
Zeitschrift: Actes de la Société jurassienne d'émulation

Herausgeber: Société jurassienne d'émulation

Band: 106 (2003)

Artikel: Une brève histoire des logiciels libres

Autor: Fuhrer, Claude

DOI: https://doi.org/10.5169/seals-685025

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-685025
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Une brève histoire des logiciels libres

Claude Fuhrer

Les logiciels libres (/ree so/bvare en anglais) sont une alternative inté-
ressante aux modèles standards de production des logiciels, c'est-à-dire
les logiciels propriétaires. Leur but est de garantir aux utilisateurs une
liberté qui leur a été depuis longtemps déniée par les grandes entreprises
de logiciels.

La notion de logiciel libre?

Il serait peut-être utile de définir ce qu'est un logiciel libre. Malheu-
reusement, il n'existe pas une seule définition du logiciel libre, mais plu-
sieurs qui diffèrent chacune par leur interprétation de la liberté que l'on
doit accorder à l'utilisateur de logiciel libre. Car, s'il y a bien un point
sur lequel toutes ces définitions s'accordent, c'est que leur but est de ga-
rantir la liberté de l'utilisateur final.

Chacune de ces interprétations du terme de liberté a donné naissance
à une licence logicielle, c'est-à-dire un document légal décrivant les
droits et devoirs des utilisateurs de logiciel libre. Le terme est lui aussi
contesté. Le terme français «logiciel libre» ne présente pas la même am-
biguïté que le terme anglais «j/ree so/bvare». Le terme de_/ree sq/bvare a
été proposé la première fois en 1984 par Richard Stallman. Comme défi-
nition de ce terme il proposait la justification:

/ree as zVz/ree speec/z, «ot as m ./ree beer

Les neufs commandements du logiciel libre

Certains théoriciens du logiciel libre ont posé neuf commandements
qui définissent ce que devrait autoriser (et interdire) une licence vraiment
libre.

123



Ces commandements sont :

1. Diffusion libre
La licence ne peut entraver la vente ou la propagation des logiciels

libres. En particulier, il ne peut y avoir de paiement de roynWes pour les

produits dérivés d'un tel logiciel.

2. Code source
Un logiciel libre doit comporter le code source et permettre la distri-

bution du code source aussi bien que la version compilée. Il n'est pas
absolument nécessaire que le code source soit livré directement avec
l'application, mais, dans ce cas il doit, par exemple, figurer sur un site
Web ou il pourra être téléchargé gratuitement.

De plus, la licence doit autoriser l'utilisateur à employer ce code

source, à le modifier et à en distribuer la forme modifiée.

3. Travaux dérivés du programme original
La licence doit autoriser la modification du programme original, mais

doit aussi en même temps encourager (voire obliger?) la distribution de
ces modifications selon les mêmes termes que l'œuvre originale.

4. Préservation du code source original
Il faut autoriser la modification et l'amélioration du programme origi-

nal, mais les différents auteurs d'un programme ont aussi droit à la pro-
tection de leurs talents et de leur réputation. La licence doit donc
contraindre les développeurs à indiquer de manière claire les contribu-
tions de chacun et différencier (par exemple par un nouveau numéro de

version) le programme modifié du programme original.

5. Aucune discrimination de personnes ou de groupes
Le logiciel libre doit être accessible à tout le monde. Il n'est en aucun

cas permis de réduire sa disponibilité à un groupe de personnes comme
par exemple n'autoriser qu'un usage éducatif mais pas industriel.

6. Aucune restriction relative au domaine d'utilisation
En dehors des clauses de non-responsabilité, le programmeur ne peut

pas (ne doit pas) restreindre l'utilisation de son logiciel pour, par
exemple, en interdire l'utilisation dans un domaine qui ne lui semble pas
acceptable.

124



7. Transmission de la licence
Ceci est une des caractéristiques les plus importantes et les plus inté-

ressantes du logiciel libre. Les droits attachés à un programme valent
pour tous ceux qui ont obtenu ce programme, sans qu'il soit permis à un
intermédiaire d'y attacher une licence supplémentaire ou de simplement
modifier la licence originale.

8. La licence ne doit pas être attachée à un produit particulier
Il ne faut pas qu'un programme soit libre quand il est distribué d'une

certaine manière et non libre dans un autre contexte. Cela permet de se

prémunir des «pièges à licence».

9. La licence ne doit pas entraver d'autres logiciels
Cette clause est en quelque sorte le pendant de la précédente. On doit

pouvoir distribuer des logiciels libres dans un environnement ou une
distribution de logiciels propriétaires. En annexe au présent document,
on trouvera une liste de références d'où il est possible de télécharger le
texte complet de ces licences.

Quelques licences libres

Ainsi qu'il a été mentionné plus haut, il existe plusieurs licences
«libres». Parmi celles-ci, trois ont pris le pas sur les autres. Elles cou-
vrent la majorité des logiciels libres. Le tableau ci-dessous donne un pe-
tit aperçu de ces licences avec certaines de leurs particularités.

La licence BSD

La licence BSD (Benfce/ey S'q/hw/r<? DA/r/Am'o«) est une des plus an-
ciennes mais aussi des moins contraignantes. Elle permet pratiquement
toutes les utilisations du code qu'elle recouvre, y compris l'inclusion
dans un programme propriétaire, ce qui fait d'ailleurs dire aux puristes
qu'elle n'est pas une vraie licence libre. Cette licence impose de reco-
pier dans les fichiers source un en-tête standardisé comportant les princi-
paux termes de cette licence. Cette particularité conduit à des situations
plutôt comiques dans laquelle un fichier source de quelques lignes doit
inclure une en-tête de plusieurs centaines de lignes.

125



LICENCE
Utilisable avec

un logiciel
commercial

Accès aux
modifications

pour tous

Restrictions
de publication

Droits

particuliers

pour le
détenteur de

la licence

GPL non oui non non

LGPL oui oui non non

BSD oui oui non non

NPL oui non non oui

Domaine public oui non oui non

La licence GNU-GPL

La licence GNU-GPL (GNL7 Ge/zera/ Pzzè/zc Lzcezzce) est non seule-
ment une des licences les plus répandues, mais aussi la plus intéressante.
Outre les termes classiques de non-responsabilité, elle contient un cer-
tain nombre de clauses dont on pourrait dire qu'elles contraignent à la li-
berté.

La licence GNU-GPL, comme toutes les licences de logiciel libre,
donne à l'utilisateur du logiciel qu'elle couvre la liberté d'utilisation, de
copie et de modification. Par contre, où elle se distingue d'un certain
nombre d'autres licences, c'est qu'elle oblige le détenteur d'un logiciel
GPL à transférer ses droits aux autres utilisateurs. Cela signifie que si
quelqu'un fournit à une autre personne un logiciel couvert par la licence
GNU-GPL il doit obligatoirement donner le code source, y compris des
modifications qu'il y a faites et cela dans les termes de la GPL. Cet-
te clause a d'ailleurs souvent été qualifiée de «maladie virale» par une
grande firme de développement de logiciel qui distribue uniquement du
logiciel propriétaire.

Un peu d'histoire

Le mouvement du logiciel libre a particulièrement pris de l'ampleur
au cours de ces dix dernières années. Cependant, ce mode de distribu-
tion n'est pas nouveau. Il était même souvent la règle au début de l'his-

126



toire de l'informatique. En effet, avant la «standardisation» des sys-
tèmes d'exploitation, les logiciels étaient beaucoup moins interchan-
geables d'un ordinateur à l'autre. Aussi, lorsqu'un programmeur avait
développé un programme pour résoudre un problème, il était très heu-
reux d'en faire profiter les autres utilisateurs du même type d'ordinateur.
Souvent d'ailleurs, c'étaient les fabricants d'ordinateurs eux-mêmes qui
rassemblaient et distribuaient ces utilitaires. Un exemple fameux est la
fabuleuse collection de programmes mise à disposition des utilisateurs
des ordinateurs de la gamme PDP par la société Digital Equipment Co.
avec les célèbres «bandes DEÇUS».

Aussi, c'est tout naturellement que lorsqu'en 1969, deux program-
meurs de la société AT&T décidèrent de concevoir et de réaliser un
nouveau système d'exploitation, ils l'ont distribué avec le code source
en espérant que les nouveaux utilisateurs puissent en profiter pour pro-
poser des améliorations. De plus, il convient de remarquer que cette ma-
nière de faire permettait aussi à AT&T de ne pas enfreindre l'arrêt que
la justice avait rendu quelques années auparavant en la condamnant pour
infraction à la loi sur les monopoles. Ce nouveau système d'exploitation
a été baptisé £/rax et le langage de programmation qui a été développé
conjointement est bien entendu le langage C.

A peu près à la même époque, dans le laboratoire d'intelligence artifi-
cielle du MIT, Richard M. Stallman développait des logiciels pour une
machine de la firme Digital Equipment & Co. Cependant, l'ordinateur
utilisé par le laboratoire arrivait en fin de vie et Digital avait cessé la
production de systèmes compatibles avec cette antiquité. Le problème se

posait donc de trouver une nouvelle machine, ce qui à l'époque signifiait
aussi un nouveau système d'exploitation. Après avoir regardé à droite et
à gauche, pour trouver ce qui se faisait dans les différents instituts de re-
cherche, le laboratoire d'intelligence artificielle du MIT découvrit Unix.

Ce système d'exploitation a, par rapport à ses concurrents de l'époque,
le gigantesque avantage d'être facilement portable d'un ordinateur à

l'autre. Cela signifie que lorsqu'il faut changer de type d'ordinateur, les
utilisateurs peuvent tout de même retrouver un environnement de travail
familier. C'est donc dans ce contexte que Richard Stallman (rms pour
les connaisseurs) commença à mettre en place ses idées de logiciel libre.

En 1984, AT&T prit enfin vraiment conscience du potentiel du logi-
ciel Unix. Il n'était alors plus question de le distribuer gratuitement,
mais bien de le vendre au prix fort, avec une licence plutôt restrictive.
Bien entendu, rms était contrarié par ce changement d'orientation. Il dé-
cida d'écrire un clone de Unix, qui serait complètement libre. Ce clone
comporterait non seulement le système d'exploitation mais aussi toute
une collection d'outils et d'utilitaires qui permettraient de travailler plus
confortablement et plus efficacement.

127



Quelques grands hackers

Avant de donner une courte biographie de quelques hackers célèbres,
il faut mentionner que dans le monde du logiciel libre, on appelle hacker
tout programmeur mettant sa propre production à disposition de la com-
munauté. Un vrai hacker ne s'occupe pas de piratage de logiciels ou de
sites informatiques. Ces activités illégales sont réservées aux crachera.
Les vrais hackers n'ont d'ailleurs que peu d'estime pour les individus
qui utilisent leurs talents pour violer la loi plutôt que de développer des

outils qui pourraient être utiles à toute la communauté (voir la définition
de ces deux termes dans le glossaire).

Don Knuth

Le professeur Donald Edwin Knuth a été un des premiers à adopter
le principe du «logiciel libre» et cela avant même que le terme ne fût
inventé. Au début des années 1960, le professeur Knuth, alors employé
au département de mathématique de Caltech, décida qu'il était temps
d'écrire l'encyclopédie définitive de l'art de la programmation des ordi-
nateurs. Cette encyclopédie sera intitulée 77îc Art o/Com/mfer Pragram-
mi«g et est souvent référencée avec l'acronyme TAOCP. L'histoire mê-
me de cette publication est intéressante. Selon Knuth, elle devait com-
porter huit volumes. Il se mit donc au travail et fit paraître le premier vo-
lume en 1968. Le thème de ce premier volume est /Tmr/ame«fa/.v
A/gorii/zms. Après la parution de ce premier volume, il s'attela à la
rédaction du deuxième volume intitulé Semmwmericai A/gon'f/zms. Alors
que le premier volume avait été imprimé avec des caractères en plomb,
le second volume a été imprimé en utilisant un procédé électronique.

La typographie de cet ouvrage (pourtant paru en 1969, c'est-à-dire
seulement une année après le premier) ne satisfaisait pas du tout Knuth.
Il décida donc, avant de faire paraître le troisième volume, de dévelop-
per son propre système de typographie numérique.

Pendant 3 ans, il a consacré son temps et son énergie à concevoir,
programmer et mettre au point un traitement de texte qu'il a nommé
TEX. Pour que ce logiciel puisse être utilisé par tous, Knuth en a fait
don à 1'America« Mat/zemat/ca/ Society. N'importe qui peut écrire/pro-
grammer un traitement de texte implantant les fonctionnalités de TEX.
Pour obtenir la «certification», il suffit de faire passer au programme un
certain nombre de tests conçus par Knuth lui-même et, s'il réagit correc-
tement, alors on peut admettre que ce programme est un compilateur
TEX officiel.

128



Les anecdotes concernant Don Knuth et TEX sont nombreuses. Ce-
pendant, une des plus significatives concerne la qualité du logiciel pro-
duit par Knuth. Lors de la première version, Knuth a proposé de donner
une récompense à chaque personne qui, la première, trouverait une er-
reur dans un de ses livres décrivant le système TEX. La récompense se-
rait doublée à chaque nouvelle erreur trouvée. Certes Knuth a bien signé
quelques chèques, mais leur montant n'a jamais été très élevé et, de

plus, bien peu ont été encaissés. Pouvoir afficher un chèque signé de la
main de Knuth pour avoir trouvé une erreur dans son travail est pour un
vrai hacker une récompense bien plus importante que les quelques dol-
lars que le chèque représente.

Richard M. Stallman

Richard Stallman est vraiment le père fondateur du mouvement du lo-
giciel libre.

L'histoire liant Richard Stallman au logiciel libre commence au début
des années 1970 au laboratoire d'intelligence artificielle de l'institut de
technologie du Massachusetts (MIT). A cette époque, le laboratoire uti-
lisait un ordinateur PDP10 de la firme Digital Equipment Co. avec un
système d'exploitation dénommé non sans une certaine malice /ncompa-
ft'We Tï/ne.v/îrtr/n» System (/TS). Chaque membre du laboratoire dévelop-
pait ses propres logiciels et partageait ses expériences avec quiconque le
désirait. Richard Stallman aurait pu vivre alors une vie sans histoire si le
laboratoire d'IA n'avait pas été démantelé quelques années plus tard et
s'il n'avait pas été nécessaire de remplacer l'ordinateur vieillissant par
un système plus moderne.

Mais qui dit système plus moderne dit aussi souvent nouveau système
d'exploitation. Le système ITS ne fonctionnait plus sur le nouvel ordina-
teur sur lequel travaillait Stallman. Celui-ci se retrouva donc confronté
aux systèmes d'exploitation propriétaires avec les contraintes qui les ac-
compagnent souvent c'est-à-dire les accords de non-divulgation. Cette
façon de voir l'informatique choqua profondément Stallman. Pourquoi
ne pouvait-il pas faire profiter d'autres hackers de son travail?

Réciproquement pourquoi devait-il «réinventer la roue» à chaque
fois, c'est-à-dire résoudre à nouveau des problèmes qui avaient déjà été
résolus pas d'autres?

Pour pouvoir développer efficacement de nouveaux programmes il
était, à l'époque du moins, nécessaire de pouvoir accéder au code source
du système d'exploitation. Or, c'était précisément ce code source qui
était couvert par les clauses de non-divulgation. Comment contourner
le problème? La réponse s'imposa rapidement, il fallait que Stallman

129



écrive son propre système d'exploitation. Le plus moderne de l'époque
étant le système Unix, il décida de rendre son système compatible avec
Unix.

Afin de garantir sa liberté et la liberté de ce qu'il produisait, en jan-
vier 1984, il quitta définitivement le MIT pour se consacrer à plein
temps à la tâche qu'il s'était fixée. Fidèle à une tradition des hackers, il
adopta comme nom pour son projet un acronyme récursif: GA/G qui si-
gnifie G/zzz /s AU/ G/zz'x.

Un nouveau système d'exploitation a besoin d'outils tels que des

compilateurs, des assembleurs, des éditeurs de texte, des programmes de

messagerie, des interpréteurs de ligne de commande et bien d'autres en-
core. Stallman s'est donc attelé à la tâche en estimant qu'il serait plus
utile de commencer par programmer ces utilitaires que de s'attaquer au
système d'exploitation proprement dit. Dans le même élan, il a commen-
cé à définir ce que devait être un logiciel libre. Il devrait garantir au
moins les quatre libertés suivantes :

1. liberté d'exécuter le programme;
2. liberté de modifier le programme pour pouvoir l'adapter à ses pro-

près besoins. Pour cela il est nécessaire de pouvoir accéder au code
source ;

' 3. liberté de redistribuer des copies du programme (gratuites ou non) ;

4. liberté de distribuer des versions modifiées du programme afin de
faire profiter la communauté des améliorations apportées.

Ces quatre libertés fondamentales sont les quatre piliers qui soutien-
nent la licence GNU-GPL.

La troisième liberté est souvent mal comprise, en partie à cause du
double sens en anglais du mot./ree. Cependant il est clairement expliqué
que rien n'interdit à un développeur de vendre un logiciel libre qu'il au-
rait développé. Par contre il ne peut pas non plus empêcher ses «clients»
de redistribuer gratuitement le logiciel qu'ils auraient acheté.

En septembre 1984, il s'attelle à la programmation de l'éditeur de
texte Gzzzz-emacs, dont il commence à vendre les premières copies au
printemps 1985. Il faut se souvenir qu'à cette époque internet (du moins
tel qu'on le connaît actuellement) n'existe pas et donc qu'il est impos-
sible pour la plupart des utilisateurs d'aller simplement télécharger le

programme comme on le ferait aujourd'hui. Il a ensuite développé le
compilateur gcc, l'interpréteur de ligne de commande Atzs/z et toute une
collection d'utilitaires divers.

Le copyleft, la licence GPL et la FSF
Pour s'assurer que son travail ne serait pas récupéré par d'autres qui

pourraient en travestir l'esprit (comme cela s'est vu avec le logiciel

130



X-Windows, Stallman a mis au point une licence dont le but est de pro-
téger les droits des utilisateurs.

Toujours dans l'esprit facétieux des hackers et en jouant avec le
double sens de certains mots, cette nouvelle licence est censée définir
une gauche d'auteur (co/ry/e/Z). Pour donner une structure officielle au
logiciel libre, une fondation a été créée; elle s'appelle FSF (Free Sp/T
ware Fozzzzc/aZzon).

Linus Torvalds

Un jour de juillet 1991, un jeune étudiant finlandais a posté dans le

newsgroup comp. os. minix le message suivant ([TD01]):
Sa/zzt /es nef/and/e/zs', .szzz'm à zz/z pro/eZ szzr /epzze/ je trava/Y/e (.vozz.v

Mz'nz'x), je serais intéresse par /a r/e/zzzzYz'o/z c/zz siazzz/arzZ Poszx. ßzze/-
z/zz'zzn pozzrrazY-z'Z me e/z're ozz je pozzrrais frozzver Za verszozz /a p/zzs re'cen-
te zies règ/es Poszx r/azzs zzzz /orzzzaZ e/e pre/erezzce Zz.v/Zz/e /rar zzzze zzza-

c/zz'zze Z7zz «7e FTP Seraà frès apprecz'e.
Ce message apparemment anodin est à la base d'une des aventures les

plus originales et les plus fabuleuses de la courte histoire de l'informa-
tique. L'auteur de ce message est Linus Torvalds, un étudiant en infor-
matique de Finlande. Il semble que ce message ne suscita pas beaucoup
de réponses. Linus dut donc trouver un autre chemin pour obtenir Tin-
formation dont il avait besoin. A peine un mois plus tard, le 25 août
1991, il a publié un autre message où il demandait aux utilisateurs de

Minix quelles sont les fonctionnalités qu'ils désiraient voir ajouter à ce
logiciel pour construire un nouveau système d'exploitation. Il s'écoula
encore près de deux mois pour qu'il publie sa première version, numéro-
tée 0.02. En informatique, on désigne l'évolution des logiciels par leur
numéro de version. Le nombre à la gauche du premier point est appelé
«numéro de version majeure» (zzzajor vm-z'ozz zzzzmèer). Un logiciel dont
le numéro de version majeur est 0 est un logiciel en cours de développe-
ment et qui n'est pas encore considéré comme vraiment utilisable. Le
deuxième nombre est appelé «numéro de version mineure». Il est censé

indiquer l'état des changements depuis le dernier numéro de version ma-
jeur. Quand on constate que le numéro de version mineur de cette ver-
sion de Linux est 02, on peut imaginer la somme de travail que Linus
Torvalds envisageait pour arriver à une version officielle. Il était encore
cependant bien loin de la vérité. Le travail a duré plus de deux ans. Pen-
dant cette période, Linus a reçu des milliers de rapports de èogzzes (ce
qui n'a rien d'extraordinaire pour un développement de cette ampleur) et
a produit un nombre incalculable de mises à jour. A cette époque, instal-
1er Linux sur un ordinateur relevait de l'exploit sportif. Il fallait tout

131



d'abord copier sur Internet le contenu de plusieurs dizaines de dis-
quettes. Ensuite, l'installation se faisait manuellement en copiant au bon
endroit les bons fichiers. Aucune aide non plus quant aux dizaines de

paramètres qu'il fallait introduire dans les multiples fichiers de configu-
rations sur lesquels repose Linux.

Jusque là, les ordinateurs fonctionnant sous Linux avaient pratique-
ment été conçus pour ce système d'exploitation. Ou alors, par exemple
dans le cas du système Vax de Digital Equipment Co., le système Unix
avait été développé spécialement pour l'ordinateur. Le matériel était
connu, ainsi que la manière dont il réagissait. Pour la première fois,
quelqu'un se proposait d'écrire un système d'exploitation pouvant fonc-
tionner sur des machines aussi hétéroclites que sont les PC. On pourrait
rétorquer que Microsoft à l'époque arrivait déjà à maîtriser cette proues-
se technique. La différence fondamentale était quand même que Micro-
soft bénéficiait du support des fabricants de matériel informatique, ce
qui n'était pas le cas (et de très loin) de Linux. Il a donc fallu com-
prendre comment fonctionnait chaque composant d'un ordinateur,
chaque périphérique, écrire un logiciel de pilotage (c/r/ver) avec les in-
formations obtenues. De plus, pour garantir la liberté de Linux, il n'était
pas question d'utiliser un code fourni par un fabricant qui n'aurait pas

.été couvert par la licence GNU-GPL de Linux.

Actuellement, Linus continue à superviser le développement de Li-
nux. Il est en particulier le principal superviseur des nouvelles versions
du noyau. Cependant, il est amusant de constater que quand Linus Tor-
valds a décidé de chercher un emploi, il n'a pas choisi une activité direc-
tement en relation avec Linux, mais a décidé de travailler pour une peti-
te firme presque inconnue qui développe des microprocesseurs basse
consommation pour les systèmes portables.

Eric Raymond

Eric Raymond s'est autoproclammé le théoricien du logiciel libre. Sa

«contribution logicielle» au monde du libre est surtout connue des spé-
cialistes. Il a en particulier initié et supervisé le développement du logi-
ciel /èrc/z»zm7 ainsi que de plusieurs modules d'extension du logiciel
GNU Emacs de Stallman. Cependant, la raison qui a fait d'Eric Ray-
mond un «personnage» dans le monde du logiciel libre est la publica-
tion d'abord sous la forme d'un article et ensuite sous la forme d'un
livre ([ReyOO]) d'une étude montrant les différentes techniques de déve-
loppement que le logiciel a inventées, ou pour le moins appliquées, à

une grande échelle, et mises en lumière.

132



Eric Raymond a appelé cette technique de développement la tech-
nique du bazar. Curieusement, l'apparent chaos qui préside à cette
technique de développement amène rapidement une ligne de développe-
ment stable. De plus, comme la plupart des hackers (du moins tous ceux
ayant des contributions significatives dans le développement de logiciels
libres) s'imposent des standards de qualité que l'industrie peine à

atteindre, les produits obtenus sont souvent meilleurs tant du point de

vue de la conception que du point de vue de la fonctionnalité.

L'«Internet Engineering Task Force» (IETF)

L'IETF est un comité en charge d'établir les standards qui permettent
aux différents ordinateurs connectés sur internet de s'échanger des infor-
mations de manière transparente et sûre pour les utilisateurs. Parmi les

grandes créations de l'IETF on trouve entre autres le protocole TCP/IP
qui régit les transferts d'information «bas niveau» sur internet, la «nor-
me» RFC 822 qui définit le format des millions de mails qui transitent
chaque jour entre les utilisateurs, et bien d'autres encore.

Le but de l'IETF est de définir des règles (ou plutôt des recommanda-
tions) permettant d'augmenter la sécurité et la qualité des échanges. Ce
qui fait la forcé de l'IETF par rapport, par exemple, à d'autres comités
de normalisation gouvermentaux, c'est que le processus d'élaboration
des standards est complètement ouvert à toutes les personnes qui vou-
dront bien s'y intéresser. En fait l'IETF n'a qu'une existence virtuelle
car il ne dispose d'aucune liste de membres. Aucune cotisation, aucun
critère géographique ou professionnel ne limite la participation de tout-
un-chacun à ce comité. On considère normalement que toute personne
abonnée à une des listes de diffusion de l'IETF, ayant participé ne serait-
ce qu'une fois à une des réunions, ou ayant émis un commentaire sur
une des recommandations, est automatiquement considérée comme
membre officiel. D'ailleurs les travaux effectués le sont toujours de ma-
nière bénévole, sans autre salaire que le sentiment d'avoir «fait un bon
boulot».

Processus d'élaboration des standards

Il faut tout d'abord savoir que l'IETF est organisé en sections. Il y en
actuellement huit qui sont:

1. applications;
2. générale ;

3. internet;

133



4. opérations et gestion ;

5. routage;
6. sécurité;
7. transport;
8. service aux utilisateurs.
Chacune de ces sections est elle-même divisée en groupes de travail ;

il en existe plus d'une centaine.
La devise de F IETF est /e co/zsemi« sur /'essentiel et r/« coc/e çki

/oncf/onne, ce qui illustre bien le pragmatisme qui guide les décisions.
Pour qu'une résolution soit prise, l'unanimité n'est pas nécessaire, mais
on admet généralement que si moins de 80% des membres la soutien-
nent, il est plus prudent de la rejeter.

Si les règles de participation à l'IETF (cf. adresse du site Web à la fin
de cet article) sont assez floues et souples, le processus d'élaboration de
recommandations est lui très précisément codifié. Il se déroule en plu-
sieurs phases dont les principales sont les suivantes:

1. Un groupe de travail commence par produire un brouillon internet
(mterzze? z/ra/7) proposant une solution à un problème intéressant les
utilisateurs.

2. Le brouillon une fois élaboré est soumis une première fois à la
.communauté dans un processus appelé «dernier appel». Ce dernier ap-
pel s'étend sur une période de deux à quatre semaines.

3. La troisième phase peut être décomposée en deux parties distinctes.
Tout d'abord, le document éventuellement corrigé acquiert pendant six
mois au moins le statut d'expérimenta/. Au bout de cette période il peut
éventuellement passer au statut de preWfcme/ard. Pendant cette troisième
étape, on dit que le standard est un .vtcme/aré/propose.

4. Pour pouvoir passer à la quatrième étape, il faut qu'au moins deux
implémentations génétiquement indépendantes de la proposition aient
été réalisées. De plus, ces deux versions doivent être pleinement inter-
opérables. Dans la réalité, il est souvent nécessaire d'avoir un beaucoup
plus grand nombre de programmes implantant le standard proposé pour
faire la preuve de sa pertinence. Lorsque ces étapes ont été franchies, la
proposition accède au statut de stcmz/ard m/enzet.

A partir de là, le nouveau standard va porter un numéro dans la presti-
gieuse série des RFC. Même si, à l'origine, les RFC étaient justement
des propositions (Regz/es? For Comme/zf), ce sont maintenant de vraies
normes. Ici aussi, l'IETF se démarque des autres comités de normalisa-
tion en mettant gratuitement à disposition le texte de ces standards. Cette
manière de procéder favorise leur diffusion et leur utilisation. En effet,
dans d'autres organisations, l'accès aux standards exige de débourser
d'importantes sommes d'argent, ce qui peut être un problème pour les

petites entreprises ou les .vtarm/w ainsi que les particuliers qui dévelop-
pent des outils en dehors de toute structure «industrielle».

134



Les méthodes du logiciel libre

Le logiciel libre a eu deux impacts importants sur les méthodes em-
ployées par les informaticiens pour développer et distribuer le logiciel.
Ces deux points sont d'ailleurs intimement liés.

La base du logiciel libre consiste à fournir avec chaque logiciel libre
le code source. Grossièrement, si l'on fait une analogie avec une œuvre
musicale, on peut considérer que le code source est la partition alors que
le code exécutable est le morceau de musique enregistré sur un CD. La
plupart des utilisateurs se contentent de l'exécutable. Cependant, parfois,
un utilisateur particulier désire une fonction spécifique, ou il lui semble
nécessaire de corriger un èwg qu'il trouve particulièrement gênant. S'il
ne dispose pas du code source, il n'a pas d'autre solution que de deman-
der au fournisseur du logiciel de bien vouloir modifier ou améliorer son
produit, et attendre son bon vouloir. Alors que s'il dispose du code sour-
ce et des connaissances nécessaires, il lui est possible d'effectuer la mo-
dification lui-même et de mettre ensuite celle-ci à disposition de la com-
munauté. Une fois la modification effectuée et testée, deux choix s'of-
frent à lui. Le premier choix consiste à proposer à l'auteur «original»
(ou plus exactement au chef de projet actuel) la modification pour qu'el-
le soit intégrée dans la version officielle. Il peut aussi décider de garder
sa modification pour lui, et profiter ainsi du travail effectué par la com-
munauté sans rien donner en retour.

Parfois, une troisième option se présente. Si le chef de projet rechigne
à intégrer la modification proposée, soit parce qu'il lui semble qu'elle ne
s'intègre pas dans l'orientation qu'il souhaite donner au projet, soit sim-
plement parce qu'il n'a pas le temps de l'intégrer, alors le développeur
peut proposer sa propre version du logiciel à la communauté. On aura
alors deux produits «concurrents» quasiment identiques. Cet embran-
chement dans la vie d'un logiciel est appelé par le monde du libre un
/orL Cette situation est le plus souvent malheureuse car cela signifie que
les deux produits auront tendance à se «voler» des développeurs. Le cas
s'est déjà présenté plusieurs fois. Les deux paires de produits les plus
célèbres qui ont été issues d'un ,/br/c sont tout d'abord les éditeurs de
texte emacs et Xemacs et ensuite les compilateurs pour les langages C et
C ++ gcc et egcw. Heureusement, dans ce deuxième cas, après quelques
mois de vie parallèle, ils ont à nouveau fusionné en un seul produit.

Cet état de fait implique que n'importe qui peut alors modifier un pro-
gramme et proposer de nouvelles fonctionnalités. Le concepteur original
n'a alors plus qu'un contrôle restreint sur l'évolution de son produit.
Jusqu'à l'apparition du logiciel libre, personne ne croyait qu'il soit pos-
sible de développer un programme sérieux selon ce modèle de partage
total. La plupart des théoriciens de l'ingénierie informatique étaient

135



persuadés que la seule solution possible était le modèle qu'Eric Ray-
mond a appelé le modè/e catbedra/e, c'est-à-dire que la vie du program-
me était sous la supervision et la responsabilité d'un «grand architecte»
qui prenait seul les décisions d'extension du programme. Lui seul avait
une vue d'ensemble suffisamment globale pour comprendre ce que le lo-
giciel devait faire, pouvait faire, et surtout ne devait pas faire.

Le logiciel libre propose un nouveau modèle de développement des

programmes. Eric S. Raymond propose de nommer ce modèle «modèle
bazar». Comme tous les logiciels libres sont accompagnés de leur sour-
ce, chacun peut décider quelles sont les améliorations possibles ou sou-
haitables. Tout utilisateur de logiciel libre peut aussi modifier les pro-
grammes pour y incorporer ces modifications. Ensuite, le modèle pré-
voit que Ton envoie une description des modifications au chef de projet
qui va alors intégrer ces modifications dans la version «officielle». Cela
signifie aussi que le produit va évoluer très vite. Et comme les multiples
développeurs d'un projet sont le plus souvent très éloignés les uns des

autres, il a fallu trouver des outils et des techniques qui permettent à

chacun de communiquer avec les autres.
Il est évident que le monde du logiciel libre ne serait pas ce qu'il est

aujourd'hui s'il n'y avait pas eu l'expansion d'internet.
On peut résumer les méthodes de développement en un certain

nombre de règles dont les plus importantes sont:
1. C/zagne deve/oppement d'zzn projet venera commence par «grat-

ter» «ne démangeaison dzz deve/oppezzr.
Il est inutile de commencer le développement d'un projet si on n'en

voit pas réellement l'utilité, c'est-à-dire s'il ne résout pas un problème
auquel est confronté le programmeur. D'ailleurs, la plupart des projets
ayant échoué sont des projets qui ne répondaient pas à un réel besoin.

2. Les bons programmeurs savent ce <7« 'z7 /an/ e'crire. Les program-
menrs genzazzx savent ce zpz'z7/a«t re'ecrz're et ce <r/«'z7/a«f renti/iser.

Il existe dans les bibliothèques de logiciels libres des millions de
lignes de codes résolvant une très grande palette de problèmes. Il n'est
pas toujours nécessaire de réinventer la roue. Parfois, il est beaucoup
plus judicieux de réutiliser ce qui a déjà été écrit. Il arrive cependant que
le développeur remarque une amélioration possible du code déjà écrit et
dans ce cas il faut aussi savoir reconnaître que sa propre solution est
réellement meilleure.

3. Dans votre p/ani/zcat/on, prévoyez de jeter an mozns «ne version
comp/ète de projet. Ce/a vons arrive;'« de tonte/apon.

Aussi soigneusement que soit faite la spécification d'un programme
et de son cahier des charges, il arrivera toujours un moment où il ne sera
plus possible d'ajouter une fonction qui avait été oubliée et qui ne peut
pas entrer dans la structure. La seule manière vraiment efficace de se
rendre compte de ce genre d'oubli est de réaliser une première version

136



qui devra être considérée comme prototype et ensuite de recommencer
le développement quand cela sera devenu nécessaire.

4. 5/ vous avez /a bonne attitude, /es prob/èmes intéressants vonf/inir
par vous trouver.

5. Quant/ vous perdez votre intérêt pour un programme, votre t/ern/è-
re ob/igation est e/e /a transmettre à un successeur compe'fe/zt.

Dans quantité de projets de logiciel libre, le responsable du projet
change au cours de la vie du projet. Cela est dû au fait que la plupart des

logiciels libres sont développés bénévolement et que les personnes ayant
initié le projet ont changé de profession, d'employeur ou tout simple-
ment de priorité. Il existe sur le Web une liste de projets «à remettre»,
c'est-à-dire dont le responsable actuel cherche à passer la main. La plu-
part du temps, le nouveau responsable du projet est quelqu'un faisant un
usage intensif du produit en question.

6. Traiter vos uti/isateurs comme des co-r/éve/oppenr.s est ie moyen /e

p/us simp/e d'augmenter rapidement /a qua/ité e/e votre coe/e et c/e /e dé-
bagger e//zcaceme«f.

Tout utilisateur du produit est susceptible de formuler des suggestions
intéressantes et intelligentes et cela même si l'utilisateur en question
n'est pas un programmeur.

7. /?e/ease ear/y. Ee/ease o/ten. Et soyez à l'écoute de vos clients.
8. Etant donné an ensemb/e .y«//i.sammenf granc/ de bêta-testeurs et de

co-c/eve/oppenri', ton.? /es prob/èmes seront /oca/isés rapic/emenf et /es
corrections seront évidentes pour un c/es (f/c've/oppenrs.

9. f/ne sfrncfnre de données intei/igente et an coc/e stwpic/e/onction-
nent tony'onrs mieux que /'inverse.

10. Sï vous considérez vos bêta-testenrs comme votre ressource /a
p/ns précieuse, en retour i/s /eront ce qui est nécessaire pour e/evenir
votre ressource /a p/us précieuse.

11. La deuxième chose /a p/us importante à avoir après e/e bonnes
ie/ées est e/e reconnaître /es bonnes ie/ées e/e vos uti/isateurs.

12. Souvent /a so/ution /a p/us origina/e et innovante à un prob/ème
est e/e voir que /a compréhension origina/e e/u prob/ème n'était pas bon-
ne.

13. La per/ection e/ans /a conception n'est pees atteinte quane/ i/ n'y a
p/us rien à q/'oufer mais quane/ // n'y a p/us rien et retirer.

Les enjeux du futur

Prétendre que l'informatique, et plus particulièrement l'informatique
personnelle, va prendre une part toujours plus importante dans notre vie
quotidienne est une évidence. Le commerce électronique pour les loisirs

137



et les biens de divertissement (tels que les livres, les CD et les DVD) est
en train d'exploser. De plus, avec l'arrivée des technologies telles que
ADSL ou de l'accès internet par le câble du téléréseau, les ordinateurs
des particuliers sont maintenant connectés en permanence à la toile
mondiale. Il est donc indispensable de protéger les données contenues
dans ces PC, ainsi que les transactions qui sont faites à partir de ceux-ci,
en utilisant des logiciels de cryptographie ou de filtrage des accès.

La pratique montre que, dans le domaine de la cryptographie civile en
tout cas, la meilleure fiabilité est atteinte par des programmes qui non
seulement implantent des algorithmes publics, mais dont le code source
est aussi disponible. Cette disponibilité permet à tout utilisateur qui le
désire de s'assurer que le programme ne contient pas d'erreurs qui com-
promettent la sécurité que le logiciel est censé fournir. C'est typique-
ment un domaine dans lequel le logiciel libre a montré sa supériorité par
rapport au logiciel propriétaire. Bien entendu, il faut aussi résoudre le
problème de la distribution du logiciel. C'est-à-dire qu'un utilisateur qui
n'aurait pas le temps ou les connaissances nécessaires à l'examen du
code du programme doit pouvoir se procurer le logiciel depuis une sour-
ce qu'il considère comme fiable.

Une autre application de l'informatique est en train d'émerger et qui
pourrait avoir des effets retentissants sur notre vie de tous les jours, c'est
le vote électronique. Plusieurs cantons sont en train d'examiner la possi-
bilité de remplacer les bulletins papiers par des systèmes informatiques
dans le but d'accélérer et de simplifier les procédures de dépouillement.
Ici aussi, l'utilisation d'un logiciel propriétaire pourrait avoir une in-
fluence catastrophique sur les principes de base de la démocratie. Imagi-
nons seulement ce qui pourrait se passer si, après chaque week-end de
votation, une entreprise ramassait, dans chaque commune, les urnes,
pour délivrer quelques heures plus tard un résumé des votes. Cela sem-
blerait totalement anti-démocratique. Pourtant c'est exactement la situa-
tion qui risque de se produire si les communes ou les cantons portent
leur choix sur un logiciel propriétaire. Il ne sera alors plus possible aux
citoyens de s'assurer que les procédures de dépouillement se dérouleront
de manière juste et conforme à la loi.

Glossaire

Bêta-testeur: utilisateur d'un programme en phase fréta. La vie d'un
programme passe tout d'abord par une phase appelée a/p/i« pendant le
développement.

Dans cet état, seules certaines fonctions du programme sont utili-
sables et uniquement par les développeurs du programme. Ensuite,

138



lorsque toutes les fonctionnalités planifiées ont été réalisées, on dit que
le programme passe en phase èêto. Pendant cette période, le programme
est testé par des utilisateurs choisis pour leur compétence. Leur but est
de débusquer les erreurs qui subsistent dans le programme et qui n'au-
raient pas été décelées par les programmeurs. Enfin, lorsqu'on estime
que le programme est suffisamment débuggé, il passe alors en phase de

production, appelée aussi version stable, c'est-à-dire qu'il est disponible
pour tous les utilisateurs.

Binaire: les fichiers binaires sont des fichiers exécutables, issus de la
phase de compilation d'un programme. Ils permettent, lorsqu'ils sont
exécutés, de démarrer une application, comme un traitement de texte, un
logiciel de messagerie, etc.

Compilateur/Com/F/er: pour réaliser une application, on utilise un
éditeur de texte pour la saisie du code source, puis un compilateur pour
le transformer en instructions binaires compréhensibles par la machine.

Cracher: programmeur utilisant son talent de casser les protections
mises en place par les éditeurs de logiciels propriétaires pour empêcher
ou du moins limiter la copie de leurs produits. Un des principes de base
des logiciels libres étant d'autoriser les utilisateurs à copier sans restric-
tion, l'activité de crac/cer perd toute sa raison d'être. Les cracfers se dé-
crivent souvent comme des /zackers, mais les vrais /zacfers ne les consi-
dèrent pas comme faisant partie des leurs.

Démon/daeatora : programme Unix tournant en tâche de fond, c'est-à-
dire sans être relié directement à un terminal.

Distribution: linux n'est qu'un noyau. Pour en faire un système com-
plet, il est nécessaire de collecter un ensemble cle programmes à travers
Internet, et de les organiser pour obtenir un système fonctionnel. Des dis-
tributions (Red Hat, Mandrake,...) contiennent le noyau, ainsi que tous
les programmes nécessaires au fonctionnement de l'environnement
GNU/Linux.

Droits d'accès dans un système d'exploitation multi-utilisateurs, il
est impératif que les fichiers des utilisateurs soient protégés les uns par
rapport aux autres. Les droits d'accès déterminent les utilisateurs autori-
sés à lire, à modifier et à exécuter des fichiers.

Editeur de texte: il s'agit d'un programme qui permet d'éditer des
fichiers au format texte, sans formatage ni gestion des polices de carac-
tères. Il permet, par exemple, de modifier des fichiers de configuration
ou des programmes sources.

Freeware : le nom freeware joue avec le double sens que la langue
anglaise attribue au mot ,/ree. Cependant, le mot freeware désigne la plu-
part du temps un logiciel gratuit, mais qui n'est pas forcément libre.
Dans ce cas on trouve la dénomination française «graticiel».

GNU : acronyme récursif signifiant GM7 /s Not t/«/x. Le mouvement
GNU, issu de la Free Software Foundation a pour but de développer des

139



logiciels libres pour le plus grand nombre de systèmes informatiques
possibles.

GNU/Linux: voir Linux.
f/ac&er: la définition du /zrzcfer est assez floue. Suivant le dictionnai-

re ou la source, on trouve chaque fois une définition apparemment diffé-
rente, mais qui souvent décrit la même chose. Voici quelques définitions:

1. une personne qui aime explorer les détails des systèmes program-
mables et comment étendre leurs capacités, par opposition à la plupart
des utilisateurs qui préfèrent apprendre seulement le minimum nécessaire.

2. une personne qui programme avec enthousiasme (même obsessive-
ment).

3. une personne qui est capable d'apprécier les /zac& va/ne.v.
4. une personne qui est bonne en programmation rapide.
5. un expert dans un programme particulier, ou quelqu'un qui tra-

vaille fréquemment avec; par exemple un t/nw /zczc/:er.

i/ow-fo: il s'agit d'une collection de documents ayant trait à de nom-
breux sujets très particuliers. Ceux-ci sont généralement rédigés par
des bénévoles à travers le monde et font office de mode d'emploi sur
l'ensemble des problématiques concernant Linux.

IETF : /nternet Engineering Tai'/: Force, comité bénévole en charge
de normaliser internet, c'est-à-dire d'établir des standards qui permettent
l'interopérabilité des différentes plate-formes connectées sur internet
(voir RFC).

Journal/Log/ï/e: les fichiers journaux sont des comptes rendus de

l'activité d'une application, générés automatiquement et à intervalles ré-
guliers. Ils peuvent être consultés à tout moment, notamment pour déce-
1er l'origine d'un problème survenu lors de l'exécution d'un programme.

Linux: Linux est le système Unix développé à l'origine par Linus
Torvald. Il a été le premier projet informatique d'envergure développé
selon le principe du bazar.

Matdriel/T/arrfware : tout ce qui concerne la partie «électronique» de

l'informatique.
Noyau/KerneZ: le noyau représente le système d'exploitation. Tous

les accès au matériel, que ce soient la mémoire ou les périphériques, se
font via le noyau. Ce dernier a également la charge de l'ordonnancement
des processus, c'est-à-dire la gestion des différentes commandes effec-
tuées.

Paquetage/Pncfcage : ce sont des fichiers d'archives permettant la
distribution de logiciels, sous forme de fichiers source et/ou de binaires
(ou exécutables). Ils se chargent de la gestion de dépendances logicielles
par le biais de bases de données locales sur les packages préalablement
installés (RPM, Debian, etc.)

POSIX: ensemble de normes définissant le comportement d'un sys-
tème Unix.

140



Processus/Frocm : tout programme exécuté est un processus.
RFC: norme définissant les principaux standards d'internet. Bien que

leur nom provienne de l'abréviation /fewest For Comme«?, ce sont bien
des normes achevées et implantées par des dizaines de logiciels.

Roof: aussi connu sous le nom de «super utilisateur», ou administra-
teur du système, c'est le compte qui a tous les droits sur la machine à

l'opposé des autres utilisateurs dont l'accès est limité.
RPM: système de paquetages très puissant, développé par la société

Red Hat. C'est actuellement le système de /mcftage le plus répandu,
mais il existe une alternative chez Debian.

Serveur mail: logiciel permettant de recevoir le courrier électronique
en provenance d'autres ordinateurs et de le mémoriser en attendant que
le destinataire le consulte à l'aide d'un client mail.

Logiciel/So/<H>are: tout ce concerne les programmes.
t/pri/ne : durée pendant laquelle une machine ou un logiciel fonction-

ne sans devoir redémarrer.

Quelques liens intéressants

• http://www.linux-gull.ch: le portail du Groupe des Utilisateurs de
Linux et du Logiciel Libre Le Long du Léman (GULLLLLL).

• http://www.gutenberg.eu.org Gutenberg: le groupe des utilisa-
teurs francophones de TEX.

• http://www.info.fundp.ac.be/ofburlet/travaux/travail/travail.:
/:««/ f/ac/:<?r.s' et crackers: une même face cachée de l'informatique?

• http://www.opensource.org/licences/gpl-licence.html: la licen-
ce GNU-GPL.

• http://www.ietf.org/: le site officiel de l'IETF, l'organisme chargé
des standards d'internet.

• http://www.ietf.org/rfc.html: le site contenant les différentes
normes (RFC) définies par l'IETF et qui fixent le fonctionnement d'in-
ternet.

• http://www.linux-france.org/article/these/cathedrale-bazar/ : la
traduction française de l'article d'Eric Raymond qui à été la base du
livre [ReyOO],

• http://www.oreilly.fr/divers/tribune-libre/index.html: le site of-
ficiel du livre 7nè««e //ère. 11 est possible de lire la quasi-totalité de ce
livre en ligne.

• http://www.linux-france.org/prj/jargonf/index.html: le jargon
français: quelques définitions en français de termes utilisés par les /iac-
/ccrr francophones.

141



• http://www.ccil.org/jargon/: le jargon file d'Eric Raymond. Ce
site est le lexique de référence (en anglais) du monde des èacèers.

• http://www.stallman.org/rms.html: la page weè de Richard M.
Stallman.

• http://www.gnu.org/philosophy/categories.html: la définition des
différentes familles de logiciels (selon les droits qui y sont attachés) de
la Free Software Foundation.

Références

[DOS99] Chris DiBona, Sam Ockman, and Mark Stone, editors.
7r/è««e //ère; tenors Je /'èz/ormat/qzte //ère. O'Reilly, juin 1999.

[IncOl] O'Reilly Associates Inc. Le /ogz'c/e/ //ère ytrec/s et conc/s.
O'Reilly, 2001.

[ReyOO] Eric S. Reymond. Tèe CatèeJra/ and f/ze Saznar. O'Reilly,
2000.

[TDO1 ] Linus Torvalds and David Diamond. // e'tzz/f «ne /o/.y L/ma :
/Vz/.vto/re extraord/zza/re d'tz/ze re'vo/zzt/o/z ercc/denteZ/e. Osman Eyrolles
Multimedia, juin 2001.

C/aude Lnèrer (Co«rge/zay) est yzro/essetzr d'/zz/ormat/zyzze à /a Ltazte
Leo/e Ber/zo/se /zozzr /a Tecèn/e/zze et /'/n/ormat/qzze (è/7'/J à B/etzzze.

142


	Une brève histoire des logiciels libres

