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Peut-on entendre
la forme d’un tambour?

Par Paul Jolissaint

Le titre de I’article est la traduction de celui de Mark Kac [4]: «Can
one hear the shape of a drum ?» qui eut dans la communauté mathéma-
tique un succes certain. Il ne s’agit toutefois pas de proposer ici une tra-
duction de cet article, mais de rappeler quelques résultats qu’il contient
et de présenter et commenter la réponse a la question du titre, connue
depuis 1992 seulement. Afin d’éviter tout malentendu, la forme des tam-
bours dont il sera question ici est la forme des membranes vibrantes, et
non pas la forme tridimensionnelle des tambours comme on pourrait le
croire a priori.

PRELIMINAIRES

Lorsqu’on frappe la membrane d’un tambour, on la déforme momen-
tanément, et elle cherche a retrouver sa position d’équilibre sous I’effet
de la tension qu’elle subit. C’est analogue au mouvement d’un pendule
que I’on dévie de sa position d’équilibre. La déformation de la membra-
ne est tres petite, c’est pourquoi on supposera que le déplacement de
chaque point de celle-ci est perpendiculaire au plan contenant la mem-
brane.

Nous allons rappeler la description mathématique du mouvement de
la membrane :

la surface sera désignée par £ et représentée par une région bornée dans
un systeme d’axes Oxy; on désignera par I' le bord de €2 (cf figure 1).

On désigne également par u (x, y, 1) I’écart a I’équilibre du point (x, y)
de la membrane au temps . Nous allons rappeler les contraintes (équa-
tions) imposées a la fonction u:

'

O X Fig. |
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(1) Puisque la membrane est fixée au bord du tambour, on a
wllilE =0"
(Lire: «la restriction de u a I" est €gale a 0».)

(2) Un point (x, y) de la membrane subit une force de rappel qui, in-
tuitivement, sera d’autant plus grande que la tension de la peau sera im-
portante, et que la courbure de la membrane au voisinage de (x, y) sera
grande.

De facon précise, en appliquant la loi de Newton, u obéit a 1’équation

d’onde:
i du  Jdu i d*u
vi o | 9x2 g%

oll v =V F/p, F désignant la tension de la membrane (force/unité de
longueur) et p la masse spécifique superficielle (masse/unité d’aire).
Ainsi, v a les dimensions d’une vitesse.

Dans cet exposé, on choisit les unités de sorte que v> = 2. Donc
u (x, y, t) satisfait:

It Gk
fe=t = Au,
20 .
ou A= a); + a?}; s’appelle le laplacien (de dimension 2), avec la

condition au bord: ulT" = 0.

De méme que pour une corde vibrante, seules certaines fréquences
(= nombre de vibrations/unité de temps) sont possibles. Pour les déter-
miner, on cherche les solutions de 1’équation ci-dessus qui sont de la for-
me: u(x, y t)=U(x, y) T (t). Uéquation d’onde devient:

%U@Uor%0=mﬂwaUL

et en divisant par 7 (¢) et par U (x, y), on obtient:

L NG

b B U
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qui est une constante puisque le membre de gauche est indépendant
de (x, y) et que le membre de droite est indépendant de ¢. En posant:

T’O/IT)=-A\,
nous sommes donc amenés a résoudre le systeme:

T’ () + AT () =0 et %A Ux, y) + AU (x, y) = 0,

sans oublier la condition au bord: UIT'= 0. 1
Pour chaque solution A, la fréquence correspondante est: v = \ % :

On démontre alors que les valeurs possibles de A-forment une suite
croissante:

Dy, S S S . S

et il est possible que pour un A_donné, plusieurs fonctions linéaire-
ment indépendantes U existent. Les vibrations effectives de la membra-
ne sont des superpositions des modes propres, solutions de 1’équation ci-
dessus multipliées par des fonctions du temps adéquates faisant interve-
nir les fréquences associées. Nous n’insistons pas sur cette question car
elle ne joue pas de réle significatif ici.

Ainsi, la traduction mathématique du titre de I’exposé est la suivante:

soient Q] et Qz deux régions planes, bornées, dont les bords [iet I“2
sont suffisamment réguliers. Si les équations:

%AU(x,y)+7LU(x, »)=0 dans Q, UIT, = 0

et
_éA Viey) +AV(x, y)=0 dansQ, VI, = 0

admettent la méme suite de valeurs propres (A ) _, (on dit alors que
Q, et Q, sont isospectrales), les domaines €, et €, sont-ils isomé-

triques ?
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DEUX EXEMPLES

Nous allons discuter deux cas de formes simples et classiques: les
tambours rectangulaire et circulaire.

Tambour rectangulaire
Dans ce cas, on prend pour Q.:
—tlie )= e< Aet i<y <=5}«

En utilisant la méthode de séparation des variables (on considere des
fonctions U de la forme: U (x, y) = X(x) Y(y)), on obtient:

> k? 1
A“m:? A2 + )

avec k, [ entiers = 1. (Les solutions U correspondantes sont des pro-
duits de fonctions sinus.)
Tambour circulaire
Appelons R le rayon du tambour. Ainsi,
= (s »); Y +)> <R}

On écrit les solutions U a I’aide des comdonnees polaires (r,0); I'é
quation devient:

Q)
2
=
(R
Q)
Q
Iu—n

L =

d°
> df
et

U(R,0) = 0 V0.

On écrit U(r,0) = T(0) F(r), et on trouve une suite de fonctions de
0(T) ., avec n entier, et pour chaque valeur de n fixée,

1/ nz=0
() G ),

ou C est une constante et ou J désigne la n-ieme fonction de Bessel
(ces fonctions présentent de nombreuses analogies avec les fonctions tri-
gonométriques). La condition F (R) = 0 devient:
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J (V2L R) =

donc les valeurs possibles de A correspondent dans ce cas aux racines
positives de 1’équation:

J (2)=0.

Il y en a une infinité€ pour chaque n 2 0: z”, z, ... Les premlcres va-
leurs approximatives des z" sont données dans Ie tableau suivant, ou les
lignes décrivent I'indice n et les colonnes Iindice IS

TN ) 1 2 3

|55 B2, 404318 308 54 58 613179
28 85 5208 SR/ OGRS S A /0 60
S8+ ]. 604 = 1 N 1/S 1115 620 1 310 177
4 111,792 13,323 14,796 16,224

Pour n = () fixé et j >> 1, on a la formule asymptotique:

D=L @n- 14— 4ni-1 .
4 n(2n—1+4))

Enfin, de V 2\ J.‘"’ = zj“”, on déduit:

Z:gn) 2
}'j(n) = %IQT)' ;

pourn=0etj=1.

QUE PEUT-ON «ENTENDRE » ?

Le probleme posé par M. Kac est trés intéressant car, en €tant un peu
moins ambitieux, il signifie ceci: a partir d’une information analytique
sur € (la connaissance des A ), que peut-on obtenir comme information
géométrique sur €27

Nous allons voir que I’on obtient au moins deux informations géomé-
triques:

817/



a) On peut entendre 1’aire |€2|:

En fait, en posant N (L) = nombre de A <X, on a la formule asympto-
tique:

N(?\.)~@?x pour A —> + oo,
27

ce qui signifie:
N 1Ql

i ———= — |
Nesdies 21T

Cette formule a été conjecturée en 1910 par le physicien H. A. Lo-
rentz; Hilbert prédit alors qu’elle ne serait sans doute pas démontrée de
son vivant. Malheureusement pour lui, moins de deux ans plus tard,
Herman Weyl démontra cette formule en utilisant la théorie des équa-
tions intégrales mise au point par Hilbert [ui-méme !

Nous allons la vérifier dans le cas d’un rectangle. Pour cela, voyons
ce que signifie I'inégalit€¢ A, <A pour A donné: ici,

=53 6)

donc

st e (Y@ < 2

SV EY @) 2
= %‘-,%— eD(O,@),

ou D (0, \I%T) désigne le quart de disque de centre 0 et de rayon\[%.

A chaque point (;,é), associons le rectangle de cotés 1/A et 1/B situé
en dessous et a gauche de ce point. On obtient, en considérant 1’aire de
D (0, _Vil):
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e 2N SN
Av a2 R O
1 1
_N(l)-X- E+0(ﬂ),

ot O (V) représente I’aire des rectangles incomplets touchant ’arc
de cercle. Par suite,

i N(A) i AB
11m —
Nsdien L 2T

b) On peut entendre la longueur L de I
On démontre que 1’on a la formule asymptotique, valable lorsque t — o

— 6_7\.I~ @._é 1 -
Xt o o

=

Cette formule est plus difficile a obtenir, méme dans le cas d’un rec-
tangle. Nous allons cependant voir une application des deux résultats ci-
dessus dans le paragraphe suivant.

CONSEQUENCE

St un tambour produit la méme suite de fréquences qu’un tambour
circulaire de rayon R, alors il est lui aussi circulaire (et de rayon R): au-
trement dit, on peut entendre si un tambour est circulaire! Cela découle
du paragraphe précédent et de 1’inégalité isopérimétrique que nous
présentons maintenant:

si C est une courbe fermée, simple, suffisamment réguliere de lon-
gueur L, ’aire A (C) de la région bornée délimitée par C satisfait:

A@)= %
41

et de plus A‘(lC) :i‘—;si et seulement si C est un cercle (de rayon L/27).

Nous allons donner une preuve géométrique tres jolie de cette inégali-
té; elle est due au mathématicien suisse Jacob Steiner (1796-1863).
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On fixe la longueur L et on considere une courbe C telle que A(C)
soit maximale. Ensuite, on procéde en trois étapes:

1 étape: C est convexe.
Sinon, en utilisant des symétries axiales appropriées, on obtiendrait une
courbe C’ de longueur L enfermant une région telle que A(C’) > A (C).

2¢ étape: Fixons deux points A et B sur C de sorte que la longueur de
chaque portion de courbe entre A et B vaille L/2. Alors les deux régions
séparées par la corde AB ont la méme aire: en effet, sinon on construit
une nouvelle courbe de longueur L en gardant la demi-région ayant la
plus grande aire et en prenant son image par la symétrie d’axe AB (figu-
it 3)))

Fig 3.

3¢ étape: C est un cercle.

Pour établir cela, considérons une moitié de la région délimitée par C
et AB (figure 4). Soit P un point quelconque de la portion de courbe cor-
respondante.
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Fig. 4.

On peut modifier I'aire de la région en faisant pivoter 1’arc AP au-
tour de P. Or, I'aire maximale (de la demi-région) est atteinte exac-
tement lorsque 'angle o en P est droit car 1’aire du triangle APB
(= 1/2 - AP - PB sin (o)) est maximale dans ce cas. Ceci devant €tre vrai
pour tout P, I’arc AB est un demi-cercle.

Il découle de cela que si une région €2 a le méme spectre qu’un disque
de rayon R, alors la longueur de son bord vaut 2R, et comme son
aire vaut aussi TR?, par 1'inégalité isopérimétrique, € est un disque (de
rayon R).

REPONSE ET COMMENTAIRES

La réponse — négative — a la question de M. Kac a été apportée en
1992 par C. Gordon, D. Webb et S. Wolpert dans [3]. Les auteurs
exhibent deux domaines plans non isométriques mais isospectraux
(figure 5).

Ce résultat n’est pas tres étonnant: remarquons d’abord que la ques-
tion de Kac se généralise sans difficulté au cas des variétés rieman-
niennes compactes (spheres, tores,...), car celles-ci admettent un ana-
logue du laplacien A appelé aussi opérateur de Laplace-Beltrami. En
1964 déja, John Milnor avait exhibé dans 1’article [S] ne contenant
qu’une seule page deux tores de dimension 16 isospectraux non iSomeé-
triques (alors que deux tores plats isospectraux de dimension 2 sont au-
tomatiquement isométriques: un tel tore s’obtient en recollant les paires
de cotés opposés d’un parallélogramme, et celui-ci est déterminé a iso-
métrie preés par son aire et les longueurs de ses cOtés, grandeurs calcu-
lables au moyen des A ).
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Des surfaces de Riemann isospectrales non isométriques avaient été
€galement construites par différentes personnes, par exemple:

— M.-E Vignéras (1980), [7];

— P. Buser (1986), [2].

C’est en s’appuyant sur les exemples de Buser que C. Gordon et ses
coauteurs construisirent leurs exemples. Le lecteur peut raisonnablement
se demander comment Carolyn Gordon et ses collegues ont vérifié
I’1sospectralité des domaines ci-dessus; ont-ils calculé explicitement les
valeurs propres des laplaciens associés? En fait, non: ils ont utilisé une
méthode générale due a T. Sunada, appelée transplantation, et qui
consiste en ceci: les solutions U du probléeme de Dirichlet

Fig. 5.

o

%AU(I, W+AU(x, y)=0 dans Q, UIT =0

appartiennent toutes a un espace vectoriel noté W'(€Q), et dans le cas
des domaines Q et €, ci-dessus, on démontre qu’il existe une transfor-
mation 1sometr1que (la transplantation)

T: W' (Q)~> W' (Q)

qui fait correspondre a chaque solution U, € W' (€2)) associée a la
valeur propre A une solution U, =T (U)) € W! (€Q) associée 2 la méme
valeur propre A et cela sans avoir besoin de connaitre explicitement la
liste des A! Ceci démontre une fois de plus la puissance d’abstraction
des mathématiques. Dans [3], deux autres domaines plans isospectraux
et non 1sométriques plus simples que ceux ci-dessus sont brievement
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discutés; la preuve de leur isospectralité est due a P. Buser et K. Semm-
ler et ne semble pas avoir été publiée. Il s’agit des domaines suivants:

[’avantage de ces exemples réside dans le fait que la transplantation
peut étre décrite explicitement: divisons chaque domaine en 7 triangles
isoceles rectangles comme sur la figure; soit U une solution au probleme
de Dirichlet pour le domaine de gauche, et désignons par U la restric-
tion de U au triangle numéro j. On construit alors une solution V au pro-
bleme de Dirichlet du domaine de droite de la fagon suivante (ot V.
désigne la restriction de V au triangle numeéro j):

V,=U.-U-U,
V,=U.—U,+U,
Ve U1,
Vi,=U U +U
V.=U,+ U, + U;
V== U,
Ve = AEk &5 6, 55 17

Mentionnons pour terminer que des physiciens ont réalisé des mem-
branes vibrantes ayant les formes ci-dessus a [’aide de films smectiques
(cristaux liquides) et ont vérifié expérimentalement leur isospectralité;
leurs résultats sont expliqués dans [ 1]. Le lecteur intéressé pourra égale-
ment consulter I’article amusant de Tan Stewart [ 6] sur le sujet.
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