus zu verschießen, was vom taktischen Gesichtspunkt aus betrachtet große Vorteile bietet.

Um die Rakete so leicht wie möglich zu halten, wurden ausschließlich Leichtbauelemente verwendet.

Das Steuergerät wird vom Schützen bedient und ermöglicht ihm die Erteilung der Steuerbefehle auf Grund seiner Beobachtungen. Zu diesem Zwecke besitzt das Gerät einen Steuerknüppel. Befindet sich die Rakete während des Fluges beispielsweise links von der Visierlinie, wird der Steuerknüppel nach rechts bewegt. Die Rakete wird nun sofort nach rechts einschwenken. Um dem Schützen das Steuern zu erleichtern, ist im Gerät

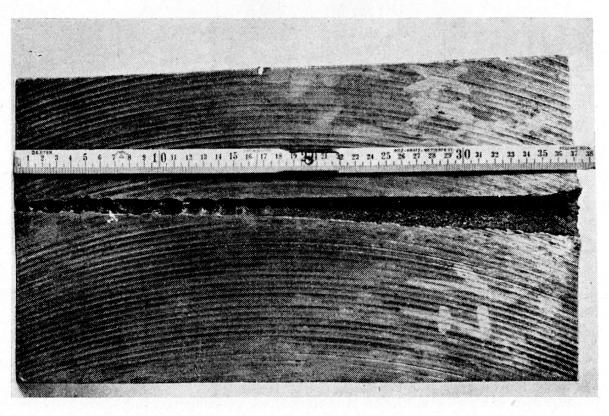


Abb. 4

ein elektronischer Rechner eingebaut. Die der Knüppelstellung entsprechenden Signale werden in diesem Rechner verarbeitet, wodurch ein Übersteuern der Rakete weitgehend verhindert wird. Er hilft auch beim Zurückschwenken der Rakete nach einem Kurvenflug, wie auch beim Autofahren

nach einer Kurve das Steuerrad wieder zurückgedreht werden muß. Während ein Pilot eines Flugzeuges eine Steuerbewegung infolge der resultierenden Beschleunigungen mit seinem Körper spürt, sind dem Ra-

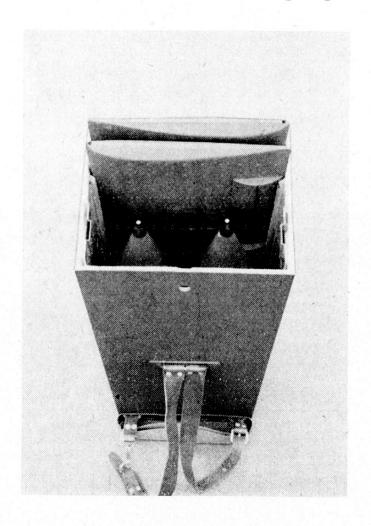


Abb. 5

ketenschützen diese gefühlsmäßigen Wahrnehmungen versagt. Der eingebaute Rechner ersetzt in gewissem Sinne die gefühlsmäßigen Reaktionen des Piloten.

Am Steuergerät befindet sich ein Startknopf, bei dessen Betätigung die Rakete startet, und ein Entsicherungsknopf für die Armierung der Geschoßladung. Die Stromversorgung des Gerätes erfolgt durch direkt eingebaute Batterien.

Bei dieser Waffe hängt die Treffsicherheit nicht von der Distanz ab, sondern von der Reaktion des Schützen und seiner Beobachtung der Rakete während des Fluges. Die Rakete besitzt einen Leuchtsatz, damit sie während ihres Fluges vom Schützen gut beobachtet werden kann.

Die Ausbildung des Schützen erfolgt mit einem speziellen Trainingsgerät, welches ihm das sog. «Trockenschießen» erlaubt. Beim Übungsschießen werden Raketen verwendet, welche anstelle des Geschosses einen Fallschirm beherbergen, um deren teilweise Rekuperation zu ermöglichen.

Daten

Gesamtgewichte. Flugkörper einschließlich Sprengkopf von 3,3 kg 10,5 kg. Lenkgerät 3,5 kg. Transportbehälter mit zwei Flugkörpern mit Sprengkopf 25 kg.

Abmessungen. Flugkörper mit Sprengkopf: Länge 930 mm. Flügelspannweite 600 mm. Rumpfdurchmesser 120 mm. Maße der vier abnehmbaren Flügel je 320 \times 240 mm. Transportbehälter für zwei Flugkörper mit Sprengkopf 940 \times 325 \times 260 mm.

Leistungen. Startbeschleunigung während zirka 0,7 sec. 12 g. Geschwindigkeit beim Zielanflug 85 m/sec. Zielentfernung bis max. 2000 m.

Daten des Sprengkopfes mit Hohlladung. Gesamtgewicht 3,3 kg. Durchmesser 120 mm. Sprengstoffgewicht der Hohlladung 1,6 kg. Durchschlagsleistung auf Panzerplatten über 400 mm. Armierung der Hohlladung während des Fluges durch den Schützen.

Aus ausländischer Militärliteratur

Der elektronische Krieg im Rahmen eines allgemeinen Konfliktes

In der Spezialnummer der «Forces Aériennes Françaises» vom Juni 1958 über Aero-Elektronik macht Commandant Driano eine Reihe von Überlegungen und Feststellungen unter dem Titel «Conflit Généralisé et Guerre Electronique», die auch für uns von hoher Aktualität sind (vgl. hiezu ASMZ Juni 1958: «Rückstand der Elektronik» von Major K. Bolliger).

Driano hebt einleitend die äußerst enge Verbundenheit von Atomkriegführung und Elektronik hervor. So wie Geschütz und Geschoß eine untrennbare Zweiheit bilden, so bilden die Komplexe Atomwaffen und Elektronik ein Binom.

Im Anschluß an die bekannte Argumentation, wonach ein zukünftiger allgemeiner Konflikt unumgänglicherweise ein Nuklearkrieg sein werde, stellt der Verfasser die Frage, ob ein mit A-Waffen geführter Krieg ein begrenzter Konflikt bleiben könne. Eine Antwort hierauf entlehnt er im we-