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BULLETIN

DE L’ASSOCIATION SUISSE DES ELECTRICIENS

Organe commun de I’Association Suisse des Electriciens (ASE)
et de 'Union des Centrales Suisses d’électricité (UCS)

Les coefficients de dispersion dans les circuits a aimants permanents
Par C. Schick, Zurich

Le présent article propose une méthode pour I'étude systéma-
tique des circuits magnétiques a aimants permanents en utilisant
un coefficient de dispersion auxiliaire. En outre, on définit un cir-
cuit magnétique idéal dont le coefficient sus-mentionné peut étre
déterminé par une hypothése d'approximation, selon laquelle la
différentielle d’une certaine relation linéaire de ce coefficient est
proportionnelle a elle-méme et a la différentielle de la longueur de
l'entrefer.

1. Introduction

Dans I’établissement d’un projet de circuit magnétique a
aimants permanents, un des problemes fondamentaux qui se
pose est la détermination du flux utile d’entrefer pour une
géométrie donnée, probléme dont la résolution constitue I’objet
de cette étude. Pour réaliser ce calcul, on fait usage de la mé-
thode bien connue du circuit électrique équivalent [1]1). Dans
les considérations qui suivent, on fera appel & un systéme
symétrique le plus simple possible, tel qu’il est représenté par
la fig. 1. On admet ici que la longueur L des aimants, la surface
Ag de leur section et le périmétre Ua. de ceux-ci ainsi que la
perméabilité p po de la matiére constituée par 1'aimant sont
connus. L’armature de court-circuit étant en fer doux, on
admettra pour cette derniére une perméabilité théoriquement
infinie. En outre, on suppose que ce systéme se trouve dans le
vide dont la perméabilité est uo. La fig. 2 représente le schéma
du circuit électrique équivalent dans lequel r; est la réluctance
interne de I’aimant, Rgq la réluctance de dispersion en paralléle
avec ri, r et R les réluctances de I’entrefer et de I’armature.
Pour cette derniére, on admettra R = 0. De méme @i, @q et Pe
sont les valeurs des flux magnétiques se rapportant aux
réluctances correspondantes.

En appliquant les lois de Kirchhoff au réseau de la fig. 2,
on obtient facilement les équations suivantes:

o= BAOF (1)

__ 2FRa
D=7 - 2
¢i=¢e+¢d:m¢jm » 3)

1) Voir bibliographie & la fin de I'article.
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Die vorliegende Abhandlung umschreibt eine Methode, um
Dauermagnetkreise mittels eines zusdtzlichen Streufaktors syste-
matisch zu berechnen. Ausserdem wird ein idealer Magnetkreis
definiert, bei dem der erwdihnte Streufaktor durch eine Nihe-
rungshypothese bestimmt werden kann. Diese Hypothese besagt,
dass das Differential einer einfachen linearen Beziehung des
Streufaktors proportional zur selben Beziehung und zum Diffe-
rential der Luftspaltweite ist.

(Traduction)
avec Ad=4+Ri+r)R 4)
et A" =Ra+r)r+2ri Ra (&)

Dans ces équations, F est la force magnétomotrice des
aimants, laquelle peut étre déduite immédiatement de (2) en
faisant r = R = 0. On obtient ainsi:

Py = P (6)

Dans cette derniére équation, @¢" = BoAg est le flux de la
ligne de recul PA (fig. 3) coupant la courbe de désaimantation
pour la valeur du champ H = 0 qui correspond théoriquement
a I’état de court-circuit du systéme représenté dans la fig. 1. En
introduisant la valeur (6) dans les équations (1), (2) et (3) on
obtient pour R = 0:

Dy’ [Dy = rrifd ™
D[Py =2 Rari|d ®
Dy |®y =ri(2 Ra + r)/A’ 9)

S’il était possible de déterminer Ra et r d’une maniére
directe, on obtiendrait immédiatement, par ces formules, les
flux magnétiques dans les différentes réluctances du circuit
considéré. Pour éviter la détermination mathématique directe
de ces valeurs, ce qui est difficile, étant donné que les réluc-
tances dans I’air prennent des formes assez compliquées, il se
révéle trés pratique d’introduire un facteur de dispersion qui
peut étre déterminé expérimentalement. C’est le coefficient de
dispersion normal qu’on trouve dans la littérature. Par
exemple, dans [2] (chap. 6, art. 11), on le désigne par ki1, mais
la Commission Electrotechnique Internationale emploie la
dénomination o. Bien que ce coefficient remplace en réalité les
deux inconnues Rgq et r, on démontrera plus tard (paragraphe
4) qu’il suffit de connaitre ce seul coefficient de dispersion pour
déterminer exactement, soit le point de travail du circuit
magnétique considéré, soit le flux utile dans I’entrefer net.
Néanmoins, quand on veut tenir compte également de la
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Fig. 1
Systeme magnétique symétrique
1, 2 Aimants permanents; 3 Armature de court-circuit; A4°CC’ Entre-
fer utile; A4’m + CC’n Zdne de dispersion de 1’entrefer;

BA =DC = A’B” = C’'D” = L Longueur des aimants

réluctance R = 0 et des réluctances dues aux pertes dans les
joints et a la saturation partielle du fer de I’armature, on
introduit un deuxiéme facteur, le coefficient de réluctance,
qu’on désigne par exemple par k2 [2] ou par 7 [3] et qui est
heureusement beaucoup plus petit que le coefficient k1. Le
facteur 7 est compris, en effet, dans la plupart des cas pratiques,
entre 1,05 et 1,45. Dans les circuits magnétiques ou I’armature
est trés loin de la saturation, on utilise souvent la valeur
= 1,05 qu’on considére comme constante.

Cependant, on introduira dans cet exposé un troisiéme
facteur de dispersion a; on I’appellera coefficient de dispersion
«débordant». Le facteur ki reste le méme, mais pour éviter
des confusions on le désignera par or (= k1), en I'appelant
coefficient de dispersion «homogéne» ou «réel». La raison
pour laquelle on introduit le facteur o est qu’il est trés intéres-
sant, du point de vue théorique, de connaitre séparément les
deux réluctances » et Rq. D’autre part, dans certaines cons-
tructions, il est possible d’utiliser une section d’entrefer plus
grande que celle qui correspond a la surface nette Ag et, dans
le cas limite ou le flux total @e” peut étre utilisé, on devra faire
usage également de ¢ au lieu de or.

2. Les coefficients de dispersion

Les coefficients de dispersion sont définis comme suit:

D DS+ Dy Dy’ r
A e A X Y A
B ¢i/ B (pe'
or = Py =0 in (11
i Ui/ Ue _ De ri/De ¥ _ 1/r’ _
Ut'/Ue' die’ rt'/¢>e'r l/rt
1 1
4+ —
_ 2 Ra r _ a >1 a12)
L + __lh oc—1+ il
2 Ra R+r R+r

Dans ces équations, ®@¢’ est le flux total traversant I’entrefer,
c’est-a-dire le flux qui occupe tout le volume AmA’C’nC de la
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fig. 1. Par contre, ®en est le flux net traversant ’entrefer entre
les lighes A4’ et CC’ de la méme figure. On a, évidemment,
toujours @’ > deq et, par conséquent, aussi or>o. En outre,
Uy est le potentiel magnétique total dont on dispose pour les
réluctances R, r et 2Rq, et Ue le potentiel a travers I'entrefer.
De méme, Uy et Ue sont les valeurs de U et Ue pour R = 0,
mais r == 0. Enfin, on constate, d’aprés (12), que 7 est égale a
1 pour R = 0.

Il convient de trouver une formule de transformation per-
mettant d’obtenir le coefficient de dispersion «débordant» a
partir du coefficient réel. Pour y parvenir, on peut faire le
raisonnement suivant:

Si le flux magnétique ne débordait pas des lignes AA” et
CC’ (fig. 1), on aurait tout simplement:

X

T 13
oy (13)

r=rq=

ou x représente la longueur de I’entrefer. Puisque le flux dé-
borde des lignes 44" et CC’, on peut imaginer une réluctance
rp mise en paralléle avec r, de fagon que:

X rp Fq

= = 14
4 Ho Am rp + rq (=)

dans laquelle A, serait une section moyenne entre Ag et la
surface mn (fig. 1). La fraction @en” de @’ est par conséquent:

¢e’ _ rq+rh P rq

Bin - L

rprq e r
En introduisant cette derniére équation dans (11), on obtient:

o . D T (16)

o Den r

qui est la formule de transformation désirée.
D’autre part, le coefficient de dispersion réel est générale-
ment une fonction de la forme:

or=1+x0(x) W)
Une formule pratique, due a Maynard [2], donne:
2,2 U, L+ x
r=1 : - 18
< +x(3Ag>(2L ) (1)
g ¥

Pour I’évaluation du coefficient de dispersion «débordant»,
Koch [3] a calculé quelques formules qui ont une forme assez

Rd Rd

. @d ;
- _l S
@i F De
A
R
Fig.2

Circuit électrique équivalent
R Réluctance interne de I'armature; Ry Réluctance de dispersion;
r Réluctance d’entrefer; r; Réluctance interne des aimants; F Force
magnétomotrice des aimants; @4 Flux magnétique de dispersion;
@, Flux total d’entrefer; @; Flux des aimants
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Fig. 3

Courbe de désaimantation
B Induction magnétique; B, Rémanence du matériau; 40 Rémanence

de recul; MO Induction au point de travail; PA Courbe de recul;

—-H Champ démagnétisant; H, Force coercitive du matériau; P Point

de travail; a Angle de la droite de charge; tg B = 1 Pente de la ligne
de recul

compliquée et nécessitent aussi la détermination préalable de
certains paramétres empiriques. Dans le tableau I, on a récapi-
tulé les résultats se rapportant a un exemple pratique qui
comporte les données suivantes (fig. 1):

DZIL_CI 8 mm
L = BA = 15 mm
b = 70 mm

u =45

ou b est la dimension dans la direction perpendiculaire au
papier. Dans ce tableau, or a été calculé au moyen de la
formule (18) et o (théorique) et om (mesuré) sont les résultats
obtenus par Koch [3] pour le coefficient «débordant».

3. Circuit magnétique idéal

Afin de simplifier dans certains cas le calcul du coefficient
de dispersion «débordant», on introduit la définition suivante:
on appelle circuit magnétique idéal tout circuit dont le coef-
ficient de dispersion «débordant» vérifie I’hypothése d’ap-
proximation par laquelle on admet que la différentielle d’une
certaine relation linéaire du coefficient «débordant» est pro-
portionnelle a cette méme relation et a la différentielle de la
longueur de I’entrefer. Dans ce cas, le coefficient de dispersion
«débordant» est appelé simplement «idéal», et sera désigné

Exemples de coefficients de dispersion

Tableau I
, .
Om O¢ Or ai
mm
0,2 — — 1,06 1,05
1 1,24 1,16 1,30 1,21
3 1,46 1,42 1,85 1,48
5 1,61 1,68 2,36 1,62
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par ¢ = oi. Il est évident que seule ’expérience peut déterminer
si un circuit magnétique est «idéal» dans le sens défini ou non.
Par cette hypothése d’approximation on a donc:

(19)

ou s et m sont des constantes a déterminer. Par intégration
de (19) on obtient, en tenant compte que pour x = 0 ¢; doit
étre égal a 1:

d(gi—s5)=—m(oi —s)dx

(Gi—1)=A(l —emx) (20)

Pour pouvoir utiliser ’équation (20), il est nécessaire de
connaitre a I’avance les constantes d’intégration. Pour ce
faire, on déterminera de maniére approximative la valeur oico
et la pente de la courbe doi/dx pour x = 0.

Des équations (13), (16) et (17) il résulte, pour x = oo:

@D

La derniére équation donne cis en fonction de reo. Une valeur
approximative de reo peut étre trouvée en raisonnant de la
fagon suivante: La réluctance entre deux sphéres de diamétre
a qui sont déplacées a une distance infinie I’'une de [’autre vaut

[2]:

Tico — Qoo rooAg/lO

1
Tamuo

¥ == 22)

Dans le cas présent, on peut admettre que chaque sphére
est équivalente, du point de vue de la réluctance, a un pole
magnétique de surface Ag, tel qu’on ait:

Ta?= Ag (23)
Par substitution de (23) dans (22), il vient:
1
Foo =~ (24)
Z oV Aq

qui est la réluctance roo cherchée.

Il faut considérer encore la pente de la courbe i = F(x)
pour x = 0. En premiére approximation, on peut admettre
que la valeur do; est égale a f - dor pour une valeur de x = p
proche de zéro. (Comme valeur pratique, on peut admettre
dans ’exemple en question f = 0,85). De fagon analogue, on
peut établir que la pente de la courbe pour x = 0 est le
rapport:

tg g0~ /97— 10(0)

(25)

Par substitution de (25) dans (20), il résulte finalement pour
¥=0:

Am=tggo (26)
De (20) et pour x = oo, il résulte d’autre part:
A = Tico — 1 (27)

En introduisant (27) dans (20), on obtient ’équation sui-

vante:

0i=1+ (6ico — 1)+ (1 — e ™%) (28)

qui donne le coefficient de dispersion «débordant» pour une
géométrie donnée.

Si on applique cette théorie a I’exemple décrit au début, on
obtient (Qw étant extrapolé a partir des om mesurés)

o1=1+0,76 (1 — e0:33x) (29)

En posant dans cette équation x = 1, x = 3 et x = 5 mm,
on en tire les valeurs théoriques o; de ¢ qui figurent aussi dans
le tableau 1. Puisque I’approximation faite sur ces valeurs o par
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rapport aux valeurs mesurées om est plus exacte que celle
calculée par la théorie de [3], le circuit magnétique de I’exemple
en question peut étre considéré comme «idéal». Une valeur
approximative de oico peut étre aussi obtenue selon la méthode
décrite dans I’annexe 1.

4. Application pratique

Pour faire le calcul du flux magnétique utile dans I’entrefer,
on peut partir des deux coefficients or et ¢ définis dans cette
théorie. On sait, d’une part, que or est le méme que celui de la
formule (18). D’autre part, le ¢ peut étre obtenu a partir des
formules de Koch [3] ou bien de la formule (28), s’il s’agit d’un
circuit magnétique idéal dans lequel ¢ = &i. Avec ces deux
valeurs on obtient successivement:

g

= a_—r}’q (30)
r
Ra = m (€2))]
et, pour ri, on a aussi:
' I
= 32
" ko Ag 32

On dispose alors de toutes les valeurs des réluctances néces-
saires pour obtenir les relations @q, Pe, P; des équations (1) a
(6) dans lesquelles @o" = F/ri est le flux réversible de court-
circuit correspondant au point A de la courbe de recul [4] de la
fig. 3. Dans la méme figure, le point P correspond au flux @;
et PO est la droite de travail de la courbe de désaimantation.
Dans le tableau II, on a récapitulé les résultats de Ra et r se

Valeurs des réluctances Rq et r

Tableau II
x . rq r Ry
mm r 103 mm-1 108 mm-1 108 mm-1
0 1,00 0 0 3,56
1 0,95 1,79 1,70 3,54
3 0,79 5,36 4,23 4,60
5 0,68 8,93 6,07 4,97
o] 0 [e°] 23,8 | 15,7

rapportant a I’exemple précédent. Dans celle-ci, on peut cons-
tater que la variation de Rg est beaucoup plus faible que celle
de r.

En ce qui concerne le calcul de I’angle «, il est facile, a I’aide
de la fig. 3, d’établir les équations:

®y — Dy AO — MO
t — — — — 33
gf=u 2o H Ay s (33)
wHA;, PM
tgo = = 34
® 2 MO 9

d’ou I'on tire, en tenant compte des équations (3), (4), (5), (6)
et (12):

rT _ rqt
w-2ric  p-2rior

tgo = (35)

Cette derniére équation donne I’angle o de la droite de
travail, dont I’intersection avec la courbe de désaimantation
donne le point de travail P duquel part la droite PA avec la
pente tg f = x. D’autre part, puisque Bi = MO et @' = BiAg,
on tire de (11) ’équation suivante:

1150 (A 714)

oy, — Bide _ MO A

Or Or

(36)

qui donne la valeur @¢n cherchée. On voit d’aprés les équations
(35) et (36) que, pour R = 0 out = 1, les valeurs tg « et ®¢n ne
dépendent pas de o, comme on ’avait déja mentionné (para-
graphe 1).

De maniére tout a fait analogue, on obtient a partir de (11):

_ Bi‘Ag
ag

o (37D

Finalement, il est aussi intéressant de connaitre la limite de
la valeur Rq pour x = 0. Des équations (13), (16), (20), (26)
et (31) on obtient, en effectuant:

1

ag
(Ra)o = (7r) ' Ho"2 Agtg o (38)

et on voit que, pour de petites valeurs de x, on peut considérer
Ra comme une constante.

5. Conclusions

1. Dans le cas R = 0, le coefficient o suffit pour déterminer
exactement le flux net d’entrefer ®¢n selon la méthode clas-
sique.

2. Par contre, il est nécessaire de connaitre les deux coeffi-
cients de dispersion or et o, soit pour obtenir le flux d’entrefer
total (37), soit pour déterminer 7 en fonction de I'entrefer (12)
et (16).

3. Une autre application de cette étude serait de déter-
miner les flux magnétiques dans le cas général R == 0, puis-
qu’elle donne les valeurs Rq et r applicables aux formules (1)
a (6).

Annexe

Calcul de Gico
On peut faire le calcul direct de gico a partir de 1’équation
(10), si I’on admet que ro €t Rao sont connus.

La valeur de ro a déja été tirée de (24). La valeur approxi-
mative de Rae peut étre déduite de la relation suivante:

1 1 1
Rdoo

(A1)

ou Rai est la réluctance de dispersion correspondant aux
quatre surfaces latérales de I’aimant, laquelle peut étre déter-
minée par le rapport entre la longueur moyenne des lignes de
force 14 - 14 L et la moitié de la surface latérale des aimants,
multiplié par la fraction Umax/Umea = 2, car on peut admettre
que la variation de la tension magnétique Um est linéaire le
long des aimants. On a alors:

11
=Tt * ity
2 x
Ry=-2 2 Zmx_ K (A2)
ﬂO'ELUa med Ho Ua

tandis que, dans A1, la réluctance Rq2 correspond aux quatre
quarts de sphere, qu’on doit imaginer comme étant situés a
chaque coin des aimants (lignes AB et CD dans la fig. 1), pour
compléter le modéle des lignes de force.

Bull. SEV 59(1968)25, 7. Dezember



Cette réluctance Raz est proportionnelle au rapport entre le
carré de la longueur d’un demi-cercle de diamétre 15 L et le
volume d’une sphére de diameétre L, multiplié par Umax/Umead.
Avec ces valeurs on obtient:

(ln.lL)z

o 2 2 Umax_ 3TC

S i e
Hor737\2

Par substitution de (A3) et (A4) dans (A1), il résulte:

| Us 4L
R = (5455 (A4)
En appliquant ces valeurs a I’exemple considéré, on obtient:

Raoo = 17,8 1073 mm-1 (AS)

Enfin, par substitution de (A5) et (24) dans (10), on tire:
Gico = 1,67 (A6)

qui donne la valeur de cico cherchée. On constate que cette
valeur différe trés peu de celle obtenue par extrapolation dans
le paragraphe 3.
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EIN BLICK ZURUCK
Freileitungs-Blitzschutz von Oerlikon, 1886

Deutsches Museum, Miinchen

Die erste elektrische Kraftiibertragung, die lange Jahre
erfolgreich im Betrieb war, ist die von Kriegstetten nach So-
lothurn, 1886. Die Entfernung der Ubertragung betrug 8 km,
die Spannung 2000 V. Ubertragen wurden 50 PS. Bei der fiir
die damalige Zeit hohen Spannung beniitzte man fiir die
Ubertragung eine Freileitung.

Schon seit den 40er Jahren des vergangenen Jahrhunderts
hatte sich bei Telegraphenleitungen als Blitzschutz der Plat-
tenblitzableiter eingefiihrt, der allm#hlich mehr und mehr
verbessert wurde. Fiir die Hochspannungsleitung einer Kraft-
tibertragung war er jedoch nicht geeignet. Die Maschinen-
fabrik Oerlikon, die die Kraftiibertragung gebaut hatte, wihl-
te daher eine andere Konstruktion, die sich offenbar be-
wihrte, da sie bis zur Stillegung der Anlage im Jahre 1908
eingebaut war.

Die mittlere gezackte Platte aus Bronzeguss von 14,5 cm
Durchmesser war geerdet, der dussere Kranz mit der Leitung

verbunden. Beide Teile waren voneinander isoliert auf einem kriftigen Glassockel befestigt. Dieser war unmittelbar auf die
Schalttafel montiert. Er diente wohl nicht nur zur Isolierung, sondern auch als Feuerschutz, denn die Schalttafeln waren da-

mals noch aus Holz.
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