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APPENDICE

NOTE SEE U lliTMDE EE HEMER

pour calculer les racines reelles incommensurables d'une Equation
d'un degre superieur,

par J. Durand.

Les analysles ne sont point encore parvenus ä trouver une
formule generale pour representee au moyen de ses

coefficients, les racines d'une equation d'un degre supdrieur au 4e.

On peut se consoler de leur insucces, car, dans 1'application,
l'utilite de cette formule, ä cause de sa complication, serait

presque nulle, puisque dejä la formule, dite de Cardan, pour
resoudre l'equation du 3e degre, est en defaut lorsqu'on veut

l'appliquer ä une equation dont les 3 racines sont reelles, en
sorte que dans la pratique on prefere traiter ces equations par
les methodes numeriques.

Mais si la science se tait lorsqu'il s'agit d'equations litle-
rales, elle possede en revanche un tres grand nombre de

methodes pour resoudre les Equations numeriques d'un degre

quelconque : Methode de Newton, methode de Lagrange, me-
thode de Cauchy, methode par les differences, etc. Parmi
toutes ces methodes, il en est une tres estimee en Angleterre
et peu connue sur le continent, publiee en 1819 par M. Horner
de Bath, dans les Transactions philosophiques, et dont Thomson

dans son Algibre, dit a qu'elle est de beaucoup la
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» meilleure, alliant la facilite et l'dlegance ä un degre qui
» n'appartient ä aucüne autre methode dejä connue ou qui
» pourrait etre decouverte ä 1'avenir. » (i)

Si cet eloge est merite, comment se fait-il qu'une methode

ä la fois si facile et si elegante soit encore si peu connue hors
de 1'Angleterre? Ce ne peut etre par un amour-propre national

mal entendu, car la methode de Newton, qui est anglaise

aussi, est enseignde dans toutes les ecoles superieures du

continent. Cette question, que je m'adressai en lisant le passage

de Thomson, me rendit curieux d'approfondir cette

methode, et com me je n'avais sous la main aucun autre ouvrage
anglais que le -volume de Thomson, ou la methode de Horner
est exposee seulement ä grands traits et par exemples, je me
mis ä rechercher les theoremes sur lesquels eile est basee et

ä m'en faire une theorie qui put s'adapter ä l'enseignement
de TEcole cantonale.

Le resultat de ce travail fut que, dans la pratique du cal-
cul, la methode de Horner est effectivement la plus expeditive
des mdthodes connues, surtout si Ton demande une approximation

allanl jusqu'ä la 8e ou ä la 106 dßcimale. Je crois done

rendre un service ä nos dcoles en essayant de la populariser,
quoiqu'elle ait, vis-ä-vis de la methode de Newton, le desa-

vantage de n'etre applicable directement xqu'aux equations
algebriques, et non aux equations transcendantes.

C'est peut-etre lä une des causes de l'indifference que cette
methode a rencontrde chez nous; une autre cause peut tenir
ä certaines complications de calcul introduces pour eviter les

fractions decimales, mais qui ne font point partie essentielle
de la methode et que j'ai supprimees. Par contre, elle a

l'avantage de pouvoir etre au besoin exposee sans le secours
des fonctions ddrivees, et par consequent de pouvoir etre pla-

(1) Of all ihese methodes, that -which -was given by the late M. Horner of
Bath, is mach the best, combining a degree of facility and elegance belonging

to no other method that has yet been given, or that is littely to he
discovered, (Thomson, Algebra
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cee dans un cours d'algebre immediatement apres la formule
du binome.

Je vais d'abord demonlrer, comme lemmes, les propositions

sur lesquelles je m'appuierai dans l'explication de la
mdthode.

Ier Lemme.

Lorsque deux nombres a et b substitute pour x dans une
expression continue f (x), donnent deux rteultals f (a) et

f (b) de signes contraires, il y a nicessairement entre a et bau
moins une racine rtelle de liquation f (x) 0.

Car puisque f (x) est continu depuis f (a) jusqu'ä f (b) et

que f (a) etant positif, f (b) est devenu negatif, ou vice-versd,
il y a necessairement eu une valeur intermediaire f (a + i)
qui etait nulle. La valeur x a + i satisfaisant ainsi ä

l'equation f (x) 0, en est une racine.

2e Lemme.

Si dans 1'Aquation algibrique
Xm_f_ pt xrn-l + p2 xm-2 + pm_g x 2 _j_ pm l X + Pm 0

on sait que la racine x est tres petite, on aura une valeur ap-
prochAe de x par la formule

x -P
Pm-i

Car si Ton fait passer pm dans le 2« membre, qu'on mette

x en evidence dans le premier, et qu'on degage x, on aura:

x — Pm (i)
xm-l +pi xm-% + ....+ pm_2 pm_i

Or, la valeur de x etant supposee suflisamment petite, on

pourra negliger au d^nominateur tous les termes ayant x
comme facteur, et il restera :

* - ??i- (2)
Pm-1

valeur qui sera d'autant plus approchee que x sera plus petit.
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Remarque. II est trfis important de connaitre la limite de

Perreur que Pon commet en prenant l'expression simplifiee (2)
comme valeur de x, au lieu de l'expression complete (1). Gette

erreur est la difference entre les deux expressions, ou, en la

designant par e :

_ — Pm — Pm
— xm-l _J_ pi xm-2 + + pm_2 X + pm-i pm-l

ou, en reduisant au meme d^nominateur

e _ Pm(Xm-1 +pi a;m-,+....+ Pm-i X + pm-j)—pm Pm-l

pm.i (a;-1 + Pi xm~2 + ....+ Pm-i x -+- pm-i)

ou encore, en effectuant les multiplications, ordonnant par
rapport aux puissances croissanles, et reduisant

_ Pm Pm-i X+Pm- ffm-5 X 2 + etc.

Pm-i Pm-l + pm-l pm-2 X + pm-l Pm-j X ~ -j- etc.

Or, si 1'on neglige dans cette expression les termes affectes

des puissances superieures de x, suppose tres petit, elle se

röduira ä tres peu pres ä

Pm Pm-i X

Pm-l Pm-l + Pm-l Pm-i X
Si l'on neglige maintenant au denominateur le second

terme pm.t pm_ä x, qui est positif lorsque les deux coefficients

pm-i et Pm-i sont de meme signe, ce qui se rencontre tou-
jours dans l'application ä la methode de Horner, le denominateur

deviendra plus petit; et si l'on remplace au numera-
teur jöm_2 par pm-l} qui dans cette methode est toujours plus
grand quepm_2, le numerateur deviendra plus grand; done,

par cette double raison, on aura

PmX
e (4)

Pm-l
telle est la limite de Perreur.

3e Lemme.

Soil f (x) mm polynome alg&brique; si on le divise par un
facteur du Ier degri x — a, le reste de cette division sera la
valeur que prend f (x) lorsqu'on y fait x a.
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Car si Ton designe le quotient par fl (x) et le reste par R,

on a identiquement :

f(x) — (x — a), fi (x) + R.

et si dans cette dgalite on fait x a, eile se rdduit &

f(a) R

Remarque. Cette division doit se faire, dans la mdthode de

Horner, par le procddd des coefficients detaches, qu'il iraporte
de se rendre farailier, et dont voici un exemple :

f (x) — (x* — 5 x7 + 5 x + 4) : (x — 2)

En ne conservant que les coefficients du polynome et en

remplafant par 0 les coefficients des termes manquants, on
disposera le calcul de la maniere suivante :

1+0-5+5+ 4

1+2 — 1+ 3 + 10

Ayant abaissc le premier coefficient 1, on le multipliera
par 2, ce qui donne 2, et on ajoutera algdbriquement le pro-
duit au 2° coefficient 0, ce qui donnera + 2, qu'on dcrit au-
dessous du 2e coefficient. On multipliera par 2 ce rdsultat, ce

qui donne 4, et on ajoutera algebriquement le produit au
3e coefficient — 5, ce qui donne — 1 qu'on dcrit. On multipliera

par 2 ce rdsultat, ce qui donne — 2, et on ajoutera le

produit äu 4e coefficient + 5, ce qui donne + 3. On multipliera

enfin par 2 ce resultat, ce qui donne + 6, et on l'ajou-
tera au dernier terme, ce qui donne +10.

Le reste de la division sera + 10, et le quotient, qui est

du 3e degrd, aura pour coefficients les nombres 1, + 2,— 1,

+ 3, dcrits dans la 2e ligne, en sorte que ce quotient sera :

x5 + % x* — x + 3 avec le reste + 10

La demonstration de ce procedd est dans la comparaison
du calcul que nous venons d'indiquer avec l'opdration effec-

tuee de la maniere ordinaire, et dont vojci le tableau :



1 as* + 0 je3 — 5a;4 + 5a5 + 4:a; — 2

+ 2 x*
— 1 ®4

+ 3 x
+ 10

a;3 + 2 as* — a; + 3

Notons encore que ce reste 10 est, d'aprfes notre lemme, la

valeur de f (2).
Pour diviser le polynome (m oft + w a;5 + p a;4 + q x + r)

par (x — a), on a de meme :

-f-n

-f-m a-f 11

+ P

4-m a' +•n a+P

-f q

a34-n a'-f-P a + q

+ r

+ma!|4*n a3-f-p a*-}-q a-fr

Le reste est done m a4 +» a5 +p a3 + q a+r, et le quotient

mx5+(m a+w) a?4+(?rta9+» a+p) ®+(ma5+w a'+p a+ q).

4e Lemme.

Un polynome f (x) itant donni, on obtient le diveloppement
de f (a + x) en cherchant successivement: 1° le reste R de la
division de f (x) par (x — a); 2° le reste Ri de la divisisn par
(x—a) du quotient fourni par la /re division; 3° le reste R2 de

la division par (x — a) du quotient fourni par la 2" division,
et ainsi de suite, de telle sorte que si f (x) est du 4e degri, par
exemple, on aura:
(1) f (a + x) Rt x* + R3 xz + Ra x3 + Ri x +R f)

(*) Je ne crois pas que ce iheorAme ait encore ete donne, du moins je ne
l'ai tu nulle part; Thomson y aupplee par la proposition suivanle, qui devra

remplacer le 4° lemme pour ceux qui ne connaltraient pas la theorie des

fonctions derivees:
Soit donnd le polynome m op + n a? + p a? + q x + r; si dans ce

polynome on change x en a + x, il deviendra :

m (a + a;),l + » (a + ®)5 + p (a + ®)'+ q (a + ®) + r;
ou, en ddveloppant par la formule du binome, et ordonnant,

mx+(lmi+n)x'+6ma'+na.[.p)x+(,nna34-3na,-l-Spa+q)x+(uiall'i-nas+pa,+qa'fr
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En effet, ce developpement est dejä connu sous la forme

f(a+x) f(a)Jrxp(a)Jr\xa- f"(a)+^ f"l(a)+i-txifilli(a)
il s'agit done simplement de montrer que

[ R M
R, m

(2) R2 { f"(a)
f R3 \ f»i(a)

Or, si Ton divise f(x) par (a; — a) et qu'on designe le quotient

par f (x) et le reste par R, on a identiquement :

(3) f(x) (x — a) f (x) -f- R

Divisant ä son tour f (x) par (x—a), dösignant le quotient
de cette nouvelle division par f2 (x) et le reste par Rt on aura :

fI(x)z=(x — a)ft(x) + Rt

et substituant cette valeur dans (3), cette expression (3) de-
viendra :

f{x) (x — a) \(x — ä) f2(x) + R. | + R

ou en effectuant

(4) f(x) {x'— a)2fi (x) + (x — a) R, + R

Divisant maintenant fx(x) par (x—ä), designant le quotient

par fz(x) et le reste par Ra, substituant dans(4) la valeur que

Or, si l'on repete successivement l'operation, par coefficients detaches, de

la division du polynome

m + ft + p + + r Par «»

on forme le tableau suivant, qui montre comment on peut obtenir facile-

ment, par celte melhode, les coefficients du developpement cherche:

m -i-n + P + q *4- r

m ma -}-n ma* *4* na 4- p ma3 + na5 -4* pa -4- q maft -J- na34- pa* -hqa-H*

m 2 ma 4- n 3 ma* 2 na 4- p ft ma3-f- 3 na2 -4- 2 pa q

m 5 ma + n 6 ma2 + 3 na -}*P

m ft ma *1* n

/
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cette operation donne pour (x), et effectuant les calculs, il
vient:

(5) f(x) (x—a)3 fox + (x—a)2 R, + (x—a) R,+ R

Operant de me me sur f^x), designant par fo(x) le quotient
et par R3 le reste, il viendra :

(6) f(x) [x—a)4 fi(x) + (x—a)3 R3+ (x—o)aR3 + (x—a) R. + R

Maintenant, si nous admettons que f(x) soil du 4e degrd,
f, (x) sera du 3e, ft(x) du 2e, /j(x) du 1er et f (x) sera inde-
pendant d'a; ou constant; representons done ^(x) par R4 l'e-
galitö (6) deviendra :

(6 bis) fix) (x—a)*R; + (x—a)3R3 + (x—a)' R»+(a;—a) R,+R

Cela pos6 prenant les derivees successives de f(x), au

moyen de l'ögalite (6 bis), on obtient:

(7) f(x) A(x—a)sRn +3(a;—a)2R3 +2 (x—a)R2 +R3

(8) fH(x) 12 (x-ay Ra + 6 {x—a) R3 + 2 R2

(9) f»i(x) 24 (x-a) Rt + 6RS

(10) fin I (x) — 24 R;i

faisant x — a, on trouve :
^

par (10) fmi(a) 24 R«t d'oü R,t ^ fHU(a)
par (9) fui(a) 6 R3 a R3 i f"i(a) /
par (8) fn{d) 2 R2 » R \f"(a) >(11)
par (7) f'(a) Rt Rd f(a) \
par (6) f(d) R » R f(a)

ce qu'il fallait demontrer.

II serait facile de gönöraliser et d'appliquer cette demonstration

äun polynome d'un degre quelconque.

4er exemple.

Elant donnS le polynome x5— 2x# + x3— 3x + 4 =: f(x)
trouver ce que dement ce polynome lorsqu'on y substitue 3 + x
ä la place de x, e'est-a-dire, trouver le diveloppement de

f(3+x).
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On disposera äinsi le calcul :

1 2 4-1 +0 —3 4-4 3

1

4
7

10
13

4 12 33 4-103
16 60

'
213

37 171
67

Le ddveloppement est :

x5 4- I3as4 4-67a;54- 171a:2 4-213a: +103
carle dernier terme 103 de la deuxieme ligne horizontale est
le reste de la division de f(x) par (a;—3) (3e lemme); c'est done

ce que nous avons designd par R, e'est-a-dire, le terme indd-
pendant d'aj dans le developpement cherchd; les autres termes

non soulignes de cette premiere ligne sont les coefficients dd-
taches du quotient /) (x).

De meme, le dernier terme 213 de la 3e ligne horizontale
est le reste de la division de /i (x) par (x—3); c'est done ce

que nous avons dösignöparRj, c'est-ä-dire, le coefficient de la

lre puissance de x dans le ddveloppement; les autres termes
non soulignes de cette ligne sont les coefficients ddtachds du

quotient fa (as); et ainsi de suite.

2s eremple.

Soit f(x) xs 4- 4as2 4- 5a; — 3,

chercher f (0,4 4- a;),

on aura:

i +4 +5 —3 0,4
1 4,4 6,76 —0,296
1 4,8 8,68
1 5,2

Le developpement est done :

x5 4- (5,2) a:2 + (8,68) x - 0,296
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Si,, au lieu de f(0,&+x), oueut demand^ le developpement

äef(0,A+y), il suffirait de remplacer dans le developpement

precedent x par y.
Ainsi, lorsque f(x) a;3 + 4a;a + 5# — 3

on a
f(0,4 + y) if + (5,2) tf + (8,68) y - 0,296

Ces principes poses, passons k la methode elle-meme.
Soit f(x) 0 une equation algebrique, et supposons

qu'ayant substitue a x dans le premier membre de cette

equation, et par le procede du 3e lemme, la suite des nombres
consecutifs 0, 1, 2, etc., on ait trouve pour f(a) et f(a + i)
des resultats de signe contraire, nous en conclurons, en vertu
du premier lemme, qu'il y a entre a et (a + 1) une racine de

f(x) 0. On pourra done poser

0) x — a+ y
(y sera plus petit que 1 et pourra s'exprimer en dixiemes).

Substituant dans f(x) ä x sa valeur a + y, l'equation
f(x) — 0 deviendra f(a + y) 0, et en developpant cette
fonction par le procede du 4e lemme, on obtiendra une trans-
formee en y

U (y) f(<*+ y) o

laquelle, etant resolue,, donnera la valeur de y.
Or, y etant plus petit que i, on pourra en trouver approxi-

mativement la valeur, d'apres la formule du 28 lemme, en
divisant le terme independant change de signe par le coefficient

du terme precedent. Dans cette division, on s'arretera
au chiffre des dixiemes en moins, et on aura une valeur de

la forme

(2) y ~ + z

(z 6tant plus petit que ~ et pouvant s'exprimer en centiemes).
Si maintenant dans liquation /) (y) 0 on substitue ä y

sa valeur + z^, cette Equation deviendra

5.
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et en diveloppant de nouveau cette fonction par le procede du
4* lemme, on obtiendra une transformee en z

f* (*) U (jQ + z) 0

laquelle, etant resolue, donnera la valeur de z.
Mais 2 6tant plus petit que on trouvera approximative-

ment sa valeur, d'apres la formule du 2e lemme, en divisant le

terme independant change de signe par le coefficient du terme
precedent. Dans cette division, on s'arretera au chiffre des

centiemes en moins, et on aura une valeur de la forme

(3) * (4+ M)

(m dtant plus petit que 7^ et pouvant s'exprimer en milliemes).
On obtiendra, comme precedemment, la transformee en u

f* («) u (^ö+w)=0'
d'oü l'on deduira de la nffime maniere la valeur

^ U ~ (lÖÖÖ +t)
dans laquelle t est plus petit que et ainsi de suite.

II est ä remarquer que 2, u, t, etc., etant suffisamment

petits, la division indiquee donne presque toujours exactement

le chiffre decimal correspondant, comme on peut s'en assurer

par la valeur que prend la limite de l'erreur (2e lemme). Mais

y n'etant pas toujours suffisamment petit, il peut arriver que
le chiffre obtenu par la division soit ou trop faible ou trop
fort; on en sera averti en ce que, dans le calcul de 2, on trouvera,

dans le premier cas, une valeur renfermant encore des

dixiemes, et, dans le second, une valeur negative; on corri-
gera done en consequence la premiere approximation obtenue

pour y.
Ier exemple.

Soit f(x) Xs" + x5 — — 5x — 5 0

En substituant les nombres entiers consßcutifs 0, i, 2, 3,
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etc., on trouve (lemme 3): f(0) — 5 ; f{1) — 12 ;

f(2) — 7; f(3) + 52. II y a done une racine comprise
entre 2 et 3, et eile est beaucoup plus pres de 2 que de 3.
On posera done:

(1) x 2 + y

La substitution de cette valeur dans f(x) conduit, apres
son developpement (lemme 4), ä la transformee en y :

fß+y) y* + %5 + mf + 23?/—7 0 fi (y)

Une valeur approchee de y sera done (lemme 2) :

y — gg
0>3...

Supposons cette valeur trop petite, on aurait:

y — 0,3 + *
La substitution de cette valeur dans ft (y) conduit ä une

transformee en z, dont le dernier terme est positif, par
consequent la valeur approchee de z serait negative, ce qui
nous apprend que 0,3 est une valeur trop forte pour y, on

posera done

(2) y 0,2 + z

et la transformee en z est alors

/,(*) /; (0,2+*)
ou

»» +(9,8) a3 + (31,64) as» + (34,512) a — 1,2864 0

d,2864
Une valeur approchee de * est done z r., 0,03....rr 34,512
0,03 est trop faible ; on posera done

(3) * 0,03 + u

La transformee en it est alors

fi(u) ft (0j03 + m) 0

ou

+ (9,92) u3 q- (32,5274) «a + (36,436968) a — 0,22229859 0
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0 22229859
line valeur approchee de u est done u —4——=0,006

34,436968 '

et 0,006 est trop faible. On posera done

(4) u 0,006 + t

La transformde en t est alors

ft (0 ft (0,006 + 0 0
ou
«* + (9,944) J3+ (52,716376) <»+(36,828490224)«- 0,002503291584 0

Une valeur approchee de t est done

0,002503291584
(5) t — 0,00006....

36,828490224 '

On pourrait done poser t (0,0006 + v) et chercher la
transform^ en v, pour en deduire une valeur approchee de

v, et ainsi de suite ; mais si Ton n3a besoin de connaitre la
racine qu'avec 8 decimales exactes, on remarquera que t etant

plus petit que 0,0001, la limite de l'erreur dans le calcul de

t est (lemme 2)

g
0,0026. 0,0001 0 000000007

36

Cette erreur n'influera done que sur la neuviöme decimale

et l'on pourra poursuivre le calcul de t par l'expression (5)
jusqu'ä 8 decimales exactes, ce qui donne

(5 bis) t 0,00006797

d'oü, en reprenant les valeurs (1), (2), (3), (4) et (5 bis)

x 2,23606797 ;

valeur dont il est facile de verifier l'exactitude, puisque l'e-
quation a etö preparöe de maniere que sa racine reelle positive

soit y 5.

On voit que tout le travail est dans le calcul des transfor-

mees successives. Pour abr^ger ce travail, on dispose l'ope-
ration de la maniere suivante : /
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1 +i
1 3
1 5
1 7
1 9

T" 9,2
l 9,4
l 9,6
i 9,8

T 9,83
l 9,86
l 9,89
l 9,92

l 9^926

l 9,932
l 9,938
l 9,944

2
12
26

21,U
29,72
31,64
31,9349
32,2307
32,5274
32,596956
32,656748
32,716376

— 5

2,23606797

- 5

— 1

+ 23

28,568
34,512

— 7

— 1,2864

— 0,22229859

— 0,002503291584
oo,470047
36,436968

36,632549736
36,828490224

La premiere ligne soulignee est formte des coefficients'
detaches de liquation f(x) — xi + x3— 4as2— 5a?— 5 0

On calcule alors par le precede du 4e lemme la transformee

f(2 + x) ou f{2 + y) fi(y) et la seconde ligne soulignee,
sareir :

1, 9, 26, 23, — 7

est formte des coefficients detaches de la transformee en y,
soit ft(y). On calcule alors la valeur de y en divisant 7 par
23, ce qui donne, apres correction, yz= 0,2, et Eon pose les
2 dixiemes ä la place reserv^e pour la racine.

En repetant le precede sur f (y), on calculera de meme la
transformee en z, soit fi (.z) ou f, (0,2 + z). On fera attention
que l'on multiplie alors les resultats successifs par 0,2; done le
l«1 coefficient 1 multiplie par 0,2 donne 0,2 qui, ajoute au
2e coefficient 9, donne pour resultat 9,2. En multipliant ce
resultat par 0,2 on obtiendra un produit ayant deux chiffres
decimaux, 1,84 qui, ajoute au 3s coefficient 26, donnera pour
resultat 27,84. On reconnaitra de meme que le 3e resultat

aura trois chiffres decimaux, et le 4e quatre chiffres decimaux,
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La 3e ligne soulignße
1, (9,8), (31,64), (34,512), (-1,2864)

est formte par les coefficients detaches de la transform^ en

z, soit £(z) etl'on calculez en divisant 1,2864 par 34,512, ce

qui donne z — 0,03 ou 3 centimes que Ton pose k la racine.
La nouvelle transformee traitee ä son tour par le procede du
4elemme, c'est-a-dire en multipliantles resultats successifs par
0,03, fournira la transformee en u, soit /^(w) —• £ (0,03 + «).
Dans le calcul de celle-ci, le Ier resultat a deux chiffres deci-
maux,le 2e resultat en a quatre, le 3e en a six, etle4eenahuit.

II est k remarquer que, dans les divisions, comme on ne
cherche qu'un chiffre au quotient, on peut se contenter de prendre

seulement les premiers chiffres du dividende et du diviseur.
La pratique ae celte methode est susceptible encore de

quelques autres simplifications de detail qu'il serait trop long
d'indiquer, mais que l'habitude fera aisement decouvrir.

2B exemple.

Voici le type du calcul pour l'equation du 3e degre

x° 3x* — 4 0,
le calcul de la racine, comprise entre 3 et 4, elant pousse jus-
qu'ä la dixifeme decimale.

— o

0
3
6^

M
6,6
6,9

M5
7,00
7,05
7,055
7,060
7,065

'7,0653
7,0656
7,0659

0

0

9^

10,89
12,87

13,2175
13,5675
13,602775
13,638075

T3,"64019459
13,64231427

3,3553013976

4

0,733

— 0,072125
0,004111125

— 0,000019066623
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La division de 0,000019066623 par 13,64231427 donnant

pour la derniere approximation 0,000001... la limite de l'er-
reur est

e <0>00002 * 0>°Q0QQ1
<0,000000000001

13,6

par consequent, en poursuivant cette division, le calcul serait
exact jusqu'ä la lle decimale.

5s exemple. '

Comme dernier exemple, nous allons calculer la racine
cubique d'un nombre, de 13 par exemple, avec 8 decimales

exactes, ce que ne peuvent donner les tables de logarithmes.
En traitant le meme exemple par la methode ordinaire, on
saisira mieux l'avantage de celle-ci.

La question revient ä resoudre l'equation

On a done

6

"6,3
6,6
6,9
6,95
7,00
7,05
7.051
7.052
7.053
7,0533
7,0536
7,0539

x5 — 13 0

0

12

13,89
15,87
16,2175
16,5675
16,574551
16,581603
16,58311899
16,58583507

2,351334688

— 13

— 0,833
— 0,022125
— 0,005550449

— 0,000575333303
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La derniere approximation etant donnee par la division

0,000575333303

16,58583507

la limite de l'erreur est

0,00003...

0,0006 X 0,00004
e * > uuwt

<0,000000001
16

l'erreur est done moindre qu'une unite du 9e ordre decimal,
et par consequent on peut poursuivre la division jusqu'ä cet
ordre.

Si l'on voulait calculer par cette methode une racine dont
la partie entiere aurait plus d'un chiffre, on ramenerait ce

cas au precedent en rendant les racines de l'equation corres-
pondante 10, 100 ou 1000 fois plus petites, suivant le besoin.

Soit, par exemple,ä extraire la racine cubique de 2376, ou
ä resoudre l'equation

x5 — 2376 0

1
On posera y — — x d'oü x 10 y, ce qui conduira ä la

transformee en y
1000 y5 — 2376 0 ouy3 —2,376 =0

Celle-ci, resolue comme precedemment, donne

y 1,33438827 ; d'oü x 13,3438827.

En operant par logarithmes, on trouve 6 chiffres exacts,
c'esl-ci-dire 13,3438.

Enfin, si l'on avait ä calculer une racine negative d'une equation

f{x) 0, on preparerait d'abord l'equation f(—x) 0,
et la racine positive de f(—x) 0, changee de signe, sera la

racine negative cherchee.

En comparant cette methode avec celle de Newton, on peut
reconnaitre qu'elles ne different en realite que par la maniere

d'effectuer les calculs, qui sont bien plus faciles par la methode
de Hörner, en sorte que celle-ci peut etre consideree comme

un procede de simplification de la methode de Newton.

I

*
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En effet, si la racine de f(x) 0 est comprise entre a et
(a -f- 1), l'application de la möthode de Newton donne:

x — (o + y) avec y —^ d'oü V — +*

s, b\ ~«a+iö)
e

puis x < (a + TT;) + z [ avec z ;— — + u' ,0) > n.+~) m
ensuite

b c \
(/ b c \ ~f(a+Tö+TööJ d

a (a + lö + iöö+rVeCM=
' f ^"+'10+100/

et ainsi de suite.

Dans la methode de Horner, on pose
ft

x — a -f- y, et l'on a y ——
Pm-l

(pris dans liquation ft(y) 0).

Or, cette fonction f (y) n'est autre que f(a + y), et par
consequent pm ou R est pröcisßment f(a) et pm.tj ou R, est
P{a). (Lemme IV).

Done la valeur de y revient ä et e'est la m6me que
/ (a)

dans la methode de Newton, savoir —: + z10
On pose ensuite

y + z et l'on a z — ——10 Pm-l
(pris dans liquation £ (z) 0).

Or, cette fonction fz{z) n'est autre que ft +z) etpm ou

R dans cette fonction est precisement f, (ro) et pm.i ou R, est

f[ (jq) j mais puisque f,(y) f(a + y), on a aussi, en po-

b
sant y ^
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fQö)"f("+iö)

e'H(Tö)=K"+Tö)
done la valeur de z qui, dans la mßthode de Horner, est
donnee par la formule

— p„ —R ~''(io) JL

-OU^O°^)re"en,a^)=,0°
ce qui est precisdment la valeur de z donnee par la mdthode
de Newton.

On verrait de m6me que la valeur de u, qui dans la md-
thode de Horner est donnee par la formule

" ,pris <,lns 1'®iua,i<l" />(»)=£ iTjfi + «)

revient d'abord äw -—

Km>
Mais puisque ft(z) f>(l[Q+z) 1 on a aussi> en Posant

c
z 100

et

^(100) ~ ^ (io + ioo)

^ (iöö) ^ (fo+ Too)

la valeur de w revient done ä

b c

u
FIO + ico)

«(ro+T5ö)



— 75 —

et corarae on a encore f (y) f(a + y)

en faisant y — (J^ + Jl), on aura

((w+m)=r("+w+tk)

ct (to + fori) To+too)

la valeur de u revient done enfin ä

c

u
-rta + Iö+Töö)

/r/(a + B+ifo)
qui est precisdment celle donnde par la methode de Newton.

La simplification consiste en ce que, dans la methode de

Horner, on n'a jamais que des nombres d'un seul chiffre ä

substituer; car on calcule successivement y —ßß. puis
/ \a)

~f' W ^TÖÖO^

z puis m ;puis t

ft (jq) A (100) A QoötP

et les transformees f,f,, etc., sont donndes par le calcul
mßme des valeurs de y, z, w, etc., tandis que dans la methode
de Newton, on a ä substituer des nombres de plusieurs chiffres,
ce qui rend le calcul de plus en plus laborieux. Ainsi on a
successivement ä calculer

- f(a)
~~ + Jo) — A3 + i(j + ro0)

y—mi}* — j—;«= 7 etc.fi) f'^ + TiP ^+B+Vöö>
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Comme verification, nous allons resoudre par la methode
de Newton, 1'equation

a?4 + a?3 — 4 a;2 — 5 x — 5 o

traitee plus haut par la methode de Horner:

on a f (x) a;4 + a?3 — 4 a;9 — 5 x — 5

fi (x) 4 x° + 3 xs — 8 a? — 5

La premiere approximation x 2 + y donne

r(2) 7

y -^ ~ 23 °'3'" et' apr®s correclion> y — 0,<Z+z

La deuxieme approximation

x — 2 + (0,2 + z) ou x — 2,2 -f- s

donne

— m,2) 4,2864
Z — f'{2,2) ~ 347512 ~~ J U

La troisierae approximation

x — 2,2 + (0,03 + u) ou a? 2,23 + u
donne

__ - m,23) _ 0,22229854 _f'(2,23) 36,436968

La quatrieme approximation

x 2,23 + (0,006 + t) ou x 2,236 + t

donne

-**,286) 0^002503291584.
fi(2,236) 36,828490224

La cinquieme approximation serait done x — 2,23606 + v

mais, d'apres la regle de la methode de Newton, on peut cal-
culer t avec 2 fois plus de decimales que u, ce qui donnerait

t 0,000067 et x 2,236067

Notre formule d'approximation a montre que Ton peut cal-

culerf, non-seulement avec six, mais avec huit decimales

exactes.
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Que l'on compare maintenant les calculs qu'il faut faire

pour obtenir par substitution la valeur des expressions

f (2)' f(2,2)J ^(2,23)' ^236)'3 6

la page 69, dans lequel les nombres soulignes de la derniere
colonne sont les numerateurs, et les nombres soulignes de la
colonne precedente les denominateurs, et l'on conviendra que
la simplification ainsi obtenue vaut bien la peine d'apprendre
un procede, tres facile d'ailleurs, et qui permet, ä la rigueur,
de se passer de la thdorie des fonctions derivees.

Nous avons dit que cette methode n'etait pas applicable
directement aux equations transcendantes. Yoici cependant
un moyen de preparer une equation transcendante de maniere
ä ramener sa resolution ä celle d'une equation algebrique ä

coefficients connus, lorsqu'on a trouve une lre valeur appro-
chee ä pres de la racine, valeur que l'on peut toujours cal-
culer assez facilement par des substitutions.

Soit f(x) 0 une equation transcendante, dont on connait
une racine a approchde ä on posera x a +y (y etant
alors plus petit que ^), et l'dquation deviendra

O) ««+»)= m+v '(«)+£ + etc. o

y5
et puisque y est plus petit que le terme suivant p (a)

J.

A- (a)
sera plus petit que 2000000"

<*onc ^ ^ n'est ^as tr®s

grand et qu'on n'ait besoin de connaitre la racine qu'avec
7 ou 8 derimales exactes, on pourra ndgliger ce terme et les

suivants, et l'on aura une transformde en y, qui sera

algdbrique du 4e degrd, et de laquelle on pourra calculer par la
methode de Horner la racine y. On aura ensuite x a + y.

Nous prendrons pour exemple l'dquation

(2) ex — e"x — cx 0

que l'on a ä rdsoudre dans le probieme de la chainette; e est
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f (x) ex — rx
fi (x) — ff + e~x

pi (x) ex — e~x

pu (x) ex + e_x

/»/'(a;) ex — rx
f-' (as) ex + c_x

la base des logarithmes nßpdriens, savoir 2,718281828... et
nous prendronsc=12,54. Ontrouve par des substitutions suc-
cessives qu'une premiere valeur de x, approch^e en moins,
est a 3,8; puis, calculant les derivees successives de f(x),
qui est ici ff — e"x — cx, on a

cx \ f (a) ea—e"a—(12,54)a
c I p (a) ea+e-a— 12,54

d.o4 f" (a) ea-e~a
I a ou pu (a) ea+ra
\ /""(a) ea—e_a

p (a) ea+e-a

Le developpement (1) deviendra done dans cet exemple

(ea-e~a-12,b4a)+y(ea+e~a-12,54)+.^ (ea-e~a)+^ (ea+e~a)+|j| (ea-e"a) 0

Or, on a trouve a 3,8 ; on calculera done par
logarithmes

ff e3>8 44,701200 ea + e-a 44,723571
e-a e-5,8 _ 0,022371 \ a 011

ff — e-a 44,678829

Substituant ces valeurs dans l'equation precedente, effec-

tuant et ordonnant, il viendra :

(3) (1,861618) y» 4- (7,483929) y3 +(22,339414) y > + (32,183871) y - 2,973171 0

Employant, pour resoudre cette Equation, la mßthode des

coefficients detaches, on forme le tableau suivant:
0,087-(0,00024)
~27973l71-J- 1,861618 + .7,483929 + 22,339414 + 32,183571

1,8616,18
1,8616,18
1,8616,18
1,8616,18

1,861,618
1,861,618

7,6029,88
7.7818,86
7,9008,15
8,049.7,44

8,082,775
8,075,806

22,9476,50
23,5678,00
24,1998,65

24,286,304
24,512,834

34,0193,83
'55,9048,07

36,074,601
56,244,791

- 0,231621

^f5),000897

La premiere valeur approchee de y est 3^'^ 8^3571~ ®,09;

mais en calculant la transformee suivante, on trouve un terme

independant positif, ce qui nous apprend que0,09 est trop fort;
on posera done 0,08. Ensuite, remarquant que les coefficients
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de liquation (3), ayant Se obtenus par logarithmes, ne sont

exacts que jusqu'äla6e dSimale, et qu'il est, par consequent,
inutile de pousser plus loin les calculs subsöquents, tandis

qu'en multipliant 1,861618 par 0,08., on aurait 8 dSimales

auproduit, on multipliera simplement 1,8616 par 0,08 en

tenant compte de la retenue que fournirait le chiffre suivant;
ajoutant ce produit au coefficient suivant, 7,453929, on ob-
tiendra pour rSultat 7,602958 avec 6 chiffres dSimaux
exacts. On operera sur celui-ci comme sur le precedent, en

ne multipliant par 0,08 que 7,6029 et en tenant compte de

la retenue que donnerait le chiffre suivant 5, on obtiendra
ainsi un produit avec 6 chiffres decimaux, lequel, ajoute ä

22,339414, donne pour resultat 22,947650, et on continuera
ainsi en ne prenant que les 4 premiers chiffres decimaux de

chaque resultat. On arrive ainsi au terme independant de la
lre transforms — 0,251621.

En repetant l'operation sur les premiers resultats ainsi
obtenus en s'en tenant toujours ä 4 chiffres decimaux, on
trouve pour l'avant-dernier coefficient de la transformee
35,904807, et de m6me pour les autres.

La racine de cette 2e transformee sera done

0,251621

35,904807

et l'on procedera au calcul de la 3e transformee en multipliant

par 0,007; d'ailleurs, pour avoir 6 chiffres decimaux

exacts, il suffira de garder seulement les 3 premiers chiffres
decimaux de chaque multiplicande en tenant compte de la
retenue que fournirait la multiplication par 7 du chiffre
suivant. On arrive ainsi au terme independant de la 3e transforms

+ 0,000897, ce qui nous apprend que 0,007 est trop
fort, ou que la racine de la 3e transformee ainsi calculS
serait negative. On pourrait done poser 0,006 au lieu de 0,007
et chercher avec cette nouvelle valeur la 36 transforms. Mais

il sera ici plus simple de conserver la valeur trop forte 0,007
et de continuer le calcul de la transforms correspondante;
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on trouve ainsi 36,244791 pour le coefficient de l'avant-der-
nier terme de cette transformee.

La racine de cette 3e transformee sera done

- (0,0000247)
36,244791

v ' '
t 0,000897.0,0000247La hmite de 1 erreur etant ^ le

quotient aurait jusqu'ä 8 chiffres decimaux exacts, si les coefficients
de l'equation etaient eux-memes rigoureusement exacts; mais

comme ceux-ci ne sont exacts que jusqu'ä la 6e decimale, on

ne peut compter aussi que sur 6 chiffres decimaux exacts au

quotient; on s'arrätera done ä — (0,000024). La valeur de

y sera done enfin y 0,087 — 0,000024 ou y — 0,086976
et, par suite, x 3,8 0,086976 3,886976.

La valeur de cette racine, calculee jusqu'ä 7 decimales par
la mäihode des differences dans l'Algebre de Briot, a effi

trouväe 3,8869763; mais on ne peut pas etre certain ä priori
de la 7e decimale.

Voici quelques exemples ä traiter :

13=0 RaciDes 2,502775638... —(1,502776)

aj3-5a2—9a+38=0 » 2,4918142...; 5,3556392...; —(2,8474534...)

^—4®'—4x4-20=0 » 2,6308975...; 3,53453f|6 -(2,156328)

—17#-|-5=0 » 0,3132409...

a*-5a;3-7ar+15a;+3=0 » «,41723334...
K ~

®=^100 » 2,51)886431

x—cos x 0 » 0,739085

x 100 » 3,597285
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ERRATUM.

Dans la determination de la limite de l'erreur (2° lemme,

page 59, ligne 9 en remontant), il est dit que le coefficient

pm-i est toujours plus grand que pm.2 dans les transformees

que Ton obtient par l'application de la methode de Horner;
c'est«presque toujours » qu'il aurait fallu dire. Dans le cas oü

pm-i est plus petit que pm-2, comme aussi lorsque pm.2 et pm.i
ne sont pas de mäme signe (quoique cette derniere circons-
tance ait moins d'influence sur le resultat, ä cause de la pe-

V) /Y*

titesse du terme neglige), l'expression donne encore une
P ra-l

valeur tres approchee de la limite de l'erreur, mais on ne

peut plus affirmer que l'erreur soit plus petite que cette

expression, parce qu'alors dans la fraction PmPm-s%

Pm-lPm-i+Pm-lPm-iX
qui represente l'erreur, on remplace au numerateur un fac-
teur^m-2 par un autre facteur pm.4 plus petit, et qu'on
neglige au denominateur un terme negatif, ce qui rend la fraction

plus petite.
Dans ce cas, on pourra bien encore se servir de l'expres

in rjQ

sion pour reconnailre ä tres peu pres jusqu'ä quel ordre
P m-1

de däcimale on peut pousser la derniere division, mais on ne
sera pas certain de l'exactitude de la derniere decimale de

l'ordre indique; on devra done en prendre une de moins, ou
mieux encore continuer le calcul jusqu'ä la fin par des

divisions successives.

Soit, par exemple, liquation

xs + iTx* + 2a? — 2 0

qui a une racine comprise entre 0 et 1. En traitant cette

Equation par la methode ordinaire, on obtient:

6.



+ 17 + 2
0,287

— 2

17,2
17,4
17,6
17,68
17,76
17,84

5,44
8,92
10,3334
11,7552

- 0,912

— 0,085248

- 0,002087097

11,880129
12,005107

17,847
17,854
17,861

La derniere division donnerait pour le 4e chiffre de la

rati,002087097 _116

12,005107
~~

0,00208... X 0,0001...

0,002087097 n nnnt „ pmxeine 0,0001 et l'expression -— ou
12,005107 r pm_L

^ indiquerait comme valeur tres ap-

prochee de l'erreur 0,00000002 (en forpant); mais comme
ici le coefficient pm-1 ou 12,005107 est plus petit que le
coefficient pm„% ou 17,861, l'erreur peut etre plus grande que
0,00000002..., et des lors on ne peut plus etre sür de l'exac-
tilude de la 7e decimale; on ne devra done prendre dans le

0 002087097
quotient de la division ^ QQ51Q7

0>00017385.... que

les 6 premiers chiffres decimaux, et il sera tres probable que
cette 6e decimale sera encore exacte.

Mais on peut calculer la racine de maniere ä avoir avec

certitude non-seulement 6, mais autant de decimales exactes

que l'on voudra, en continuant le tableau precedent jusqu'ä
1'approximation voulue. Mais alors aussi le nombre des chiffres
ddcimaux allant en augmentant ä chaque operation, les cal-
culs deviendraient de plus en plus laborieux. On peut eviter

cet inconvenient en procedant comme dans l'exemple de la

page 78.

Si, par exemple, on voulait 8 decimales exactes, On re*
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marquerait que, comme dans chaque division successive on

ne prend au quotient que le Ier chiffre, il suffit de conserver
au dividende, c'est-ä-dire dans la derniere colonne, 8 ddci-
males exactes; nous en garderons 9 pour compenser les
accumulations d'erreurs provenant des decimales negligees; quant
au diviseur, il varie tr&s peu, et il suffit le plus souvent que
sa partie entiöre soit exacte. Nous formerons done le tableau
suivant :

0,000173806
1 17,861 12,005107 — 0,002087097

12,00688
12,00866
12,0098
12,0110

— 0,000886409

— 0,000045723
— 0,000009690

— 0,000000082

La. premiere ligne de ce tableau est la derniere du tableau
precedent.

Puisqu'on peut ndgliger tous les chiffres qui n'influent pas
sur la 9e ddcimale de la 4e ou derniere colonne, et que Ton
a ä multiplier par 0,0001, on reconnait qu'il suffit de con-
server 5 chiffres ddcimaux dans la 3e colonne, et que pour en
avoir 5 dans la 3° colonne, il suffit d'en conserver un dans la
28. On multiplie done 17,8 par 1 dix-millieme, et, ajoutantle
produit au coefficient suivant, on a 12,00688. On doit main-
tenant multiplier ce nombre par 0,0001, ce qui fournit
9 chiffres au produit, et le reduire avec le coefficient
suivant ; on obtient ainsi — 0,000886409. On acheve de m&me
le calcul de cette lre transformde. Divisant alors 0,000886409
par 12,00866, ou plus simplement 88 par 12, on a le quotient
0,00007, ou 7 cent milliemes que Ton pose ä la racine.

Le calcul de la nouvelle transformee se fait maintenant en
multipliant par 0,00007; done pour avoir 9 chiffres ddcimaux
dans la 4e colonne, il suffit d'en conserver 4 dans la 3% et
pour en avoir 4 dans la 3e, il suffit de conserver les dizaines
dans la 2% en tenant compte toutefois de la retenue que four-*
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nirait le chiffre des unites negligees. On mulliplie done 1 di-
zaine par 0,00007, et Ton a (avec les 5 de retenue) 0,0012,
ce qui, ajoute au coefficient suivant, donne 12,0098. Multi-
pliant maintenant 12,0098 par 0,00007, on obtient un produit
de 9 dScimales, lequel, reduit ävec — 0,000886409, donne

—0,000043723. On achevera de m&me le calcul de cette

transformße; puis, divisant 0,000045723 par 12,0110, le

quotient sera 0,000003 que Ton pose ä la racine. Dans l'ope-
ration suivante, on mulliplie par 0,000003 ; il suffira done
de conserver 3 chiffres decimaux dans la 3e colonne et, par
consequent, comme la multiplication de 17,8 par 0,000003
ne donnerait rien dans cet ordre de decimales, on pourra
laisser intacte la 3e colonne, et multipliant 12,011 par
0,000003 et r^duisant avec —0,000045723, on trouvera
—0,000009690. Divisant ce nombre par 12,011, on obtient
le quotient 0,0000008, que Ton pose ä la racine.

Dans le calcul de la nouvelle transformee, on n3a plus be-
soin que de 2 chiffres decimaux dans la 3e colonne. La
multiplication de 12,01 par 0,0000008 donnera un produit de

9 chiffres decimaux qui, reduit avec —0,000009690, donnera

—0,000000082; et en divisant ce nombre par 12,01, on
trouve le quotient 0,000000006, ce qui termine l'operation.
La racine sera done 0,287173806 avec 8 chiffres decimaux

exacts; mais on ne peut pas compter sur le neuvieme chiffre 6.
Maintenant nous reconnaissons par ce calcul que nou-seu-

lement le 6a chiffre decimal, mais encore le 7e etait donne

exactement par la division de 0,002087097 par 12,005107
fournie par le Ier tableau; l'erreur portait seulement sur le
8e chiffre decimal, mais on n'en etait pas certain.

Page 74, ligne 5, au denominaleur, au lieu dfe f[

Usez fi(a + ^).
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CHE» DE FER DE MOMES,

par M. Ber.

Les chemins de fer presentent sans contredit le meilleur

moyen de transport, mais pour offrir un veritable avantage, ils

exigent une condition difficile ä remplir dans plusieurs loca-

lites, savoir celle des pentes le plus douces possible.

Depuis l'introduction de cette nouvelle voie de communication,

on a cherche les moyens de faciliter l'ascension des fortes

montees, par des machines stationnaires, par l'engrenage, par
la voie pneumatique, hydraulique, etc. Toutes ces methodes
mises en pratique n'ont pas donne de resultats satisfaisants, ä

cause des constructions compliquees, des frais d'execution,
d'entretien et de plusieurs autres inconvenients qu'occasionne
leur application.

II est plus que certain qu'ä force de recherches, on par-
viendra ä vaincre cette difficulty, et qu'on trouvera un moyen
plus avantageux de franchir les montagnes avecla locomotive.

Dans cette conviction j'ajoute aussi une idee ä Celles dejä

connues, laquelle parait, ä priori, repondre assez favorable-
ment au but desire. Pour faire comprendre la methode dont
j'enonce l'idee, je tächerai de l'expliquer dans les termes les

plus simples.
Nous savons que, si la locomotive mise en mouvement par

la vapeur sur un plan horizontal, avance et tire apres elle les

convois, ce n'est que par l'effet du frottement ou de l'adhesion
des roues sur les rails. Mais si cette locomotive doit gravir un
plan incline, l'adhesion des roues aux rails diminue en

proportion de l'angle d'elevation de la rampe, de maniere que sur
une rampe ascendante de 2%, les roues tournent et la ma^
chine reste en place ou recule en glissant. II en rdsulte que la



— 86 —

force est süffisante pour tourner les roues, mais leur adhesion

aux rails est annulee.
II s'agit par consequent de trouver le moyen de remplacer

cette adhesion perdue par la pente.
On est dejä parvenu, par l'emploi de locomotives pesantes,

ä gravir les rampes de 3 % d'inclinaison, mais cette inclinaison
est trop faible lorsqu'il s'agit de s'elever ä une hauteur de plu-
sieurs milliers de pieds.

Or, ce resultat n'est pas satisfaisant, non seulement parce
qu'il exige des locomotives tres pesantes et une force motrice
puissante, mais encore parce qu'il impose des tunnels d'une
longueur considerable dans les traversees de montagnes et

par lä occasionne des frais enormes, contre lesquels les entre-
prises se heurtent, et laissent ajournees dans les contrees mon-
tagneuses plusieurs lignes ferrees, surlesquelles les populations

que cela interesse altendent avec impatience.
D'aprSs ce qui vient d'etre expose, la difficulty se resume ä

trouver une adherence nouvelle d'un emploi pratique, sur
laquelle le poids de la locomotive ait le moins d'influence ; et

puisque dans la position actuelle des roues et des rails il nous
est impossible d'obtenir un resultat favorable, vu que sur un
plan incline, une partie du poids de la machine decomposee,
celle parallele ä la rampe tend constamment ä annuler l'adhe-
sion verticale, entre les rails; appliquons la pression horizon-
tale contre les rails au lieu de la verticale qu'on emploie au-
jourd'hui.

Le Systeme de laminage, par exemple, de la töle lorsque
celle-ci est engagee entre les cylindres, nous donne un exemple
dans ce genre de 1'adhesion d'une force tres efficace: seulement

changeons les positions, consolidons la töle verticalement
et rendons mobiles les deux cylindres.

Cet exemple, je crois, pouvant etre applique avaniageuse-
ment pour atteindre notre but, essayons de l'employer sur une

rampe de 2 % d'inclinaison sur laquelle les machines legeres
n'avancent plus quoique leurs roues tournent.

Supposons un rail ab k face double, ayant par exemple 10
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pouces de hauteur et une epaisseur respective, et etant fix6

verticalement le long de la rampe ascendante au milieu de la
voie ferree. (Fig. 1.)

Appliquons k la locomotive des cylindres c c que nous nom-
merons roues jumelles ayant 2 pieds par exemple de diametre
et 5 pouces d'epaisseur, entre lesquels le rail du milieu a b

soit engage et maintenu constamment en contact severe. (Fig. 1,

2,3.)
Faisons jouer les pistons h h de la machine k vapeur sur les

roues jumelles c c en meme temps que sur les roues, pour les

faire tourner dans le sens de la montee, en y exercant une
force necessaire. (Fig. 1, 3.)

La locomotive dans les conditions ci-dessus, par cette nou-
velle adhesion horizontale des roues jumelles va necessaire-

ment avancer comme la tole entre les cylindres de laminage,
car il n'y a pas de raison pour qu'elle reste en place. Comme

cette adhesion peut etre augmentee par l'application de 2, A,

6, etc., roues jumelles, il en resultera que la locomotive sera

en dtat de gravir les montees tres raides, peut-etre jusqu'ä
8 %, puisque la force pour faire tourner les roues est ä notre

disposition.
Le dessin ci-joint represente seulement les cylindres h h

dont les pistons agissent sur les roues jumelles c c, mais on

pourra ajouterä la locomotive encore deux cylindres pour agir
sur les roues qui la portent, par cette disposition elle servira
tant pour le plan incline que pour la plaine.

II est ä observer que, suivant notre methode, on augmente
l'adhesion par les memes principes que sur les chemins de fer
en plaine, c'est-a-dire par la force de la vapeur et le frotte-
ment. Les travaux necessaires pour fixer solidement le rail
double du milieu, pour faire tourner les roues jumelles et les

serrer contre le rail, ne paraissent pas presenter de grandes
difficultes.

Pour maintenir constamment les roues jumelles en contact
avec leurs rails, on pourra se servir du poids de la locomotive
elle-meme et de celui du convoi qu'elle doit trainer, c'est-ä-dire
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de la force du poids decompose, celle parallfele k la rampe.
Cette force etant en proportion de l'inclinaison de la rampe,
pourra etre regularisee par elle-meme selon l'inclinaison plus
ou moins forte de la rampe ascendante sur laquelle le mouve-
ment s'opere. Dans ce but on pourra appliquer une espece de

pince d e f g fixee ä la locomotive au point i, k laquelle un ou

plusieurs wagons peuvent etre attaches au point m, pour pro-
duire par leur poids la pression des roues jumelles contre les

rails du milieu. (Fig. 4.)
La m£me force provenant du poids peut etre appliquee avec

avantage comme pression sur les sabots et pour ecarter les

roues jumelles du rail. Car a la descente la vitesse sera
regularisee moyennant des sabots p appliques aux wagons, garnis
d'une semelle en bois et glissant sur le dos du rail du milieu
a b. Comme le nombre et la longueur desdits sabots peuvent
etre augmentes ä volonte, on obtiendra par cela la security

exigee. Pour ecarter les roues jumelles du rail on pourra aussi

se servir du mecanisme ordinaire applique au point 11, comme
on s'en sert actuellement pour enrayer. (Fig. 5.)

Pour parer aux accidents qui peuvent survenir par la rupture
du rail du milieu ou par le derangement de la machine, on

pourra arranger des freins, des sabots, ou ajouter des pattes,
de maniere ä tomber et ä arreter tout le convoi aussitot qu'il
commence äreculer; comme moteur necessaire pour laisser
tomber cet attirail, on emploierait le poids du convoi lui-meme.

Le rail du milieu etant plus haut que ceux exterieurs, on

pourra, pour maintenir le passage des routes et des chemins

qui traversent la voie ferree, appliquer dans ce but les plates-
formes inclinees et mobiles.

Enfin cette methode, outre la facilite de gravir les montees

au-dessus de 3 %, präsente les avantages suivants :

1° Les frais destravaux primitifsde l'etablissement des voies

ferrees seront considerablement reduits, d'abord on n'aura

pas besoin de tenir la voie ferree au fond des vallons et de

traverser le meilleur terrain de la contree, la longueur des tunnels

peut etre reduite ä volonte ou totalement süpprimee,
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2° Les locomotives pesantes qui deteriorent les rails et absorbent

pour se trainer une partie de la force motrice, peuvent
etre remplacees par celles d'une construction legere, quoique
donnant plus de force.

3° Reduction de rayons des courbes, economie de la force

motrice ä la descente et modification facile de la vitesse moyen-
nant des sabots.

4° L'emploi pour monter de la force resultante du poids

decompose du train, laquelle dans le Systeme actuel sur' le par-
cours des rampes, annule l'adhesion des roues sur les rails.

5° L'emploi de la meme locomotive pour le plan incline que

pour la plaine.
6° Enfin le deraillement etant presque impossible nous donne

toute garantie contre les accidents.
Je ne presente pas le projet dont il est question avec les

details de construction, ni les calculs des forces et resistances

respectives laissant cette täche aux personnes qui ont la
pratique et l'experience de ce genre de travaux. Mon intention est

seulement de jeter, en vue de la pratique, un rayon de lumiere
sur cette importante question.

Aujourd'hui que les frais du reseau de chemins de fer juras-
siens accusent une somme trop onereuse au pays, un Systeme

qui reduirait ces frais ä moitie de leur chiffre ne serait pas ä

dedaigner. En vue de cette consideration, je me suis empresse
de communiquer la methode ci-incluse ä la direction des
chemins de fer du canton.

Je suis bien loin d'avancer cette methode comme le moyen
par-excellence pour gravir les montees sur les chemins de fer
au moyen de locomotives, mais si les avantages qu'elle parait
presenter ä priori se realisent par l'experience, je me trouverai
heureux d'avoir participe ä resoudre le probleme dont on
s'occupe depuis si longtemps et de procurer aux contrees mon-
tagneuses l'avantage de cette nouvelle voie de communication,
dont les pays en plaine sont, on peut le dire, les seuls favorises

jusqu'ä present.
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