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a Bl gy ™

APPENDICE.

NOTE SUR LA METHODE DE H(ERNER

pour calculer les racines réelles incommensurables d'une équation
d'un degré supérieur,

par J. DURAND.

Les analystes ne sont point encore parvenus i trouver une
formule générale pour représenter, au moyen de ses coeffi-
cients, les racines d’'une équation d’un degré supérieur au 4e.
On peut se consoler de leur insuccés, car, dans I"application,
Uutilité de cette formule, & cause de sa complication, serait
presque nulle, puisque déja la formule, dite de Cardan, pour
résoudre I'équation du 3¢ degré, est en défaut lorsqu’on veut
I’appliquer & une équation dont les 3 racines sont réelles, en
sorte que dans la pratique on préfére traiter ces équations par
les méthodes numériques. '

Mais si la science se tait lorsqu’il s’agit d’équations litté-
rales, elle posséde en revanche un trés grand nombre de mé-
thodes pour résoudre les équations numériques d’un degré
quelconque : Méthode de Newion, méthode de Lagrange, mé-
thode de Cauchy, méthode par les différences, etc. Parmi
toutes ces méthodes, il en est une trés estimée en Angleterre
et peu connue sur le continent, publiée en 1819 par M. Horner .
de Bath, dans les Transactions philosophiques, et dont Thom-
son , dans son Algébre, dit a qu’elle est de heaucoup la
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» meilleure, alliant la facilité et 1’élégance & un degré qui
» n’appartient 4 aucune autre méthode déja connue ou qui
» pourrait étre découverte & I’avenir. » (1)

Si cet éloge est mérité, comment se fait-il qu’une méthode
a la fois si facile et si élégante soit encore si peu connue hors
de ’Angleterre? Ce ne peut étre par un amour-propre natio-
nal mal entendu, car la méthode de Newton, qui est anglaise -
aussi, est enseignée dans toutes les écoles supérieures du
continent. Cette question, que je m’adressai en lisant le pas-
sage de Thomson, me rendit curieux d’approfondir cette mé-
thode, et comme je n’avais sous la main aucun auire ouvrage
anglais que le volume de Thomson, ot la méthode de Horner
est exposée seulement & grands traits et par exemples, je me
mis & rechercher les théorémes sur lesquels elle est basée et
a m’en faire une théorie qui pat s’adapter a l’enselgnement
de I’Ecole cantonale. g

Le résultat de ce travail fut que, dans la pratique du cal-
cul, la méthode de Horner est effectivement la plus expéditive
des méthodes connues, surtout si ’on demande une approxi-
mation allant jusqu’a la 8¢ ou & la 102 décimale. Je crois donc
rendre un service a4 nos écoles en essayant de la populariser,
quoiqu’elle ait, vis-i-vis de la méthode de Newton, le désa-
vantage de n’étre applicable directement yu'aux équations
algébriques, et non aux équations transcendantes.

C’est pent-étre 13 une des causes de I'indifférence que cette
méthode a rencontrée chez nous; une autre cause peut tenir
4 certaines complications de calcul introduites pour éviter les
fractions décimales, mais qui ne font point partie essentielle
de la méthode et que j’ai supprimées. Par contre, elle a
I’avantage de pouvoir étre au besoin exposée sans le secours
des fonctions dérivées, et par conséquent de pouvoir étre pla-

(1) Of all these methodes, that which was given by the late M. Horner of
Bath, is mach the best, combining a degree of facility and elegance belon-
ging to no other method that has yet been given, or that is littely to he
discovered, (Trousow, Algebra.)
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cée dans un cours d’algébre immédiatement aprés la formule
du binome.

Je vais d’abord démontrer, comme lemmes, les proposi-
tions sur lesquelles je m’appuierai dans I’explication de la
méthode.

{er LEMME.

Lorsque deux nombres a et b substitués pour x dans une
expression continue f (x), donnent deux résultats f(a) et
f (b) de signes contraires, il y a nécessairement enire a el b au
moins une racine réelle de Péquation f (x) = 0.

Gar puisque f (x) est continu depuis f (a) jusqu’a f (b) et
que [ (a) étant positif, f (b) est devenu négatif, ou vice-versd,
il y a nécessairement eu une valeur intermédiaire f (¢ -4~ 1)
qui était nulle. La valeur # = a 4 ¢ satisfaisant ainsi a
I'équation f (x) =0, en est une racine.

2¢ LEMME.

St dans Uéquation algébrique
X py X4 - pa X2 = L P X T Pt X+ Pu=10
on sait que la racine x est trés petite, on aura une valeur ap-
prochée de x par la formule

gp=_""Pm
P~ ,

Car si I'on fait passer pn dans le 2¢ membre, qu’on mette

% en évidence dans le premier, et qu’on dégage x, on aura:

o e — Fo (1)
o1 —+ 1 -2 4, ...+ Pm-2 ZTf Pm-1

Or, la valeur de x étant supposée suffisamment petite, on
- pourra négliger au dénominateur tous les termes ayant x
comme facteur, et il restera :

— Pnm .
= 2
= @)

valeur qui sera d’autant plus approchée que  sera plus petit.
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Remarque. 11 est trés important de connaitre la limile de
P’erreur que I’on commet en prenant I’expression simplifiée (2)
comme valeur de x, au lieu de I'expression compléte (1). Cette
erreur est la différence entre les deux expressions, ou, en la
désignant par e : '

p — Pm e
Tt oy P2 - P & - Pt Pm-s
ou, en réduisant au méme dénominaleur
é — Pm (wm-l —+p1 22 4o P2 &+ Pruct) —Pm Pm-t
Pm-1 (% =4 Py ™2 4+ ..o+ Pos T - Pmet)
ou encore, en effectuant les multiplications, ordonnant par
rapport aux puissances croissantes, et réduisant

__ Pu.Pm-2 T + Pm. Pm-s & % 4 elc.
" Pmt Pt + Put Pus & -+ Pmot Prus & 2 4 etc

Or, si ’on néglige dans cette expression les termes affectés
des puissances supérieures de x, supposé trés petit, elle se
réduira 4 trés peu prés &

e

Pm Pm-2 & (3)
Pm-1 Pu-1 4 Pm-1 P2 T
Si Pon néglige maintenant au dénominateur le second
terme Pm-1 Pm-2 &, qui est positif lorsque les deux coefficients
Pm-1 el Prog sont de méme signe, ce qui se rencontre tou-
jours dans l’application 4 la méthode de Horner, le dénomi-
nateur deviendra plus petit; et si 'on remplace au numéra-
teur pm-o par Pm-1, qui dans cette méthode est toujours plus
grand que pn-z, le numérateur deviendra plus grand; donc,
par cette double raison, on aura
¢ << 222 )
Pm-1
telle est la limite de l’erreur.

3° LEMME.

Soit f(x) un polynome algébrique ; si on le divise par un
facteur du 1e degré x — a, le reste de cette division sera la
valeur que prend f (x) lorsquw’on y fait x = a.
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Car si 'on désigne le quotient par f; () et le reste par R,
on a identiquement :

f(@) = (@ — 0. fi @ +R.
et si dans cette égalité on fait x = a, elle se réduit a
f(a) =R
Remarque. Gette division doit se faire, dans la méthode de
Horner, par le procédé des coefficients détachés, qu’il importe
de se rendre familier, et dont voici un exemple :
f@)=(@"—5x2+5x4+4)1(x—2)

En ne conservant que les coefficients du polynome et en -
remplacant par O les coefficients des termes manqnants, on
disposera le calcul de la maniére suivante :

14+0—-545 4+ 4|2
1 +2 —1 4 3410

Ayant abaissé le premier coefficient 1, on le multipliera
par 2, ce qui donne 2, et on ajoutera algébriquement le pro-
duit au 2e coefficient 0, ce qui donnera 4 2, qu’on écrit au-
dessous du 2e coefficient. On multipliera par 2 ce résultat, ce
qui donne 4, et on ajoutera algébriquement le produit au
3¢ coefficient — 5, ce qui donne — 1 qu’on écrit. On multi-
pliera par 2 ce résultat, ce qui donne — 2, et on ajoutera le
produit au 4e¢ coefficient 4 5, ce qui donne -+ 3. On multi-
pliera enfin par 2 ce résultat, ce qui donne —+- 6, et on I’ajou-
tera au dernier terme, ce qui donne ~~ 10.

Le reste de la division sera 4 10, et le quotient, qui est
du 3¢ degré, aura pour coefficients les nombres 1, 4-2,— 1,
+ 3, écrits dans la 2¢ ligne, en sorte que ce quotient sera:

x84+ 223 — x4 3 avec le reste 4 10

La démonstration de ce procédé est dans la \com_paraison
du calcul que nous venons d’indiquer avec I'opération effec-
tuée de la maniére ordinaire, et dont voici le tableau :
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12t 4+0a° -5 40044520 —2
4 2 &3 BP4+252— x4 3
— i x
+3x
+10

Notons encore que ce reste 10 est, d’aprés notre lemme, la
valeur de [ (2). _

Pour diviser le polynome (m 2* 4 1 2 4 p &2 - q £ 4 1)
par (x — @), on a de méme :

m{+a |+p +q +r ' —
m l+m atn I-{-m a? fnatp +1ﬁ afnalfpa-d-q |+ma"+ n a®4-pattqaf-r

Le reste est donc m a* 4-n a® 4-p a* +¢ a4, etle quotie‘nt
m L5-(m a4n) B (m a*4n a+p) T-H(m a®4n a®4p a 4-9).

4¢ LEMME.

Un polynome £ (x) étant donné, on obtient le développement
de f (a 4~ x) en cherchant successivement : 1° le reste R de la
division de f (x) par (x — a); 2° le reste R, de la divisisn par
(x—a) du quotient fourni par la 1 division ; 8° le reste Ry de
la division par (x — a) du quotient fourni par la 2¢ division,
et ainst de suite, de telle sorte que si f (x) est du 4 degré, par
exemple, on aura :

(1) f@+%) =Rio*+Rs2* +Ra? + Ry +R()

(*) Je ne crois pas que ce théordme ait encore é1é donné, du moins je ne
Pai va nulle part; Thomson y supplée par la proposition suivante, qui devra

remplacer le 4° lemme pour ceux qui ne connailraient pas la théorie des
fonctions dérivées:

Soit donné le polynome m 2* < n 2* 4 p 2 4= g x 4 r; si dans ce
polynome on change x en ¢ - z, il deviendra :

m (@ 4 & 1 (@ 4 2) +p (@ 4 3 + ¢ (@ 4 &) 15
ou, en développant par la formule du binome, et ordonnant,

mx'-}+ (4ma.-n)x3-(6mar-]-3na-}-p) x2-}-( 4ima®.-3nat-}-2pa-}-q)x-i- (mal-t-nad--pat-{-qas-t
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En effet, ce développement est déja connu sous la forme

f(a+x) = f@)+ 2 (@)+ 3 2* [ (@452 [ (@) +<52* f11] (a)
il s’agit donc simplement de montrer que

R = {(a)

R, = f(a)
@) R; = 3 [(a)
Rs— fiila)
& f1(a)

Or, si 'on divise f(w) par (z — ) et qu’on désigne le quo-
tient par f () et le reste par R, on a identiquement :
) f(x) = (x —a) fi(x) + R

Divisant 4 son tour f (x) par (x—a), désignant le quotient
de cette nouvelle division par f; (x) et le reste par Ry on aura :

[(x) =(@—a) fi(x) + R
et substituant cette valeur dans (3), cette expression (3) de-
viendra :

f@) = (@—a) { @—0) £(2) + R | + R
ou en effectuant
% @ =@—af@+@—aR +R

Divisant maintenant f, (x) par (x—a), désignant le quotient
par f;(x) et le reste par R, , substituant dans (4) la valeur que

‘Or, si ’on répéte successivemeant I"opération, par coefficients détachés, de
Ia division du polynome
m—+n—4p-+4gqg+r pirg, _
on forme le tableau suivant, qui montre comment on peut obtenir facile-
ment, par celte méthode, les coefficients du développement cherché :

+n +p o ta 4T |a

ma--n| matdna+i p mad 4 na? 4 pa = q|ma J- na3- pa? -;-qa~j-r

2ma -+ n{3 ma? -- 2 na-L p |t mad- 3 na? +-2pa-q

3ma 4 n(6ma?+4-3na }p

Lma+n

= B 8 8|8

S,
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cette opération donne pour f2 (%), et effectuant les calculs, il
vient :

(5) f(.'L‘) = (x_a)a f5~’0 + (m___a)z R, + (m—a) R+ R
Opérant de méme sur f;(x), désignant par f, (x) le quotient
et par R; le reste, il viendra :

(6) flz)=(z—a)* fi(x) + (z—a)* Ry+ (z—a)*R. + (z—a) R, + R

Maintenant, si nous admettons que f(z) soit du 4¢ degré,
fi (x) sera du 3¢, f,(x) du 2¢, f;(x) du 1 et f,(x) sera indé-
pendant d’z ou constant ; représentons donc f, (x) par R, I'é-
galité (6) deviendra :

(6 bis) fi) = (z—a)*R; + (z—0a)?Ry + (—0)* Ra-(z—a) R, 4R
Cela posé , prenant les dérivées successives de f(x), au
moyen de I’égalité (6 bis), on obtient :

(1) f!(x)=4(x—a)° Ry +3(x—a)? Rs 42 (x—a) Rz +R,
(®) fil(x) = 12 (x—a)* Ry + 6 (x—a) R34+ 2 Ry
9) flil(x) = 24 (x—a) Ry + 6 R

(10) filll (x) = 24 Ry

faisant & = d, on trouve :

par (10)  flll(g) = 24 Ry d’ott Ry =V% fllia)
par (9) fUlfa) = 6 Rs » Rs= % flli(a) 2

par (8) fU(@) = 2Rs » Ry= 1+ f(a) (1)
par (1) flla) = R » Ri= fi(a) S
par 6) fla) = R » R = (f(a)

ce qu’il fallait démontrer.
Il serait facile de généraliser et d’appliquer cette démons-
tration 4 un polynome d’un degré quelconque.

Ler exemple.

Etant donné le polynome x°— 2x* 4+ x>— 8x + 4 = f(x)
trouver ce que devient ce polynome lorsqw’on y substitue 3+ x
a la place de x, c’est-a-dire, trouver le développement de

f(3-x).
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On disposera dinsi le calcul :

1 —2 ~+1 +0, —3 +4.3
1 1 4 12| 33| 4103
1 4 16| 60| 213 —
1 1 371 M|

1 10 671 T

1 13 —

Le développement est :
x® + 13x* 4 672% 4 171122 4 2132 4- 103

car le dernier terme 103 de la deuxiéme ligne horizontale est
le reste de la division de f(x) par (x —3) (3¢ lemme); c’est done
ce que nous avons désigné par R, c’est-i-dire, le terme indé-
pendant d’z dans le développement cherché ; les autres termes
non soulignés de cette premiére ligne sont les coefficients dé-

tachés du quotient f; (x).
- De méme, le dernier terme 213 de la 3¢ ligne horizontale
est le reste de Ia division de f; (x) par (x—3); c’est donc ce
_que nous avons désigné par Ry, ¢’est-a-dire, le coefficient de la
1re puissance de & dans le développement; les autres termes
non soulignés de cette ligne sont les coefficienls détachés du
quotient f; (); et ainsi de suite.

2e exemple.

Soit flx) = x® + da® 4 Sz — 3,
chercher f (0,4 + ),
on aura :

+-4 + 0,4

5
6,76 — 0,296
8,68 =

1
6

DO 00 =

In.n-pa-lu-

4,
4,
9,2

Le développement est donc : 7
z° 4 (5,2) * + (8,68) & — 0,296



Cy=ay T -

Si, au lieu de f(0,4-+x), on eut demandé le développement
. de f(0,4+y), il suffirait de remplacer dans le développement
- précédent x par y. |

Ainsi, lorsque f(z) = «°® + 43 + 52 — 3
on a

0,4 + 9) = 9° + (5,2) 4* + (8,68) y — 0,296

Ces principes posés, passons & la méthode elle-méme.

Soit f(x) = O une équation algébrique, et supposons
qu’ayant substitué & x dans le premier membre de cette
équation, et par le procédé du 3¢ lemme, la suite des nombres
consécutifs 0, 1, 2, etc., on ait trouvé pour f(a) et f(a 4+ 1)
des résultats de signe contraire, nous en conclurons, en vertn
du premier lemme, qu’il y a entre a et (a+1) une racine de
f(x) = 0. On pourra donc poser

¢y rT=a-+y
(y sera plus petit que 1 et pourra s’exprimer en dixiémes).

Substituant dans f(x) 4 x sa valeur ¢ - y, I'équation
f(z) = 0 deviendra f(a + y) = 0, et en développant cette
fonction par le procédé du 4¢ lemme, on obtiendra une trans-
formée en y

hip=fa+y =0
laquelle, étant résolue, donnera la valeur de y.

Or, y étant plus petit que 1, on pourra en trouver approxi-
mativement la valeur, d’aprés la formule du 2° lemme, en
divisant le terme indépendant changé de signe par le coeffi-
cient du terme précédent. Dans cette division, on s’arrétera
au chiffre des dixiémes en moins, et on aura une valeur de
la forme

b
(2) y=jg+7%

(2 étant plus petit que ;7 et pouvant s’exprimer en centiémes).
Si maintenant dans I’équation f; (y) = 0 on substitue a y

b - . .
sa valeur (1—0 +.z), cette équation deviendra

1 ()=
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et en développant de nouveau cette fonction par le procédé du
4¢ lemme, on obtiendra une transformée en z

fa (3) = fi (%-l—z) = {

laquelle, étant résolue, donnera la valeur de z.

Mais z étant plus petit que -, on trouvera approximative-
ment sa valeur, d’aprés la formule du 2¢ lemme, en divisant le
terme indépendant changé de signe par le coefficient du terme
précédent. Dans cette division, on s’arrétera au chiffre des
centiémes en moins, et on aura une valeur de la forme

@) %= (4—8—0"'_“)

(w étant plus petit que +; et pouvant s’exprimer en milliémes).
On obtiendra, comme précédemment , la transformée en %

fs (W) = f _i.+u):o,

100
d’ot P'on déduira de la méme maniére la valeur
d
(4) b= (1000 Tt )

dans laquelle ¢ est plus petit que 75 , et ainsi de suite.

Il est & remarquer que z, u, t, etc., étant suffisamment
petits, la division indiquée donne presque toujours exactement
le chiffre décimal correspondant, comme on peut s’en assurer
par la valeur que prend la limite de I'erreur (2¢ lemme). Mais
y n’étant pas toujours suffisamment petit, il peut arriver que
le chiffre obtenu par la division soit ou trop faible ou trop
fort; on en sera averti en ce que, dansle calcul de z, on trou-
vera, dans le premier cas, une valeur renfermant encore des
dixiémes, et, dans le second, une valeur négative ; on ¢orri-
gera donc en conséquence la premiére approximation obtenue

pour ¥.
{er exemple.

Soit flr) =at 4+ 2® —4ds* —5x —5=0
En substituant les nombres entiers conséeutifs 0, 1, 2, 3,
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etc. , on trouve (lemme 3): f(0) = —5; f(1) = — 12;
f(2) = —1T; f(3) = - 52. Il y a donc une racine comprise
“enire 2 et 3, et elle est beaucoup plus prés de 2 que de 3.
On posera donc :

1) r=241y

La substitution de cette valeur dans f(x) conduit, aprés
son développement (lemme 4), & la transformée en y :

fe4y) = 9t 4+ 99° + 269 +23y—T=0 =1, (y)
Une valeur approchée de y sera donc (lemme 2) :
1
Yy = % — 0,3.-.
Supposons celte valeur trop petite, on aurait :
. y=10,3+4+2z

La substitution de cette valeur dans f (y) conduit & une
transformée en z, dont le dernier terme est positif , par con-
~ séquent la valeur approchée de z serait négative, ce qui
nous apprend que 0,3 est une valeur trop forte pour y, on
posera donc

2) y=02 4z

et la transformée en z est alors

f2 (3) = 10,2 +2)

ou -
% +(9,8) % 4 (31,64) %2 4 (34,512) 2 — 1,2864= 0
. 1,2864
Une valeur approchée ‘de z est donc 5 = 3512 0,03....

0,03 est trop faible ; on posera donc
3) z2=20,03 + u
La transformée en u est alors
fi(w) =£0,03+u)=0
ou
ut 4 (9,92) 5 4 (32,5274) ut -+ (36,436968) u —0,22229859 = 0
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'0,2222985¢
Une valeur approchée de v est donc u =§147£§%%_q589 =0,006

et 0,006 est trop faible. On posera donc

(4) u = 0,006 + ¢
La transformée en ¢ est alors
fi(®)=f (0,006 +17)=0

ou
t44-(9,944) 134 (32,716376) (>} (36,828490224) ¢ — 0,002503291584=0

Une valeur approchée de ¢-est donc

) _0,002503291584
36,828400224

= 0,00006....

On pourrait donc poser ¢ = (0,0006 + v) et chercher la
transformée en v, pour en déduire une valeur approchée de
v, et ainsi de suite ; mais si 1'on n’a besoin de connaitre la
racine qu’avec 8 décimales exactes, on remarquera que ¢ étant
plus petit que 0,0001, la limite de ’erreur dans le calcul de
t est (lemme 2)

5 0,0026. 0,0001
- 36
Cette erreur n’influera donc que sur la neuviéme décimale
et 'on pourra poursuivre le calcul de ¢ par I'expression (5)
jusqu’a 8 décimales exactes, ce qui donne
( his) t = 0,00006797
d’olt, en reprenﬁnt les valeurs (1), (2), (3), (%) et (5 bis)
x = 2,23606797 ;
valeur dont il est facile de vérifier ’exactitude, puisque I’é-
quation a été préparée de maniére que sa racine réelle posi-
tive soit > 5. |
On voit que tout le travail est dans le calcul des transfor-

mées successives. Pour abréger ce travail, on dispose I'opé-
ration-de la maniére suivante : '

< 0,000000007
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( _ 2,23606797

141 |—4 |—5 =B

13 9 —1 =1

i _51 %g -+ 23 — 1,2864

] 928,568 — 0,22229859

A9 jemsr  |sapi2 ——(()),002533;91584
119,2 129,72 35,470047 ?

1 8'§ 31,64 36,436968

12 31,9349 135 639519736
1198 182,2307  |36’308490224

1 (9,83 (32,5274

119,86 132 506956
119,89 139 656748
119,92 132716376
1 9,926 —

1 19,932

119,938
119,944

La premiére ligne soulignée est formée des coefficients’
détachés de I’équation f(x) = a* 42— da?— 52— 5 =10

On calcule alors par le procédé du 4¢lemme la transformée
f(2 + ®) ou f(2 4 y) = fi(y) et la seconde ligne soulignée,
savoir :

1,9, 26,23, —1

est formée des coefficients détachés de la transformée en y,
soit f; (). On calcule alors la valeur de y en divisant 7 par
23, ce qui donne, aprés correction, y = 0,2, et I’on pose les
2 dixiémes & la place réservée pour la racine. '

En répétant le procédé sur f; (), on calculera de méme la
transformée en z, soit fa (2) ou f, (0,2 -4 2). On fera attention
que ’on multiplie alors les résultats successifs par 0,2 ;'donc le
{er coefficient 1 multiplié par 0,2 -donne 0,2 qui, ajouté au
2e¢ coefficient 9, donne pour résultat 9,2. En multipliant ce
résultat par 0,2 on obtiendra un produit ayant deux chiffres
décimaux, 1,84 qui, ajouté au 3¢ coefficient 26, donnera pour
résultat 27,84. On reconnaitra de méme que le 3¢ résultat
aura trois chiffres décimaux, et le 4¢ quatre chiffres décimaux,
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La 3¢ ligne soulignée
1, (9,8), (31,64), (34,512), (—1,2864)

est formée par les coefficients détachés de la transformée en
Z, soit f,(z) etl’on calcule z en divisant 41,2864 par 34,512, ce
qui donne z = 0,03 ou 3 centidmes que I’on pose & la racine.
La nouvelle transformée traitée & son tour par le procédé du
4¢lemme, c’est-d-dire en multipliant les résultats successifs par
0,03, fournira la transformée en u, soit f; (u) = £, (0,03 + ).
Dans le calcul de celle-ci, le 1¢r résultat a deux chiffres déci-
maux, le 2¢résultat en a quatre, le 3¢ en a six, et le 4¢ en a huit.

Il est & remarquer que, dans les divisions, comme on ne
cherche qu’un chiffre au quotient, on peut se contenter de pren-
dre seulement les premiers chiffres du dividende et du diviseur.

La pratique de celte méthode est susceptible encore de
quelques autres simplifications de détail qu’il serait trop long
d’indiquer, mais que I’habitude fera aisément découvrir.

2¢ exemple.

Voici le type du calcul pbur Iéquation du 3¢ degré
2P —3x* — 4 =0,
le calcul de la racine, comprise entre 3 et 4, élant poussé jus-
qu’a la dixiéme décimale.

3,3553013976

1] —3 0 —4

10 0 —

113 9 7="0,733

LY i 10,89 —0,072125

} 2’2 %’2_175 —0,004111125
16,9 13,5675 — 0,000019066623
11 6,99 13,602775

1 ;»8g 13,638075

LI X "13,64019459

1| 1,055 13,6423142T

1| 1,060

1| 1,065

1 |77,0653

1| 17,0656

1 | 17,0659
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La division de 0,000019066623 par 13,64231427 donnant
pour la derniére approximation 0,000001... la limite de 'er-
reur est

_0,00002 X 0,000001
13,6

<0,000000000001

par conséquent, en poursuivant cette division, le calcul serait
exact jusqu’a la 11 décimale.

3¢ exemple.

Comme dernier exemple, nous allons calculer la racine
cubique d’un nombre, de 13 par exemple, avec 8 décimales
exactes, ce que ne peuvent donner les tables de logarithmes.
En traitant le méme exemple par la méthode ordinaire, on
saisira mieux I’avantage de celle-ci.

La question revient & résoudre I’équation

2 —13=0
On a donc
2,351334688

110 0 | —13
1|2 k& a3
114 12 0,833
Tlee  (BR |Zoems
16,9 16,5675 — 0,000575333303
16,9 16,574551

}l ;,82 16,581603

7 7;05 1 16,58371899
- ; 16,58583507

1 17,052 2 0

117,053

1| 1,0533

1| 17,0536

1| 17,0539
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La derniére approximation étant donnée par la division
0,000575333303
16,58583507

la limite de Perreur est

, 0,000 >fl<60’00004

Perreur est donc moindre qu’une unité du 9¢ ordre décimal,
et par conséquent on peut poursuivre la division jusqu’a cet
ordre.

Si Pon voulait calculer par cette méthode une racine dont
la partie entiére aurait plus d’un chiffre, on raménerait ce
cas au précédent en rendant les racines de I’équation corres-
pondante 10, 100 ou 1000 fois plus petites, suivant le besoin.

Soit, par exemple,d extraire la racine cubique de 2376, ou
-4 résoudre I’équation '

x> — 2376 = 0

= 0,00003...

<0,000000001

1 . .
On posera y == 10 ® d’ou & = 10 y, ce qui conduira i la

transformée en y
1000 4> — 2376 =0 ouy® —2,376 =0

Celle-ci, résolue comme précédemment, donne
y = 1,33438827; d’oil & = 13,3438821.

En opérant par logarithmes, on trouve 6 chiffres exacts,
c’est-a-dire 13,3438.

Enfin, sil’on avaita calculer une racine négative d’une équa-
tion f(x) = 0, on préparerait d’abord I’équation f(—x) =0,
etla racine positive de f(—a) =0, changée de signe, sera la
racine négative cherchée.

En comparant cette méthode avec celle de Newton, on peut
reconnaitre qu’elles ne différent en réalité que par la maniére
d’effectuer les calculs, qui sont bien plus faciles par la méthode
de Horner, en sorte que celle-ci peut éire considérée comme
un procéaé de simplification de la méthode de Newton.
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En effet, si la racine de f(x) = 0 est comprise entre ¢ et
(@ 4 1), Iapplication de la méthode de Newton donne

—® po

= (a -+ y) avec y = ——— d’ou — 4+ z
(@ +y) avecy = Z0) j== 140
' —flet+75
puism:%(a+i%)+zgavec_z— )=-0i+u
f(a'l"w)

ensuite

: b c

(ot bt ffﬂ+za+nfd) n
ax =)(a. ul avec = =— T

! ’l 100 f.(a+ +|00 1000

et ainsi de suite.
Dans la méthode de Horner, on pose
—Pm

x=a%ty,etl'onay—=
Pm-1

(pris dans I’équation f; (y) = 0).
Or, cette fonction f;(y) n’est antre que fla + ), et par
conséquent pm ou R est précisément f(a) et pn-, ou R, est
fl(a). (Lemme 1V).
g o B ()
Donc la valeur de y revient & ———
- ! (@)

dans la méthode de Newton, savoir i% + z

» et c’est 1a méme que

On pose ensuite

2 pm
—— zetl o)
Yy = 10+ on a e

(pris dans ’équation £ (z) = 0).
Or, cette fonction f; (2) n’est autre que f; (Tbo + 2) et pmou

R dans cette fonction est précisément f; (1—%) et pm-1 ou R, est

fi (—1%) ; mais puisque f,(y) = f(a + y), on a aussi, en po~

b
sant y = 10

.59
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i (25) = 16+ 1)
ot 11(75) = @ +1)

donc la valeur de z qui, dans la méthode de Horner, est
donnée par la formule

—pm  —R “f-(%) , f(“""a—u) ¢

Pl . ( %) rev1entaf| (a+ ) =100+ ¥

ce qui est précisément la valeur de z donnée par la méthode
de Newton.

On verrait de méme que la valeur de 4, qui dans la mé-~
thode de Horner est donnée par la formule

—

° = = (pris dans I'équation fi (w) ._f,( 100 )

—1(155)

fh

pm-{

revient d’abord & u =

¢
\ 100

b .
Mais puisque £, (2) = f; (1_0+z) ; on a aussi, en posant

¢
— 100

b c
7'5'(4—80) = I (m + T()T))
. z 0
14 ygp) =1 (o + 1o0)

La valeur de u revient donc a

f(iO '100

(3o * 150)

U=
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et comme on a encore f; (y) = fla + )

en faisant y = ( i%+ on aura

¢
106)
b c N\ b. B
(15 + 150) = 1@ 15+ i)
b c b c
F LN TR W R B
et f‘(1o+1oo) fla+ 10+400)
la Valeur de u revient donc enfin a

f(‘”' +400)

a + + g

i '100

qui est précisément celle donnée par la méthode de Newton.
La simplification consiste en ce que, dans la méthode de

Horner, on n’a jamais que des nombres d’un seul chiffre &

U =

substituer; car on calcule successivement y = :fff_((cg , puis
b c d .

—1 Gy . TRy  —h Gog)

] ; ,pmsu_—_._c-,pulst_ i
AT Lo(; ¥ —

i (1p) 7 (jo0) 73 (000

et les transformées f, f;, etc., sont données par le calcul
méme des valeurs de y, z, 4, etc., tandis que dans la méthode
de Newton, on a a substituer des nombres de plusieurs chiffres,
ce qui rend le calcul de plus en plus laborieux. Ainsi on a
successivement a calculer

e —fetq)  —fatg +100)
T L TN LN
(a 40) f(a+ 100’
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Comme vérification, nous allons résoudre par la méthode
de Newlon, I’équation
g —hx—5x—5=0
traitée plus haut par la méthode de Horner :
on a f@)=a*4a°—4a*—52—5
fl(x) =42 +-82° —8x—5
La premiére approximation x = 2 4+ y donne
— f(2 T
1= =%
La deuxiéme approximation
r=2+(0,2+2) ou ¥ =22z

= 0,3... et, aprés correction, y = 0,24z

donne
e f(2,2)  1,2864
T 1(2,2) T 84,512

La troisiéme approximation

x=22-+(0,03+u) ou x=2,23+u
donne

= 0,03 +u

__—[2,23) _ 0,22229854
f1(2,23) ~ 36,436968
La quatriéme approximation
x = 2,23+ (0,006 4+t ou x=2,236+1
donne ,
o 1(2,236) _ 0,002503291584.
— f1(2,236) —  36,828490224
La cinquiéme approximation serait donc & = 2,23606 + v

mais, d’aprés la régle de la méthode de Newton, on peut cal-
culer ¢ avec 2 fois plus de décimales que u, ce qui donnerait

t = 0,000067 et x = 2,236067

Notre formule d’approximation a montré que I'on peut cal-
culer #, non-seulement avec six, mais avec huit décimales
exactes.

— 0,006 + ¢

= 0,00006 + v
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Que I'on compare maintenant les calculs qu’il faut faire
pour obtenir par substitution la valeur des expressions

— (@) —12,2) —[2,28) —f(2,236)

7@ 722 Tfi2,23) f(2,236)
la page 69, dans lequel les nombres soulignés de la derniére
colonne sont les numérateurs, et les nombres soulignés de la
colonne précédente les dénominateurs, et I’on conviendra que
la simplification ainsi obtenue vaut bien la peine d’apprendre
un procéaé, trés facile d’ailleurs, et qui permet, a la rigueur,
de se passer de la théorie des fonctions dérivées.

Nous avons dit que cette méthode n’était pas applicable
directement aux équations transcendantes. Voici cependant
un moyen de préparer une équation transcendante de maniére
a ramener sa résolution A celle d’une égunation algébrique a
coefﬁcients connus, lorsqu’on a trouvé une 1 valeur appro-
chée & ; prés de la racine, valeur que I’on peut toujours cal-
culer assez facilement par des substitutions.

Soit f(x) = 0 une équation transcendante, dont on connait
une racine ¢ approchée a -%; on posera ¥ = a +y (y étant
alors plus petit que ), et l équation deviendra

avec le tableau de

2 3
() fato)= farky Mo +Lri4+L a5 1111a) 4 ete. =0
4
et puisque y est plus petit que %, le terme suivant J_ (a)

40) 120
; Q) : ; ;
sera plus petit que 19000000° Si donc f¥ (@) n’est pas trés

grand et qu'on n’ait besoin de connaitre la racine qu’avec

7 ou 8 décimales exactes, on pourra négliger ce terme et les

suivants, et I'on aura une transformée en 7, qui sera

algébrique du 4¢ degré, et de laquelle on pourra calculer par la

méthode de Horner la racine y. On aura ensuite & = a + .
Nous prendrons pour exemple ’équation

@) & —ex — (x =0
que I'on a 4 résoudre dans le probléme de la chainette ; ¢ est
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la base des logarithmes népériens, savoir 2,718281828... et
nous prendrons ¢=12,54. Ontrouve par des substitutions suc-
cessives qu’une premiére valeur de x, approchée en moins,
est a = 3,8; puis, calculant les dérivées successives de f(x),
qui est ici e — e* — cx, on a

|

f (x)=e —e*—¢x f (a) = e2—e2—(12,54)a

fl (®) =e~4¢*—¢ f! (@) = ea4-e2— 12,54
() =€ — ™ dod fll (a) = e2—e-2

flil (%) = ex + ¢ O f1il (g) = ent-ea

[11(z) = o — o [1l(a) = e—e

¥ () =¢e* 4 ex ¥ (@) = ert-e

Le développement (1) deviendra donc dans cet exemple

a

‘ (e"-c 212,54 a)4-y(e® e~ —12,54)-]—%; (ea—e_a) -{—J; (ea-}-eha)»{-% (ca—e-a) =0

Or, on a trouvé @ = 3,8 ; on calculera donc par loga-
rithmes

e = 58 = 44 701200 % Loy § ¢ et = 44,7235T1
e = ¢38 = 0,022371 § “ M) o — g2 — 44,678829

Substituant ces valeurs dans I'équation précédente, effec-
tuant et ordonnant, il viendra :

(3) (1,861618) ¥t J- (7,453920) y5 -J~ (22,539448) y 2 - (32,183574) y — 2,07347L =0

Employant, pour résoudre cette équation, la méthode des
coefficients détachés, on forme le tableau suivant :

0,087—(0,00024)

-+ 1,861618 -} 7,483920 | 4 22,330h14 | | - 32,483371 | — 2,9731T1
1,8616,43 7.60i9,58% 22.9!173,‘50 34,0193,83 — 0,25162
1,8646,1 .| 71518 23,5678,00 "53,9048,07 T
1,8616,18 7,9008,15 2111998,08 | sromsol  |-Toeesd
1,8616,18 ‘18,0497 ,14 T BNE AT Lt

! i le il 24,256,300 56,244,791
4,861,648 8,062,775 - 24,312,834 s

1,861,648 8,075,808 e

2,973171

La premiére valeur approchée de y est = 0,09;

32,183511

mais en calculant la transformée suivante, on trouve un terme
indépendant positif, ce qui nous apprend que 0,09 est trop fort;
on posera donc 0,08. Ensuite, remarquant que les coefficients



-— 10 —

de I’équation (8), ayant été obtenus par logarithmes, ne sont
exacts que jusqu’a la 6¢ décimale, et qu’il est, par conséquent,
inutile de pousser plus loin les calculs subséquents, tandis
qu’en multipliant 1,861618 par 0,08 , on aurait 8 décimales
au produit, on multipliera simplement 41,8616 par 0,08 en
tenant compte de la retenue que fournirait le chiffre suivant;
ajoutant ce produit au coefficient suivant, 7,453929, on ob-
" tiendra pour résultat 7,602958 avec 6 chiffres décimaux
exacts. On opérera sur celui-cl comme sur le précédent, en
ne multipliant par 0,08 que 7,6029, et en tenant compte de
la retenue que donnerait le chiffre suivant 5, on obtiendra
ainsi un produit avec 6 chiffres décimaux, lequel, ajouté &
22,339414, donne pour résultat 22,947650, et on continuera
ainsi en ne prenant que les 4 premiers chiffres décimaunx de
chaque résultat. On arrive ainsi au terme indépendant de la
{re {ransformée — 0,251621.

En répétant I'opération sur les premiers résultats ainsi
obtenus en s’en tenant toujours & 4 chiffres décimaux, on
trouve pour l’avant-dernier coefficient de la transformée
35,904807, et de méme pour les audres.

La racine de cette 2¢ transformée sera donc

0,251621

35904801 — 22007

et 'on procédera au calcul de la 3¢ transformée en multi-
pliant par 0,007 ; d’ailleurs, pour avoir 6 chiffres décimaux
exacts, il suffira de garder seulement les 3 premiers chiffres
décimaux de chaque multiplicande en tenant compte de la
retenue que fournirait la multiplication par 7 dn chiffre sui-
vant. On arrive ainsi au terme indépendant de la 3¢ transfor-
mée + 0,000897, ce qui nous apprend que 0,007 est trop
fort, ou que la racine de la 3¢ transformée ainsi calculée
serait négative. On pourrait donc poser 0,006 au lieu de 0,007
et chercher avec cette nouvelle valeur la 3¢ transformée. Mais
il sera ici plus simple de.conserver la valeur trop forte 0,007
et de continuer le calcul de la transformée correspondante;
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on trouve ainsi 36,244791 pour le coefficient de ’avant-der-
nier terme de cette transformée.
La racine de cette 3¢ transformée sera donc

— 0,000897
36,244791 (0,0000247)
La limite de ’erreur étant 4 000897'3%’0000%7, le quo-

tient aurait jusqu’a 8 chiffres décimaux exacts, siles coefficienls
de I’équation étaient eux-mémes rigoureusement exacts ; mais
comme ceux-ci ne sont exacts que jusqu’a la 6¢ décimale, on
ne peut compter aussi que sur 6 chiffres décimaux exacts au
quotient; on s’arrétera donc & — (0,000024). La valeur de
-y sera donc enfin y = 0,087 — 0,000024 ou y = 0,086976
et, par suite, x = 3,8 + 0,086976 = 3,886976.

La valeur de cette racine, calculée jusqu'a 7 décimales par
la méthode des différences dans 1’Algébre de Briot, a été
trouvée 3,8869763 ; mais on ne peut pas élre certain d priori
de la Te décimale.

Voiei quelques exemples & traiter :

a'-x2—8x—15=0 Racines 2,302775638...—({,302776)
B—Ba2—0x438=0 » 2,4918142...; 5,3556392...; —(2,8474534...)
b’ —Az420=0 »  2,6308975...; 3,5343346 —(2,156328)
xs}322—17245=0 » 0,3132409... '
2-Bx3-T015243=0 »  1,41723334...

s — . -
z=¥#"100 »  2,511886431
xz—cos £ =0 »  0,739083

z
z = 100 -»  3,597285
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ERBATUM.

Dans la détermination de la limite de l'erreur (2e lemme,
page 59, ligne 9 en remontant), il est dit que le coefficient
Pm-1 est toujours plus grand que pm-2 dans les transformées
que I'on obtient par ’application de la méthode de Horner;
c’est « presque toujours » qu’il aurait fallu dire. Dans.le cas ou
* Pm-1 est plus petit que py_o, comme aussi lorsque pp_g et Pms
ne sont pas de méme signe (quoique cette derniére circons-
tance ait moins d’influence sur le résultat, i cause de la pe-

titesse du terme négligé), I'expression L donne encore une

pm—l
valeur trés approchée de la limite de I’erreur, mais on ne
peut plus affirmer que ’erreur soit plus petite que cette ex-
mem-a-’D

Pm-1Pm-1=++Pm-1 Pm-2 %
qui représente I'erreur, on remplace au numérateur un fac-
teur pm-o par un autre facteur pn., plus petit, et qu'on né-
glige au dénominateur un terme négatif, ce qui rend la frac-
tion plus petite.

Dans ce cas, on pourra bien encore se servir de I’expres-

sion %’i‘ﬁ pour reconnaitre a trés peu prés jusqu’a quel ordre
m=<1

de décimale on peut pousser la derniére division, mais on ne

sera pas certain de Pexactitude de la derniére décimale de

Pordre indiqué ; on devra donc en prendre une de moins, oun

mieux encore continuer le calcul jusqu'a la fin par des divi-

sions successives.

pression, parce qu’alors dans la fraction

Soit, par exemple, 1’équation
o 115 4+20—2=0

qui a une racine comprise entre 0 et 1. En traitant cette
équation par la méthode ordinaire, on obtient :

6.
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0,287
1] 4117 4+ 2 9
1| 17,2 5,44 — 0,912
AR —0.085348
A | 4l 10,3334 —
1| 717,68 11,7552 — 0,002087097
117,76 717 880129
117,84 12005107
1 | 17,841 ———s
1| 17,854
1| 11,861

La derniére division donnerait pour le 4¢ chiffre de la ra-

0,002087097 , . pm®
e 12,005101 — 0,0001..... et 1’expression s ou
0,00208... X 0,0001...

12,005... indiquerait comme valeur trés ap-

prochée de I'erreur 0,00000002 (en forgant); mais comme
ici le coefficient pn4 ou 12,005107 est plus petit que le
coefficient p,-, ou 17,861, I'erreur peut étre plus grande que
0,00000002..., et dés lors on ne peut plus étre str de I'exac-
titude de la 7¢ décimale; on ne devra donc prendre dans le

0,002087097
12,005107

les 6 premiers chiffres décimaux, et il sera trés probable que
cette 6¢ décimale sera encore exacte. :

Mais on peut calculer la racine de maniére & avoir avec
certitude non-seulement 6, mais autant de décimales exactes
que l’on voudra, en continuant le tableau précédent jusqu’a .
Papproximation voulue. Mais alors aussi le nombre des chiffres
décimaux allant en augmentant a chaque opération, les cal-
culs deviendraient de plus en plus laborieux. On peut éviter
cet inconvénient en procédant comme dans I'exemple de la
page 18.

Si, par exemple, on voulait 8 décimales exactes, on re=

quotient de la division = 0,00017385.... que
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marquerait que, comme dans chaque division successive on
ne prend au quotient que le 1¢r chiffre, il suffit de conserver
au dividende, c’est-a-dire dans la derniére colonne, 8 déci-
males exactes ; nous en garderons9 pour compenser les accu-
mulations d’erreurs provenant des décimales négligées ; quant
au diviseur, il varie trés peu, et il suffit le plus souvent que
sa partie entiére soit exacte. Nous formerons donc le tableau
suivant :

~0,000173806
1 | 17,861 12,005107 ——0,002087097
T 12,00688 — 0,000886409
_12,00866 7 0,000045723
}338?% — 0,000009690
M sl — 0,000000082

La premiére ligne de ce tableau est la derniére du tableau
précédent. ’

Puisqu’on peut négliger tous les chiffres qui n’influent pas
sur la 9¢ décimale de la 4¢ ou derniére colonne, et que ’on
a 4 multiplier par 0,0001, on reconnait qu’il suffit de con-~
server 5 chiffres décimaux dans la 3¢ colonne, et que pour en
avoir 5 dans la 3¢ colonne, il suffit d’en conserver un dans la
2¢. On multiplie donc 17,8 par 1 diz-milliéme, et, ajoutantle
produit au coefficient suivant, on a 12,00688. On doit main-
tenant multiplier ce nombre par 0,0001, ce qui fournit
9 chiffres au produit, et le réduire avec le coefficient sui-
vant; on obtient ainsi — 0,000886409. On achéve de méme
le calcul de cette 1™ transformée. Divisant alors 0,000886409
par 12,00866, ou plus simplement 88 par 12, on a le quotient
0,00007, ou T cent milliémes que ’on pose & la racine.

Le calcul de la nouvelle transformée se fait maintenant en
multipliant par 0,00007; donc pour avoir 9 chiffres décimaux
dans la 4¢ colonne, il suffit d’en conserver 4 dans la 3e, et
pour en avoir 4 dans la 3, il suffit de conserver les dizaines
dans la 2¢, en tenant compte toutefois de la retenue que four-
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nirait le chiffre des unités négligées. On multiplie donc 1 di-
zaine par 0,00007, et 'on a (avec les 5 de retenue) 0,0012,
ce qui, ajouté au coefficient suivant, donme 12,0098, Mulli-
pliant maintenant 12,0098 par 0,00007, on obtient un produit
“de 9 décimales, lequel, réduit avec — 0,000886409, donne
—0,000045723. On achévera de méme le calcul de cette
transformée ; puis, divisant 0,000045723 par 12,0110, le
quotient sera 0,000003 que I’on pose i la racine. Dans 1’opé-
ration suivante, on multiplie par 0,0000083 ; il suffira donc
de conserver 3 chiffres décimaux dans la 3¢ colonne et, par
conséquent, comme la multiplication de 17,8 par 0,000003
ne donnerait rien dans cet ordre de décimales, on pourra
laisser intacte la 3¢ colonne, et multipliant 12,041 par
0,000003 et réduisant avec — 0,000045723, on trouvera
—0,000009690. Divisant ce nombre par 12,011, on obtient
le quotient 0,0000008, que I’on pose & la racine.

Dans le calcul de la nouvelle transformée, on n’a plus be-
soin que de 2 chiffres décimaux dans la 3¢ colonne. La mul-
tiplication de 12,01 par 0,0000008 donnera un produit de
9 chiffres décimaux qui, réduit avec —0,000009690, donnera
—0,000000082; et en divisant ce nombre par 12,01, on
trouve le quotient 0,000000006, cc qui termine I'opération.
La racine sera donc 0,287173806 avec 8 chiffres ‘décimaux
exdcts ; mais on ne peut pas compter sur le neuviéme chiffre 6.

‘Maintenant nous reconnaissons par ce calcul que non-seu-
lement le 6° chiffre décimal, mais encore le Te¢ était donné
exactement par la division de 0,002087097 par 12,005107
fournie par le 1¢ tableau; I’erreur portait seulement sur le
8¢ chiffre décimal, mais on n’en était pas cerfain.

. _ . b
Page 14, ligne 5, au dénominateur, au lieu de f/ (a+4_0 ’

lisez f/(a < 71%)
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GHEMINS DE ER DE MONTAGNES,

par M. Ber.

Les chemins de fer présentent sans contredit le meilleur
moyen de transport, mais pour offrir un véritable avantage, ils
exigent une condition difficile & remplir dans plusieurs loca-
lités, savoir celle des pentes le plus douces possible.

Depuis I'introduction de cette nouvelle voie de communica-
tion, on a cherché les moyens de faciliter 'ascension des fortes
~montées, par des machines stalionnaires, par 'engrenage, par
la voie pneumatique, hydraulique, etc. Toutes ces méthodes
mises en pratique n’ont pas donné de résultats satisfaisants, a
cause des constructions compliquées, des frais d’exécution,
d’entretien et de plusieurs autres inconvénients qu’occasionne
leur application.

Il est plus que certain qu’a force de recherches, on par-
viendra & vaincre cette difficulté, et qu’on trouvera un moyen
plus avantageux de franchir les montagnes avec Ta locomotive.

Dans cette conviction, j'ajoute aussi une idée a celles déja
connues , laquelle parait, d priori, répondre assez favorable-
ment au but désiré. Pour faire comprendre la méthode dont
jénonce lidée, je ticherai de 'expliquer dans les termes les
plus simples. | |

Nous savons que, sila locomotive mise en mouvement par
la vapeur sur un plan horizontal , avance et tire aprés elle les
convois, ce n'est que par 'effet du frottement ou de I'adhésion
des roues sur les rails. Mais si cette locomotive doit gravir un
plan incliné, I'adhésion des roues aux rails diminue en pro-
portion de 'angle d’élévation de la rampe, de maniére que sur
une rampe ascendante de 2 °/,, les. roues tournent et la ma-
chine reste en place ou recule en glissant. Il en résulte que la
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force est suffisante pour tourner les roues, mais leur adhésion
aux rails est annulée.

Il s’agit par conséquent de trouver le moyen de remplacer
celte adhésion perdue par la pente.

On est déja parvenu, par I'emploi de locomotives pesantes,
a gravir les rampes de 3 °/, d’inclinaison, mais cette inclinaison
est trop faible lorsqu’il s’agit de s’élever & une hauteur de plu-
sieurs milliers de pieds.

Or, ce résultat n’est pas satisfaisant, non seulement parce
qu’il exige des locomotives trés pesantes et une force motrice
puissante, mais encore parce qu’il impose des tunnels d’'une
longueur considérable dans les traversées de montagnes et
par 14 occasionne des frais énormes, contre lesquels les entre-
prises se heurtent, et laissent ajournées dans les contrées mon-
tagneuses plusieurs lignes ferrées, sur lesquelles les populations
que cela intéresse altendent avec impatience.

D’aprés ce qui vient d’étre exposé, la difficulté se résume a
trouver une adhérence nouvelle d’'un emploi pratique, sur
laquelle le poids de la locomotive ait le moins d’'influence ; et
puisque dans la position actuelle des roues et des rails il nous
est impossible d’obtenir un résultat favorable, va que sur un
plan incliné, une partie du poids de la machine décomposée,
celle paralléle & la rampe tend constamment & annuler 'adhé-
sion verticale, entre les rails ; appliquons la pression horizon-
tale contre les rails au lieu de la verticale qu’'on emploie au-
jourd’hui.

Le systtme de laminage, par exemple, de la tdle lorsque
celle-ci est engagée entre les cylindres, nous donne un exemple
dans ce genre de 'adhésion d’une force tres efficace : seule-
ment changeons les positions, consolidons la tole verticalement
et rendons mobiles les deux cylindres.

Cet exemple, je crois, pouvant étre appliqué avanlageuse-
ment pour atteindre notre but, essayons de ’employer sur une
rampe de 2 °/, d’inclinaison sur laquelle les machines légéres
n’avancent plus quoique leurs roues tournent.

Supposons un rail ¢ b & face double, ayant par exemple 10



Chemins de fer de montagne'sf'&.»

s 7

/'j/

T Py LT
7777 7 &

Fig.3




e U &3

pouces de hauteur et une épaisseur respective, et étant fixé
‘verticalement le long de la rampe ascendante au milieu de la
voie ferrée. (Fig. 1.) _

~ Appliquons 4 la locomotive des cylindres ¢ ¢ que nous nom-
“merons roues jumelles ayant 2 pieds par exemple de diamétre
et 5 pouces d’épaisseur, entre lesquels le rail du milieu a b
soit engagé et maintenu constamment en contact sévére. (Fig. 1,
2, 3.)

Faisons jouer les pistons & & de la machine & vapeur sur les
roues jumelles ¢ ¢ en méme temps que sur les roues, pour les
faire tourner dans le sens de la montée, en y exercant une
force nécessaire. (Fig. 1, 3.)

La locomotive dans les conditions ci-dessus, par cette nou-
velle adhésion horizontale des roues jumelles va nécessaire-
ment avancer comme la téle entre les cylindres de laminage,
car il n’y a pas de raison pour qu'elle reste en place. Comme
cette adhésion peut étre augmentée par 'application de 2, 4,
6, etc., roues jumelles, il en résultera que la locomotive sera
en état de gravir les montées trés raides, peut-étre jusqu'a
8 /o, puisque la force pour faire tourner les roues est & notre
disposition. :

Le dessin ci-joint représente semlement les cylindres h h
dont les pistons agissent sur les roues jumelles ¢ ¢, mais on
pourra ajouter a la locomolive encore deux cylindres pour agir
sur les roues qui la portent, par cette disposition elle servira
tant pour le plan incliné que pour la plaine.

Il est & observer que, suivant notre méthode , on augmente
I'adhésion par les mémes principes que sur les chemins de fer
en plaine, c’est-a-dire par la force de la vapeur et le frotte-
ment. Les travaux nécessaires pour fixer solidement le rail
double du milieu, pour faire tourner les roues jumelles et les
serrer contre le rail, ne paraissent pas présenter de grandes
difficultés.

Pour maintenir constamment les roues jumelles en contact
avec leurs rails, on pourra se servir du poids de la locomotive
elle-méme et de celui du convoi qu’elle doit trainer, ¢’est-a-dire
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de la force du poids décomposé, celle paralléle 4 la rampe.
Cette force étant en proportion de I'inclinaison de la rampe,
pourra étre régularisée par elle-méme selon I'inclinaison plus
ou moins forte de la rampe ascendante sur laquelle le mouve-
ment s’opére. Dans ce but on pourra appliquer une espéce de
pince d e f ¢ fixée & la locomotive au point 7, & laquelle un ou
plusieurs wagons peuvent étre attachés au point m, pour pro-
duire par leur poids la pression des roues jumelles contre les
rails du milieu. (Fig. 4.)

La méme force provenant du poids peut étre appliquée avec
avantage comme pression sur les sabots et pour écarter les
roues jumelles du rail. CGar a la descente la vitesse sera régu-
larisée moyennant des sabots p appliqués aux wagons, garnis
d’une semelle en bois et glissant sur le dos du rail du milieu
a b. Comme le nombre et la longueur desdits sabots peuvent
étre augmentés & volonté, on obtiendra par cela la sécurité
exigée. Pour écarter les roues jumelles du rail on pourra aussi
se servir du mécanisme ordinaire appliqué au point 2, comme
on s'en sert actuellement pour enrayer. (Fig. 5.)

Pour parer aux accidents qui peuvent survenir par la rupture
du rail du milieu ou par le dérangement de la machine, on
pourra arranger des freins, des sabots, ou ajouter des pattes,
de maniére & tomber et & arréter tout le convoi aussitot qu’il
commence & reculer; comme moteur nécessaire pour laisser
tomber cet attirail, on emploierait le poids du convoi lui-méme.

Le rail du milieu étant plus haut que ceux extérieurs, on
pourra, pour maintenir le passage des routes et des chemins
qui traversent la voie ferrée, appliquer dans ce but les plates-
formes inclinées et mobiles.

Enfin cette méthode, outre la facilité de gravir les montées
au-dessus de 3 °/,, présente les avantages suivants :

1o Les frais des travaux primitifs de I'établissement des voies
ferrées seront considérablement réduits, d’abord on n’aura
pas besoin de tenir la voie ferrée au fond des vallons et de tra-
verser le meilleur terrain de la contrée, la longueur des tunnels
peut &tre réduite & volonté ou totalement supprimée.
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20 Les locomotives pesantes qui détériorent les rails et absor-
bent pour se trainer une partie de la force motrice, peuvent
étre remplacées par celles d’'une construction légére, quoique
donnant plus de force.

3° Réduclion de rayons des courbes, économie de la force
motrice a la descente et modification facile de la vitesse moyen-
‘nant des sabots.

4o L’emploi pour monter de la force résultante du poids dé-
composé du train, laquelle dans le systéme actuel sur le par-
cours des rampes, annule I'adhésion des roues sur les rails.

5° L’emploi de la méme locomotive pour le plan incliné que
pour la plaine. ‘

6° Enfin le déraillement étant presque 1mposs1b1e nous donne
toute garantie contre les accidents.

Je ne présente pas le projet dont il est question avec les
détails de construction, ni les calculs des forces et résistances
respectives , laissant cette tiche aux personnes qui ont la pra-
tique et 'expérience de ce genre de travaux. Mon intention est
seulement de jeter, en vue de la pratique, unrayon de lumiére
sur cette importante question.

Aujourd’hui que les frais du réseau de chemins de fer juras-
siens accusent une somme trop onéreuse au pays, un systéme
qui réduirait ces frais 4 moitié de leur chiffre ne serait pas &
dédaigner. En vue de cette considération, je me suis empressé
de communiquer la méthode ci-incluse 4 la direction des che-
mins de fer du canton.

Je suis bien loin d’avancer cette méthode comme le moyen
par-excellence pour gravir les montées sur les chemins de fer
au moyen de locomotives, mais siles avantages qu’elle parait
présenter & priort se réalisent par ’expérience, je me trouverai
heureux d’avoir participé & résoudre le probléme dont on
s’occupe depuis si longtemps et de procurer aux contrées mon-
tagneuses I'avantage de cette nouvelle voie de communication,
dont les pays en plaine sont, on peutle dire, les seuls favorisés
jusqu’a présent.
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