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BULLETIN
DE L'ASSOCIATION SUISSE DES ELECTRICIENS

Organe commun de l'Association Suisse des Electriciens (ASE)
et de l'Union des Centrales Suisses d'électricité (UCS)

Les coefficients de dispersion dans les circuits a aimants permanents
Par C. Schick, Zurich

Le présent article propose une méthode pour l'étude systématique

des circuits magnétiques à aimants permanents en utilisant
un coefficient de dispersion auxiliaire. En outre, on définit un
circuit magnétique idéal dont le coefficient sus-mentionné peut être
déterminé par une hypothèse d'approximation, selon laquelle la
différentielle d'une certaine relation linéaire de ce coefficient est
proportionnelle à elle-même et à la différentielle de la longueur de
l'entrefer.

621.3.042

Die vorliegende Abhandlung umschreibt eine Methode, um
Dauermagnetkreise mittels eines zusätzlichen Streufaktors
systematisch zu berechnen. Ausserdem wird ein idealer Magnetkreis
definiert, bei dem der erwähnte Streufaktor durch eine
Näherungshypothese bestimmt werden kann. Diese Hypothese besagt,
dass das Differential einer einfachen linearen Beziehung des
Streufaktors proportional zur selben Beziehung und zum
Differential der Luftspaltweite ist.

1. Introduction

Dans l'établissement d'un projet de circuit magnétique à

aimants permanents, un des problèmes fondamentaux qui se

pose est la détermination du flux utile d'entrefer pour une
géométrie donnée, problème dont la résolution constitue l'objet
de cette étude. Pour réaliser ce calcul, on fait usage de la
méthode bien connue du circuit électrique équivalent [1]1). Dans
les considérations qui suivent, on fera appel à un système

symétrique le plus simple possible, tel qu'il est représenté par
la fig. 1. On admet ici que la longueur L des aimants, la surface

A g de leur section et le périmètre Un de ceux-ci ainsi que la

perméabilité p po de la matière constituée par l'aimant sont

connus. L'armature de court-circuit étant en fer doux, on
admettra pour cette dernière une perméabilité théoriquement
infinie. En outre, on suppose que ce système se trouve dans le

vide dont la perméabilité est po. La fig. 2 représente le schéma

du circuit électrique équivalent dans lequel n est la réluctance

interne de l'aimant, Ri la réluctance de dispersion en parallèle
avec rp r et R les réluctances de l'entrefer et de l'armature.
Pour cette dernière, on admettra R 0. De même tfh, <Pa et <Pe

sont les valeurs des flux magnétiques se rapportant aux
réluctances correspondantes.

En appliquant les lois de Kirchhoff au réseau de la fig. 2,

on obtient facilement les équations suivantes :

<Pa

<pe —

*Pi — t&e "h

(R + r) F
A

2 F Ri

F (2 Ri + R + r)

(Traduction)
avec A A' + + ri) R (4)

et A'= (Ra + rf) r + 2 n Ri (5)

Dans ces équations, F est la force magnétomotrice des

aimants, laquelle peut être déduite immédiatement de (2) en
faisant r R 0. On obtient ainsi :

ébo —r i
(6)

(1)

(2)

(3)

h Voir bibliographie à la fin de l'article.

Dans cette dernière équation, <Pa' BoAg est le flux de la

ligne de recul FA (fig. 3) coupant la courbe de désaimantation

pour la valeur du champ H 0 qui correspond théoriquement
à l'état de court-circuit du système représenté dans la fig. 1. En
introduisant la valeur (6) dans les équations (1), (2) et (3) on
obtient pour R 0 :

<Pi'/<I>o'= r n/A' (7)

<Pe'/<Po' 2 Ra n/A' (8)

Öh'/fo' n (2 Ri + r)/A' (9)

S'il était possible de déterminer Ri et r d'une manière

directe, on obtiendrait immédiatement, par ces formules, les

flux magnétiques dans les différentes réluctances du circuit
considéré. Pour éviter la détermination mathématique directe

de ces valeurs, ce qui est difficile, étant donné que les

réluctances dans l'air prennent des formes assez compliquées, il se

révèle très pratique d'introduire un facteur de dispersion qui

peut être déterminé expérimentalement. C'est le coefficient de

dispersion normal qu'on trouve dans la littérature. Par

exemple, dans [2] (chap. 6, art. 11), on le désigne par Ici, mais

la Commission Electrotechnique Internationale emploie la

dénomination a. Bien que ce coefficient remplace en réalité les

deux inconnues Ri et r, on démontrera plus tard (paragraphe
4) qu'il suffit de connaître ce seul coefficient de dispersion pour
déterminer exactement, soit le point de travail du circuit
magnétique considéré, soit le flux utile dans l'entrefer net.

Néanmoins, quand on veut tenir compte également de la
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<pe

d>e' + <&&' _ <&&'
_ r+ <fe' " +2Al0Q

tf>l' <Pe'
ai ~^Tr— a -

Ut/Ue

^en

&e rtl&e r

^en

1 In'
Ut'/Ue' <t>e rt'l<Pe r 1 jn

-2-+2.
2 Ra r

1

+
1

> 1

2 Ra R + r a — 1 + i? + r

fig. 1. Par contre, <?én est le flux net traversant l'entrefer entre
les lignes AA' et CC de la même figure. On a, évidemment,

toujours <t>e> 3>én et, par conséquent, aussi <7r>cr. En outre,
Ut est le potentiel magnétique total dont on dispose pour les

réluctances R, r et 2R&, et Ue le potentiel à travers l'entrefer.
De même, Ut et Ue' sont les valeurs de Ut et Ue pour /? 0,

mais r =1= 0. Enfin, on constate, d'après (12), que r est égale à

1 pour R 0.

Il convient de trouver une formule de transformation
permettant d'obtenir le coefficient de dispersion «débordant» à

partir du coefficient réel. Pour y parvenir, on peut faire le

raisonnement suivant:
Si le flux magnétique ne débordait pas des lignes AA' et

CC (fig. 1), on aurait tout simplement:

Fig. 1

Système magnétique symétrique
1, 2 Aimants permanents; 3 Armature de court-circuit; AA'CC Entre¬

fer utile; A A'm + CC'n Zone de dispersion de l'entrefer;
BA DC A'B' C'D' L Longueur des aimants

reluctance R =1= 0 et des réluctances dues aux pertes dans les

joints et à la saturation partielle du fer de l'armature, on
introduit un deuxième facteur, le coefficient de réluctance,
qu'on désigne par exemple par ki [2] ou par t [3] et qui est

heureusement beaucoup plus petit que le coefficient ki. Le
facteur r est compris, en effet, dans la plupart des cas pratiques,
entre 1,05 et 1,45. Dans les circuits magnétiques où l'armature
est très loin de la saturation, on utilise souvent la valeur

r 1,05 qu'on considère comme constante.

Cependant, on introduira dans cet exposé un troisième
facteur de dispersion a; on l'appellera coefficient de dispersion
«débordant». Le facteur k\ reste le même, mais pour éviter
des confusions on le désignera par err ki), en l'appelant
coefficient de dispersion «homogène» ou «réel». La raison

pour laquelle on introduit le facteur a est qu'il est très intéressant,

du point de vue théorique, de connaître séparément les

deux réluctances r et Ra. D'autre part, dans certaines
constructions, il est possible d'utiliser une section d'entrefer plus
grande que celle qui correspond à la surface nette Ag et, dans

le cas limite où le flux total <Pe' peut être utilisé, on devra faire

usage également de a au lieu de <rr.

2. Les coefficients de dispersion

Les coefficients de dispersion sont définis comme suit :

r rq ßoAg
(13)

où x représente la longueur de l'entrefer. Puisque le flux
déborde des lignes AA' et CC', on peut imaginer une réluctance

/'b mise en parallèle avec r, de façon que :

r ^~ ^~ (14)
ßo A m n> + rq

dans laquelle Am serait une section moyenne entre et la

surface mn (fig. 1). La fraction de c£>e' est par conséquent:

^en
rct rb rq— r,i

n> rq r
(15)

En introduisant cette dernière équation dans (11), on obtient :

gr
a

(pe

'Peu
JA
r

(16)

qui est la formule de transformation désirée.

D'autre part, le coefficient de dispersion réel est généralement

une fonction de la forme :

(Tr 1 + x Q(x) (17)

Une formule pratique, due à Maynard [2], donne:

/ 2,2 Ua [ L -\- x
(Tr 1

3 Ag H 2 L+x
(18)

Pour l'évaluation du coefficient de dispersion «débordant»,
Koch [3] a calculé quelques formules qui ont une forme assez

Rd Rd

(10)

(H)

(12)

Dans ces équations, <Pe' est le flux total traversant l'entrefer,
c'est-à-dire le flux qui occupe tout le volume AmA'C'nC de la

Fig. 2
Circuit Électrique équivalent

R Réluctance interne de l'armature; R(i Réluctance de dispersion;
r Réluctance d'entrefer; r, Réluctance interne des aimants; F Force

magnétomotrice des aimants; >q Flux magnétique de dispersion;
Flux total d'entrefer; <f>j Flux des aimants

1148 (A 712) Bull. SEV 59(1968)25, 7. Dezember



M

-H

Exemples de coefficients de dispersion

X

mm % <7r CTi

0,2 1,06 1,05
1 1,24 1,16 1,30 1,21
3 1,46 1,42 1,85 1,48
5 1,61 1,68 2,36 1,62

par et o\. Il est évident que seule l'expérience peut déterminer
si un circuit magnétique est «idéal» dans le sens défini ou non.

Par cette hypothèse d'approximation on a donc :

d (en — s) — m (cri — s) dx (19)

où s et m sont des constantes à déterminer. Par intégration
de (19) on obtient, en tenant compte que pour x 0 en doit
être égal à 1 :

(en - 1) A (1 - e-m x) (20)

Pour pouvoir utiliser l'équation (20), il est nécessaire de

connaître à l'avance les constantes d'intégration. Pour ce

faire, on déterminera de manière approximative la valeur en«,

et la pente de la courbe den/dx pour x 0.

Des équations (13), (16) et (17) il résulte, pour x oo\

Qoo roo A g po (21)

Fig. 3

Courbe de désaimantation

B Induction magnétique; Br Rémanence du matériau; AO Rémanence

de recul; MO Induction au point de travail; PA Courbe de recul;
-H Champ démagnétisant; Hc Force coercitive du matériau; P Point
de travail; a Angle de la droite de charge; tg ß ß Pente de la ligne

de recul

compliquée et nécessitent aussi la détermination préalable de

certains paramètres empiriques. Dans le tableau I, on a récapitulé

les résultats se rapportant à un exemple pratique qui
comporte les données suivantes (fig. 1) :

D AC 8 mm
L BA 15 mm
b 70 mm
M 4,5

où b est la dimension dans la direction perpendiculaire au

papier. Dans ce tableau, crr a été calculé au moyen de la
formule (18) et erc (théorique) et am (mesuré) sont les résultats
obtenus par Koch [3] pour le coefficient «débordant».

3. Circuit magnétique idéal

Afin de simplifier dans certains cas le calcul du coefficient
de dispersion «débordant», on introduit la définition suivante:

on appelle circuit magnétique idéal tout circuit dont le
coefficient de dispersion «débordant» vérifie l'hypothèse
d'approximation par laquelle on admet que la différentielle d'une
certaine relation linéaire du coefficient «débordant» est

proportionnelle à cette même relation et à la différentielle de la

longueur de l'entrefer. Dans ce cas, le coefficient de dispersion
«débordant» est appelé simplement «idéal», et sera désigné

La dernière équation donne erioo en fonction de roo. Une valeur
approximative de roo peut être trouvée en raisonnant de la
façon suivante: La réluctance entre deux sphères de diamètre
a qui sont déplacées à une distance infinie l'une de l'autre vaut
[2]:

1

(22)
napo

Dans le cas présent, on peut admettre que chaque sphère
est équivalente, du point de vue de la réluctance, à un pôle
magnétique de surface Ag, tel qu'on ait:

7i a2 Ag

Par substitution de (23) dans (22), il vient :

1

f"oo -
JUO VnAg

(23)

(24)

qui est la réluctance / oo cherchée.

Il faut considérer encore la pente de la courbe en F(x)
pour x 0. En première approximation, on peut admettre

que la valeur den est égale à / • den pour une valeur de x p
proche de zéro. (Comme valeur pratique, on peut admettre
dans l'exemple en question / 0,85). De façon analogue, on
peut établir que la pente de la courbe pour x 0 est le

rapport :

d(7r
tg <Po =f- dx /G(0) (25)

Par substitution de (25) dans (20), il résulte finalement pour
x 0:

A m tg <pa (26)

De (20) et pour x oo, il résulte d'autre part :

A et ioo 1 (27)

Tableau I

En introduisant (27) dans (20), on obtient l'équation
suivante :

etî —If (etioo - 1) (1 - e-mx) (28)

qui donne le coefficient de dispersion «débordant» pour une
géométrie donnée.

Si on applique cette théorie à l'exemple décrit au début, on
obtient (Qoo étant extrapolé à partir des etm mesurés)

<Ti= 1 +0,76(1 -e~0'33x) (29)

En posant dans cette équation x 1, x 3 et x 5 mm,
on en tire les valeurs théoriques en de a qui figurent aussi dans
le tableau 1. Puisque l'approximation faite sur ces valeurs en par
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rapport aux valeurs mesurées am est plus exacte que celle

calculée par la théorie de [3], le circuit magnétique de l'exemple
en question peut être considéré comme «idéal». Une valeur

approximative de ow peut être aussi obtenue selon la méthode
décrite dans l'annexe I.

4. Application pratique

Pour faire le calcul du flux magnétique utile dans l'entrefer,
on peut partir des deux coefficients ar et a définis dans cette
théorie. On sait, d'une part, que at est le même que celui de la

formule (18). D'autre part, le a peut être obtenu à partir des

formules de Koch [3] ou bien de la formule (28), s'il s'agit d'un
circuit magnétique idéal dans lequel a ai. Avec ces deux
valeurs on obtient successivement :

ar= — rq
Gr

Ra

et, pour ri, on a aussi:

2 (c — 1)

ß ßo Ag

Valeurs des réluctances Ra et r

X

mm
clot 103 mm-1

r
103 mm-1

Ra
103 mm-1

0 1,00 0 0 3,56
î 0,95 1,79 1,70 3,54
3 0,79 5,36 4,23 4,60
5 0,68 8,93 6,07 4,97
oo 0 oo 23,8 15,7

Xgß ß
0d — 0i AO — MO

tga

ßo H Ag

_ ßo H Ag

PM

PM
0i MO

tga fi-2 ri a ß 2 n ar

^en —
Bi " A g MO- Ag

ar
(36)

qui donne la valeur 0én cherchée. On voit d'après les équations
(35) et (36) que, pour R 0 ou t 1, les valeurs tg a et <£én ne

dépendent pas de a, comme on l'avait déjà mentionné
(paragraphe 1).

De manière tout à fait analogue, on obtient à partir de (11) :

0e Bi-Ag (37)

Finalement, il est aussi intéressant de connaître la limite de

la valeur Ra pour x 0. Des équations (13), (16), (20), (26)
et (31) on obtient, en effectuant:

(30)

(31)

(32)

On dispose alors de toutes les valeurs des réluctances nécessaires

pour obtenir les relations 0a, 0e, 0i des équations (1) à

(6) dans lesquelles 0d F/r\ est le flux réversible de court-
circuit correspondant au point A de la courbe de recul [4] de la

fig. 3. Dans la même figure, le point P correspond au flux 0i
et PO est la droite de travail de la courbe de désaimantation.
Dans le tableau II, on a récapitulé les résultats de Ra et r se

Tableau II

(33)

(34)

d'où l'on tire, en tenant compte des équations (3), (4), (5), (6)

et (12):
r r _ rqT (35)

1

ßo-2Agtg(f>o
(38)

rapportant à l'exemple précédent. Dans celle-ci, on peut constater

que la variation de Ra est beaucoup plus faible que celle
de r.

En ce qui concerne le calcul de l'angle a, il est facile, à l'aide
de la fig. 3, d'établir les équations:

et on voit que, pour de petites valeurs de x, on peut considérer
Ra comme une constante.

5. Conclusions

1. Dans le cas R 0, le coefficient aT suffit pour déterminer
exactement le flux net d'entrefer 0én selon la méthode
classique.

2. Par contre, il est nécessaire de connaître les deux coefficients

de dispersion err et a, soit pour obtenir le flux d'entrefer
total (37), soit pour déterminer r en fonction de l'entrefer (12)
et (16).

3. Une autre application de cette étude serait de
déterminer les flux magnétiques dans le cas général R =1=0,

puisqu'elle donne les valeurs Ra et r applicables aux formules (1)
à (6).

Annexe

Calcul de aioo

On peut faire le calcul direct de aioo à partir de l'équation
(10), si l'on admet que #oo et Raoo sont connus.

La valeur de roo a déjà été tirée de (24). La valeur approximative

de Raco peut être déduite de la relation suivante:

1

Râo

1

Rai
1

Ras (Al)

où Rai est la réluctance de dispersion correspondant aux

quatre surfaces latérales de l'aimant, laquelle peut être
déterminée par le rapport entre la longueur moyenne des lignes de

force Vi t • Vi L et la moitié de la surface latérale des aimants,
multiplié par la fraction Um&x./Umea 2, car on peut admettre

que la variation de la tension magnétique Um est linéaire le

long des aimants. On a alors:

Rai

Cette dernière équation donne l'angle a de la droite de

travail, dont l'intersection avec la courbe de désaimantation
donne le point de travail P duquel part la droite PA avec la

pente tg ß ß. D'autre part, puisque Bi MO et 0i BiAg,
on tire de (11) l'équation suivante:

1 1

ßo 2 L Ug

Un
Umed ßo Un (A2)

tandis que, dans Al, la réluctance Rai correspond aux quatre
quarts de sphère, qu'on doit imaginer comme étant situés à

chaque coin des aimants (lignes AB et CD dans la fig. 1), pour
compléter le modèle des lignes de force.

1150 (A 714) Bull. SEV 59(1968)25, 7. Dezember



Cette réluctance Raz est proportionnelle au rapport entre le

carré de la longueur d'un demi-cercle de diamètre x/z L et le

volume d'une sphère de diamètre L, multiplié par (/max/t/med.
Avec ces valeurs on obtient:

\ 2

Ra2
Un 3 71

Mo
4 7t (è^r Umed MO ' 4 L (A3)

Par substitution de (A3) et (A4) dans (Al), il résulte:

1 l Un

RAo
Mo (—+¥)\ n 3 71/

(A4)

En appliquant ces valeurs à l'exemple considéré, on obtient:

Rioo 17,8 • Id"3 mm-1 (A5)

Enfin, par substitution de (A5) et (24) dans (10), on tire:

c ioo 1,67 (A6)

qui donne la valeur de crioo cherchée. On constate que cette

valeur diffère très peu de celle obtenue par extrapolation dans

le paragraphe 3.
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EIN BLICK ZURÜCK
Freileitungs-Blitzschutz von Oerlikon, 1886

Die erste elektrische Kraftübertragung, die lange Jahre

erfolgreich im Betrieb war, ist die von Kriegstetten nach So-

lothurn, 1886. Die Entfernung der Übertragung betrug 8 km,
die Spannung 2000 V. Übertragen wurden 50 PS. Bei der für
die damalige Zeit hohen Spannung benützte man für die

Übertragung eine Freileitung.
Schon seit den 40er Jahren des vergangenen Jahrhunderts

hatte sich bei Telegraphenleitungen als Blitzschutz der
Plattenblitzableiter eingeführt, der allmählich mehr und mehr
verbessert wurde. Für die Hochspannungsleitung einer
Kraftübertragung war er jedoch nicht geeignet. Die Maschinenfabrik

Oerlikon, die die Kraftübertragung gebaut hatte, wählte

daher eine andere Konstruktion, die sich offenbar
bewährte, da sie bis zur Stillegung der Anlage im Jahre 1908

eingebaut war.
Die mittlere gezackte Platte aus Bronzeguss von 14,5 cm

Durchmesser war geerdet, der äussere Kranz mit der Leitung
verbunden. Beide Teile waren voneinander isoliert auf einem kräftigen Glassockel befestigt. Dieser war unmittelbar auf die

Schalttafel montiert. Er diente wohl nicht nur zur Isolierung, sondern auch als Feuerschutz, denn die Schalttafeln waren
damals noch aus Holz. A. Wissner

Deutsches Museum, München
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