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Grundlagen und mogliche Anwendungen der Sequenztechnik

Von H. Harmuth, Leopoldshafen

Das System der Sinus- und Cosinusfunktionen ist in der Nach-
richtentechnik stets ausgezeichnet gewesen. Immer wenn der Be-
griff Frequenz beniitzt wird, bezieht man sich auf diese Funktio-
nen. Daher beruht die allgemein verwendete Theorie der Nach-
richtentechnik auf Sinus- und Cosinusfunktionen. In neuerer Zeit
sind andere vollstindige Systeme von orthogonalen Funktionen
fiir theoretische Untersuchungen und Gerdtebau beniitzt worden.
Es ldsst sich zeigen, dass Theorien der Nachrichtentechnik auf
diesen Funktionen aufgebaut werden konnen, die der auf Sinus-
und Cosinusfunktionen beruhenden Theorie gleichwertig sind. Die
meisten dieser Theorien sind nur von akademischem Interesse.
Eine Ausnahme bildet das wenig bekannte System der Walsh-
Funktionen. Es fiihrt zu Schaltungen von Filtern und Multiplex-
gerdten, die ausserordentlich gut fiir die Realisierung in Halb-
leitertechnologie geeignet sind. Noch in der theoretischen Phase
befinden sich Anwendungen zum Erkennen einfacher geometri-
scher Formen durch Walsh-Wellen-Radar und zur extrem genauen
Peilung von Raumsonden.

1. Einfithrung

Der fiir die Nachrichtentechnik grundlegende Begriff Fre-
quenz ist als der Parameter f'in den Funktionen sin 2x f# und
cos 2rt ft definiert. Der den Begriff Frequenz verwendende
Teil der Nachrichtentechnik ist daher auf dem System der
Sinus- und Kosinusfunktionen aufgebaut; im folgenden sei
dieser Teil mit Frequenztechnik bezeichnet. Es fragt sich, ob
es noch andere Funktionensysteme gibt, auf die man dhnlich
umfangreiche Theorien aufbauen kann und die zu praktisch
brauchbaren Geriten fithren. Da Sinus und Cosinus ein Sy-
stem orthogonaler Funktionen bilden, liegt es nahe, andere
Systeme orthogonaler Funktionen zu untersuchen?!). Fig.1
zeigt drei solche Systeme mit der normierten Zeit § = ¢/T als
Variable: Sinus-Kosinusfunktionen, Walsh-Funktionen und

1) Zwei Funktionen f(;,0) und f(k,0) heissen zueinander ortho-
e
gonal im Intervall — %5 < 8 < V5, wenn das Integral fz £(;,0)f(k,0)do
—%
fiir i = k verschwindet. Sie heissen orthogonal und normiert, oder
orthonormiert, wenn das Integral fiir i = k den Wert 1 hat.

Vollstandige Systeme

Sinus- und Cosinusfunktionen Walsh -Funktionen
wal(g, 8) I——I k=1

Unvollstandige Systeme
Rechteckimpulse

621.372.54

L’application des fonctions sinusoidales et cosinusoidales en
matiére de télécommunications a toujours été excellente. Toutes
les fois que I'on utilise la notion de fréquence, on se référe a ces
fonctions. La théorie généralement appliquée a la technique des
télécommunications se base de ce fait sur les fonctions sinusoidales
et cosinusoidales. Au cours de ces temps derniers on a utilisé pour
les recherches théoriques et la construction d’appareils des sys-
temes complets de fonctions orthogonales. On peut prouver que
les théories de la technique des télécommunications peuvent égale-
ment étre basées sur ces fonctions, qui sont du reste équivalentes
aux théories basées sur les fonctions sinusoidales et cosinusoidales.
La plupart de ces théories ne présentent qu’un intérét académique,
a Pexception toutefois du systéeme peu connu des fonctions de
Walsh. Ce dernier conduit a des couplages de filtres et d’appareils
multiplex fort appropriés aux réalisations effectuées dans la tech-
nique des semi-conducteurs. Des applications destinées a indenti-
fier des formes géométriques simples par le radar a ondes de
Walsh et a la goniométrie extrémement précise des sondes spa-
tiales n’ont pas encore dépassé le stade théorique.

Rechteckimpulse. Die Rechteckimpulse sind reprisentativ fiir
eine Reihe von Impulsformen, die zur Nachrichteniibertragung
mit Zeitteilung bentitzt werden.

Rechteckimpulse bilden ein unvollstindiges System, Sinus-
Cosinus- und Walsh-Funktionen dagegen vollstindige Sy-
steme. Der Unterschied liegt anschaulich darin, dass sich in
Fig. 1 weitere Sinus-Cosinus- und Walsh-Funktionen fiir
i=35,6, ... im Intervall — 14 < 6 < 5 zeichnen lassen, wih-
rend es keinen weiteren Rechteckimpuls gibt, der zu den ge-
zeichneten 8 orthogonal ist. Praktisch zeigt sich der Unter-
schied dadurch, dass es umfangreiche Theorien iiber Filter,
Antennen, Hohlleiter usw. fiir Sinus-Cosinusfunktionen gibt,
aber nicht fiir Rechteckimpulse, obwohl Rechteckimpulse viel
ldnger in der Nachrichtentechnik verwendet werden.

Neu in Fig. 1 sind die Walsh-Funktionen [1...7]2). Sie neh-
men nur die Werte 1 und —1 an. Es ist plausibel, dass dies
eine niitzliche Eigenschaft ist, wenn man Schaltungen aus bi-
nérendigitalen Schaltelementen aufbauen will. Die Funktionen
cal (i,0) sind so wie die Cosinusfunktionen }/2 cos 27 if sym-
metrisch, die Funktionen sal (;,0) und /2 sin 2r i
sind schiefsymmetrisch. Es ldsst sich zeigen, dass
iiber diese dusseren Anzeichen hinaus eine enge Ver-
wandtschaft zwischen Sinus-Cosinusfunktionen und

Walsh-Funktionen besteht.

Der Parameter i in /2 sin 2% i0 und /2 cos 2x i0
gibt die Zahl der Schwingungen im Intervall

— 1 <0< 1) an, ist also die normierte Frequenz

i= fT. Statt als «Schwingungen pro Zeiteinheit»

kann man i auch als «halbe Zahl der Zeichenwech-
sel pro Zeiteinheit» interpretieren. Im Falle der Si-

?) Siehe Literatur am Schluss des Aufsatzes.

Fig. 1
Orthonormierte Systeme von Funktionen
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2/Zwal (0,88-k/8+9/16)

i normierte Frequenz oder Sequenz; k Laufzahl der Recht-
eckimpulse; € normierte Zeit
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nusfunktionen wird der Zeichenwechsel an der linken Grenze
0 = —14 gezihlt, der an der rechten Grenze 6 = + 14 aber
nicht.

Auch im Falle der Walsh-Funktionen gibt / die halbe Zahl
der Zeichenwechsel im Intervall — 15 < 6 << 14 an. Im Gegen-
satz zu den Sinus-Cosinusfuktionen haben die aufeinanderfol-
genden Zeichenwechsel einer Funktion nicht gleiche Abstédnde.
Fur Walsh-Funktionen mit nicht ganzzahligen Werten von i
gibt / die «halbe mittlere Zahl der Zeichenwechsel pro Zeitein-
heit». i/ heisst die normierte «Sequenz» und ¢ = i/T ist die
nicht normierte Sequenz. Die Masseinheit der Sequenz ist das
zps3): 15 (mittlere Zahl der Zeichenwechsel pro Sekunde) =
Sequenz in zps. Die allgemeine Form der Sinusfunktion U sin
(2n ft +o) enthilt als Parameter die Amplitude U, die Fre-
quenz f und den Phasenwinkel o. Die allgemeine Form einer
Walsh-Funktion Usal (¢T, t/T + to/T) enthilt als Parameter
die Amplitude U, die Sequenz ¢, die Verzdgerung #o und die
Zeitbasis 7. Die normierte Verzdgerung #o/T entspricht dem
Phasenwinkel. Die Zeitbasis T ist ein zusdtzlicher Parameter.
Durch ihn kommen ein guter Teil der Unterschiede in den
Anwendungen zwischen Sinus-Cosinus- und Walsh-Funktio-
nen zustande.

Die Walsh-Funktionen sind bisher die einzigen bekannt
gewordenen Funktionen, die fiir die Nachrichtentechnik dhn-
lich giinstige Eigenschaften haben wie die Sinus-Cosinusfunk-
tionen. Der Grund, warum sie gerade jetzt interessant werden,
ist die Entwicklung der Halbleiter-Bauelemente. Beispiels-
weise waren frither Spulen, Kondensatoren und Widerstédnde
die wiinschenswertesten Bauelemente fiir Filter. Fiir diese
linearen, zeitlich konstanten Elemente hat die auf Sinus-Co-
sinusfunktionen aufgebaute Frequenztechnik unbezweifelbare
Vorteile. Die Filter der auf Walsh-Funktionen aufgebauten
«Sequenztechnik» sind linear und zeitlich periodisch verdn-
derlich. Sie enthalten Kondensatoren, Widerstinde, Opera-
tionsverstarker und Schalter. Sie konnen leicht mikrominia-
turisiert werden und erfordern weder Abstimmung noch Tem-
peraturkompensation. Diese Vorteile waren bedeutungslos,

ehe es Operationsverstarker und Schalter in Halbleiterausfiih-

rung zu niedrigen Preisen gab.

2. Theoretische Grundlagen ¢)

Tabelle I gibt Eigenschaften von Sinus-Cosinusfunktionen,
Walsh-Funktionen, Rechteckimpulsen und von auf ihnen be-
ruhenden Verfahren. Als mathematische Theorie gibt es eine
der Fourier-Analysis analoge Walsh-Fourier-Analysis. Fur
Rechteckimpulse gibt es keine entsprechende Theorie; das ist
eine Folge der Unvollstindigkeit des Systems der Rechteck-
impulse. Den Sinus- und Cosinustransformierten einer Funk-
tion F(6):

as’ (u) = [ F(0) V2 sin 2r 10d0, ac’ (1) =

— 00

o0
— [ F(0) V2 cos 2m 40 do
— 0
entsprechen die Transformierten as(x) und ac(u) der Walsh-
Fourier-Analysis: )
®) zps wurde in Anlehnung an die alte englische Einheit cps fiir die
Frequenz gewihlt.

*) Im deutschen Sprachgebiet wird die Theorie der Walsh-Funktio-
nen hauptsidchlich am Mathematischen Institut der Universitdt Inns-
bruck gepflegt [5...7].
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Eigenschaften von Systemen orthogonaler Funktionen und von auf
ihnen beruhenden Anwendungen

Tabelle 1
Sinus-Cosinus- Walsh- :
lfr:ll;nsktig:lenx:l * Funlz(lt?onen Rechteckimpulse
Parameter Amplitude Amplitude Amplitude
Frequenz Sequenz —
Phasenwinkel | Verzogerung | Verzogerung
— Zeitbasis Zeitbasis
Mathe- Fourier- Walsh- —
matische Analysis Fourier-
Theorie Analysis
Leistungs- Frequenz- Sequenz- —
spektren spektrum spektrum
Filter linear, linear, linear,
zeitlich zeitlich zeitlich
konstant periodisch variabel
variabel
Beschreibung | Frequenz- Sequenzgang | Dampfung als
gang von von Damp- Funktion
Dampfung fung und der Zeit
und Pha- Verzoge-
sendrehung rung
Multiplex Frequenz- Sequenz- Zeitteilung
teilung teilung
Modulation Amplituden-, | Amplituden-, | Amplituden-,
Frequenz-, Zeitbasis-, Breite-,
Phasen-, Zeitlage-, Lage-,
Kodemo- Kodemo- Kodemo-
dulation dulation dulation
abstrahlbar sin 27 i6, sal (i,0), —
cos 2m if cal (i,0)

as(u) = [F(0)sal (u, 0)d0,  acw) = [ F(O) cal (u,0)d0 (1)

— 00

F(0) = [ las (w)sal (u, 0) + ac (u) cal (4, 0)] dO

0

— 00

2

Fig. 2 zeigt als Beispiel einen Rechteck- sowie Sinus- und
Cosinusimpulse, die ausserhalb des Intervalles — 14 < 0 < 15
identisch Null sind. Fig. 3 zeigt ihre Transformierte as(z) und
ac(u). Man beachte, dass as(u) fiir eine symmetrische Funktion
F(0) verschwindet und ac(u) fiir eine schiefsymmetrische Funk-
tion F(6). Die 5 Funktionen von Fig. 2 haben daher entweder
die Transformierte ac(u) oder as(s).

Fig. 4 zeigt weitere Beispiele von Funktionen F(8), ihre
Walsh-Fourier-Transformierten ac(x) und as(u) sowie ihre Se-

1 1 walc0,8)

\—//_\ VZsin 2718

T

VZ2cos 2718
L
_/\ P VZsin 4178

N NS

Ji\ /\ /-L V2cos 4716
DN

1 1 1
-1/2 0 112
8——
Fig.2
Sinus- und Cosinusimpulse
6 normierte Zeit

(A 747) 1197
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‘Walsh-Fourier-Transformierte ac(u) oder as(u) der Impulse von Fig. 2
1 normierte Sequenz

quenz-Leistungsdichte-Spektren — oder kurz Sequenzspektren —
act(y) + as®(u). Mit Ausnahme der Funktionen in der
3. Zeile verschwinden sowohl die Funktionen F(0) als auch
ihre Sequenzspektren ausserhalb eines endlichen Bereiches.
Diese Funktionen sind also zeit- und sequenzbegrenzt und sie
belegen nur einen endlichen Teilbereich des Zeit-Sequenzbe-
reiches. In der Fourier-Analysis gibt es keine zeit- und fre-
quenzbegrenzten Funktionen.

Die Filter der Sequenztechnik sind nach Tabelle I linear
und zeitlich periodisch variabel. Ihre Eigenschaften lassen sich
durch den Sequenzgang von Ddmpfung und Verzogerung be-
schreiben. Multiplexen mehrerer Signale ist durch Amplituden-
modulation von Walsh-Trédgern moglich. (Walsh-Triger sind
die periodisch fortgesetzten Walsh-Funktionen von Fig. 1.)

F8) a.(u) ag(w) ) +abw)
P e S ws: | U
2
2 ] l — —t
0o
3 l e B
4o I: n |
|}
st’:}:’_ S i I = S [y S g

-4+t Y
aLlll 1 . TR 1

-4 0 A 0 4
a—= M

1
-112 0 V2 -4 0 4
§—e °—
Fig. 4
Beispiele von Zeitfunktionen, ihren Walsh-Fourier-Transformierten ac(ﬂ),
as(u) und ihren Sequenz-Leistungsdichte-Spektren aﬁﬂ(u) + asz(u)

4 normierte Frequenz

1198 (A 748)

Diese Tridger — mit Ausnahme der Gleichspannung wal(0.0) —
konnen von Antennen abgestrahlit werden. Der Strahlungs-
widerstand eines Hertzschen Dipols ist beispielsweise fiir Si-
nus- und Walsh-Triger anndhernd gleich, wenn die Frequenz
des Sinustrédgers gleich der Sequenz des Walsh-Trigers ist.

Bei der Amplitudenmodulation von Sinustrdgern und
Walsh-Trigern tritt ein wesentlicher Unterschied auf. Um das
zu erkennen, seien die folgenden Multiplikationstheoreme der
Sinus- und Cosinusfunktionen betrachtet:

2cosifcosk@ = cos(i—k)f + cos(i + k)

2 sin 1:0 coskl) =  sin (z: — k)0 + s@n(t: + k)0 3)

2 cos i0sin kO = —sin (i — k)0 + sin(i + k)6

2sin i0sin k6 = cos (i — k)8 — cos(i + k)6

Die Multiplikation zweier Funktionen liefert immer zwei
Funktionen mit Argument (i — k)0 und (i + k)6. Reprisen-
tieren cos k6 und sin k6 Triger, cos i0 und sin i6 die Fourier-
Komponenten eines Signals, dann repridsentieren die Glieder
auf der rechten Seite von Gl. (3) die bei der Amplitudenmodu-
lation entstehenden unteren und oberen Komponenten. Am-

=, Lt
Fl8)=F(t/D)| d <52 sp | F1t/T)

b
/\/‘\ /
F(g) — t \// }
a L—1— 4
N———
+ \ ; l -
B Fthe) — ¢ i i
1 1 ! 1
1 2 3
0 b
C 1 L 1 |
0 125 P 250 ps 375
Fig.5
Sequenztiefpass

a praktische Ausfiihrung; b Blockschema; ¢ Zeitdiagramm;
d Integration von F (6)
I Integrator; SP Speicher; V Operationsverstirker

plitudenmoduliert man einen Trédger nicht mit einer Fourier-
Komponente, sondern mit vielen, dann entstehen untere und
obere Frequenz-Seitenbidnder. Die Zweiseitenband-Modula-
tion ist also eine Folge der Multiplikationstheoreme in GI. (3).

Fir Walsh-Funktionen gelten die folgenden Multiplika-
tionstheoreme:

cal(i,0) cal(k,0) = cal(i @ k,0)

sal(i,0) cal(k,0) = sal [k & (i—1)] +1,0)

cal(i,0) sal(k,0) = sal {[i @ (k—1)] +1,6)

sal(i,0) sal(k,0) = cal [(i—1) @ (k—1),6]

Das Symbol (P zeigt eine Addition modulo 2 an. Die Sum-
manden werden als bindre Zahlen geschrieben und unter Be-
achtung folgender Regeln addiert: 1E0=0DH1=1,
0@ 0=1@1 =0 (kein Ubertrag).

“)
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a
F(6) . (8)
SME1TPaM e
b
calig) b
sal(;8)

Fig. 6

(a) und praktische Ausfiihrung eines
Multiplikators M (b)

TP Tiefpass nach Fig. 5

I

Blocksch eines S

Im Gegensatz zu Gl. (3) steht auf der rechten Seite der Gl. (4)
jeweils nur eine Funktion. Interpretiert man cal(k,0) und
sal(k,0) als Triger, cal(i,f) und sal(i,d) als Walsh-Fourier-
Komponenten eines Signals, dann liefert die Amplitudenmodu-
lation nur eine Komponente. Amplitudenmoduliert man einen
Walsh-Triger nicht mit einer Komponente, sondern mit vie-
len, dann entsteht nur ein einziges Sequenz-Seitenband. In
einem Sequenz-Multiplexsystem fallen daher die Einseiten-
bandfilter weg.

3. Filter

Fig. 5 zeigt das praktische Schaltbild, das Blockschema und
das Zeitdiagramm eines einfachen Sequenztiefpasses. Das Ein-
gangssignal F(6) wird in eine Treppenkurve Fit(f) umgewan-
delt, deren Stufen eine vorgegebene Breite haben. Die Ampli-
tuden der Stufen sind so gewdhlt, dass F(6) durch Fit(0) im
Sinne des kleinsten quadratischen Fehlers am besten angeni-
hert wird; ausserdem ist Ft1(#) um eine Stufenbreite gegen F(0)
verschoben. Praktisch wird F11(0) erzeugt, indem F(0) iiber
Intervalle von der Dauer der Stufenbreite integriert wird
(Zeile d). Die am Ende des Integrationsintervalles erhaltene
Spannung wird durch Schalter s, abgetastet und in einem Spei-
cher gehalten. Unmittelbar danach wird der Integrator durch
Schalter s; entladen. Betrigt die Breite der Stufen 125 ps, dann
nimmt F11(d) pro Sekunde 8000 unabhidngige Amplituden an.
Zerlegt man F11(0) nach Walsh-Funktionen, dann konnen da-
her Funktionen mit 0 bis 8000 Zeichenwechseln pro Sekunde
oder mit einer Sequenz zwischen 0 und 4000 zps = 4 kzps auf-
treten. Nach dem Abtasttheorem der Fourier-Analysis hat das
Ausgangsssignal eines Frequenztiefpasses mit 4 kHz Grenz-
frequenz ebenfalls 8000 unabhingige Amplituden pro Sekunde.

Fig. 6 zeigt einen Sequenzbandpass. Das Eingangssignal
F(0) wird durch Multiplikation mit einem Walsh-Tréiger
cal(i,0) oder sal(i,) von seinem Sequenzbereich in den des
Tiefpasses von Fig. 5 verschoben. Nach Durchlaufen des Tief-
passes TP wird das Signal durch nochmaliges Multiplizieren
mit dem gleichen Walsh-Triger in seinen urspriinglichen Se-
quenzbereich zuriickverschoben. Dieses Prinzip des Aufbaues
eines Bandfilters aus zwei Multiplikatoren und einem Tiefpass
ist auch fiir Frequenzfilter bekannt. Die bei Sinus-Cosinus-
tragern auftretende Zweiscitenband-Modulation macht die
Realisierung schwierig. Ferner ist es nicht leicht, genaue Mul-
tiplikatoren fiir Sinus-Cosinusfunktionen herzustellen. Da
Walsh-Funktionen nur die Werte 1 und —1 annchmen,

Bull. ASE 59(1968)26, 21 décembre
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bedeutet eine Multiplikation mit ihnen, dass das Signal ent-
weder unverdndert bleibt, oder dass seine Amplitude umge-
dreht wird. Einen geeigneten einfachen und genauen Multi-
plikator zeigt Fig. 6.

Die Eigenschaften von Frequenzfiltern konnen durch den
Frequenzgang von Didmpfung und Phasendrehung beschrie-
ben werden. Entsprechend lassen sich die Eigenschaften von
Sequenzfiltern durch den Sequenzgang von Dampfung und
Verzogerung beschreiben. Fig. 7 zeigt fiir K(0) =1 Dadmp-
fung und Verzogerung eines Tiefpasses; Kc(1) = 1, Ke(2) =
1, K«(1) = 1 und Ks(2) =1 zeigen Dimpfung und Verzoge-
rung von Bandpédssen nach Fig. 6, wenn man dort die Triger
cal(1,0), cal(2,0), sal(1,0) und sal(2,0) zufiihrt. Die Sequenz ist
normiert als x aufgetragen, und nicht normiert als ¢ fiir die
Zeitbasis 7' = 125 ps.

Die Dampfung von Sequenzfiltern springt nach Fig. 7 an
den Bandgrenzen von 0 nach unendlich. Die Verzogerung ist
im ganzen Durchlassbereich konstant. Sequenzfilter haben da-
her prinzipiell weder Dadmpfungs- noch Laufzeitverzerrungen.
Die Dampfung praktischer Filter ist zur Zeit gentigend hoch,
um mit Hilfe von Kompandern diec Empfehlungen des CCIT
fur die Nebensprechdimpfung im Telephonie-Multiplexbe-
trieb zu erfiillen. Die unendlich steilen Filterflanken wirken un-
gewohnlich, da sie bei Frequenzfiltern nicht auftreten. Sie wir-
ken weniger ungewohnlich, wenn man beriicksichtigt, dass
Sequenzfilter Schalter enthalten, die eine Zeitquantisierung er-
zeugen. Eine Amplitudenquantisierung erfolgt nicht. Selbst-
verstdndlich kann man aber auch amplitudenquantisierte oder
kodierte Signale filtern. Ein solcher Fall tritt ein, wenn man
PCM-Telephoniesignale nicht mit Zeitteilung, sondern mit
Sequenzteilung iibertrdgt; ein Signal besteht dann nicht aus 7
nacheinander iibertragenen Rechteckimpulsen mit Amplitude
+1 oder —1, sondern aus 7 gleichzeitig iibertragenen Walsh-
Funktionen mit Amplitude +1 oder —1.

Sequenzfilter sind von M. Bdsswetter im Institut fiir allge-
meine Nachrichtentechnik der Technischen Hochschule Darm-
stadt fiir einen Sequenz-Kanalvocoder, ferner von H. Liike
und R. Maile im Forschungsinstitut von AEG-Telefunken
fir ein Telephonie-Multiplexsystem mit Sequenzteilung, ent-
wickelt worden. Eine mathematische Theorie dieser Filter
veroffentlichte F. Pichler [8].

Ein Signal, das einen Sequenztiefpass mit der Sequenzband-
breite 4 kzps durchlaufen hat, nimmt pro Sekunde 8000 unab-
hédngige Amplituden an. Es muss sich daher trotz seiner Trep-
penform durch einen Telephoniekanal von 4 kHz Frequenz-

K(0) =1 K(0)=1
E 125 us
1 _______
o0 " 0
K (D=1 Ks()=1
[125ps _
K:(2)=1
125 us
0 1 2 3 01 2 0 1 2 3 01 2
- sl , B= =
0 40008000 12000s 0 4000 8000s-! 0O 4000800012000s-! 0O 4000 8000s-!
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Fig. 7

Sequenzgang von Dimpfung und Verzogerung einiger Sequenzfilter
6 Sequenz in zps; 4 normierte Sequenz
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: Fig. 8
Abschrigung der Spriinge einer Treppenkurve (a) und eine dazu geeignete
Schaltung (b)

bandbreite iibertragen lassen. Nach Fig. 8a kann man eine
Treppenspannung ue(f) durch ein Filter schicken, das bei-
spielsweise den Polygonzug ua(f) erzeugt. Zu den Zeitpunkten
T, 2T, 3T, . . . nimmt u,(?) die Werte an, die ue(f) im vorange-
gangenen Zeitintervall der Dauer T hatte. ue(f) hat ein Fre-
quenz-Leistungsdichte-Spektrum von der Form (sin mf7T)2/
(wfT)2, wihrend das von ua(r) die giinstigere Form (sin mf7T)4/
(mfT)4 hat. Aus ua(?) lasst sich ue(t—T) = us(¢) zuriickgewin-
nen, beispielsweise indem man ua(?) zu den Zeitpunkten 7, 27,
3T, ... abtastet und die abgetastete Spannung wihrend eines
Zeitintervalles der Dauer T speichert. Eine mogliche Schaltung
zur Umwandlung von ue(?) in u,(¢) ist in Fig. 8b gezeigt. Sie
eignet sich auch zur Riickumwandlung von ua(?) in us(f); legt
man ua(?) statt ue(r) an den Eingang, dann erhilt man —us(¢)
am Ausgang von V.

4. Multiplexsysteme mit Sequenzteilung
Mit Hilfe der Sequenzfilter und von Multiplikatoren, wie
beispielsweise den in Fig. 6b gezeigten, lassen sich Gerite
fiir eine Sequenz-Multiplexiibertragung bauen, die denen fiir

Sender Empfinger
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fo je 32Kandle Leitung Tio v ]
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120 T 1]

2 _ =iy
e "
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e =g
gl
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Frequenz-Multiplexiibertragung sehr &dhnlich sind. Fig. 9
zeigt das Blockschema eines Sequenz-Multiplexsystems fiir
1024 Kanile. Die analogen oder digitalen Signale werden
durch Sequenztiefpédsse TP zu Multiplikatoren M geleitet. Fiir
Telephonietibertragung ist die Bandbreite der Tiefpisse
A¢ =4kzps. Den Multiplikatoren werden 32Walsh-Funktionen
cal(i,#) und sal(7,0) mit einer Zeitbasis T = —z—i—q;zugefﬁhrt.
Die Ausgangsspannungen von je 32 Multiplikatoren werden in
Summatoren S summiert. Die summierten Spannungen kon-
nen in weiteren Multiplikatoren wieder zur Multiplikation von
Walsh-Trigern verwendet werden. So wie Frequenz-Multi-
plexsysteme eine mehrfache Frequenz-Umsetzung erlauben,
ist auch hier eine mehrfache Sequenz-Umsetzung moglich.

Auf der Empfangsseite erhdlt man die getrennten Signale
wieder, indem man mit den gleichen, synchronen Walsh-
Triagern multipliziert und die Signale durch Sequenztiefpdsse
schickt. Das Blockschema von Fig. 9 unterscheidet sich von
dem eines Frequenz-Multiplexsystems nur durch das Fehlen
von Einseitenbandfiltern. Die Schaltungen der einzelnen Blocke
sind jedoch wesentlich anders.

Ein Sequenz-Multiplexsystem nach Fig. 9 ist ausfiihrlich
beschrieben worden [10]. Ein experimentelles System wurde
von H. Liike und R. Maile im Forschungsinstitut der AEG-
Telefunken entwickelt. Es soll daher hier nur dariiber disku-
tiert werden, welche technischen und wirtschaftlichen Vorteile
im Vergleich zu Frequenz- und Zeit-Multiplexsystemen man zu
erreichen hofft.

Sequenz-Multiplexsysteme brauchen im Gegensatz zu Fre-
quenz-Multiplexsystemen keine Einseitenbandfilter. Die not-
wendigen Tief- und Bandpisse erzeugen keine Dadmpfungs-
oder Laufzeitverzerrungen. Fiir Telephonieiibertragung sind
diese Eigenschaften nicht wichtig, fiir die Dateniibertragung
jedoch ausserordentlich. Alle Filter konnen in integrierter
Schaltungstechnik ausgefiihrt werden. Die Toleranzen der
Schaltelemente sind geniigend unkritisch, um ein individuelles
Abstimmen der Filter unnétig zu machen. Die Bandbreite der
Filter wird durch die zeitliche Lage der Impulse bestimmt,
welche die Schalter s; und s2 in Fig. 5 steuern. An die Stelle
des Abstimmens tritt die Zufiithrung exakt synchronisierter
Impulse, die aber viele Filter gleichzeitig steuern. So wie die
Abstimmung entféllt auch die Temperaturkompensation der
Filter. Die zum Verschieben der Signale im Sequenzbereich
notwendigen Walsh-Triger lassen sich durch bindre Zihler
und Gatter herstellen. Der einzige Baustein in einem Sequenz-
Multiplexsystem, der Abstimmung und Temperatur-
kompensation erfordert, ist daher ein Taktimpuls-
Generator.

Zeit-Multiplexsysteme brauchen so wie Sequenz-
Multiplexsysteme keine verzerrenden Filter, und sie
eignen sich ebenfalls sehr gut fiir die Realisierung
in Halbleitertechnologie. Der Vorteil des Sequenz-
: Multiplexens liegt hier hauptsichlich in der grosse-
ren Betriebssicherheit, die besonders fiir die Daten-
; iibertragung wichtig ist. Sie kommt durch zwei ver-
schiedene Ursachen zustande:

Fig.9
Blockschema eines Sequenz-Multiplexsystems
TP Sequenztiefpass; M Multiplikator; S Summator;
TG, FG, SG Takt-, Walsh-Funktionen- und Steuergenerator
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Fig. 10
Prinzip der Formerkennung mit einem Walsh-Wellen-Radar

Erkldrungen siehe im Text

a) In einem Mehrkanalsystem ist immer nur ein Teil der Kanéle
aktiv. Beispielsweise steigt der Aktivitdtsfaktor fir Telephonieka-
ndle auch in der Hauptverkehrszeit nicht tiber 14. Die Verstarker
sind daher mindestens 34 der Zeit nicht ausgenutzt, und die mittlere
Leistung der Signale ist entsprechend verringert [11]. Frequenz- und
Sequenz-Multiplexsignale konnen bei gleicher Spitzenleistung fiir
Aktivitdtsfaktoren kleiner oder gleich 14 eine grossere mittlere
Signalleistung und damit eine hohere Betriebssicherheit erreichen.
Besonders vorteilhaft ist, dass man durch Regelverstirker eine an-
ndhernd konstante mittlere Leistung einhalten kann, wenn der Ak-
tivitdtsfaktor in verkehrsschwachen Zeiten stark absinkt.

b) In Telephonienetzen werden digitale Zeichen in erster Linie
durch Storimpulse gestort. Es ist bekannt, dass die Zeitteilung ge-
gen diese Storungen empfindlicher ist als Frequenz- oder Sequenz-
teilung. Der Grund ist folgender: Ein Rechteckimpuls kann durch
einen hinzuaddierten Stérimpuls sehr stark verdndert werden, wih-
rend die vorangehenden und nachfolgenden Rechteckimpulse gar-
nicht verandert werden. Bei Frequenz- und Sequenzteilung werden
immer viele Sinus-Cosinus- oder Walsh-Funktionen gleichzeitig
Ubertragen. Die Energie eines Storimpulses verteilt sich daher auf
diese vielen Funktionen. Sind diese quantisiert, dann ist eine be-
trachtliche Energie des Storimpulses erforderlich, um eine Storung
zu erzeugen. Messungen bei der Ubertragung bindrer, kodierter
Zeichen durch Telephoniekanile ergaben eine rund hundertmal ge-
ringere Fehlerhdufigkeit bei gleicher mittlerer Leistung, wenn die
Zeichen aus Sinus-Cosinusfunktionen und nicht aus Rechteckim-
pulsen aufgebaut waren. Fiir Walsh-Funktionen liegen solche Mes-
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sungen noch nicht vor, sie sind aber eines der néichsten Ziele experi-
menteller Arbeiten. Theoretisch ldsst sich voraussagen, dass Walsh-
und Sinus-Cosinusfunktionen anndhernd die gleiche Fehlerhiufig-
keit liefern sollten.

Es lassen sich noch eine Reihe anderer Unterschiede zwi-
schen Zeit- und Sequenz-Multiplexsystemen anfithren. Bei-
spielsweise sind manche Gerite der Zeitteilung billiger; die
Sequenzteilung macht es etwas einfacher, Netze aufzubauen
oder Telephonie- und Datensignale zu mischen. Im Vergleich
zur verschiedenen Betriebssicherheit — oder bei gleicher Be-
triebssicherheit zu verschiedenem Informationsfluss durch eine
gegebene Leitung - fallen diese Unterschiede jedoch weniger ins
Gewicht.

5. Formerkennung und Winkelmessung

Zwei mogliche Anwendungen der Walsh-Funktionen, die
sich noch im rein theoretischen Stadium befinden, sind die
Formerkennung von reflektierenden Objekten und eine extrem
genaue Winkelmessung mit Radargeriten, die Walsh-Wellen
statt Sinuswellen verwenden. Fig. 10 zeigt die Reflexion von
Wellen, die von einem Radargerit R ausgestrahlt werden, an
zwei Punkten B; und B,. Der Abstand ds soll in der Gréssen-
ordnung der Wellenlidnge liegen, der Winkel zwischen d; und
dz soll so klein sein, dass er auf Grund des Richtdiagramms des
Radargerites nicht mehr gemessen werden kann.

a und b in Fig. 10 zeigen die von B; und B reflektierten
Sinuswellen. Empfangen wird ihre Summe c¢. Abgesehen von
den Abweichungen zu Beginn und Ende einer gepulsten Sinus-
welle, kann man aus Fig. 10c¢ nicht erkennen, ob es sich um die
Reflexion von zwei Punkten oder von nur einem stiirker re-
flektierenden Punkt handelt.

Wird statt einer Sinuswelle eine Walsh-Welle ausgesandt,
dann erhilt man im einfachsten Fall die reflektierten Wellen

=

r=
1+cos o

d=r, COSCx, -, coS X,

h=ry +d

Fig. 11
Reflexion von Walsh-Wellen durch Parabolspiegel und Winkelreflektor

Erklirungen siehe im Text
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Fig. 12
Winkelmessung mittels der relativen Laufzeit von Sinus- und Walsh-Wellen

Erklarungen siehe im Text

d und e in Fig. 10. Die empfangene Summe dieser zwei Wellen
zeigt Fig. 10f. Diese Welle hat eine vollig andere Form als in
Fig. 10d und 10e. Man kann aus ihr auf die Zahl der reflektie-
renden Punkte und ihren Abstand schliessen. Dieses Prinzip ist
auf komplizierte Fille anwendbar. Ein reflektierender Korper
endlicher Ausdehnung reflektiert von jedem Punkt seiner
Oberfliche eine Welle. Die gegenseitige zeitliche Verschiebung
dieser reflektierten Wellen hdngt von der Lage der Punkte auf
der Oberfliche des Korpers ab. Aus der Form der Summe aller
reflektierten Wellen lésst sich daher auf die geometrische Form
des Korpers schliessen. Ein wesentliches Ergebnis ist, dass da-
durch ein geometrisch kleiner, aber gut reflektierender Winkel-
spiegel von einem geometrisch grossen, aber schlecht reflektie-
renden Korper mit beispielsweise zylindrischer Form unter-
schieden werden kann.

Fig. 11 zeigt die Reflexion von Wellen durch einen Parabol-
spiegel und einen zweidimensionalen Winkelspiegel. Aus der
Gleichung r = p/(1 + cos «) der Parabel in Polarkoordination
folgt, dass die Strecken r; + d und rein Fig. 11a gleich lang
sind. Eine vom Brennpunkt D eines Parabolspiegels ausge-
sandte Walsh-Welle wird daher durch die Reflexion am Para-
bolspiegel nicht verzerrt; ein solcher Spiegel ist zur Biindelung
von Walsh-Wellen geeignet. Fig. 11b zeigt zwei Wege a und b
von Wellen, die durch einen Winkelspiegel reflektiert werden.
Fur Parallel einfallende Wellen sind diese Wege gleich lang.
Eine Walsh-Welle wird daher durch einen Winkelspiegel ohne
Anderung ihrer Form reflektiert. Diese Eigenschaft haben auch
dreidimensionale Winkelspiegel.

Das Prinzip einer Winkelmessung durch Vergleich von
Laufzeiten zeigt Fig. 12c. Zwei Empfinger an den Punkten A
und B empfangen die von einem Sender in grosser Entfernung
ausgestrahlten Wellen, die praktisch parallel in Richtung der
Strahlen a und b einfallen. Aus einer Messung der Laufzeit-
differenz AT = AC/c folgt der Winkel f = arc sin cAT/AB.
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Die kleinste messbare Laufzeitdifferenz ATminhdngt fiir Sinus-
und Walsh-Funktionen davon ab, wie steil die Funktionen in
den Nulldurchgingen verlaufen. Fiir Sinusfunktionen ist
ATwin daher proportional 1/f, fiir Walsh-Funktionen propor-
tional 1/¢; in den Fig. 12a und 12b ist der Proportionalitéts-
faktor mit & bezeichnet. Das Auflosungsvermogen — das ist
die kleinste messbare Zeit ATmin, oder der kleinste messbare
Winkel A ~ cATmin/AB — ist fiir Sinus- und Walsh-Funk-
tionen annidhernd gleich. Der Aufldsungsbereich ist jedoch
vollig verschieden: Der grosste zuldssige Wert von AT muss
zwischen —T7/2 und +T7/2 liegen, wenn T die Periode der Welle
ist, da eine um ein Vielfaches von 7T verzogerte Welle gleich der
unverzogerten Welle ist. Daher ist ATwax gleich 7. Im Falle der
Sinusfunktion gilt 7 = 1/f, also ATwmax = ATmin/e. Fiir ge-
wisse Walsh-Funktionen sal(i,0) gilt jedoch T = i/$, und daher
ATmax = iATmin/e. Fir i = 3 ist eine solche Walsh-Funktion
in Fig. 12b gezeigt; andere geeignete Werte sind i = 2k — 1.
Durch die Wahl eines grossen Wertes von i kann der Auflo-
sungsbereich ATmax vergrossert werden, ohne dass die kleinste
messbare Laufzeitdifferenz ATmin vergrossert wird.

Man erhélt folgende Richtwerte nach Fig. 12¢ fiir zwei
Punkte A und B auf der Erde mit & = 51° nordlicher und siid-
licher Breite und ATmin = 109 s: AB = 10000 km; nutzbarer
Beobachtungswinkel 180 — 2a = 78%; Aufldsungsvermogen
A ~ 0,05 oder Af ~ 3 X 10°8; | = eATmax/ATmin =
egcos af/Af ~ 2,5 -108¢ ~ 106, Einem Winkel von 0,05” ent-
spricht eine Bogenldnge von rund 10m in der Entfernung des
Mondes und von rund 3 km in der Entfernung des Mars, wenn
er in Erdnihe ist. Dieses Winkelmessverfahren bietet daher die
Moglichkeit einer extrem genauen Positionsbestimmung und
damit Steuerung von Weltraumsonden [12]. Der auflosbare
Winkel von 0,05” liegt ungefidhr eine Grossenordnung unter
dem durch astronomische Fernrohre auflosbaren Winkel.

6. Dopplereffekt von Walsh-Wellen

Eine sinusférmige elektromagnetische Welle E sin2mf
(t — x/c) wird durch den Dopplereffekt in die Welle E sin
2nf’ (¢ — x’/c) umgewandelt. f” hat den Wert:

1—v/c

= e 5
= ®)
(v Relativgeschwindigkeit von Sender und Empfinger)

Eine Walsh-Welle:
E(x,1) = Esal (¢T, ! _73‘/3) 6)

wird durch die Transformationsgleichungen der Relativitits-
theorie:

t' + ovx'[c?
= ——
V1= v2/c2
)
x4+ ot 0
V1 —0v%c?
in die folgende Form umgewandelt:
' —X'c
El ,, t') = Esal 7; o — e
', 1) (¢ - V1 — v¥c? ) (8)
1 —v/c

Um GIL. (8) in die Form von Gl. (6) zu bringen, muss man die
transformierte Sequenz ¢” und Zeitbasis T’ folgendermassen
definieren:
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1 —v/c

T e ®
T = T@ (10)
—v/c
Man erhélt damit:
E(x', 1) = Esal (¢ T, = /c) a1

Aus GI. (9) und (5) folgt, dass Sequenz und Frequenz durch
den Dopplereffekt gleich verdndert werden. Die zusitzliche
Anderung der Zeitbasis nach GI. (10) erzeugt eine Invariante
des Dopplereffektes oder der Lorentztransformation:

T'¢'=T¢ (12)

Wiéhrend man einer Sinuswelle nicht ansehen kann, ob sie
mit Frequenz /' von einem Sender mit Relativgeschwindigkeit »
oder mit Frequenz /’ von einem Sender mit Relativgeschwin-
digkeit 0 stammt, ist das bei Walsh-Wellen im allgemeinen der
Fall. Dieses Ergebnis leuchtet unmittelbar ein, denn nach Fig. 1
wiirde eine Verringerung der Sequenz ¢ = 4/T von sal(4,0) auf
¢ = 34¢ zwar den Wert ¢’ = 3/T liefern, die entstehende
Walsh-Funktion wiirde sich jedoch von sal(3,0) unterscheiden.

Die bisher bekannt gewordenen moglichen Anwendungen
des Dopplereffektes der Walsh-Funktionen liegen ausserhalb
des Bereiches der Nachrichtentechnik. Beispielsweise wiirde

ein auf einem Planeten befindlicher, Sinuswellen abstrahlender
Sender aus jeder Richtung im Weltraum mit einer anderen
Frequenz empfangen werden, und diese Frequenz hinge auch
von der Position des Planeten auf seiner Umlaufbahn ab; eine
Walsh-Welle wiirde hingegen unabhingig von Richtung und
Position immer als dieselbe Welle identifiziert werden konnen.
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EIN BLICK ZURUCK
Apparat zur Leitungsberechnung von H. Helberger, 1892

Deutsches Museum, Miinchen

Als im Laufe der 80er Jahre des vergangenen Jahrhun-
derts die elektrischen Zentralstationen und damit die Ver-
sorgungsnetze fiir elektrische Energie enstanden, versuchte
man schon, sich das Berechnen der Kabelquerschnitte zu er-
leichtern. Der Spannungsabfall durfte mit Riicksicht auf die
damit verbundene starke Helligkeitsabnahme der Kohlen-
fadenlampen etwa 3 % nicht unterschreiten. Anderseits wa-
ren Kabel teuer. Auch durfte die Spannung, mit Riicksicht
auf die Lebensdauer der Lampen, an den nahe beim Unter-
werk liegenden Stellen nicht zu hoch werden.

An und fiir sich rechnete man mit sehr unsicheren Unter-
lagen, da man die Entwicklung selbst fiir wenige Jahre im
voraus nicht ahnen konnte. Auch war die Berechnung des

Spannungsabfalls in den einzelnen Knotenpunkten des Netzes schwierig.

Die Analogie zwischen der Konstruktion des Seilpolygons in der Statik und den Formeln fiir den Spannungsabfall in
den Leitungen war der Anlass fiir den abgebildeten Apparat. Die Strombelastungen wurden durch Gewichte dargestellt, die
an den die Kabel symbolisierenden Drihten angehéngt waren. Dann ergaben die Durchhinge an den einzelnen Punkten
den Spannungsabfall. Es konnte bei diesem Apparat jeweils der Spannungsabfall in zwei Knotenpunkten bestimmt werden,
wenn die Spannung der umliegenden Knotenpunkte bekannt war. Jedenfalls war es moglich, mit diesem Gerdt ohne viel
Rechnerei ein ganzes Stadtnetz durchzuarbeiten. A. Wissner
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