Zeitschrift: Allgemeine schweizerische Militärzeitung = Journal militaire suisse =

Gazetta militare svizzera

Band: 68=88 (1922)

Heft: 17

Artikel: Die Schussrichtung der Batterie nach der Karte (Schluss)

Autor: Curti

DOI: https://doi.org/10.5169/seals-2480

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Schussrichtung der Batterie nach der Karte.

Von Major Curti. (Schluß.)

3. Richtung und Distanz.

3a. Einfache Methode:

Liegen Geschütz und Ziel (eventuell auch Zielpunkt) auf ein und demselben Kartenblatt, so ist es leicht mit dem Transporteur die Richtung A_U herauszumessen und die Distanz Geschütz-Ziel abzustechen.

3b. Gehen die Richtungslinien über die Kartenränder oder hat sich das Papier verzogen, so ist die Rechnung angebracht:

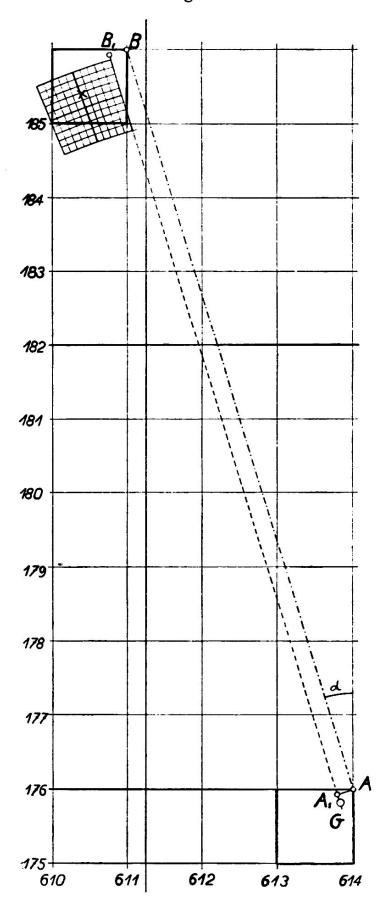
Die Richtung ist wieder aus den Coordinatendifferenzen zu berechnen:

tang
$$\alpha = \frac{\Delta x}{\Delta y}$$

und die Distanz:

$$D = \sqrt{\frac{2}{(\Delta z) + (\Delta y)}}$$

Im Prinzip äußerst einfach, ist diese Richtungs- und Distanzbestimmung doch eine unerquicklich zeitraubende Rechnerei im Quartier (quadrieren und Wurzelziehen!).


3c. Wir gehen jetzt auf kompliziertere Verhältnisse über, wo die Richtungstrahlen mehrere Kartenblätter schneiden, wo die Gegend am Ziel besonders interessiert und groß gezeichnet werden sollte, weil wir dort vom Einschießpunkt auf das eigentliche, schief und gestaffelt stehende Ziel überspringen wollen, und wo die Batterie wegen guter Maskierung ganz unregelmäßig steht und sich mit einem weit abstehenden Geschütz, dem sogenannten Arbeitsgeschütz einschießt.

Zunächst zeichnet sich der Beobachter vorn in seinen Meldebloc eine Skizze des Coordinatennetzes mit der Numerierung; das Netzquadrat in welchem die Ziele liegen, ist stark umrandet, ebenso das Netzquadrat, das die Batterie enthält. Nur auf diese beiden stark umrandeten Quadrate kommt es in der Folge an, alle übrige "Landschaft" zwischen drin, interessiert uns hier nicht, wir können sie weggeschnitten denken. (Siehe Fig. 1.)

Das Wesen unserer Methode besteht nun in der Annahme einer Richtungslinie" A B, von Netzpunkt zu Netzpunkt, womit sich sehr einfach ganze Kilometerzahlen ergeben (man kann auch die Seitenmitten nehmen und den halben Kilometer als Einheit wählen).

Beispiel. — Eine 12 cm Kanonen-Batterie, welche bei Station Gwatt am Thunersee ausgeladen wird und gleich in der Nähe bei Steghaus in Stellung () geht, soll gegen Bahnhof und Aarebrücke

Fig. 1.

Kiesen und die umliegenden Häuser von Vorder-Jaberg bereitgestellt werden, Punkt \times .

Die Schußlinie würde vier Kartenblätter überschneiden und die Kartennetzlinien müßten, damit kein Bruch der Linie entstünde, nach der Reißschiene auf einander gerichtet werden.

Im Netzviereck, welches das Ziel × enthält und im Netzviereck mit der Batteriestellung • "denken" wir uns je die Nordost-Ecke markiert (Punkte B und A). Die Verbindungslinie dieser beiden Eckpunkte sei unsere "Richtungslinie" AB. Ihre Länge ist

A B =
$$\sqrt{\frac{2}{(\Delta z) + (\Delta y)^2}} = \sqrt{3^2 + 10^2} = \sqrt{109}$$

das gibt nach Tabelle II der Quadratzahlen 10,440 km und die Richtung wird

tang.
$$a = \frac{3}{10} = 0.300$$

das gibt nach Tabelle I 297 R K 0/00.

Das Universal-Azimuth der "Richtungslinie" ist dann, wie die Uebersichtskizze leicht erkennen läßt:

$$A_U = 3200 - a = 3200 - 297 = 29,03.$$

Auf diese Weise sind Richtung und Distanz A B für die Richtungslinie äußerst einfach ermittelt und ganz unabhängig von der Lage von Geschütz und Ziel.

In das Netzviereck des Geschützes, das wir auf der zweiten Seite des Meldeblocks als Quadrat von 10×10 cm uns aufzeichnen (also im Maßstab 1:10,000), tragen wir nun das Geschütz nach Coordinaten ein, Punkt G. Es läßt sich jetzt leicht herausmessen, daß G um A A Meter links der Richtungslinie steht und um A₁G Meter hinter A zurück. Stellen wir das Geschütz parallel auf das Azimuth der "Richtungslinie" AB so schießt es nach B₁ mit einer Distanz A₁B₁ + A₁G = 10,440 + A₁G. Damit sind wir in der Lage die Linie A₁B₁ in der Zielgegend mit Distanzmarken 10.0, 10.5, 11.0, 11.5 (von G aus gemessen) zu versehen.

Nun sollen Ziele Z₁ Z₂ Z₃... getroffen werden, wozu Schwenkungen und Distanzsprünge nötig sind. Diese ließen sich offenbar sehr leicht herausmessen, mit einem genügend großen Transporteur (1:10,000), der vom Zentrum G reichen würde bis B₁ und darüber hinaus. Eigentlich brauchen wir von diesem Transporteur nur das Stück in der Gegend von B₁ und Ziel ×.

So ist nun tatsächlich verfahren worden; das herausgeschnittene Stück des Transporteurs nennen wir die "Strahlenpause", sie reicht beispielsweise von 9 bis 12 km, ein anderes Stück von 6 bis 9 km, ein drittes vou 3 bis 6 km. Diese Strahlpause ist nun so über das große Netzquadrat im Meldeblock zu legen, daß der Nullstrahl

auf A₁B₁ liegt und die Distanzkreise auf die vorhin erwähnten Distanzmarken 10.5, 11.0 passen.

Nachdem die Strahlpause auf diese Weise "orientiert" ist, können wir für beliebige Ziele $Z_1 \ Z_2 \dots$ Schwenkung und Distanzsprung mühelos ablesen.

In der praktischen Durchführung ist die Arbeit natürlich geteilt:

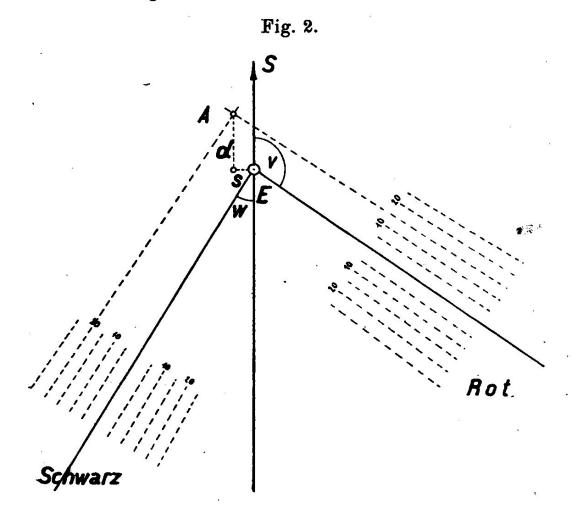
- a) Der Abteilungsgeometer bestimmt, von einem Fixpunkt¹) ausgehend, den genauen Ort der einzelnen Geschütze.
- b) Der Schießoffizier trägt die Geschützorte in sein Netzviereck (1:10,000) ein. In den Deckel seines Meldeblocks hat er Tab. I und Tab. II ein für allemal eingeklebt. Damit rechnet er für die Richtungslinie AB das Azimuth und die Distanz AB. Durch die Nordostecke A seines Netzvierecks zeichnet er mit der Neigung 3:10 die Richtungslinie und mißt, wie weit seitwärts von dieser Richtungslinie das Geschütz G steht (AA1) und wie weit zurück (A1G). Diese Beträge meldet er dem vorgeschobenen Beobachter, damit dieser seine Strahlenpause orientieren kann.
- c) Der vorgeschobene Beobachter zeichnet in den Meldeblock das Netzviereck für das Ziel und zieht durch dessen Nordostecke B die Richtungslinie mit der Neigung 3:10.

Er trägt die erkannten Ziele in das Netzviereck ein. Ueber das Netzviereck legt er die Strahlenpause und orientiert sie wie gezeigt wurde. Jetzt ist er in der Lage für seine Ziele Distanzsprünge und Seitenschwenkungen einfach abzulesen.

Genau so wie für das Geschütz G (Arbeitsgeschütz) ist für jedes beliebige andere zu verfahren. Der Schießoffizier hat eine neue Distanz AA₁ zu messen und der vorgeschobene Beobachter die Strahlenpause dem entsprechend zu versetzen. Ebenso ergibt sich die Strecke A₁ G neu und entsprechend die Distanzmarkierung des Beobachters. Da die Strahlenpause auf Millimeterpapier gedruckt ist, sind diese rechtwinkligen Verletzungen recht einfach.

Damit scheint eine Methode gegeben zu sein, welche rasch arbeitet und weiter nichts erfordert als eine leichte Kopfrechnung (addieren der Quadrate zweier ganzer Zahlen) und das Nachschlagen von zwei Tabellenwerten. Sie erfordert keine Vorbereitung im Quartier. Wenn auch die Methoden des Stellungskrieges in ihrer breit ausführlichen Vorbereitung sehr lehrreich für uns sind, so müssen wir doch bald darüber hinwegkommen und unser volles Bemühen darauf einstellen, die ganze Feuervorbereitung äußerst rasch fertig zu bringen, denn das gesamte Artilleriematerial wird in wenigen Jahren, wenn es auf der Raupe stehen wird, eine Be-

¹⁾ Das bleibt natürlich Zukunftsmusik, so lange das von Major Huber mehrfach geforderte Fixpunkt-Verzeichnis nicht erstellt wird.


weglichkeit besitzen, wie wir sie nie zuvor gesehen haben. An der Motorisierung der Artillerie arbeitet in Frankreich und in den Vereinigten Staaten der Ingenieur unablässig und damit stellt sich die schwierige Aufgabe, Feuervorbereitung, Beobachtung und Verbindung entsprechend schnell arbeitend und anpassungsfähig zu gestalten.

4. Das Beobachtungsgitter.

Besitzt man eine Strahlenpause in Schwarz, dazu eine zweite in Rot, so lassen sich die beiden zweckmäßig als Beobachtungsgitter verwenden, wenn von zwei seitlichen Beobachtungstellen aus gegen einen Einschießpunkt E eingeschossen wird.

Die Kommandostelle zeichnet die Situation um E im Maßstab 1:10000 auf (10 cm = 1 km):

Mitten auf dem Blatt von oben nach unten die Schußlinie ES, und unter den Winkeln v und w dazu die mittleren Beobachtungslinien der beiden Seitenbeobachter. Auf die schwarze Beobachtungslinie legt man nun die schwarze Strahlenpause so, daß der Distanzkreis durch E der Beobachtungsdistanz von Schwarz entspricht, dann heftet man die Pause fest. Analog mit der roten Strahlenpause. Hiemit ist das "Beobachtungsgitter" fertig, das Schießen kann beginnen.

Meldet nun der Beobachter Schwarz: Schwarz links 20 % of und der Beobachter Rot: rechts 15 % of so liegt der Schuß im Schnittpunkt A der gemeldeten Strahlen. Damit lassen sich Distanzsprung d und Seitenverschiebung S in Metern in einfachster Weise ablesen.

Tab. II. Berechnete tang. ausgedrückt in Richtkreispromille. R K $^{\rm o}/_{\rm oo}$.

tang.	R K º/00
0.100 150 200 250 0.300	102 152 201 201 250 297 49

tang.	RK º/00	tang.	RK º/00	tang.	RK º/00	
0.300 10 20 30 40 50 0.360 70 80 90	297 306 9 315 325 9 334 9 343 9 352 9 361 9 370 9	9.400 10 20 30 40 50 0.460 70 80 90	388 396 405 9 414 8 422 9 431 8 439 8 447 9 456 8 8	0.500 10 20 30 40 50 0.560 70 80 90	472 480 488 496 504 512 520 528 535 543	

tang.	RK º/∞	tang.	RK º/00	tang.	RK º/00	tang.	RK º/00
0.600 10 20 30 40 50 0.660 70 80 90	550 558 7 565 8 573 7 580 7 587 7 594 7 601 7 608 7	0.700 10 20 30 40 50 0.760 70 80 90	622 629 7 636 642 7 649 655 662 668 675 681 6	0.800 10 20 30 40 50 0.860 70 80 90	687 693 700 706 6 712 6 718 5 723 6 729 6 735 6 741 5	0.900 10 20 30 40 50 0.960 70 80 90 1.000	746 752 6 758 5 763 6 769 5 774 5 779 5 784 6 790 5 795 5

Tab. III
Berechnung von D. Quadratwurzeln.

n	\sqrt{n}	n	\sqrt{n}	n	\sqrt{n}	n	\sqrt{n}	n	\sqrt{n}
1	1.000	31	5.568	61	7.810	91	9.539	121	11,000
2 3	1.414	32	5.657	62	7.874	92	9.592	122	11.045
3	1.732	33	5.745	63	7.937	93	9.644	123	11.090
4	2.000	34	5.831	64	8.000	94	9.695	124	11.135
5	2.236	35	5.916	65	8.062	95	9.747	125	11.180
6	2.449	36	6.000	<i>66</i>	8.124	96	9.798	126	11.225
7	2.646	37	6.083	67	8.185	97	9.849	127	11.269
8	2.828	38	6.164	68	8.246	98	9.899	128	11.314
9	3.000	39	6.245	69	8.307	99	9.950	129	11.358
10	3.162	40	6.325	70	8.367	100	10.000	130	11.402
				7900-50000 1	p. 494 Townst Color Colors		190-00-3055000000000000000000000000000000		
11	3.317	41	6.403	71	8.426	101	10.050	131	11.445
12	3.464	42	6.481	72	8.485	102	10.099	132	11.489
13	3.606	43	6.557	73	8.544	103	10.149	133	11.533
14	3.742	44	6.633	74	8.602	104	10.198	134	11.576
15	3.873	45	6.708	75	8.660	105	10.247	135	11.619
16	4.000	46	6.782	76	8.718	106	10.296	136	11.662
17	4.123	47	6.856	77	8.775	107	10.344	137	11.705
18	4.243	48	6.928	78	8.832	108	10.392	138	11.747
19	4.359	49	7.000	79	8.888	109	10.440	139	11.790
20	4.472	50	7.071	80	8.944	110	10.488	140	11.832
21	4.583	51	7.141	81	9.000	111	10.536	141	11.874
22	4.690	52	7.211	82	9 055	112	10.583	142	11.916
23	4.796	53	7.280	8 3	9.110	113	10.630	143	11.958
24	4.899	54	7.348	84	9.165	114	10.677	144	12.000
25	5.000	55	7.416	85	9.219	115	10.724	145	12.042
26	5.099	56	7.483	86	9.274	116	10.770	146	12.083
27	5.196	57	7.550	87	9.327	117	10.817	147	12.124
28	5.291	58	7.616	88	9.381	118	10.863	148	12.165
29	5.385	59	7.681	89	9.434	119	10.909	149	12.207
<i>30</i>	5.477	60	7.746	90	9.487	120	10.954	<i>150</i>	12.247
		1 0	•				J.	-	

Aus deutschen unveröffentlichten Dokumenten.

Von Helveticus verus.

(Fortsetzung.)

8.

Militär-Telegramm!

177

Wilmersdorf, 23. August 1918.

An I. und II.

Es liegt Veranlassung vor, auf die Bekanntmachung des Oberkommandos vom 29. I. 18 — O 233 821 — betreffs Halten von Luxuspferden erneut hinzuweisen. Die Verwendung von Luxuspferden in Berlin scheint wieder zuzunehmen und erregt erneut Aergernis. In hohem Grade bedauerlich muß es aber bezeichnet werden, wenn selbst Offiziere in Selbstfahrern spazieren fahren. Es wirkt verärgernd und