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Mathématiques et médecine

J.-P. GABREEL €t G, FELLAY

Généralités
Introduction

La relation entre mathématiques et médecine n’ést pas nouvelle puis-
que D. Bernoulli, au milieu du XVIII® si¢cle, proposait une approche
mathématique pour évaluer quantitativement I’inoculation antivario-
lique. L’épidémiologie est a I’origine d’un grand nombre de travaux a
caractére mathématique tout au long du XIX¢ si¢cle, mais il faut attendre
notre siecle pour voir cette approche s’étendre a d’autres problématiques
médicales. Nous illustrerons son intérét par deux exemples: le premier
concerne [’activation volontaire d’un muscle et le second le traitement
de I'insuffisance rénale par hémodialyse. Ces deux situations particu-
lieres nous conduiront a faire quelques remarques de nature plus généra-
le sur la problématique inhérente a une telle démarche.

La modélisation mathématique

Nous ne pouvons connaitre de la réalité que des versions simplifiées
et idéalisées qui portent le nom de «modeles» Il existe différents types
de modeles, selon qu’ils reposent sur des notions véhiculées par le lan-
gage courant ou des notions tirées des mathématiques, de I’'informatique
ou d’une autre science. Nous aurons ainsi des modeles en langage natu-
rel, mathématique, informatique, etc. Les premiers sont incontournables
puisqu’ils sont initialement a I’ceuvre dans la saisie de quelque phéno-
mene que ce soit dont on recherche I’explication. Ils se présentent donc
comme une étape indispensable a toute démarche scientifique.

Un modele mathématique peut étre compris comme la traduction d’un
modele en langage naturel dans le langage mathématique. Les modeles
mathématiques considérés dans la suite de ce texte se présentent sous la
forme d’un ensemble de variables et de parametres liés par des relations.
Ces derniéres constituent les hypotheses du modele et I’un des buts de la
démarche sera la recherche, par voie déductive, de nouvelles relations
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entre variables et parametres qui découlent des hypotheses de départ.
Ces nouvelles relations formeront les conclusions du modele et leur con-
frontation aux observations permettra de juger la valeur des hypotheses
initiales.

Pour clarifier la situation, considérons le modele classique du ressort
linéaire sans frottement. Si X (¢#) désigne sa position au temps f, m sa
masse et k sa constante de rappel, alors son mouvement sera décrit par
I’équation de Newton:

m%@hkm) =)

Il faudra encore imposer une condition initiale, & savoir la position
X (0) et la vitesse du ressort V (0) au temps ¢ = 0. La mathématique nous
fournit alors la relation suivante qui donne la position du ressort pour un
temps arbitraire:

X (1) =X (0) cos (\/_) m V (0) sin (\/_ ) (2)

Ce modele comprend donc 2 variables (7, X (1)), 4 parametres (k, m,
X (0), V (0)) et I’équation de Newton constitue sa principale hypothése
(il y en a d’autres qui sont implicites comme le temps et la position qui
sont représentés par le continu, la double dérivabilité de la variable posi-
tion, etc.) et la relation (2) est une conclusion.

1. Modéle mathématique
de I’activation volontaire d’un muscle

Le travail présenté ici est le fruit d’une collaboration entre un physio-
logiste (D. Riiegg) et deux mathématiciens (L. Studer et J.-P. Gabriel).
Cette recherche a permis [’élaboration d’un modele mathématique
de I’activation volontaire d’un muscle par le systéme nerveux central
(SNC). Comme ce modele est relativement complexe (il fait intervenir
17 variables, 11 parametres, dont une fonction arbitraire, et 15 hypothe-
ses), il ne sera pas possible d’entrer ici dans les détails et nous nous con-
tenterons d’en indiquer les aspects essentiels.

Rappelons tout d’abord quelques notions de physiologie. Un muscle
est formé d’un ensemble d’unités motrices (UM) dont le nombre peut
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varier d’une dizaine a plusieurs milliers. Une UM est elle-méme compo-
sée d’une cellule nerveuse appelée motoneurone (MN) et de la famille
des fibres musculaires (du muscle concerné) qu’elle commande. Ainsi
un MN contrdle plusieurs fibres, mais chaque fibre n’est reliée qu’au
seul MN de son UM. Rappelons que les neurones de notre systéme ner-
veux communiquent entre eux a 1’aide de signaux électriques dénommeés
potentiels d’action (PA). Leur forme étant fixe, 1’information utile est
contenue essentiellement dans leur fréquence.

Dans le raisonnement qui suit nous considérons un muscle arbitraire
mais fixé. Sa commande par le SNC est un processus complexe dont la
description nécessite une fragmentation en éléments simples. Elle débu-
te par ’envoi de trains de PA dans les fibres nerveuses reliant le SNC
aux MN du muscle concerné. L’arrivée d’un PA sur la membrane d’un
MN produit une €lévation de son potentiel €lectrique en modifiant, grace
a I’ouverture de canaux perméables a différents ions spécifiques, le cou-
rant qui la traverse. Rien ne se produit tant que la valeur de son potentiel
reste inférieure a une certaine valeur critique. Si cette derniere est attein-
te puis dépassée, alors le MN produit a son tour des PA qui seront pro-
pagés vers les fibres musculaires de son UM et induiront leur contrac-
tion. Le moment ot un MN devient actif correspond au recrutement de
son UM et, des lors, I’augmentation de sa force est controlée par la fré-
quence des PA parvenant a son MN. Un muscle dispose ainsi de deux
chemins pour augmenter sa force: soit par recrutement de nouvelles UM
(a condition qu’elles ne soient pas toutes déja actives), soit par modula-
tion de fréquence, c’est-a-dire par augmentation de la fréquence des PA.
Dans ce modele, les UM sont représentées par leur force maximale t ap-
pelée aussi force tétanique. Rappelons que le célebre «size principle»
impose un recrutement des UM selon 1’ordre croissant défini par t, les
petites étant donc recrutées avant les grandes.

Vu le nombre important d’UM qui constituent en général un muscle,
nous avons décidé de traiter cette population de facon continue. Elle
sera donc décrite par une densité p (r) définie pour fyi, < t < finax, OU iy
et ..« sont respectivement les forces tétaniques de la plus petite et de la
plus grande des UM du muscle concerné.

[’entrée du systeme, notée [, est définie ici comme la somme des fré-
quences des PA parcourant les fibres provenant du SNC. Pour détermi-
ner son effet sur les MN de notre muscle, il est nécessaire de connaitre
le cablage de ceux-ci, ¢’est-a-dire le nombre de connexions de chaque
MN avec les fibres précédentes. Celui-ci sera donné par une fonction
g(t) appelée poids synaptique qui dépend de la variable t puisque
nous avons représenté les UM, et donc les MN, a ’aide de leur force
tétanique. Pour des raisons de taille et de complexité géométrique,
cette grandeur microscopique est aujourd’hui encore inaccessible a
’observation.

74



En supposant connu le poids synaptique, pour chaque MN on peut
calculer le courant de membrane induit par I’ouverture des canaux en
fonction de la valeur de I’entrée. On peut ensuite convertir ce courant en
fréquence de production de PA secondaires et finalement en force de
contraction de I’UM concernée. Toutes ces €tapes peuvent €tre modéli-
sées grice a I’ajustement de données expérimentales. En sommant les
forces produites par les UM actives, on obtiendra la force totale du
muscle en fonction de I’entrée. Ainsi le calcul de la réponse du muscle
ne dépend plus que de la connaissance du poids synaptique.

La question centrale devient donc la détermination de ce dernier et,
pour y répondre, nous avons choisi de résoudre un probléme inverse.
Notre modele contient le poids synaptique comme fonction inconnue et
sa connaissance permettrait de calculer la réponse globale du muscle
dans toutes les situations. On peut inverser ce chemin en imposant la ré-
ponse globale, dans une situation particuliére observée, pour espérer en
déduire la grandeur inconnue a 1’aide du modele. Nous disposons a cet
égard des expériences menées sur I’homme par Riiegg et Bongioanni
(1989) qui suggerent une relation linéaire entre entrée et force d’un
muscle durant sa phase de recrutement (des que ce dernier est achevé
cette relation devient strictement concave et donc non-linéaire). Nous
imposons donc, durant le recrutement, la relation suivante:

F(In) = k(]n_[n()) (3)

ol k est la pente de la droite en question et 7, est la valeur minimale
de I’entrée qui recrute la plus petite des UM.
Il convient de noter que la valeur de I’entrée achevant le recrutement

est inconnue et que notre probleme inverse inclut donc une frontiere
libre.

Une équation intégrale d'un type nouveau

Le poids synaptique est reli€¢ de facon simple a la fonction auxiliaire
F (1) qui représente la force du muscle si ’on recrute ses UM jusqu’au
niveau . En effet, on peut montrer que le produit de ces deux fonctions
est constant et la connaissance de I’une des deux équivaut donc a celle
de 'autre. A I’aide de [’hypothése, on peut montrer que F(f) vérifie 1’é-
quation suivante:

[
B(G= J. sp (s) (1 —ce -a i(("’);’,\?) ) S T S E (4)
5

min
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Les nombres o et ¢ sont fixés tandis que p (la densité d’UM), I, et k
dépendent du muscle.

On peut pressentir que (4) jouera un réle important dans notre discus-
sion puisque toutes les grandeurs cherchées pourront étre déduites du
poids synaptique et donc de F(f), solution de cette équation. D’un point
de vue mathématique, (4) est une équation intégrale pour la fonction in-
connue F(¢). La théorie générale des équations intégrales considére des
intégrants avec une dépendance en s, ¢ et F(s) mais non pas en F(f), ce
qui est justement le cas de (4). Nos considérations physiologiques ont
donc conduit a la formulation d’un probléme mathématique nouveau !

Existence et unicité d'une solution physiologique

Concernant une telle équation, la toute premiere question posée par le
mathématicien sera celle de ’existence et de I’unicité d’une solution. Le
contexte physiologique du probléme pourrait laisser penser que ces pro-
priétés sont automatiquement vérifiées. Il n’en est rien car la modélisa-
tion (relativement complexe dans cette situation) a pu étre menée de fa-
con incorrecte et la question précédente se transforme en test pour notre
démarche.

La premiere difficulté est liée au fait que les arguments développés
dans la théorie classique des équations intégrales ne s’adaptent pas de
facon directe a notre situation. De méme, les méthodes numériques les
plus récentes et les plus sophistiquées, développées pour les types clas-
siques, s’averent incapables de fournir une solution de notre équation.

Le premier résultat que nous avons obtenu ne semblait guére encoura-
geant: si pour k, [, et p donnés, (4) admet une solution, alors elle posse-
de une infinité de solutions qui sont méme discontinues ! Cette constata-
tion suggere un probleme encore mal posé et une exploitation insuffisan-
te de la physiologie. En effet, I'interprétation de F(#) entraine que cette
fonction est monotone croissante. A 1’aide de techniques topologiques
(théoréme de point fixe) et d’un argument de compacité reposant sur le
critere de sélection de Helly, il est possible de démontrer que (4) posse-
de une telle solution. En s’appuyant sur le théoreme des fonctions impli-
cites on peut montrer que continuité, croissance monotone large et crois-
sance monotone stricte, sont trois propriétés équivalentes pour une solu-
tion de (4). Toute solution «physiologique» de (4) est donc strictement
croissante et continue. Finalement, a I’aide d’une inégalité intégrale du
type Gronwall, on vérifie que (4) admet au plus une solution continue
garantissant ainsi 1’existence et I’'unicité d’une solution physiologique.

Ce point étant réglé, nous pouvons maintenant €tudier les proprié-
tés de cette solution. La forme de 1’équation (4) nous assure que, pour
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différents muscles, la solution physiologique sera complétement déter-
minée par p et A = k/,,. Comme il s’avere préférable de travailler avec la
fonction A (f) = tp (f) au lieu de p(¢), cette solution dépendra de £ et A.
Par conséquent nous la noterons F, A(7).

Propriétés de la solution physiologique

La premiere propriété est fournie par la relation suivante:

14

Foa)=AF,, (%m) ot H() = J h(s)ds. (5)

I'min

Il s’agit d’une représentation de la solution de (4), pour un muscle
arbitraire, a 1’aide de la solution pour le muscle dont les parametres sont
h=1 et A = 1:; la densité de ses UM étant égale a p(¢) = —1 , 1l est judi-
cieux de I’appeler muscle hyperbolique et il sera qualifié de standard
puisque A = 1. Il suffira donc de connaitre cette solution particuliere de
(4) pour obtenir toutes les autres. Notons que H (¢) est la force produite
par le muscle lorsque toutes ses UM, jusqu’au niveau £, sont en état téta-
nique; la seule signature de la population des UM dans la formule (5)
apparait donc dans H (¢).

11 est maintenant possible de calculer le poids synaptique g (¢) a I’aide

du muscle hyperbolique standard:

Vi
(Egpsp— Vi) Lo (1 + Fy (HT(U ) (6)

g ()=

ot Vr désigne le potentiel critique de la membrane d’'un MN (la
valeur est indépendante du MN) et Expsp représente un potentiel d’inver-
s10m.

Nous avons en fait répondu a la question suivante: étant donné un
muscle et une pente, c’est-a-dire une densité de population d’UM p et
les valeurs de [, et k, existe-t-il un céblage des MN (i.e. un poids synap-
tique) qui fournisse une réponse linéaire de ce muscle durant la phase de
recrutement? La réponse est non seulement affirmative mais garantit en
plus son unicité. Notons que la force en question étant fournie par la
composition de fonctions non-linéaires, le résultat précédent n’est en au-
cune facon intuitivement évident.
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La seconde propriété nous permettra de déterminer la fonction F,,
comme solution d’un probleme classique. En effet, on peut démontrer
que I’équation suivante:

; =g
il (o) (] =ge F o L) ds, 410, 7
'[) ( ) (7)

possede une unique solution continue qui est de plus positive presque
partout. Par conséquent, la fonction définie par

X (1) :J. x(s)ds (8)
0

est strictement croissante et posséde une fonction réciproque notée
X-'. On peut alors démontrer la validité de la relation suivante:

Ei— X (9)

La solution cherchée F;; s’obtient donc par transformation de la solu-
tion d’un probleme classique puisque (7) est une équation de Volterra de
premier type. Il est méme possible de ramener notre probleme a la réso-
lution d’une équation de Volterra de second type, une situation de loin
préférable pour son traitement numérique.

Conséquences pour |'activation des muscles

Nous appellerons courbe d’activation d’un muscle, le graphe de la
fonction F'(/,) reliant sa force a la valeur de I’entrée. La relation (5) sug-
gere I’existence de similitudes dans I’activation de muscles différents.
Ceci apparaitra clairement au niveau des courbes d’activation a condi-
tion, toutefois, d’introduire des échelles relatives sur les deux axes: I’en-
trée est divisée par [, et la force par la force maximale du muscle Fimax.
La pente k de la droite imposée durant le recrutement devient mainte-
nant S = ?’éﬁ . L’analyse du modele montre que ce nombre joue un role
central. En effet, dans la double échelle relative, deux muscles ayant le
méme facteur S possédent la méme courbe d’activation donnée par la

formule suivante:
F (1) = [, k (Fui (%) + 1,Tn) du (10)
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HAsianutifio sly<x
UsEn = { = cemdnaisi iz

et les =, désignent les grandeurs en échelles relatives.

Ce résultat surprenant nous apprend que la forme de la densité des
UM n’influence pratiquement pas I’activation du muscle car seul son
premier moment (i.e. sa force maximale) intervient dans S. Un autre ar-
gument assure que deux courbes d’activation correspondant a des fac-
teurs S différents ne se coupent jamais. Ces considérations montrent
donc que, dans notre modele, I’activation des muscles est gouvernée par
un seul nombre. La modélisation du phénomene a donc permis la com-
pression des 17 variables et 11 parametres initiaux (dont une fonction),
au seul facteur déterminant S que nous avons baptisé facteur d’activa-
tion. Une telle simplicité de fonctionnement peut présenter un grand in-
térét pour notre SNC puisque les différences morphologiques de nos
muscles ne sont pas reflétées au niveau de leur activation.

Nous sommes maintenant en mesure de préciser la longueur de I'in-
tervalle sur lequel le recrutement est réalisé (frontiere libre). Ce nombre,
noté R, est donn€ par:

R=Fii(%), (11)

Une autre grandeur intéressante est le quotient O de la force du
muscle a la fin du recrutement et de Fmax. On peut montrer que Q, S et R
sont li€s par la relation O = SR et que notre modele fournit les bornes
universelles suivantes pour ce nombre:

0.1 < Q < 0.66. (12)

D’autres fonctionnelles présentant un intérét physiologique peuvent
maintenant €tre déterminées et la prochaine étape consistera a comparer
nos conclusions avec les observations. Un tel modele est bien siir aussi
une source de questions expérimentales nouvelles, illustrant ainsi la na-
ture dialectique du rapport entre théorie et expérience.
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Conclusions générales

La pratique du travail scientifique repose actuellement si souvent sur
le recours a I’ordinateur que notre démarche, qui passe par la démonstra-
tion de théoréemes, étonne parfois ceux qui s’appuient exclusivement sur
la simulation. Et pourtant, il est trés improbable que des relations telles
que (5) ou (9) puissent jamais étre découvertes a I’aide de simulations.
Par ailleurs, il faut rappeler ici que le nombre de parametres libres dans
notre modele est infini, puisque la densité des UM peut étre choisie arbi-
trairement. Si nous nous contentions par exemple de 16 paramétres aux-
quels nous attribuerions 16 valeurs et si chaque configuration exigeait
une seconde pour étre traitée par I’ordinateur, alors le temps total de tra-
vail dépasserait 1’age de 1'univers (selon I’estimation actuelle). Et de
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plus, aurions-nous appris quoi que ce soit sur la situation générale? Aus-
si pensons-nous que rien ne peut remplacer le contenu d’un théoréme
lorsqu’il fait apparaitre des propriétés qui sont indépendantes des va-
leurs particulieres des parametres! La physique théorique traditionnelle
est ’exemple standard de ce type d’approche.

[’avantage d’un modele mathématique sur un modele en langage na-
turel réside principalement dans sa capacité a produire de longues chai-
nes déductives qui sont a I’abri de toute contamination par des notions
ou des hypotheses étrangeres au modele. Ainsi, toute déviation des con-
clusions jugée inacceptable par rapport aux observations ne met en cau-
se que les hypotheses de départ, et non pas la démarche intermédiaire.

On objecte assez souvent a ce type de modeles d’étre par trop simpli-
ficateurs. Il faut cependant €tre conscient que, par extension, cette objec-
tion concerne tous les modeles et que les approches expérimentales sont
a la méme enseigne. Pour décrire un phénomene, il est nécessaire de le
simplifier. Les démarches que nous avons évoquées prennent d’ailleurs
pleinement en compte cette simplification puisqu’elles s’inscrivent dans
un cadre hypothético-déductif du type: si les hypotheses telles et telles
sont admises, alors il s’ensuit ceci et cela. Quant aux résultats issus
d’une expérience, 1ls sont en réalité soumis aux mémes contraintes, puis-
que 1’observateur se doit de fixer un cadre, lequel sera nécessairement
simplificateur, et qu’il devra, volontairement ou non, imposer les valeurs
d’un grand nombre de parametres. Un exemple permettra de clarifier la
situation: «Une expérience de laboratoire a montré que les mollusques
aquatiques constituant I’hote intermédiaire de telle parasitose ont une es-
pérance de vie de 3 semaines» doit étre comprise comme: «si les mol-
lusques de telle espéce sont observés dans un milieu dont la température
est de..., le ph de..., la concentration en sel de..., alors leur espérance
de vie est de 3 semaines.» Notons au passage que cette affirmation de
nature expérimentale est solidaire d’une théorie qui devra préciser la no-
tion d’espérance et la facon de 1’estimer a partir des observations.

Il faut encore ajouter qu’un modele donné constitue seulement une
étape dans un processus qui, en se développant, gagne €galement en
complexité. Tout modele est ainsi appelé a étre supplanté par un autre
dont la puissance d’explication est supérieure. Mais pour que cette supé-
riorité puisse €tre reconnue comme telle, ce qui est la condition méme
du développement de la science, une parfaite compréhension de chaque
étape du processus est indispensable, et c’est bien pour cette raison que
la recherche de théorémes est une opération dont on ne peut pas faire
I’économie. Et méme si, en un sens, tous les modeles sont faux, ils n’en
restent pas moins les éléments de base de notre savoir. N’oublions pas
qu’une démonstration n’a de sens qu’a I’intérieur d’un modele et qu’un
point de vue simplifié mais cohérent reste préférable & une vision com-
plexe inextricable, voire inconsistante.
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Résume

La description quantitative de 1’activation d’un muscle exige la
connaissance du ledS synaptique des motoneurones, c’est-a-dire la
facon dont ceux-ci sont reliés aux fibres provenant du systéme ner-
veux central. La nature rmcroscoplque du poids synaptique le rend,
aujourd’hui encore, inaccessible a 1I’observation. Sous certaines hypo-
théses, un modele mathématique a permis sa détermination en le re-
liant a des grandeurs mesurables. Il est alors possible de comprendre,
dans ce modéle, les roles joués par les différents parametres physiolo-
--glques dans 1’act1vanon d’un muscle.

2. HEmodialyse et mathérnétiques

Notre seconde illustration du rapport entre mathématiques et médeci-
ne concerne le traitement de I’insuffisance rénale par hémodialyse. La
découverte du principe de la dialyse remonte aux travaux du chimiste
écossais Thomas Graham au milieu du dix-neuvieme siecle. Ce proces-
sus est défini comme méthode de séparation de solutés de poids molécu-
laires différents, par diffusion, a travers une membrane semi-perméable.
L’idée de son utilisation clinique pour I’épuration du plasma d’insuffi-
sants rénaux apparait au début de notre siecle. Il faut cependant attendre
les années 1960 pour assister aux premiers traitements systématiques par
hémodialyse rendus possibles grace a la maitrise des nombreux aspects
techniques qui I’accompagnent. Initialement la thérapie était quasi iden-
tique pour tous les patients mais, rapidement, les cliniciens réaliserent la
nécessité de ’individualisation du traitement.

Les conséquences de I’insuffisance rénale sont complexes et multi-
ples; elles conduisent en particulier a I’accumulation d’eau et d’urée
dans le corps du malade.

Rappelons que 1’urée constitue le produit final de la dégradation des
protéines. D’autres molécules posent des problemes analogues, mais
nous ne les envisagerons pas dans cette discussion.

Dans le contexte d’une vision restreinte au probléme posé par 1’élimi-
nation de 1’eau et de 1’urée, deux grandeurs physiologiques intéressent le
clinicien pour individualiser un traitement. Il s’agit de I’eau totale du
corps appelé aussi volume hydrique du malade (V) ainsi que du taux ins-
tantané de production d’urée (G). Ces deux parametres n’€tant pas direc-
tement mesurables, on pourra les estimer en les reliant quantitativement
a des grandeurs observables. Cette démarche conduit donc de fagon na-
turelle a I’utilisation de modeles mathématiques.
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Dans les années ‘1970, Sargent et Gotch (1975,1980) proposent un
modele mathématique pour estimer V et G. Leur approche portant le
nom de cinétique de 1’urée sera désignée par les lettres (CU). Pour com-
prendre 1’idée de leur méthode, il faut donner quelques indications sur le
traitement par hémodialyse. Le sang du malade mis en circulation extra-
corporelle est épuré a I’intérieur d’un «dialyseur». Celui-ci est constitué
d’une membrane sé€parant le sang d’une solution appelée dialysat. [’ urée
traverse la membrane par diffusion et est éliminée avec le dialysat.

Toute description quantitative de ce processus repose inévitablement
sur une équation de bilan qui traduit, dans le cas considéré ici, la conser-
vation de 1'urée. Sargent et Gotch ont choisi de travailler avec le-bilan
instantané qui est donné par I’équation suivante:

d = —
S (VC®) =G-KC(®

ou KC(t) représente la quantité d’urée extraite par unité de temps
pour une concentration d’entrée égale a C(f) au temps f. Le coefficient K
est appelé clairance du systeme d’épuration et joue un role central dans
cette méthode. Le probleme a résoudre est le suivant: étant donné les
valeurs de C(#) pour différentes époques, estimer les valeurs de V et G.
A l'aide de quelques réflexions analytiques, il est possible de montrer
que le procédé fournit une estimation des grandeurs cherchées. On cons-
tate ainsi que ce probleme est I'inverse de celui qui consiste a résoudre
une équation différentielle, puisque dans ce cas on donnerait V et G et
on demanderait de déterminer C(f). Dans le but de simplifier 1’exposé
nous avons suppos€ le volume V constant, ce qui n’est bien siir pas le
cas dans une dialyse réelle. Le procédé d’estimation des parametres V et
G s’en trouvera modifié mais le principe de la démarche sera le méme.

En 1982, Malchesky et ses collaborateurs proposent de remplacer le
bilan instantané par un bilan global sur les intervalles dialytiques et
postdialytiques. Ceci implique la récolte du dialysat total (environ 100
litres!) pour mesurer la sortie effective d’urée durant la dialyse. Pour
cette raison, la méthode porte le nom de quantification directe de la dia-
lyse (QDD). D’un point de vue théorique le probleme devient trés sim-
ple puisque les estimateurs sont obtenus comme solution d’un systéme
de deux équations linéaires a deux inconnues.

Les cliniciens disposaient ainsi de deux méthodes pour obtenir V et
G. A l'usage, ils constaterent que les estimations fournies par ces der-
nieres divergeaient au-dela de ce que les erreurs de mesure pouvaient
expliquer. Il s’ensuivit une division partisane entre les adeptes des deux
approches. Mais la véritable question est la suivante: si un clinicien
désire estimer V et G et que son choix est restreint a 1’utilisation de ces
deux méthodes, laquelle doit-il préférer?
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Dans une premiére €tape, nous avons testé nos techniques de mesure
et les deux approches in vitro a I’aide d’un systéme qui simule un pa-
tient dans un contexte controlé de laboratoire. Comme les résultats s’a-
véralent concluants, nous avons entrepris une étude théorique qui a com-
mence par mettre en évidence les jeux d’hypothéses sur lesquels repo-
sent les deux modeles. Il en ressort que les divergences s’expliquent par
un déséquilibre de la concentration d’urée durant la dialyse, ce qui en-
traine une mauvaise estimation de V et G. Cependant, alors qu’il est pos-
sible de remédier a cet inconvénient dans (QDD) en travaillant avec une
concentration mesurée a 1’équilibre, il n’en va pas de méme pour (CU).
Notre conclusion établit la supériorité de (QDD) sur (CU). Mais le
«prix» a payer pour I'utilisation de (QDD) est la récolte du dialysat to-
tal. Nous I’avons rendue possible dans un contexte clinique, en dévelop-
pant, en collaboration avec la firme CIPOSA SA a Saint-Blaise, un divi-
seur de flux qui récolte un petit échantillon tout a fait représentatif du
dialysat total.

Résumeé

Pour adapter le traitement dialytique au patient, le clinicien se réfe-
re a différents parametres tels que 1’eau totale du corps ou le taux de
production d’urée. Deux méthodes d’estimation s’affrontent et un
modele mathématique du déséquilibre induit par le traitement a per-
mis une analyse critique de la situation et la mise en évidence de la
meilleure des deux méthodes.

J.-P. Gabriel (Fribourg) est professeur de mathématiques a [’ Univer-
sité de Fribourg. G. Fellay (Fribourg) est médecin a [’Hopital cantonal
de Fribourg.
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