Zeitschrift: Actes de la Société jurassienne d'émulation
Herausgeber: Société jurassienne d'émulation

Band: 106 (2003)

Artikel: Une breve histoire des logiciels libres
Autor: Fuhrer, Claude

DOl: https://doi.org/10.5169/seals-685025

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-685025
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Une bréeve histoire des logiciels libres

Claude. Fuhrer

Les logiciels libres (free software en anglais) sont une alternative inté-
ressante aux modeles standards de production des logiciels, c’est-a-dire
les logiciels propriétaires. Leur but est de garantir aux utilisateurs une
liberté qui leur a été depuis longtemps déniée par les grandes entreprises
de logiciels.

La notion de logiciel libre ?

Il serait peut-€tre utile de définir ce qu’est un logiciel libre. Malheu-
reusement, il n’existe pas une seule définition du logiciel libre, mais plu-
sieurs qui different chacune par leur interprétation de la liberté que 1’on
doit accorder a I’utilisateur de logiciel libre. Car, s’il y a bien un point
sur lequel toutes ces définitions s’accordent, c’est que leur but est de ga-
rantir la liberté de 1’utilisateur final.

Chacune de ces interprétations du terme de liberté a donné naissance
a une licence logicielle, c’est-a-dire un document légal décrivant les
droits et devoirs des utilisateurs de logiciel libre. Le terme est lui aussi
contesté. Le terme francais «logiciel libre» ne présente pas la méme am-
biguité que le terme anglais «free software». Le terme de free software a
été proposé la premiere fois en 1984 par Richard Stallman. Comme défi-
nition de ce terme il proposait la justification:

free as in free speech, not as in free beer

Les neufs commandements du logiciel libre

Certains théoriciens du logiciel libre ont posé neuf commandements
qui définissent ce que devrait autoriser (et interdire) une licence vraiment
libre.

123

Ces commandements sont:

1. Diffusion libre

La licence ne peut entraver la vente ou la propagation des logiciels
libres. En particulier, il ne peut y avoir de paiement de royalties pour les
produits dérivés d’un tel logiciel.

2. Code source

Un logiciel libre doit comporter le code source et permettre la distri-
bution du code source aussi bien que la version compilée. Il n’est pas
absolument nécessaire que le code source soit livré directement avec
’application, mais, dans ce cas il doit, par exemple, flgurer sur un site
Web ou il pourra étre téléchargé gratuitement.

De plus, la licence doit autoriser ’utilisateur a employer ce code
source, a le modifier et a en distribuer la forme modifiée.

3. Travaux dérivés du programme original

La licence doit autoriser la modification du programme original, mais
doit aussi en méme temps encourager (voire obliger?) la distribution de
ces modifications selon les mémes termes que 1’ceuvre originale.

4. Préservation du code source original

1l faut autoriser la modification et I’amélioration du programme origi-
nal, mais les différents auteurs d’un programme ont aussi droit a la pro-
tection de leurs talents et de leur réputation. La licence doit donc
contraindre les développeurs a indiquer de maniere claire les contribu-
tions de chacun et différencier (par exemple par un nouveau numéro de
version) le programme modifié du programme original.

S. Aucune discrimination de personnes ou de groupes

Le logiciel libre doit étre accessible a tout le monde. Il n’est en aucun
cas permis de réduire sa disponibilité a un groupe de personnes comme
par exemple n’autoriser qu'un usage €éducatif mais pas industriel.

6. Aucune restriction relative au domaine d’utilisation

En dehors des clauses de non-responsabilité, le programmeur ne peut
pas (ne doit pas) restreindre [’utilisation de son logiciel pour, par
exemple, en interdire 'utilisation dans un domaine qui ne lui semble pas
acceptable.

124

7. Transmission de la licence

Ceci est une des caractéristiques les plus importantes et les plus inté-
ressantes du logiciel libre. Les droits attachés a un programme valent
pour tous ceux qui ont obtenu ce programme, sans qu’il soit permis a un
intermédiaire d’y attacher une licence supplémentaire ou de simplement
modifier la licence originale.

8. La licence ne doit pas étre attachée a un produit particulier

Il ne faut pas qu’un programme soit libre quand il est distribué d’une
certaine maniere et non libre dans un autre contexte. Cela permet de se
prémunir des «pieges a licence».

9. La licence ne doit pas entraver d’autres logiciels

Cette clause est en quelque sorte le pendant de la précédente. On doit
pouvoir distribuer des logiciels libres dans un environnement ou une
distribution de logiciels propriétaires. En annexe au présent document,
on trouvera une liste de références d’ou il est possible de télécharger le
texte complet de ces licences.

Quelgues licences libres

Ainsi qu’il a été mentionné plus haut, il existe plusieurs licences
«libres». Parmi celles-ci, trois ont pris le pas sur les autres. Elles cou-
vrent la majorité des logiciels libres. Le tableau ci-dessous donne un pe-
tit apercu de ces licences avec certaines de leurs particularités.

La licence BSD

La licence BSD (Berkeley Software Distribution) est une des plus an-
ciennes mais aussi des moins contraignantes. Elle permet pratiquement
toutes les utilisations du code qu’elle recouvre, y compris 1’inclusion
dans un programme propriétaire, ce qui fait d’ailleurs dire aux puristes
qu’elle n’est pas une vraie licence libre. Cette licence impose de reco-
pier dans les fichiers source un en-téte standardisé comportant les princi-
paux termes de cette licence. Cette particularité conduit a des situations
plutét comiques dans laquelle un fichier source de quelques lignes doit
inclure une en-téte de plusieurs centaines de lignes.

125

Droits
Utilisable avec Acces aux Restrictions particuliers
LICENCE un logiciel modifications de publication pourle
| commercial pour tous détenteur de
la licence
GPL non oui non non
LGPL oui oui non non
BSD oui oui non - non
NPL oui non non oui
Domaine public oui non oui _non

La licence GNU-GPL

La licence GNU-GPL (GNU General Public Licence) est non seule-
ment une des licences les plus répandues, mais aussi la plus intéressante.
Outre les termes classiques de non-responsabilité, elle contient un cer-
tain nombre de clauses dont on pourrait dire qu’elles contraignent a la li-
berté. ;

La licence GNU-GPL, comme toutes les licences de logiciel libre,
donne a 'utilisateur du logiciel qu’elle couvre la liberté d’utilisation, de
copie et de modification. Par contre, ou elle se distingue d’un certain
nombre d’autres licences, c’est qu’elle oblige le détenteur d’un logiciel
GPL a transférer ses droits aux autres utilisateurs. Cela signifie que si
quelqu’un fournit a une autre personne un logiciel couvert par la licence
GNU-GPL il doit obligatoirement donner le code source, y compris des
modifications qu’il y a faites et cela dans les termes de la GPL. Cet-
te clause a d’ailleurs souvent été qualifiée de «maladie virale» par une
grande firme de développement de logiciel qui distribue uniquement du
logiciel propriétaire.

Un peu d’histoire

Le mouvement du logiciel libre a particulierement pris de 1’ampleur
au cours de ces dix dernieres années. Cependant, ce mode de distribu-
tion n’est pas nouveau. Il était méme souvent la régle au début de I’his-

126

toire de I'informatique. En effet, avant la «standardisation» des sys-
tetmes d’exploitation, les logiciels €taient beaucoup moins interchan-
geables d’un ordinateur a ’autre. Aussi, lorsqu’un programmeur avait
développé un programme pour résoudre un probleme, il était trés heu-
reux d’en faire profiter les autres utilisateurs du méme type d’ordinateur.
Souvent d’ailleurs, c’étaient les fabricants d’ordinateurs eux-mémes qui
rassemblaient et distribuaient ces utilitaires. Un exemple fameux est la
fabuleuse collection de programmes mise a disposition des utilisateurs
des ordinateurs de la gamme PDP par la société Digital Equipment Co.
avec les célebres «bandes DECUS ».

Aussi, c’est tout naturellement que lorsqu’en 1969, deux program-
meurs de la société AT&T déciderent de concevoir et de réaliser un
nouveau systeme d’exploitation, ils ’ont distribué avec le code source
en espérant que les nouveaux utilisateurs puissent en profiter pour pro-
poser des améliorations. De plus, il convient de remarquer que cette ma-
niere de faire permettait aussi a AT&T de ne pas enfreindre [’arrét que
la justice avait rendu quelques années auparavant en la condamnant pour
infraction a la loi sur les monopoles. Ce nouveau systeme d’exploitation
a été baptisé Unix et le langage de programmation qui a été développé
conjointement est bien entendu le langage C.

A peu pres a la méme époque, dans le laboratoire d’intelligence artifi-
cielle du MIT, Richard M. Stallman développait des logiciels pour une
machine de la firme Digital Equipment & Co. Cependant, I’ordinateur
utilis€ par le laboratoire arrivait en fin de vie et Digital avait cessé la
production de systémes compatibles avec cette antiquité. Le probleme se
posait donc de trouver une nouvelle machine, ce qui a I’époque signifiait
aussi un nouveau systeme d’exploitation. Apres avoir regardé a droite et
a gauche, pour trouver ce qui se faisait dans les différents instituts de re-
cherche, le laboratoire d’intelligence artificielle du MIT découvrit Unix.

Ce systeme d’exploitation a, par rapport a ses concurrents de 1’époque,
le gigantesque avantage d’étre facilement portable d’un ordinateur a
I’autre. Cela signifie que lorsqu’il faut changer de type d’ordinateur, les
utilisateurs peuvent tout de méme retrouver un environnement de travail
familier. C’est donc dans ce contexte que Richard Stallman (rms pour
les connaisseurs) commenga a mettre en place ses idées de logiciel libre.

En 1984, AT &T prit enfin vraiment conscience du potentiel du logi-
ciel Unix. Il n’était alors plus question de le distribuer gratuitement,
mais bien de le vendre au prix fort, avec une licence plutot restrictive.
Bien entendu, rms était contrarié par ce changement d’orientation. Il dé-
cida d’écrire un clone de Unix, qui serait completement libre. Ce clone
comporterait non seulement le systeme d’exploitation mais aussi toute
une collection d’outils et d’utilitaires qui permettraient de travailler plus
confortablement et plus efficacement.

127

Quelques grands hackers

Avant de donner une courte biographie de quelques hackers célebres,
il faut mentionner que dans le monde du logiciel libre, on appelle hacker
tout programmeur mettant sa propre production a disposition de la com-
munauté. Un vrai hacker ne s’occupe pas de piratage de logiciels ou de
sites informatiques. Ces activités illégales sont réservées aux crackers.
Les vrais hackers n’ont d’ailleurs que peu d’estime pour les individus
qui utilisent leurs talents pour violer la loi plutdt que de développer des
outils qui pourraient étre utiles a toute la communauté (voir la définition
de ces deux termes dans le glossaire).

Don Knuth

Le professeur Donald Edwin Knuth a été un des premiers a adopter
le principe du «logiciel libre» et cela avant méme que le terme ne fiit
inventé. Au début des années 1960, le professeur Knuth, alors employé
~au département de mathématique de Caltech, décida qu’il était temps
d’écrire 1’encyclopédie définitive de 1’art de la programmation des ordi-
nateurs. Cette encyclopédie sera intitulée The Art of Computer Program-
ming et est souvent référencée avec 1’acronyme TAOCP. L’histoire mé-
me de cette publication est intéressante. Selon Knuth, elle devait com-
porter huit volumes. Il se mit donc au travail et fit paraitre le premier vo-
lume en 1968. Le theme de ce premier volume est Fundamentals
Algorithms. Apres la parution de ce premier volume, il s’attela a la
rédaction du deuxieme volume intitulé Seminumerical Algorithms. Alors
que le premier volume avait été imprimé avec des caractéres en plomb,
le second volume a été imprimé en utilisant un procédé électronique.

La typographie de cet ouvrage (pourtant paru en 1969, c’est-a-dire
seulement une année apres le premier) ne satisfaisait pas du tout Knuth.
I1 décida donc, avant de faire paraitre le troisicme. volume, de dévelop-
per son propre systeme de typographie numérique.

Pendant 3 ans, il a consacré son temps et son énergie a concevoir,
programmer et mettre au point un traitement de texte qu’il a nommé
TEX. Pour que ce logiciel puisse étre utilisé par tous, Knuth en a fait
don a I’American Mathematical Society. N'importe qui peut écrire/pro-
grammer un traitement de texte implantant les fonctionnalités de TEX.
Pour obtenir la «certification», il suffit de faire passer au programme un
certain nombre de tests congus par Knuth lui-méme et, s’il réagit correc-

tement, alors on peut admettre que ce programme est un compilateur
TEX officiel.

128

Les anecdotes concernant Don Knuth et TEX sont nombreuses. Ce-
pendant, une des plus significatives concerne la qualité du logiciel pro-
duit par Knuth. Lors de la premiere version, Knuth a proposé de donner
une récompense a chaque personne qui, la premiére, trouverait une er-
reur dans un de ses livres décrivant le systeme TEX. La récompense se-
rait doublée a chaque nouvelle erreur trouvée. Certes Knuth a bien signé
quelques chéques, mais leur montant n’a jamais été tres élevé et, de
plus, bien peu ont ét€ encaissés. Pouvoir afficher un cheque signé de la
main de Knuth pour avoir trouvé une erreur dans son travail est pour un
vrai hacker une récompense bien plus importante que les quelques dol-
lars que le cheque représente.

Richard M. Stallman

Richard Stallman est vraiment le pere fondateur du mouvement du lo-
giciel libre.

L’histoire liant Richard Stallman au logiciel libre commence au début
des années 1970 au laboratoire d’intelligence artificielle de 1'institut de
technologie du Massachusetts (MIT). A cette époque, le laboratoire uti-
lisait un ordinateur PDP10 de la firme Digital Equipment Co. avec un
systeme d’exploitation dénommé non sans une certaine malice Incompa-
tible Timesharing System (ITS). Chaque membre du laboratoire dévelop-
pait ses propres logiciels et partageait ses expériences avec quiconque le
désirait. Richard Stallman aurait pu vivre alors une vie sans histoire si le
laboratoire d’IA n’avait pas été démantelé quelques années plus tard et
s’il n’avait pas été nécessaire de remplacer I’ordinateur vieillissant par
un systeme plus moderne.

Mais qui dit systeme plus moderne dit aussi souvent nouveau systeme
d’exploitation. Le systeme ITS ne fonctionnait plus sur le nouvel ordina-
teur sur lequel travaillait Stallman. Celui-ci se retrouva donc confronté
aux systemes d’exploitation propriétaires avec les contraintes qui les ac-
compagnent souvent c’est-a-dire les accords de non-divulgation. Cette
facon de voir I’informatique choqua profondément Stallman. Pourquoi
ne pouvait-il pas faire profiter d’autres hackers de son travail ?

Réciproquement pourquoi devait-il «réinventer la roue» a chaque
fois, c’est-a-dire résoudre a nouveau des problémes qui avaient déja été
résolus pas d’autres ?

Pour pouvoir développer efficacement de nouveaux programmes il
était, a I’époque du moins, nécessaire de pouvoir accéder au code source
du systeme d’exploitation. Or, c’était précis€ément ce code source qui
€tait couvert par les clauses de non-divulgation. Comment contourner
le probleme? La réponse s’imposa rapidement, il fallait que Stallman

129

écrive son propre systeme d’exploitation. Le plus moderne de I’époque
étant le systeme Unix, il décida de rendre son systeme compatible avec
Unix. :

Afin de garantir sa liberté et la liberté de ce qu’il produisait, en jan-
vier 1984, il quitta définitivement le MIT pour se consacrer a plein
temps a la tache qu’il s’était fixée. Fidele a une tradition des hackers, il
adopta comme nom pour son projet un acronyme récursif: GNU qui si-
gnifie Gnu is Not Unix.

Un nouveau systeme d’exploitation a besoin d’outils tels que des
compilateurs, des assembleurs, des éditeurs de texte, des programmes de
messagerie, des interpréteurs de ligne de commande et bien d’autres en-
core. Stallman s’est donc attelé a la tiche en estimant qu’il serait plus
utile de commencer par programmer ces utilitaires que de s’attaquer au
systeme d’exploitation proprement dit. Dans le méme élan, il a commen-
cé a définir ce que devait étre un logiciel libre. Il devrait garantir au
moins les quatre libertés suivantes:

1. liberté d’exécuter le programme;

2. liberté de modifier le programme pour pouvoir 1’adapter a ses pro-
pres besoins. Pour cela il est nécessaire de pouvoir accéder au code
source;

3. liberté de redistribuer des copies du programme (gratuites ou non);

4. liberté de distribuer des versions modifiées du programme afin de
faire profiter la communauté des améliorations apportées.

Ces quatre libertés fondamentales sont les quatre piliers qui soutien-
nent la licence GNU-GPL.

La troisieme liberté est souvent mal comprise, en partie a cause du
double sens en anglais du mot free. Cependant il est clairement expliqué
que rien n’interdit a un développeur de vendre un logiciel libre qu’il au-
rait développé. Par contre il ne peut pas non plus empécher ses «clients»
de redistribuer gratuitement le logiciel qu’ils auraient acheté.

En septembre 1984, il s’attelle a la programmation de 1’éditeur de
texte Gnu-emacs, dont il commence a vendre les premieres copies au
printemps 1985. 1l faut se souvenir qu’a cette époque internet (du moins
tel qu'on le connait actuellement) n’existe pas et donc qu’il est impos-
sible pour la plupart des utilisateurs d’aller simplement télécharger le
programme comme on le ferait aujourd’hui. Il a ensuite développé le
compilateur gee, I'interpréteur de ligne de commande bash et toute une
collection d’utilitaires divers.

L

Le copyleft, la licence GPL et la FSF

Pour s’assurer que son travail ne serait pas récupéré par d’autres qui
pourraient en travestir 1’esprit (comme cela s’est vu avec le logiciel

130

X-Windows, Stallman a mis au point une licence dont le but est de pro-
téger les droits des utilisateurs.

Toujours dans I’esprit facétieux des hackers et en jouant avec le
double sens de certains mots, cette nouvelle licence est censée définir
une gauche d’auteur (copyleft). Pour donner une structure officielle au
logiciel libre, une fondation a été créée; elle s’appelle FSF (Free Soft-
ware Foundation).

Linus Torvalds

Un jour de juillet 1991, un jeune étudiant finlandais a posté dans le
newsgroup comp. os. minix le message suivant ([TDO1]):

Salut les netlandiens, suite a un projet sur lequel je travaille (sous
Minix), je serais intéressé par la définition du standard Posix. Quel-
qu’un pourrait-il me dire ou je pourrais trouver la version la plus récen-
te des régles Posix dans un format de préférence lisible par une ma-
chine? Un site FTP serait trés apprécié.

Ce message apparemment anodin est a la base d’une des aventures les
plus originales et les plus fabuleuses de la courte histoire de 1’informa-
tique. L’auteur de ce message est Linus Torvalds, un étudiant en infor-
matique de Finlande. Il semble que ce message ne suscita pas beaucoup
de réponses. Linus dut donc trouver un autre chemin pour obtenir I’in-
formation dont il avait besoin. A peine un mois plus tard, le 25 aofit
1991, il a publié un autre message ou il demandait aux utilisateurs de
Minix quelles sont les fonctionnalités qu’ils désiraient voir ajouter a ce
logiciel pour construire un nouveau systeme d’exploitation. Il s’écoula
encore pres de deux mois pour qu’il publie sa premicre version, numéro-
tée 0.02. En informatique, on désigne I’évolution des logiciels par leur
numéro de version. Le nombre a la gauche du premier point est appelé
«numéro de version majeure» (major version number). Un logiciel dont
le numéro de version majeur est 0 est un logiciel en cours de développe-
ment et qui n’est pas encore considéré comme vraiment utilisable. Le
deuxieme nombre est appelé «numéro de version mineure». 11 est censé
indiquer 1’état des changements depuis le dernier numéro de version ma-
jeur. Quand on constate que le numéro de version mineur de cette ver-
sion de Linux est 02, on peut imaginer la somme de travail que Linus
Torvalds envisageait pour arriver a une version officielle. Il était encore
cependant bien loin de la vérité. Le travail a duré plus de deux ans. Pen-
dant cette période, Linus a regu des milliers de rapports de bogues (ce
qui n’a rien d’extraordinaire pour un développement de cette ampleur) et
a produit un nombre incalculable de mises a jour. A cette époque, instal-
ler Linux sur un ordinateur relevait de 1’exploit sportif. Il fallait tout

131

-

d’abord copier sur Internet le contenu de plusieurs dizaines de dis-
quettes. Ensuite, 1’installation se faisait manuellement en copiant au bon
endroit les bons fichiers. Aucune aide non plus quant aux dizaines de
parametres qu’il fallait introduire dans les multiples fichiers de configu-
rations sur lesquels repose Linux.

Jusque 1a, les ordinateurs fonctionnant sous Linux avaient pratique-
ment été congus pour ce systeme d’exploitation. Ou alors, par exemple
dans le cas du systeme Vax de Digital Equipment Co., le systtme Unix
avait été développé spécialement pour l’ordinateur. Le matériel était
connu, ainsi que la maniere dont il réagissait. Pour la premiere fois,
quelqu’un se proposait d’écrire un systeme d’exploitation pouvant fonc-
tionner sur des machines aussi hétéroclites que sont les PC. On pourrait
rétorquer que Microsoft a [’époque arrivait déja a maitriser cette proues-
se technique. La différence fondamentale était quand méme que Micro-
soft bénéficiait du support des fabricants de matériel informatique, ce
qui n’était pas le cas (et de tres loin) de Linux. Il a donc fallu com-
prendre comment fonctionnait chaque composant d’un ordinateur,
chaque périphérique, écrire un logiciel de pilotage (driver) avec les in-
formations obtenues. De plus, pour garantir la liberté de Linux, il n’était
pas question d’utiliser un code fourni par un fabricant qui n’aurait pas
été couvert par la licence GNU-GPL de Linux.

Actuellement, Linus continue a superviser le développement de Li-
nux. Il est en particulier le principal superviseur des nouvelles versions
du noyau. Cependant, il est amusant de constater que quand Linus Tor-
valds a décidé de chercher un emploi, il n’a pas choisi une activité direc-
tement en relation avec Linux, mais a décidé de travailler pour une peti-
te firme presque inconnue qui développe des microprocesseurs basse
consommation pour les systemes portables.

Eric Raymond

Eric Raymond s’est autoproclammeé le théoricien du logiciel libre. Sa
«contribution logicielle» au monde du libre est surtout connue des spé-
cialistes. Il a en particulier initi€ et supervisé le développement du logi-
ciel fetchmail ainsi que de plusieurs modules d’extension du logiciel
GNU Emacs de Stallman. Cependant, la raison qui a fait d’Eric Ray-
mond un «personnage» dans le monde du logiciel libre est la publica-
tion d’abord sous la forme d’un article et ensuite sous la forme d’un
livre ([Rey00]) d’une étude montrant les différentes techniques de déve-
loppement que le logiciel a inventées, ou pour le moins appliquées, a
une grande échelle, et mises en lumieére.

132

Eric Raymond a appelé cette technique de développement la tech-
nique du bazar. Curieusement, I’apparent chaos qui préside a cette
technique de développement amene rapidement une ligne de développe-
ment stable. De plus, comme la plupart des hackers (du moins tous ceux
ayant des contributions significatives dans le développement de logiciels
libres) s’imposent des standards de qualité que I’industrie peine a
atteindre, les produits obtenus sont souvent meilleurs tant du point de
vue de la conception que du point de vue de la fonctionnalité.

L’ «Internet Engineering Task Force» (IETF)

L’IETF est un comité en charge d’établir les standards qui permettent
aux différents ordinateurs connectés sur internet de s’échanger des infor-
mations de maniere transparente et stire pour les utilisateurs. Parmi les
grandes créations de I’[ETF on trouve entre autres le protocole TCP/IP
qui régit les transferts d’information «bas niveau» sur internet, la «nor-
me» RFC 822 qui définit le format des millions de mails qui transitent
chaque jour entre les utilisateurs, et bien d’autres encore.

Le but de I’IETF est de définir des régles (ou plutot des recommanda-
tions) permettant d’augmenter la sécurité et la qualité des échanges. Ce
qui fait la force de I'[ETF par rapport, par exemple, a d’autres comités
de normalisation gouvermentaux, c’est que le processus d’élaboration
des standards est complétement ouvert a toutes les personnes qui vou-
dront bien s’y intéresser. En fait ’IETF n’a qu’une existence virtuelle
car il ne dispose d’aucune liste de membres. Aucune cotisation, aucun
critere géographique ou professionnel ne limite la participation de tout-
un-chacun a ce comité. On considere normalement que toute personne
abonnée a une des listes de diffusion de I'IETF, ayant participé ne serait-
ce qu’une fois a une des réunions, ou ayant émis un commentaire sur
une des recommandations, est automatiquement considérée comme
membre officiel. D’ailleurs les travaux effectués le sont toujours de ma-
nieére bénévole, sans autre salaire que le sentiment d’avoir «fait un bon
boulot».

Processus d’élaboration des standards

Il faut tout d’abord savoir que I'IETF est organisé en sections. Il y en
actuellement huit qui sont:

1. applications;

2. générale;

3. internet:

133

.

. opérations et gestion;

. routage ;

. Sécurité;

. transport;

. service aux utilisateurs.

Chacune de ces sections est elle-méme divisée en groupes de travail;
il en existe plus d’une centaine.

La devise de I'IETF est le consensus sur [’essentiel et du code qui
fonctionne, ce qui illustre bien le pragmatisme qui guide les décisions.
Pour qu’une résolution soit prise, [’'unanimité n’est pas nécessaire, mais
on admet généralement que si moins de 80% des membres la soutien-
nent, il est plus prudent de la rejeter.

Si les regles de participation a I’'IETF (cf. adresse du site Web a la fin
de cet article) sont assez floues et souples, le processus d’élaboration de
recommandations est lui tres précisément codifié. Il se déroule en plu-
sieurs phases dont les principales sont les suivantes:

1. Un groupe de travail commence par produire un brouillon internet
(internet draft) proposant une solution a un probléme intéressant les
utilisateurs.

2. Le brouillon une fois élaboré est soumis une premiere fois a la
communauté dans un processus appelé «dernier appel». Ce dernier ap-
pel s’étend sur une période de deux a quatre semaines.

3. La troisicme phase peut étre décomposée en deux parties distinctes.
Tout d’abord, le document €ventuellement corrigé acquiert pendant six
mois au moins le statut d’expérimental. Au bout de cette période il peut
éventuellement passer au statut de pré-standard. Pendant cette troisieme
étape, on dit que le standard est un standard proposé.

4. Pour pouvoir passer a la quatrieme €tape, il faut qu’au moins deux
implémentations génétiquement indépendantes de la proposition aient
été réalisées. De plus, ces deux versions doivent étre pleinement inter-
opérables. Dans la réalité, il est souvent nécessaire d’avoir un beaucoup
plus grand nombre de programmes implantant le standard proposé pour
faire la preuve de sa pertinence. Lorsque ces étapes ont été franchies, la
proposition accede au statut de standard internet.

A partir de 1a, le nouveau standard va porter un numéro dans la presti-
gieuse série des RFC. Méme si, a 1'origine, les RFC étaient justement
des propositions (Request For Comment), ce sont maintenant de vraies
normes. Ici aussi, 'IETF se démarque des autres comités de normalisa-
tion en mettant gratuitement a disposition le texte de ces standards. Cette
maniere de procéder favorise leur diffusion et leur utilisation. En effet,
dans d’autres organisations, I’acces aux standards exige de débourser
d’importantes sommes d’argent, ce qui peut €tre un probleme pour les
petites entreprises ou les startups ainsi que les particuliers qui dévelop-
pent des outils en dehors de toute structure «industrielle».

o B0 (@) W, [SN

134

Les méthodes du logiciel libre

Le logiciel libre a eu deux impacts importants sur les méthodes em-
ployées par les informaticiens pour développer et distribuer le logiciel.
Ces deux points sont d’ailleurs intimement liés.

La base du logiciel libre consiste a fournir avec chaque logiciel libre
le code source. Grossierement, si [’on fait une analogie avec une ceuvre
musicale, on peut considérer que le code source est la partition alors que
le code exécutable est le morceau de musique enregistré sur un CD. La
plupart des utilisateurs se contentent de 1’exécutable. Cependant, parfois,
un utilisateur particulier désire une fonction spécifique, ou il lui semble
nécessaire de corriger un bug qu’il trouve particulierement génant. S’il
ne dispose pas du code source, il n’a pas d’autre solution que de deman-
der au fournisseur du logiciel de bien vouloir modifier ou améliorer son
produit, et attendre son bon vouloir. Alors que s’il dispose du code sour-
ce et des connaissances nécessaires, il lui est possible d’effectuer la mo-
dification lui-méme et de mettre ensuite celle-ci a disposition de la com-
munauté. Une fois la modification effectuée et testée, deux choix s’of-
frent a lui. Le premier choix consiste a proposer a [’auteur «original»
(ou plus exactement au chef de projet actuel) la modification pour qu’el-
le soit intégrée dans la version officielle. Il peut aussi décider de garder
sa modification pour lui, et profiter ainsi du travail effectué par la com-
munauté sans rien donner en retour.

Parfois, une troisieme option se présente. Si le chef de projet rechigne
a intégrer la modification proposée, soit parce qu’il lui semble qu’elle ne
s’integre pas dans I’orientation qu’il souhaite donner au projet, soit sim-
plement parce qu’il n’a pas le temps de I’intégrer, alors le développeur
peut proposer sa propre version du logiciel a la communauté. On aura
alors deux produits «concurrents» quasiment identiques. Cet embran-
chement dans la vie d’un logiciel est appelé par le monde du libre un
Jork. Cette situation est le plus souvent malheureuse car cela signifie que
les deux produits auront tendance a se «voler» des développeurs. Le cas
s’est déja présenté plusieurs fois. Les deux paires de produits les plus
celebres qui ont €t€ issues d’un fork sont tout d’abord les éditeurs de
texte emacs et Xemacs et ensuite les compilateurs pour les langages C et
C ++, gcc et eges. Heureusement, dans ce deuxieéme cas, apres quelques
mois de vie parallele, ils ont 2 nouveau fusionné en un seul produit.

Cet état de fait implique que n’importe qui peut alors modifier un pro-
gramme et proposer de nouvelles fonctionnalités. L.e concepteur original
n’a alors plus qu’un contréle restreint sur ’évolution de son produit.
Jusqu’a D’apparition du logiciel libre, personne ne croyait qu’il soit pos-
sible de développer un programme sérieux selon ce modele de partage
total. La plupart des théoriciens de l'ingénierie informatique étaient

185

persuadés que la seule solution possible était le modele qu’Eric Ray-
mond a appelé le modeéle cathédrale, c’est-a-dire que la vie du program-
me €tait sous la supervision et la responsabilité d’un «grand architecte »
qui prenait seul les décisions d’extension du programme. Lui seul avait
une vue d’ensemble suffisamment globale pour comprendre ce que le lo-
giciel devait faire, pouvait faire, et surtout ne devait pas faire.

Le logiciel libre propose un nouveau modele de développement des
programmes. Eric S. Raymond propose de nommer ce modele «modele
bazar». Comme tous les logiciels libres sont accompagnés de leur sour-
ce, chacun peut décider quelles sont les améliorations possibles ou sou-
haitables. Tout utilisateur de logiciel libre peut aussi modifier les pro-
grammes pour y incorporer ces modifications. Ensuite, le modele pré-
voit que 1’on envoie une description des modifications au chef de projet
qui va alors intégrer ces modifications dans la version «officielle». Cela
signifie aussi que le produit va évoluer tres vite. Et comme les multiples
développeurs d’un projet sont le plus souvent trés €loignés les uns des
autres, il a fallu trouver des outils et des techniques qui permettent a
chacun de communiquer avec les autres.

Il est évident que le monde du logiciel libre ne serait pas ce qu’il est
aujourd’hui s’il n’y avait pas eu I’expansion d’internet.

. On peut résumer les méthodes de développement en un certain
nombre de régles dont les plus importantes sont:

1. Chaque développement d’un projet sérieux commence par «grat-
ter » une démangeaison du développeur.

Il est inutile de commencer le développement d’un projet si on n’en
voit pas réellement 1'utilité, c’est-a-dire s’il ne résout pas un probléme
auquel est confronté le programmeur. D’ailleurs, la plupart des projets
ayant échoué sont des projets qui ne répondaient pas a un réel besoin.

2. Les bons programmeurs savent ce qu’il faut écrire. Les program-
meurs géniaux savent ce qu’il faut réécrire et ce qu’il faut réutiliser.

Il existe dans les bibliotheques de logiciels libres des millions de
lignes de codes résolvant une treés grande palette de problemes. Il n’est
pas toujours nécessaire de réinventer la roue. Parfois, il est beaucoup
plus judicieux de réutiliser ce qui a déja été écrit. Il arrive cependant que
le développeur remarque une amélioration possible du code déja écrit et
dans ce cas il faut aussi savoir reconnaitre que sa propre solution est
réellement meilleure.

3. Dans votre planification, prévoyez de jeter au moins une version
complete de projet. Cela vous arrivera de toute facon.

Aussi soigneusement que soit faite la spécification d’un programme
et de son cahier des charges, il arrivera toujours un moment ou il ne sera
plus possible d’ajouter une fonction qui avait été€ oubliée et qui ne peut
pas entrer dans la structure. La seule manieére vraiment efficace de se
rendre compte de ce genre d’oubli est de réaliser une premiére version

136

qui devra étre considérée comme prototype et ensuite de recommencer
le développement quand cela sera devenu nécessaire.

4. Si vous avez la bonne attitude, les problemes intéressants vont finir
par vous trouver.

5. Quand vous perdez votre intérét pour un programme, votre dernie-
re obligation est de la transmettre a un successeur compétent.

Dans quantité de projets de logiciel libre, le responsable du projet
change au cours de la vie du projet. Cela est di au fait que la plupart des
logiciels libres sont développés bénévolement et que les personnes ayant
initi€ le projet ont changé de profession, d’employeur ou tout simple-
ment de priorité. Il existe sur le Web une liste de projets «a remettre»,
c’est-a-dire dont le responsable actuel cherche a passer la main. La plu-
part du temps, le nouveau responsable du projet est quelqu’un faisant un
usage intensif du produit en question.

6. Traiter vos utilisateurs comme des co-développeurs est le moyen le
plus simple d’augmenter rapidement la qualité de votre code et de le dé-
bugger efficacement.

Tout utilisateur du produit est susceptible de formuler des suggestions
intéressantes et intelligentes et cela méme si |’utilisateur en question
n’est pas un programmeur.

7. Release early. Release often. Et soyez a I’écoute de vos clients.

8. Etant donné un ensemble suffisamment grand de béta-testeurs et de
co-développeurs, tous les problemes seront localisés rapidement et les
corrections seront évidentes pour un des développeurs.

9. Une structure de données intelligente et un code stupide fonction-
nent toujours mieux que [’inverse.

10. Si vous considérez vos béta-testeurs comme votre ressource la
plus précieuse, en retour ils feront ce qui est nécessaire pour devenir
votre ressource la plus précieuse.

11. La deuxieme chose la plus importante a avoir apres de bonnes
idées est de reconnaitre les bonnes idées de vos utilisateurs.

12. Souvent la solution la plus originale et innovante a un probléme
est de voir que la compréhension originale du probleme n’était pas bon-
ne.

13. La perfection dans la conception n’est pas atteinte quand il n’y a
plus rien a ajouter mais quand il n’y a plus rien a retirer.

Les enjeux du futur

Prétendre que I’informatique, et plus particulierement I’informatique
personnelle, va prendre une part toujours plus importante dans notre vie
quotidienne est une évidence. Le commerce électronique pour les loisirs

137

et les biens de divertissement (tels que les livres, les CD et les DVD) est
en train d’exploser. De plus, avec [’arrivée des technologies telles que
ADSL ou de I’acces internet par le cible du téléréseau, les ordinateurs
des particuliers sont maintenant connectés en permanence a la toile
mondiale. Il est donc indispensable de protéger les données contenues
dans ces PC, ainsi que les transactions qui sont faites a partir de ceux-ci,
en utilisant des logiciels de cryptographie ou de filtrage des acces.

La pratique montre que, dans le domaine de la cryptographie civile en
tout cas, la meilleure fiabilité est atteinte par des programmes qui non
seulement implantent des algorithmes publics, mais dont le code source
est aussi disponible. Cette disponibilité permet a tout utilisateur qui le
désire de s’assurer que le programme ne contient pas d’erreurs qui com-
promettent la sécurité que le logiciel est censé fournir. C’est typique-
ment un domaine dans lequel le logiciel libre a montré sa supériorité par
rapport au logiciel propriétaire. Bien entendu, il faut aussi résoudre le
probléeme de la distribution du logiciel. C’est-a-dire qu’un utilisateur qui
n’aurait pas le temps ou les connaissances nécessaires a l’examen du
code du programme doit pouvoir se procurer le logiciel depuis une sour-
ce qu’il considere comme fiable.

Une autre application de I’informatique est en train d’émerger et qui
pourrait avoir des effets retentissants sur notre vie de tous les jours, c’est
le vote €lectronique. Plusieurs cantons sont en train d’examiner la possi-
bilité de remplacer les bulletins papiers par des systemes informatiques
dans le but d’accélérer et de simplifier les procédures de dépouillement.
Ici aussi, 1'utilisation d’un logiciel propriétaire pourrait avoir une in-
fluence catastrophique sur les principes de base de la démocratie. Imagi-
nons seulement ce qui pourrait se passer si, aprés chaque week-end de
votation, une entreprise ramassait, dans chaque commune, les urnes,
pour délivrer quelques heures plus tard un résumé des votes. Cela sem-
blerait totalement anti-démocratique. Pourtant ¢’est exactement la situa-
tion qui risque de se produire si les communes ou les cantons portent
leur choix sur un logiciel propriétaire. Il ne sera alors plus possible aux
citoyens de s’assurer que les procédures de dépouillement se dérouleront
de maniere juste et conforme a la loi.

Glossaire

Béta-testeur: utilisateur d’un programme en phase béta. La vie d’un
programme passe tout d’abord par une phase appelée alpha pendant le
développement.

Dans cet état, seules certaines fonctions du programme sont utili-
sables et uniquement par les développeurs du programme. Ensuite,

138

lorsque toutes les fonctionnalités planifiées ont été réalisées, on dit que
le programme passe en phase béta. Pendant cette période, le programme
est testé par des utilisateurs choisis pour leur compétence. Leur but est
de débusquer les erreurs qui subsistent dans le programme et qui n’au-
raient pas été décelées par les programmeurs. Enfin, lorsqu’on estime
que le programme est suffisamment débuggé, il passe alors en phase de
production, appelée aussi version stable, c’est-a-dire qu’il est disponible
pour tous les utilisateurs.

Binaire: les fichiers binaires sont des fichiers exécutables, issus de la
phase de compilation d'un programme. Ils permettent, lorsqu’ils sont
exécutés, de démarrer une application, comme un traitement de texte, un
logiciel de messagerie, etc.

Compilateur/Compiler: pour réaliser une application, on utilise un
éditeur de texte pour la saisie du code source, puis un compilateur pour
le transformer en instructions binaires compréhensibles par la machine.

Cracker: programmeur utilisant son talent de casser les protections
mises en place par les éditeurs de logiciels propriétaires pour empécher
ou du moins limiter la copie de leurs produits. Un des principes de base
des logiciels libres étant d’autoriser les utilisateurs a copier sans restric-
tion, 1’activité de cracker perd toute sa raison d’étre. Les crackers se dé-
crivent souvent comme des hackers, mais les vrais hackers ne les consi-
derent pas comme faisant partie des leurs.

Démon/daemon: programme Unix tournant en tache de fond, c’est-a-
dire sans €tre reli€¢ directement a un terminal.

Distribution: linux n’est qu’un noyau. Pour en faire un systéme com-
plet, il est nécessaire de collecter un ensemble de programmes a travers
Internet, et de les organiser pour obtenir un systéme fonctionnel. Des dis-
tributions (Red Hat, Mandrake,...) contiennent le noyau, ainsi que tous
les programmes nécessaires au fonctionnement de I’environnement
GNU/Linux.

Droits d’acces dans un systeéme d’exploitation multi-utilisateurs, il
est impératif que les fichiers des utilisateurs soient protégés les uns par
rapport aux autres. Les droits d’acces déterminent les utilisateurs autori-
sés a lire, a modifier et a exécuter des fichiers.

Editeur de texte: il s’agit d’un programme qui permet d’éditer des
fichiers au format texte, sans formatage ni gestion des polices de carac-
teres. Il permet, par exemple, de modifier des fichiers de configuration
ou des programmes sources.

Freeware: le nom freeware joue avec le double sens que la langue
anglaise attribue au mot free. Cependant, le mot freeware désigne la plu-
part du temps un logiciel gratuit, mais qui n’est pas forcément libre.
Dans ce cas on trouve la dénomination francaise «graticiel».

GNU: acronyme récursif signifiant GNU is Not Unix. Le mouvement
GNU, issu de la Free Software Foundation a pour but de développer des

139

logiciels libres pour le plus grand nombre de systemes informatiques
possibles.

GNU/Linux: voir Linux.

Hacker: la définition du hacker est assez floue. Suivant le dictionnai-
re ou la source, on trouve chaque fois une définition apparemment diffé-
rente, mais qui souvent décrit la méme chose. Voici quelques définitions:

1. une personne qui aime explorer les détails des systemes program-
mables et comment €tendre leurs capacités, par opposition a la plupart
des utilisateurs qui préferent apprendre seulement le minimum nécessaire.

2. une personne qui programme avec enthousiasme (méme obsessive-
ment).

3. une personne qui est capable d’apprécier les hack values.

4. une personne qui est bonne en programmation rapide.

5. un expert dans un programme particulier, ou quelqu’un qui tra-
vaille fréquemment avec; par exemple un Unix hacker.

How-to: il s’agit d’une collection de documents ayant trait a de nom-
breux sujets tres particuliers. Ceux-ci sont généralement rédigés par
des bénévoles a travers le ' monde et font office de mode d’emploi sur
I’ensemble des problématiques concernant Linux.

IETF: Internet Engineering Task Force, comité bénévole en charge
de normaliser internet, c’est-a-dire d’établir des standards qui permettent
’interopérabilité des différentes plate-formes connectées sur internet
(voir RFC).

Journal/Logfile: les fichiers journaux sont des comptes rendus de
’activité d’une application, générés automatiquement et a intervalles ré-
guliers. Ils peuvent €tre consultés a tout moment, notamment pour déce-
ler I’origine d’un probléme survenu lors de I’exécution d’un programme.

Linux: Linux est le syst¢tme Unix développé a 1’origine par Linus
Torvald. Il a été le premier projet informatique d’envergure développé
selon le principe du bazar.

Matériel/Hardware: tout ce qui concerne la partie «électronique» de
I’informatique.

Noyau/Kernel: le noyau représente le systeme d’exploitation. Tous
les acces au matériel, que ce soient la mémoire ou les périphériques, se
font via le noyau. Ce dernier a également la charge de 1’ordonnancement
des processus, c’est-a-dire la gestion des différentes commandes effec-
tuées.

Paquetage/Package: ce sont des fichiers d’archives permettant la
distribution de logiciels, sous forme de fichiers source et/ou de binaires
(ou exécutables). Ils se chargent de la gestion de dépendances logicielles
par le biais de bases de données locales sur les packages préalablement
installés (RPM, Debian, etc.)

POSIX: ensemble de normes définissant le comportement d’un sys-
teme Unix.

140

Processus/Process: tout programme exécuté est un processus.

RFC: norme définissant les principaux standards d’internet. Bien que
leur nom provienne de 1’abréviation Request For Comment, ce sont bien
des normes achevées et implantées par des dizaines de logiciels.

Root: aussi connu sous le nom de «super utilisateur», ou administra-
teur du systeme, c’est le compte qui a tous les droits sur la machine a
I’opposé des autres utilisateurs dont 1’acces est limiteé.

RPM: systeme de paquetages tres puissant, développé par la société
Red Hat. C’est actuellement le systeme de package le plus répandu,
mais il existe une alternative chez Debian. ,

Serveur mail: logiciel permettant de recevoir le courrier électronique
en provenance d’autres ordinateurs et de le mémoriser en attendant que
le destinataire le consulte a I’aide d’un client mail.

Logiciel/Software: tout ce concerne les programmes.

Uptime: durée pendant laquelle une machine ou un logiciel fonction-
ne sans devoir redémarrer.

Quelgques liens intéressants

e http://www.linux-gull.ch: le portail du Groupe des Utilisateurs de
Linux et du Logiciel Libre Le Long du Léman (GULLLLLL).

 http://www.gutenberg.eu.org Gutenberg: le groupe des utilisa-
teurs francophones de TEX.

e http://www.info.fundp.ac.be/ofburlet/travaux/travail/travail.
html Hackers et crackers: une méme face cachée de 1’informatique ?

» http://www.opensource.org/licences/gpl-licence.html: la licen-
ce GNU-GPL.

» http://www.ietf.org/: le site officiel de 'IETF, I’organisme chargé
des standards d’internet.

o http://www.ietf.org/rfc.html: le site contenant les différentes
normes (RFC) définies par I'IETF et qui fixent le fonctionnement d’in-
ternet.

 http://www.linux-france.org/article/these/cathedrale-bazar/: la
traduction francaise de I’article d’Eric Raymond qui a été la base du
livre [Rey00].

 http://www.oreilly.fr/divers/tribune-libre/index.html: le site of-
ficiel du livre Tribune libre. 1l est possible de lire la quasi-totalité de ce
livre en ligne. |

 http://www.linux-france.org/prj/jargonf/index.html: le jargon
francais: quelques définitions en francais de termes utilisés par les hac-
kers francophones.

141

» http://www.ccil.org/jargon/: le jargon file d’Eric Raymond. Ce
site est le lexique de référence (en anglais) du monde des hackers.

* http://www.stallman.org/rms.html: la page web de Richard M.
Stallman.

* http://www.gnu.org/philosophy/categories.html: la définition des
différentes familles de logiciels (selon les droits qui y sont attachés) de
la Free Software Foundation.

Références

[DOS99] Chris DiBona, Sam Ockman, and Mark Stone, editors.
Tribune libre : ténors de 'informatique libre. O’Reilly, juin 1999.

[IncO1] O’Reilly Associates Inc. Le logiciel libre précis et concis.
O’Reilly, 2001.

[Rey00] Eric S. Reymond. The Cathedral and the Bazaar. O’Reilly,
2000. '

[TDO1] Linus Torvalds and David Diamond. I/ était une fois Linux:
[’histoire extraordinaire d’une révolution accidentelle. Osman Eyrolles
Multimedia, juin 2001.

Claude Fuhrer (Courgenay) est professeur d’informatique a la Haute
Ecole Bernoise pour la Technique et [’Informatique (HTI) a Bienne.

142

	Une brève histoire des logiciels libres

