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Peut-on entendre
la forme d'un tambour?

Par Paul Jolissaint

Le titre de Particle est la traduction de celui de Mark Kac [4]: «Can
one hear the shape of a drum?» qui eut dans la communaute mathema-
tique un succes certain. II ne s'agit toutefois pas de proposer ici une
traduction de cet article, mais de rappeler quelques resultats qu'il contient
et de presenter et commenter la reponse ä la question du titre, connue
depuis 1992 settlement. Afin d'eviter tout malentendu, la forme des
tambours dont il sera question ici est la forme des membranes vibrantes, et
non pas la forme tridimensionnelle des tambours comme on pourrait le
croire a priori.

PRE LI MINAI RES

Lorsqu'on frappe la membrane d'un tambour, on la deforme momen-
tanement, et eile cherche ä retrouver sa position d'equilibre sous l'effet
de la tension qu'elle subit. C'est analogue au mouvement d'un pendule
que l'on devie de sa position d'equilibre. La deformation de la membrane

est tres petite, c'est pourquoi on supposera que le deplacement de
chaque point de celle-ci est perpendiculaire au plan contenant la
membrane.

Nous allons rappeler la description mathematique du mouvement de
la membrane:

la surface sera designee par Q et representee par une region bornee dans

un Systeme d'axes Oxy; on designera par T le bord de Q (cf figure 1).

On designe egalement par u (x, y, t) l'ecart ä l'equilibre du point (x, y)
de la membrane au temps t. Nous allons rappeler les contraintes (equa-
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(1) Puisque la membrane est fixee au bord du tambour, on a

«ir o.

(Lire: «la restriction de u ä V est egale ä 0».)

(2) Un point (x, y) de la membrane subit une force de rappel qui, in-
tuitivement, sera d'autant plus grande que la tension de la peau sera im-
portante, et que la courbure de la membrane au voisinage de (x, y) sera
grande.

De fagon precise, en appliquant la loi de Newton, u obeit ä 1'equation
d'onde:

1 dhi 32u 3hi
vTHF=dxr+dz7

oil v V F/p, F designant la tension de la membrane (force/unite de

longueur) et p la masse specifique superficielle (masse/unite d'aire).
Ainsi, v a les dimensions d'une vitesse.

Dans cet expose, on choisit les unites de sorte que v2 2. Done
u (x, y, t) satisfait:

1 32u
^u>

2 312

02 02
oiiA ^ + 3y s'appelle le laplacien (de dimension 2), avec la

condition au bord: u IT 0.

De meme que pour une corde vibrante, seules certaines frequences
nombre de vibrations/unite de temps) sont possibles. Pour les

determiner, on cherche les solutions de 1'equation ci-dessus qui sont de la forme:

u (x, y, t) U (x, y) T (t). L'equation d'onde devient:

±U(x,y) T" (t) AU(x,y)T{t),

et en divisant par T (t) et par U (x, y), on obtient:

J_ T"(t) _
AU (x, y)

2 T(t)
~ U (x, y)x'
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qui est une constante puisque le membre de gauche est independant
de (x, y) et que le membre de droite est independant de t. En posant:

T"(t)/T(t) - A,

nous sommes done amenes ä resoudre le systeme:

T" (t) + AT (t) 0 et 1A U (x, y) + A,U (x, y) 0,

sans oublier la condition au bord: t/ir= 0.

Pour chaque solution A, la frequence correspondante est: v =— \ ^

On demontre alors que les valeurs possibles de A- forment une suite
croissante:

0 < A. <A„ <A, <... <A <...,1 13 n '

et il est possible que pour un An donne, plusieurs fonctions lineaire-
ment independantes U existent. Les vibrations effectives de la membrane

sont des superpositions des modes propres, solutions de l'equation ci-
dessus multipliees par des fonctions du temps adequates faisant interve-
nir les frequences associees. Nous n'insistons pas sur cette question car
elle ne joue pas de role significatif ici.

Ainsi, la traduction mathematique du titre de l'expose est la suivante:
soient Q, et Q, deux regions planes, bornees, dont les bords T, et T2

sont suffisamment reguliers. Si les equations:

— A U (x, y) + AU (x, y) 0 dans £1, U\T - 0
2

et

— A V (x, y) + AV (x, y) 0 dans £2„ VIE, 0
2

admettent la meme suite de valeurs propres (An)nÄ1 (on dit alors que

Q, et Q2 sont isospectrales), les domaines et Q, sont-ils isome-

triques
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DEUX EXEMPLES

Nous allons discuter deux cas de formes simples et classiques: les
tambours rectangulaire et circulaire.

Tambour rectangulaire

Dans ce cas, on prend pour D.:

Q {(x, y); 0 < x < A et 0 < y < B]:
En utilisant la methode de separation des variables (on considere des

fonctions U de la forme: U (x, y) X(x) L(y)), on obtient:

avec k, I entiers > 1. (Les solutions U correspondantes sont des pro-
duits de fonctions sinus.)

Tambour circulaire

Appelons R le rayon du tambour. Ainsi,

On ecrit les solutions U ä l'aide des coordonnees polaires (r,0); l'e-
quation devient:

U(R,0) 0 V0.

On ecrit U(r,Q) T(Q) F(r), et on trouve une suite de fonctions de

0(7"J naQ avec n entier, et pour chaque valeur de n fixee,

oil Cn est une constante et oü Jn designe la n-ieme fonction de Bessel
(ces fonctions presentent de nombreuses analogies avec les fonctions tri-
gonometriques). La condition F (R) 0 devient:

ß= {(lj); ^ x2+y2< R).

d2U 1 dU
di2

+
r dr

+

et

Fn W C/n(V2Xr),
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7 (V21 R) 0,

done les valeurs possibles de X correspondent dans ce cas aux racines
positives de l'equation:

Jn(z) 0.

Ilyena une infinite pour chaque n > 0: z(B), zj"\ Les premieres
valeurs approximatives des z.j") sont donnees dans le tableau suivant, ou les
lignes decrivent l'indice n et les colonnes l'indice j:

j\n 0 1 2 3

1 2,404 3,832 5,135 6,379
2 5,520 7,016 8,417 9,760
3 8,654 10,173 11,620 13,017
4 11,792 13,323 14,796 16,224

Pour n > 0 fixe et j » 1, on a la formule asymptotique:

zjn) „K (2 „ _ i + _ 4n2 - 1

4 n (2 n - 1 + 4j)

Enfin, de V 2X1"' R zj"\ on deduit:

pour n > 0 etj > 1.

QUE PEUT-ON «ENTENDRE»?

Le probleme pose par M. Kac est tres interessant car, en etant un peu
moins ambitieux, il signifie ceci: ä partir d'une information analytique
sur £2 (la connaissance des Xj, que peut-on obtenir comme information
geometrique sur £2?

Nous allons voir que l'on obtient au moins deux informations geome-
triques:
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a) On peut entendre l'aire IQI:

En fait, en posant N (X) nombre de Xn < X, on a la formule asympto-
tique:

N (X) ~ — X pour X —> + °o,
271

ce qui signifie:
N(X) |Q[

lim —
+ °° X 2n

Cette formule a ete conjecturee en 1910 par le physicien H. A. Lo-
rentz; Hilbert predit alors qu'elle ne serait sans doute pas demontree de

son vivant. Malheureusement pour lui, moins de deux ans plus tard,
Herman Weyl demontra cette formule en utilisant la theorie des equations

integrales mise au point par Hilbert lui-meme!
Nous allons la verifier dans le cas d'un rectangle. Pour cela, voyons

ce que signifie l'inegalite Xk/<X pour X donne: ici,

done

N<* *(£<{)'<w

/ k I \ -JZX

^ \A 'b) ^ ' n

OÜ D (0, designe le quart de disque de centre 0 et de rayon^-^-.

A chaque point associons le rectangle de cötes 1/A et 1 IB situe

en dessous et ä gauche de ce point. On obtient, en considerant l'aire de

D(0)^2X);
7t
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ft 2\ X

4 n2 ~ 2k

N(X)--^- • -j + 0(VX),

ou O (VX) represente Faire des rectangles incomplets touchant l'arc
de cercle. Par suite,

lin,»!=A
+ »a X 2K

b) On peut entendre la longueur L de T:

On demontre que Ton a la formule asymptotique, valable lorsque t —> o :

V lfll L 1

L e
»

~ 2Kt 4 V2ro
'

n= 1

Cette formule est plus difficile ä obtenir, meme dans le cas d'un
rectangle. Nous allons cependant voir une application des deux resultats ci-
dessus dans le paragraphe suivant.

CONSEQUENCE

Si un tambour produit la meme suite de frequences qu'un tambour
circulaire de rayon R, alors il est lui aussi circulaire (et de rayon R): au-
trement dit, on peut entendre si un tambour est circulaire! Cela decoule
du paragraphe precedent et de l'inegalite isoperimetrique que nous
presentons maintenant:

si C est une courbe fermee, simple, suffisamment reguliere de

longueur L, l'aire A (C) de la region bornee delimitee par C satisfait:

A (C) < LL
47t

[2
et de plus A (C) ^-si et seulement si C est un cercle (de rayon L/2k).

Nous allons donner une preuve geometrique tres jolie de cette inegali-
te; elle est due au mathematicien suisse Jacob Steiner (1796-1863).
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On fixe la longueur L et on considere une courbe C telle que A(C)
soit maximale. Ensuite, on procede en trois etapes:

1K etape: C est convexe.
Sinon, en utilisant des symetries axiales appropriees, on obtiendrait une

courbe C' de longueur L enfermant une region telle que A (C) > A (C).

2e etape: Fixons deux points A et B sur C de sorte que la longueur de
chaque portion de courbe entre A et B vaille L/2. Alors les deux regions
scparccs par la corde AB ont la meme aire: en effet, sinon on construit
une nouvelle courbe de longueur L en gardant la demi-region ayant la
plus grande aire et en prenant son image par la symetrie d'axe AB (figure

3).

3e etape: C est un cercle.
Pour etablir cela, considerons une moitie de la region delimitee par C

et AB (figure 4). Soit P un point quelconque de la portion de courbe cor-
respondante.
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Fig. 4.

On peut modifier l'aire de la region en faisant pivoter l'arc AP au-
tour de P. Or, l'aire maximale (de la demi-region) est atteinte exac-
tement lorsque Tangle a en P est droit car l'aire du triangle APR

1/2 • AP PB sm (a)) est maximale dans ce cas. Ceci devant etre vrai
pour tout P, l'arc AB est un demi-cercle.

II decoule de cela que si une region £2 a le meme spectre qu'un disque
de rayon R, alors la longueur de son bord vaut 2nR, et comme son
aire vaut aussi nR2, par l'inegalite isoperimetrique, O est un disque (de

rayon R).

REPONSE ET COMMENTAIRES

La reponse - negative - ä la question de M. Kac a ete apportee en
1992 par C. Gordon, D. Webb et S. Wolpert dans [3], Les auteurs
exhibent deux domaines plans non isometriques mais isospectraux
(figure 5).

Ce resultat n'est pas tres etonnant: remarquons d'abord que la question

de Kac se generalise sans difficulte au cas des varietes rieman-
niennes compactes (spheres, tores,...), car celles-ci admettent un
analogue du laplacien A appele aussi Operateur de Laplace-Beltrami. En
1964 dejä, John Milnor avait exhibe dans l'article [5] ne contenant
qu'une seule page deux tores de dimension 16 isospectraux non
isometriques (alors que deux tores plats isospectraux de dimension 2 sont au-
tomatiquement isometriques: un tel tore s'obtient en recollant les paires
de cotes opposes d'un Parallelogramme, et celui-ci est determine ä iso-
metrie pres par son aire et les longueurs de ses cotes, grandeurs calcu-
lables au moyen des
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Des surfaces de Riemann isospectrales non isometriques avaient ete
egalement construites par differentes personnes, par exemple:

- M.-F. Vigneras (1980), [7];
-P. Buser (1986), [2],
C'est en s'appuyant sur les exemples de Buser que C. Gordon et ses

coauteurs construisirent leurs exemples. Le lecteur peut raisonnablement
se demander comment Carolyn Gordon et ses collegues ont verifie
l'isdspectralite des domaines ci-dessus; ont-ils calcule explicitement les
valeurs propres des laplaciens associes? En fait, non: ils ont utilise une
methode generale due ä T. Sunada, appelee transplantation, et qui
consiste en ceci: les solutions U du probleme de Dirichlet

±AU(x,y) + XU(x, y) 0 dans G, f/ir 0

appartiennent toutes ä un espace vectoriel note W"(G), et dans le cas
des domaines G, et G, ci-dessus, on demontre qu'il existe une transformation

isometrique (la transplantation)

T: W (G,)-> Wl (G,)

qui fait correspondre ä chaque solution U
l

e W' (Gj) associee ä la
valeur propre X une solution (/, T ((/,) e W' (G2) associee ä la meme
valeur propre X et cela sans avoir besoin de connaitre explicitement la
liste des A,! Ceci demontre une fois de plus la puissance d'abstraction
des mathematiques. Dans [3], deux autres domaines plans isospectraux
et non isometriques plus simples que ceux ci-dessus sont brievement
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discutes; la preuve de leur isospectralite est due ä P. Buser et K. Semm-
ler et ne semble pas avoir ete publiee. II s'agit des domaines suivants:

L'avantage de ces exemples reside dans le fait que la transplantation
peut etre decrite explicitement: divisons chaque domaine en 7 triangles
isoceles rectangles comme sur la figure; soit U une solution au probleme
de Dirichlet pour le domaine de gauche, et designons par Uj la restriction

de U au triangle numero j. On construit alors une solution V au
probleme de Dirichlet du domaine de droite de la facon suivante (oü V
designe la restriction de V au triangle numero j):

v=u5-u4-u7
v2 u6-u3 + u7

v3=u5-u2-u6
v4 u6-u, + u4

v5 ul + u3 + u5

v6 u2-u3 + u4

v7 -ul + u2 + u7

Mentionnons pour terminer que des physiciens ont realise des
membranes vibrantes ayant les formes ci-dessus ä l'aide de films smectiques
(cristaux liquides) et ont verifie experimentalement leur isospectralite;
leurs resultats sont expliques dans [ 1]. Le lecteur interesse pouiTa egale-
ment consulter Particle amüsant de Ian Stewart [6] sur le sujet.

43



REFERENCES

[1] M. Brazovskaia, C. Even, and P. Pieranski. Les tambours li¬

quides. Pour la Science, 234: 68-73, 1997.
[2] P. Buser. Isospectral Riemann surfaces. Ann. Itist. Fourier, Gre¬

noble, 36: 167-192, 1986.
[3] C. Gordon, D. Webb, and S. Wolpert. Isospectral plane domains

and surfaces via Riemannian orbifolds. Invent. Math., 110: 1-22,
1992.

[4] M. Kac. Can one hear the shape of a drum? Amer. Math. Mon¬
thly, 73: 1-23, 1966.

[5] J. Milnor. Eigenvalues of the Laplace operator on certain mani¬
folds. Proc. Nat. Acad. Sc., 51: 542, 1964.

[6] I. Stewart. La forme d'un sonore tambour. Pour la Science,
179: 92-96, 1992.

[7J M. F. Vigneras. Varietes riemanniennes isospectrales et non iso-
metriques. Ann. ofMath., 112: 21-32, 1980.

Paul Jolissaint (Porrentruy) est professeur de mathematique et de

physique au Lycee cantonal de Porrentruy et charge de cours ä
l'Universite de Neuchätel.

44


	Peut-on entendre la forme d'un tambour ?

