Zeitschrift: Allgemeine schweizerische Militärzeitung = Journal militaire suisse =

Gazetta militare svizzera

Band: 52=72 (1906)

Heft: 19

Artikel: Neue Behandlungsart und neue Formeln der äusseren Ballistik der

Langgeschosse

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-98298

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

rung an Hettenhausen hörte man plötzlich Alarm blasen und glaubte man den Feind in nächster Nähe, während es eigene Truppen waren, nämlich die dritte Brigade des Kavalleriekorps, die man bei Lütter, westlich Hettenhausen, als Nachhut zurückgelassen hatte. Unter dem Rufe "die Preussen kommen", stürzte ein Teil zurück und brachte alles dahinter befindliche in Unordnung. In wilder Flucht ging es erst bis Gersfeld zurück und von dort nach allen Richtungen auseinander. Die ganze Strasse zwischen Hettenhausen und Gersfeld war mit Trümmern bedeckt, ein grosser Teil der Pferde war in Brückenau ohne Sattel angekommen, gegen 100 ledige Pferde rannten in den Feldern umher. Am 5. Juli 11 Uhr vorm. meldete ein Rittmeister, dass er mit fünf Offizieren, 150 Mann in Kissingen (!) angekommen sei. In Würzburg, also gegen 90 km von dem Schauplatz(!!) der nächtlichen Ereignisse entfernt, trafen am 5. von 12¹/₂ Uhr nachmittags bis in die Nacht einzeln und in kleinern Partien zehn Offiziere und gegen 200 Reiter ein. Abends langten auch Leute ohne Pferde mit der Eisenbahn an. In Schweinfurt wurden ebenfalls 80 Mann mit und ohne Pferde gesammelt.

(Aus: Geschichte des Krieges von 1866 in Deutschland von O. von Lettow-Vorbeck.)

III. Ein Husarenregiment ward am 18. August 1871 einer Infanteriebrigade durch die Mance-Schlucht gefolgt und stund abends in heftigem Infanteriefeuer, abgesessen. In diesem Momente trafen die Reservisten ein, die anfänglich nicht mit ins Feld gerückt waren. Sie waren auf Augmentationspferden beritten; Pferde, die noch nicht schussfromm, aufgeregt und nicht durchgeritten waren. Der Regimentskommandant bildete aus denselben eine fünfte Schwadron. Das Vorgehen der Infanteriebrigade kam zum Stehen und musste diese umkehren. Der Kommandant liess das Kavallerieregiment aufsitzen, um sein Regiment etwas zurückzuführen. Das Kommando "Kehrt" befolgten alle Schwadronen, das darauffolgende "Front" nur noch 3½. Die neuformierte fünfte Schwadron und mit ihr die Hälfte einer andern setzte sich nach dem Kehrt in Trab, dann in Galopp und schliesslich brannten die Pferde durch, kamen bei Gravelotte aus dem Waldeingange gebraust, rannten in Infanterie hinein, die sich eben sammelte, dann in eine Kolonne von Wagen und Handpferden. Diese und die Bespannungen wurden dann auch nervös und rannten ebenfalls in buntem Haufen mit. Vergebens bemühten sich Offiziere, die rasende Flut zum Stehen zu bringen. Die Verwirrung war eine unbeschreibliche: Niemand bemerkte eine Ursache der Panik, ein jeder kochte vor

Erregung, vergebens! Pferde und Menschen hatten die Sinne verloren, Säbelhiebe und Schimpfworte prallten an den Wahnsinnigen eindruckslos ab und erst als die Lungen der Pferde und Menschen versagten, kam der wilde Strom zum Stehen. (Aus 24 Stunden Moltke'scher Strategie von Fritz Hænig.)

Sehr viele der in der Schlacht am Morgarten Erschlagenen werden in der Gegend von Buchwäldli gelegen sein, denn an dieser Stelle drängte sich die zurückflutende Masse zusammen, einen schrecklichen Knäuel von gestürzten und toten Pferden und Menschen bildend und den Rückweg Schwimmende und ertrinkende versperrend. Pferde im See, viele im Sumpfe, unfähig sich herauszuarbeiten, andere durchgebrannt in rasender Flucht auf dem Wege, auf dem sie kamen, nur wenige noch ihre Reiter tragend, alles überrennend, was in den Weg kommt, die meisten Ritter abgeworfen und wehrlos den Streichen ihrer Feinde preisgegeben, da einer, dort einige, auf der Ebene zerstreut und längs der Hänge, von Wart zurück bis Buchwäldli und weiter zurück auf dem Wege nach Ägeri, einzeln und gruppenweise von den kampfgeübten, mit Hellebarden bewaffneten Bauern niedergemacht so ungefähr muss man sich die Schlacht und das Schlachtfeld vorstellen, denn nur so erklärt sich der Tod von etwa 1500 Rittern einerseits und der ganz geringe Verlust der Schwyzer und ihrer Verbündeten in dieser Schlacht, der kaum ein Dutzend Leute betragen haben soll.

Kavallerie-Oberstleutnant Schællhorn.

Neue Behandlungsart und neue Formeln der äusseren Ballistik der Langgeschosse.

Von Fr. G. Affolter.
(Dritte Mitteilung.)

Mit dieser Mitteilung erfüllen wir unser zweites Versprechen: "Die Brauchbarkeit unserer Formeln durch die Berechnung von Einfallsrichtungen zu erproben."

Zu dem Zwecke haben wir die Ausdrücke zur Bestimmung der Grössen a_m , ε_m , x_m und w_e darzustellen.

XI.

Bestimmung von am.

Im luftleeren Raume hat für jede reelle Anfangsgeschwindigkeit V zur Erreichung der maximalen Schussweite X_m die Tangente A_m des zugehörenden Abgangswinkels den Wert +1. Der Abgangswinkel selbst hat, je nachdem V positiv

oder negativ ist, den Wert $\frac{\pi}{4} \pm 2$ n π oder $\frac{\pi}{4} \pm (2 \text{ n} + 1)$ π , wobei n jede beliebige ganze Zahl sein kann.

Die gerade $A_m = 1$ repräsentiert die Kurve der Tangenten A_m und zwar auf der einen Seite der A_m -Axe für die positiven und auf der andern Seite für die negativen Abgangsgeschwindigkeiten V.

Wie die Erfahrung nun lehrt, erreicht man im lufterfüllten Raume nur für eine, im gewöhnlichen kleine, Anfangsgeschwindigkeit v_1 die maximale Schussweite x_m für $a_m = +1$. Ferner weiss man, dass für jedes v kleiner v_1 , aber grösser als Null, der Wert von a_m grösser als 1 ist, so dass a_m für v = 0 gleich e^{ϱ} gesetzt werden kann, wobei ρ immer positiv und nur von dem Geschützsystem und der Luftdichte abhängt. Mit andern Worten, ρ und auch v_1 sind Funktionen von der das Geschützsystem charakterisierenden Grösse v0 des Moduls v1.

Lassen wir, von v1 ausgehend, v stetig wachsen, dann nimmt, soweit die heutige Erfahrung uns lehrt, der Wert von am stetig ab. Für den grössten bekannten Wert von $v = v_n$ werde $a_m = a_{mn}$. Die zu den positiven Anfangsgeschwindigkeiten v = 0; $= v_1 = \cdots = v_n$ gehörenden $a_m = a_{m_0}$; $= a_{m_1}$; $= \cdot \cdot \cdot = a_{m_1}$ liegen auf einer Kurve am, von der wir das Stück amo bis amn kennen. Für die negativen Geschwindigkeiten erhält man das Kurvenstück amo bis a'mn, welches mit dem Kurvenstück amo bis amn in Bezug auf die am- Axe symmetrisch liegt. Über den weitern Verlauf der Kurve am über die Punkte amn und a'mn hinaus haben wir durch die Erfahrung keine direkten Anhaltspunkte mehr. Es können aber, wie leicht einzusehen, nur zwei wesentlich verschiedene Fälle im Verlaufe der Kurve am eintreten. Entweder nimmt für wachsende v der Wert von am stetig ab und wird für $v = \infty \rho$ gleich Null, oder es nimmt am bei stetig wachsendem v nur bis zu einer bestimmten Grenze ab, um dann wieder zu wachsen. Würde der erstere Fall eintreten, dann müsste für $v = \infty$ und $a_m = 0$ auch die zugehörende maximale Schussweite gleich Null werden, weil der Abgangswinkel Null wäre. Das könnte nur dann eintreten, wenn für einen endlichen Wert der Geschwindigkeit v der Wert von xm selbst zu einem Maximum würde. Im zweiten Falle ist der Abgangswinkel für v = ∞ nicht gleich Null und folglich ist die zugehörende maximale Schussweite dann selbst auch unendlich gross; und es muss nicht notwendiger Weise xm ein Maximum für einen endlichen Wert von v besitzen. Aus all dem geht hervor, dass am für keinen endlichen Wert, reell oder imaginär von v Null werden

kann. Es sei nun a_m durch die Funktion y darstellbar, dann muss

$$y = 1 \cdot e^{\rho} e^{-\eta} = a \cdot e^{-\lambda} e^{+\mu}$$

sein, und es ist

16.
$$a_m = e^{\varrho + \lambda - \eta - \mu}$$

wo ϱ und λ Funktionen der Charakteristik u, η eine Funktion von v respektive ω und μ eine Funktion von a sein muss.

Wir haben nun aus den Schusstafeln der schweizerischen 12 cm-Geschütze, als 12 cm-Festungsmörser, 12 cm-Feldhaubitze (Feldmörser) und 12 cm-Kanone die Funktionen ϱ ; λ , η und μ bestimmt, und haben gefunden, dass $\lambda = \mu = 0$ gesetzt werden können, während für η sich die Form ergibt

17.
$$\eta = \omega e^{-0.5 \omega}$$

Da nun a_m für v_1 gleich 1 wird, so muss ϱ dieselbe Form wie η besitzen und wir haben

18.
$$\varrho = \omega_1 e^{-0.5 \omega_1}$$

Ferner haben wir gefunden, dass

19.
$$a_m^2 = e^{\varrho - \eta}$$

ist. Setzt man ω_0 gleich 2, dann erhält man schliesslich

20.
$$a_m = e^{\left(\frac{\omega_1}{\omega_0}\right)_a} e^{-\left(\frac{\omega_1}{\omega_0}\right)_a - \left(\frac{\omega}{\omega_0}\right)_a} e^{-\left(\frac{\omega}{\omega_0}\right)_a}$$
 wo wir durch den Index a andeuten, dass ω sich auf die Anfangsgeschwindigkeit v_a bezieht.

Man erkennt aus Gleichung 20, dass a_m zu einem Minimum a_{mn} wird, wenn $\omega = \omega_0 = 2$ ist, oder wenn die Anfangsgeschwindigkeit v_a den Wert $v_{on} = \frac{2}{u}$ Kilometer besitzt. Ferner hat sich aus den genannten Rechnungen ergeben, dass

21.
$$v_1 = \frac{u}{20}$$
.

Wenn wir von den positiven Anfangsgeschwindigkeiten + va zu den negativen - va übergehen, dann muss auch + voa durch - voa ersetzt werden, und das Verhältnis $\frac{\omega}{\omega_0}$ ändert das Vorzeichen nicht. Es stellt somit Gleichung 20 den Wert a_m für alle positiven und negativen Anfangsgeschwindigkeiten dar.

Um in unserer zweiten Mitteilung (3. März 1906 der Allg. Schweiz. Militär-Ztg.) die Aufsätze a berechnen zu können, hatten wir die Werte am direkt aus den Schusstafeln der 12 cm-Feldhaubitze Friedr. Krupp durch ein Annäherungsverfahren bestimmt, ohne von der Formel (20) Gebrauch zu machen. Wir hatten gefunden, dass für:

$$v_a = 158 \text{ m}; = 185 \text{ m}; = 216 \text{ m}; = 252 \text{ m};$$

= 300 m.
 $a_m = 0.953; = 0.940; = 0.931; = 0.916;$
= 0.905.

Unsere Formel (20) gibt nun die Werte: $a_m = 0.9527$; = 0.9421; = 0.9304; = 0.9174; = 0.9027

und es sind daher die Differenzen gegeben durch: $\Delta a_{\rm m} = -0.0003; = +0.0021; = -0.0006;$ =+0,0014; =-0,0023.

Nach der Formel (20) erhält xm kein Maximum für endliche Werte von va. Soll das aber eintreten und dann zugleich x_m für v = ∞ gleich Null werden, dann kann am kein Minimum für ein endliches verhalten. Dies wird erreicht durch die Form

22.
$$a_m = e^{+\rho_a - \eta_a}$$

wo nun

23.
$$\eta_a = \left(\frac{\omega}{\omega_0}\right)_a \theta - \left(\frac{\omega_0}{\omega}\right)_a \left[1 - \left(\frac{\omega}{\omega_0}\right)_a\right]$$

und wo e_a aus η_a hervorgeht, wenn man ω durch wi ersetzt. Durch Anwendung dieser Formel erhalten wir die Werte:

$$a_m = 0.9564$$
; = 0.9405; = 0.0315; = 0.9159; = 0.8986.

Beide Formeln geben somit dieselben Werte, wie vorauszusehen ist. Dieses Beispiel führt so nicht dazu, sich für die eine oder die andere der beiden Formeln entscheiden zu können.

Wir besitzen ausser den Schusstafeln für den schweizerischen 12 cm-Festungsmörser nur noch die Schusstafel für die 28 cm-Haubitze Fried. Krupp, welche die Werte am enthalten. Da wir zur Aufstellung unserer Formeln den schweizerischen 12 cm-Festungsmörser benutzt haben, so können wir unsere Formeln nicht mehr auf ihn anwenden, um sie zu prüfen, und daher wenden wir unsere Formeln auf die 28 cm-Haubitze an. Wir erhalten nachstehend angegebene Differenzen Δα_m zwischen den berechneten und den schusstafelmässigen Abgangswinkeln $\alpha_{\rm m}$. Für die schwere 28 cm-Granate ist die Charakteristik u sehr nahe 0.2; wir setzen daher u = 0.2. Nach den steigernden Abgangsgeschwindigkeiten geordnet hat man nach der Formel 20 die Differenzen:

$$\Delta a_{\rm m} = -25'40''; = -24'10''; = -15'25'';$$

= -16'20''; = -17'20''; = -21'25''.

Nach der Formel 22 ergeben sich:

$$\Delta a_{\rm m} = -24' \, 40''; = -24' \, 10''; = -15' \, 30'';$$

= -16' 25''; = -17' 25''; = -21' 30''.

Beide Formeln führen auch hier, selbst auf die grösste maximale Distanz, zu denselben Resultaten. Die Differenzen $\Delta a_{\rm m}$ sind nicht gross und liegen weit innerhalb den möglichen wahrscheinlichen Schusstafelfehlern. Das ist wieder ein Beweis dafür, wie mit grosser Sorgfalt die Schusstafeln erstellt wurden, als auch dafür, dass unsere Rechnungsmethode eine zutreffende ist.

Bestimmung von ε_m .

In gleicher Weise wie für am kann auch der Ausdruck für em gefunden werden. Wir kommen

nun aber viel einfacher zum Ziele, wenn wir vom Umkehrungsprinzip Gebrauch machen. Denken wir uns, das Geschoss durchfliege die Flugbahn rückwärts, dann wird die negative Einfallsrichtung zur Abgangsrichtung und die Einfallsgeschwindigkeit v. zur Abgangsgeschwindigkeit. Nun ergeben sich aus den Gleichungen 20 und 22 sofort die Gleichungen für die Tangente em des Einfallswinkels für die maximalen Schussweiten. Wir erhalten:

24.
$$\varepsilon_m = e^{\eta_0 - \varrho_0}$$

 $24. \quad \varepsilon_{\rm m} = {\rm e}^{\,\eta_{\rm e} \, \cdots \, \varrho_{\rm e}}$ we entsprechend der Gleichung 20

$$25. \quad \eta_{\rm e} = \left(\frac{\omega}{\omega_{\rm 0}}\right)_{\rm e} {\rm e}^{\left(\frac{\omega}{\omega_{\rm 0}}\right)_{\rm e}}$$
 und entspechend der Gleichung 23 dann

26.
$$\eta_e = \left(\frac{\omega}{\omega_0}\right)_e \left(\frac{\omega}{\omega_0}\right) \left(1 + \frac{\omega}{\omega_0}\right)_e$$

e, geht aus η, hervor, indem man an Stelle von ω den Modul ω_{1e} setzt, wo $v_{1e} = \frac{u}{25}$; und $\omega_0 = 0.8$. Wenden wir die Gleichungen 24 und 25 auf die 28-cm-Haubitze an, dann erhalten wir als Differenzen Δε_m zwischen den berechneten und den schusstafelmässigen Einfallswinkeln der maximalen Schussweiten folgende Werte:

$$\Delta \varepsilon_{\rm m} = + 0,0094; = + 0,0191; = + 0,0175; = -0,0079; = -0,0038; = + 0,007.$$

Oder in Winkelmass ausgedrückt:

$$\Delta \varepsilon_m = + 15'10''; = + 31'25''; = + 29'25''; = -13'20''; = -5'10''; = +11'10''.$$

Auch diese Differenzwerte sind nach den steigenden Anfangsgeschwindigkeiten geordnet.

Würde man die Gleichungen 24 und 26 benützen, so würde man auch hier nur unwesentlich andere Resultate erhalten. Es kann also auch hier nicht entschieden werden, welche der beiden Formen, 25 oder 26, man zu wählen hat. Es sei hier vorgreifend bemerkt, dass keine der beiden Formen die richtige ist, sondern dass die richtige Form für n gegeben ist durch

$$\eta_{e} = \left(\frac{\omega}{\omega_{0}}\right)_{e} \mathcal{E}\left(\frac{\omega}{\omega_{0}}\right)_{e} \left(1 + \frac{\omega}{\omega_{01}}\right)_{e} \left(1 + \frac{\omega}{\omega_{02}}\right)_{e} \cdots$$

und der Exponent von e ist die Summe unendlicher Produkte. Diese Produkte werden bedingt durch die Bewegung der Geschossaxe. 7a hat die entsprechende Form.

Wie wir aber oben gesehen haben, genügen zu praktischen Berechnungen die einfacheren Formen 25 und 26.

XIII.

Im luftleeren Raume ist die maximale Schuss. weite Xm für alle reellen Anfangsgeschwindigkeiten gleich $\frac{V_a^2}{g}$ und für die imaginären V_a defi-

nieren wir
$$X_m$$
 durch — $\frac{\nabla_a^2}{g}$.

Setzen wir $X_m = \frac{Z}{g} = \frac{V_a^2}{g}$, dann sind alle maximalen Schussweiten X_m durch die gerade $X_m = \frac{Z}{\sigma}$ dargestellt. Setzen wir ferner $S = \frac{gX_m}{Z} = +1$, dann repräsentiert die mit der Z-Axe in der Entfernung 1 parallel verlaufende gerade S das Verhältnis $\frac{gX_m}{V_n}$ für alle reellen und imaginären Anfangsgeschwindigkeiten Va. Es finden nun für S = 1 dieselben Beziehungen statt, wie für $A_{\rm m}=1.$

Wie nun im luftleeren Raume, so gestalten sich auch im lufterfüllten Raume die Verhältnisse für s = $\frac{gx_m}{z} = \frac{gx_m}{V_n^2}$ in ähnlicher Weise, wie für am. Durch eine vollständig analoge Betrachtung erhalten wir die Gleichung

27.
$$s = e^{(\rho_a + \lambda_a - \eta_a - \mu_a) k}$$

wo k, ϱ , λ Funktionen von u sind, wo η_a eine Funktion von ω und μ_a eine solche von s ist.

Aus den Schusstafeln der schweiz. 12 cm-Geschütze haben wir errechnet, dass $\rho_a = \lambda_a =$ $\mu_a = 0$ gesetzt werden können, und dass η_a die

28.
$$\eta_a = \left(\frac{\omega}{\omega_0}\right)_a^2 e^{-h\left(\frac{\omega}{\omega_0}\right)^2}$$

hat. Die Konstante k hat als Funktion von u die Form

29.
$$k = \alpha u^2 e^{-\beta u^2}$$

Aus den schweizerischen 12-cm-Schusstafeln ergab sich ferner, dass $\alpha = 4000$; $\beta = 5.5$ und h = 4 zu setzen ist. Zur Bestimmung von x_m haben wir nun das System von Gleichung

30.
$$x_m = \frac{v_a^2}{g} e^{-k \cdot \eta_a}; \ \eta_a = \left(\frac{\omega}{\omega_0}\right)_a^2 e^{-4\left(\frac{\omega}{\omega_0}\right)^2}$$

$$k = 4000 \text{ u}^2 e^{-5.5 \text{ u}^2}$$

Wir machen darauf aufmerksam, dass für η_a auch hier ähnliche Verhältnisse auftreten, wie bei den η_a und η_e des Ausdruckes für a_m und εm. Wir wollen nun diese Formeln an Hand der Krupp'schen 12 cm- und 28 cm-Haubitzgeschützen prüfen. Die 28 cm-Schusstafel enthält die Werte x_m. Unsere Formeln 31 geben nun Werte x'_m, die etwas von den Schusstafelwerten xm abweichen. Bezeichnen wir diese Differenzen x'm - x m mit Ax m und ordnen wir sie nach den steigenden Werten der Anfangsgeschwindigkeiten va, dann erhält man:

$$\Delta x_m = -4.8 \text{ m}; = -11.8 \text{ m}; = -10.1 \text{ m}$$

= -13.9 m; = -31 m; = +33.8 m.

Diese Differenzen rühren nun von verschiedenen Fehlerquellen her, unter denen bei diesen grossen Abgangswinkeln das Pulver die wichtigste ist. schusstafelmässigen, maximalen Schussweiten xm absolut richtig, aber erschossen für Anfangsgeschwindigkeiten v'a, die von den schusstafelmässigen um Ava differieren. Alsdann erhält man aus den Gleichungen 31 sofort die Werte für ⊿va, es ist:

$$\Delta v_a = + 0.15 \text{ m}; = + 0.33 \text{ m}; = + 0.25 \text{ m};$$

= + 0.3 m; = + 0.53 m; = - 0.57 m.

Wir belasten das Pulver jedenfalls stark, wenn wir nun annehmen, dass die Abgangsgeschwindigkeiten um sechs Zehntteile der Ava von der schusstafelmässigen abweichen. Im fernern können wir nun annehmen, dass bei diesen grossen Elevationen 1 Meter mehr oder weniger Anfangsgeschwindigkeit die Schussweite um rund 45 vergrössert oder verkleinert. Gestützt hierauf sind die Differenzen Axm auf das Pulver und auf die andern Fehler-Einflüsse wie folgt zu verteilen: 1) Auf das Pulver kommen die Schussweitenfehler:

$$\Delta x_{mp} = -4.5 \text{ m}; = -9 \text{ m}; = -7.0 \text{ m};$$

= -8.1 m; = -14.9 m; = +16.1 m.
2) Auf die andern Fehlerquellen:

$$\Delta x_{ma} = -0.3 \text{ m}; = -2.8 \text{ m}; = -3.1 \text{ m};$$

= -5.8 m; = -16.1 m; = +17.7 m.

Wir sehen vor allem, dass die grösste Abweichung der mittlern Abgangsgeschwindigkeit von der schusstafelmässigen relativ nur als sehr klein zu bezeichnen ist, sie beträgt mit aller Wahrscheinlichkeit kaum 40 cm.

Die 12 cm-Feldhaubitzen Friedr. Krupp besitzen die Werte xm nicht. Wir haben sie daher durch Annäherungsrechnung ohne Anwendung der Formeln 31 bestimmt. Für diese so errechneten maximalen Schussweiten erhalten wir für:

$$v_a = 158 \text{ m}; = 185 \text{ m}; = 216 \text{ m};$$

 $= 252 \text{ m}; = 300 \text{ m}$
 $\Delta x_m = + 4 \text{ m}; = + 3.2 \text{ m}; = -4.7 \text{ m};$
 $= -4.4 \text{ m}; = -0.9 \text{ m}$

und entsprechend wie oben:

und entsprechend whe oben:
$$\Delta x_{ma} = -0.14 \text{ m}; = -0.10 \text{ m}; = +0.13 \text{ m};$$

$$= +0.11 \text{ m}; = +0.02 \text{ m}$$

$$\Delta x_{mp} = +2.5 \text{ m}; = +2.0 \text{ m}; = -2.4 \text{ m};$$

$$= -2.0 \text{ m}; = -0.4 \text{ m}$$

$$\Delta x_{ma} = +1.7 \text{ m}; = +1.2 \text{ m}; = -2.3 \text{ m};$$

$$= -2.4 \text{ m}; = -0.5 \text{ m}$$
wobei zu beachten ist, dass 1 Meter mehr oder

weniger Anfangsgeschwindigkeit die Schusswerte entsprechend rund um 30 Meter ändert.

Aus diesem geht hervor, wie wichtig es ist, dass man über die wirkliche Anfangsgeschwindigkeit aller zum Erschiessen einer Schusstafel nötigen Schusserien genau orientiert ist. Nur so ist es möglich, eine einheitliche Schusstafel zu erhalten die in allen ihren Werten einer bestimmten und bekannten Anfangsgeschwindigkeit entspricht.

Aus obigen Zahlenwerten geht aber wieder Nehmen wir für den Moment an, es seien die hervor, dass das Krupp'sche Pulver sehr exakt reagiert. Die Formeln mit ihren Konstanten haben wir aus den schweizerischen 12 cm-Schusstafeln abgeleitet. Aus den hiezu nötigen Rechnungen ergab sich wohl unzweideutig, dass diese Schusstafeln mit Schusserien erschossen wurden, die weit grössere Streuungen der Abweichungen der mittleren Anfangsgeschwindigkeit von der schusstafelmässigen besitzen, als wie dies bei den Krupp'schen Schusstafeln der Fall ist. Und dennoch lassen sich diese Formeln mit ihren Konstanten mit so grossem Erfolge auf die Krupp'schen Geschütze anwenden

Wir können nun x_m auch durch die Endgeschwindigkeiten darstellen, indem wir von dem Umkehrungsprinzip Gebrauch machen. Wir erhalten sofort die Form

$$32. \quad x_m = \frac{v_e^2}{g} \ e^{k\eta_e}$$

Setzen wir endlich die beiden Werte von x_m aus den Gleichungen 31 und 32 einander gleich, dann erhalten wir

33.
$$v_e^2 = v_a^{2} e^{-k(\eta_a + \eta_\theta)}$$

durch welche Form wir die Endgeschwindigkeit der maximalen Schussweiten durch die Anfangsgeschwindigkeiten berechnen können. Wir treten hier auf die Formen 32 und 33 noch nicht näher ein.

XIV.

Um die Formeln zur Berechnung der Einfallswinkel zu erhalten, haben wir auf die Formeln zur Berechnung der Aufsätze das Umkehrungsprinzip anzuwenden. Dem Ausdruck Wa (Gleichung 15, zweite Mitteilung) ist zunächst die Form

34.
$$W_a = \omega_a^{2,5} e^{-2,5 \left(\frac{\omega}{\omega_0}\right)_a}$$

zu geben. Alsdann ist va durch ve und $\omega_{oa} = 2$ durch $\omega_{oe} = 0.8$ zu ersetzen. Wir erhalten dann

35.
$$W_e = \omega_e^{2,5} + 2.5 \left(\frac{\omega}{\omega_0}\right)_e$$

Ersetzt man nun in Gleichung 12 (zweite Mitteilung) a durch ε ; a_m durch ε_m und W_a durch W_e , dann erhält man die Formeln zur Berechnung der Tangenten ε der Einfallswinkel.

Wir wollen nun diese Formeln zur Berechnung der Einfallswinkel einiger Steilbahnen anwenden. Wir halten einige wenige Stichproben für genügend, um die Brauchbarkeit der Formeln zu zeigen. Die Schusstafeln der 28 cm-Haubitze Fried. Krupp gibt die Einfallswinkel von Steilbahnen für verschiedene Geschwindigkeiten desselben Geschosses an. Wir wählen die kleinste (I) und die grösste (II) dieser Geschwindigkeiten den berechneten Werten ε' und den Schusstafelwerten ε' und den Schusstafelwerten

Differenz $\Delta \varepsilon_f$ zwischen den berechneten und der Schusstafelwerte ε für die Flachbahn derselben Schussdistanz an. Die folgende Zusammenstellung gibt Aufschluss über die Grösse der Differenzen $\Delta \varepsilon_f$

Abgangs- winkel	Anfa I Δε _s	ngsgeschwindi I $\Delta \varepsilon_{s}$ ''	igkeit I Δε _f
640 54' 30"	n	+ 31' 35"	+ 35' 40"
63° 21′ 15″	+30'45"		_
60° — —	+ 31' 15"	- 33'35"	+34'30"
55° — —	+ 20' 50"	- 43' 40"	+ 31' 30"
50° — —	+11' -	— 2'20"	+ 30' 50"

Zürich, 30. April 1906.

Eidgenossenschaft.

Artillerie-Kommission. Neubestellung. Die eidg. Artillerie-kommission wird für die neue Amtsperiode (1. April 1906 bis 31. März 1909) bestellt aus den Herren:

- 1. Oberst Otto Hebbel, Chef der Abteilung für Artillerie, in Bern;
- 2. Oberst Alfred von Steiger, Chef der administrativen Abteilung der eidg. Kriegsmaterialverwaltung, in Bern;
- 3. Oberst Wilhelm Schmid, Oberinstruktor der Artillerie, in Bern;
- 4. Oberst Eduard Müller, Chef der technischen Abteilung der eidg. Kriegsmaterialverwaltung, in Bern;
 - 5. Oberst Felix von Schumacher in Luzern;
 - 6. Oberstlt. Paul van Berchem in Crans;
 - 7. Major Heinrich Muggli in Bern;
 - 8. Major Karl Sulzer in Winterthur;
- 9. Major Hermann von Bonstetten, Chef der Artillerie-Versuchsstation in Thun.

Mutationen. Oberstleut. Julius Rebold in Bern, Geniechef der Befestigungen von St-Maurice, wird zum Obersten der Genietruppen befördert.

- Inf.-Hauptmann Georg Schwarz, bisher in der Landwehr I. Aufgebot, in Lenzburg, und Train-Oberleut. Leo von Graffenried, bisher Kriegsbrückentrain I Lw., in Thun, werden zum Territorialdienst versetzt.
- Major Theodor Meyer in Chur, wird zum II. Stabsoffizier der Positionsart.-Abt. IV ernannt.
- Oberst Arnold Bühler in Frutigen, wird, entsprechend seinem Gesuche, vom Territorialkreiskommando III entlassen und zu den nach Art. 58 der Militärorganisation zur Verfügung des Bundesrates stehenden Offizieren versetzt.
- Festungs Oberleut. Walter Müller in Lachen-Straubenzell, bisher Festungskanonier-Komp. 4, wird in gleichem Grade zur Eisenbahnabteilung des Generalstabes versetzt.
- Zum Adjutanten des Bat. 114 Lw. II wird ernannt: Hauptmann Paul Pfyffer in Luzern, bisher überzähliger Offizier im Stabe des Bat. 115 Lw. II.
- Das Kommando der Maschinengewehrschützenkomp. 2 wird dem Hauptmann Albert Weber in Bern übertragen.
- Adjutantur. a) Abkommandierung. Als Adjutant wird abkommandiert und zur Truppe zurückversetzt: Oberleut. Alfred Schwarzenbach, bisher Adjutant Art.-Abt. II/6. b) Versetzung. Hauptmann Maurice Moreillon in Montcherand, bisher Adjutant Korps-Park 1, neu: Adjutant Feldart.-Reg. 3. c) Kommandierung. Als Adjutant des Inf.-Regts. 31: Oberleut. Paul Bühler in Chur.