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Zum Filteraufbau mit Zweigen aus Brücken ])

Von W. Herzog, Mainz

Behandelt wird die Brücke als Schaltelement (Zweigbrücke)
mit Induktivitäten, Kapazitäten und Kreisen in den Brückenzweigen.

Die Erzeugung von verschiedenem Reaktanzverlauf durch
symmetrische Zweigbrücken mit zwei und mit drei verschiedenen
Elementen in den Brückenzweigen wird aufgezeigt. Gewünschte
Brücken, bei denen ein üblicher Brückenzweig durch eine Zweigbrücke

ersetzt wird, können sehr vorteilhaft sein. Der Mehraufwand

bietet Freiheitsgrade, die eine günstigere Auswahl der
Schaltelemente zulassen. Am Beispiel eines Tiefpasses wird
gezeigt, wie die Umwandlung eines Zweiges in eine Zweigbrücke
den Aufbau mit Schwingquarzen ermöglicht.

621.372.54

L'exposé traite du pont considéré comme élément de montage
(pont de branchement) avec inductances, capacitances et circuits
dans les branchements du pont. On démontre la production de
diverses réactances par des ponts de branchement symétriques,
comportant deux ou trois éléments différents dans les branchements

du pont. Certains ponts, dont le branchement habituel est
remplacé par un pont de branchement, peuvent être très avantageux.

Le supplément de prix exigé fournit certains degrés de
liberté qui autorisent un choix plus avantageux des éléments de
montage. On démontre à l'exemple d'un filtre passe-bas de quelle
manière ta modification d'un branchement permet le montage
d'un quartz oscillant dans un pont à branchement.

1. Zum Problem

Mit der Auffindung der kanonischen Schaltungen war ein
wesentlicher Schritt zum Entwurf der günstigsten
Filterschaltungen getan. Bei stark unsymmetrischem Dämpfungsverlauf,

bezogen auf eine Mittenfrequenz, konnte es passieren,
dass die Induktivitäten jedoch zu gross oder zu klein wurden
und entsprechend die Kapazitäten. Hiebei wiesen die Verluste
der Schaltelemente oft nicht die benötigten geringsten Werte
auf, und die Filter hatten einen ungünstigen Dämpfungsverlauf.

Durch äquivalente Zweipole konnte manche Schaltung
verbessert werden. Völlig neu wurde die Situation durch die

Einführung der Schwingkristalle in die Filtertechnik. Die
Kristalle stellten neue Anforderungen an die übrigen Elemente.
Die Spulengüte musste erhöht werden, um die wesentliche
höhere Güte der Kristalle nicht wirkungslos zu machen. Am
einschneidendsten ist die Tatsache, dass trotz der verschiedensten

Kristallschnitte und der verschiedenen Kristallarten ein
relativ geringer Bereich für die Ersatzdaten eines Kristalls
möglich ist. Kommt in einer Schaltung bei ungefähr der
gleichen Frequenz ein Verhältnis der Induktivitäten von zwei

Schwingkristallen 1 : 10 und höher vor, so ist ein solches oft
nicht herstellbar. Hier muss ein geeigneter Schaltungsaufbau
helfen, wobei als neuer Gesichtspunkt auftaucht, dass es jetzt
auf eine Spule oder einen Kondensator mehr nicht ankommt,
da der Preis des Schwingkristalls wesentlich darüber liegt. Da
die Schwingkristalle nicht vermeidbare Nebenresonanzen
aufweisen, die sich nicht immer aus dem Anwendungsbereich des

Filters herausdrängen lassen, muss auch hier der Schaltungsaufbau

helfen. In einer früheren Arbeit [l]2) wurde gezeigt,
dass die Aufteilung einer Brücke in mehrere Brücken in Kette
eine Verringerung der Nebenresonanzen mit sich bringt. In
Abschnitt 4 dieser Arbeit wird kurz darauf eingegangen.

Viele Möglichkeiten bietet die Benutzung einer Brücke als

Brückenelement [2]. Ein Brückenelement kann Zweig einer

beliebigen Schaltung sein, zur Unterscheidung gegenüber der
Brückenfilterschaltung sei dasselbe als Zweigbrücke bezeichnet.
Hiebei können Kristalle durch eine Brückenersatzschaltung
wiedergegeben werden. Es sind neue Filter möglich, zum

Beispiel sog. breite Filter mit dem Aufbau wie ein schmales

Filter (s. Fig. 32).

Mit einem zusätzlichen Element — einer Spule oder einem
Kondensator — lässt sich ein Freiheitsgrad gewinnen, der die

Ersatzdaten der Kristalle anpassen kann [s. Gl. (83)].

2. Die Brücke als Schaltelement (Die Zweigbrücke)

2.1 Die Brückenformel

Für den Scheinwiderstand der in Fig. 1 gezeigten
vereinfachten Brücke gilt die Formel:

2X\ X2 + (Xi + X2)X
x= X! + X2 + 2X (1)

(Die Unterstreichung bedeutet, dass die betreffenden Grössen

komplex sein können.) In der vorliegenden Betrachtung werden

Fig. 1

Mit Reaktanz X abgeschlossene Zweigbrücke

nur verlustfreie Reaktanzen zugelassen, so dass sich Gl. (1)
vereinfacht zu :

2X1X2 + (X1 + X2)Xx XI+X2 + 2X (2)

Nun erhebt sich die Frage: Ist das Brückenelement — also

X — eine Reaktanz?

Bei verlustfreien Spulen und Kondensatoren nehmen deren

Blindwiderstände mit wachsender Frequenz zu. Dieses gilt
auch für aus Spulen und Kondensatoren durch Serie- und
Parallelschaltungen gewonnene Blindwiderstände. Das
Zunehmen mit wachsender Frequenz verursacht, dass sich Null-
und Polstellen abwechseln müssen und nur einfach vorkommen
dürfen. Genauere Ausführungen finden sich bei Cauer [3],
Hier sei nur gezeigt, dass mit der Voraussetzung, dass Xi, Xm

und X Reaktanzen sind, also mit

») Mitteilung des Instituts für Elektrotechnik der Universität Mainz.
-) Siehe Literatur am Schluss des Aufsatzes.

dX!
da» >0 dX2

da» >0 dX
da» >0 (3)
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Fig. 2
Zweigbrücke mit Differentialkondensatoren

[wobei co die Kreisfrequenz darstellt (co 2 nf)], sich ergibt:

dX
d&> >0 (4)

Für die Ableitung von Gl. (2) erhält man:

d x <*-*> S+2<x+x'>°-it+2<x+x'>'
den (Xi + X2 + 2X)2

(5)

woraus die Richtigkeit der Bedingung (4) leicht ablesbar ist.

2.2 Die Brückenzweige der Zweigbrücke

Da die Elemente Xi und X2 in Fig. 1 je zweimal vorkommen,
während X nur einmal vorhanden ist, empfiehlt es sich, Xi und
X'i so einfach wie möglich zu wählen. Flingegen kann X aus
einer grösseren Anzahl von Elementen zusammengesetzt
werden. Dabei entsteht kein Nachteil, denn bis auf den

Faktor 2 sind in Gl. (2) alle drei Grössen gleichberechtigt.
Wählt man als Zweigbrücke eine Differentialbrücke, so sind

X -O o-

Fig. 3

Zweigbrücken aus angezapften Spulen

alle Elemente nur einmal vorhanden. Auch wenn man die

Brückenzweige einer Zweigbrücke einfach aufbaut, so erhöht
sich die Anzahl der Elemente gegenüber äquivalenten
Aufbauten [2], Abhilfen sind die Verwendung von Differential-
kondensatoren (Fig. 2) und von angezapften Spulen. Bei

Spulen gibt es die in Fig. 3a, b, c wiedergegebenen drei
Möglichkeiten. Zu der Anordnung Fig. 3a erhält man das in Fig. 4

gezeigte Ersatzbild.

Fig. 4
Ersatzbild der Brücke in Fig. 3a

Die Berechnung nach Gl. (1) mit den Selbstinduktivitäten

Li, Li und deren Gegeninduktivität M (Fig. 4) ergibt:

r, 2co2(LiL2-M2) + co(Li+L2-2M)XA TV—— — ~ ~ (6)

Mit

wird

X

cd {Li L'2 -F 2 AL) -j- 2 X

M k \'LiL2 (7)

Für die Anordnung Fig. 3b erhält man in gleicher Weise

2co2(LiLo~ M2) + ca(Li+L2 + 2M)X
M (Li 1.2 2 M) + 2 X

Der Vergleich mit Gl. (6) zeigt, dass sich bei gleicher
Wicklung wie in Fig. 3a ein Vertauschen des Vorzeichens von
M ergibt, was sich natürlich auch bei der Wicklung erzielen
lässt.

Interessant ist die Benutzung einer einzigen Spule mit drei
Anzapfungen für alle vier Brückenzweige nach Fig. 3c. Das
Ersatzbild ist kompliziert, und es ist sehr schwierig, ein
gewünschtes Brückenverhältnis einzustellen. Unterlagen zur
Berechnung bieten die Aufsätze von K. Schlosser [4],

2.3 Zweigbrücken mit vier Induktivitäten

Bei nicht gekoppelten Induktivitäten nach Fig. 5 liefert
Gl. (2) mit den eingezeichneten Benennungen:

v __
2 cd2 Li Li + co (Li + Li) X /, A,

co(Li+Li) + 2X (10)

Als einfachste Grösse wird für X eine Kapazität C gewählt :

1

X

und man erhält aus Gl. (10):

...9 Li

a C

Li
X 2Li Li

Li + Li
2 Li Li C

co L
CO COs-

(11)

(Li XLi) C
mit

CDs'
Li + Li
2 Li Li C

CDV6

ftV
(Li

4 Li Li

(Lid
Li)2

Lz)C

(12)

2 Li Li
Li + Li

(Um nicht zu viele Bezeichnungen einführen zu müssen, gelten
dieselben immer nur für einen Abschnitt.)

Damit ist die Brückenanordnung der Ersatzschaltung eines

elektromagnetischen Schwingers äquivalent. Fig. 6a und b

zeigen die beiden äquivalenten Schaltungen.
Die Brückenschaltung hat zwei Spulen mehr, doch können

die Werte für eine Realisierung der Anordnung durch Spulen

2 co2 Li Li (1 - k2) + co [(|/lT- /I^)2 + 2(1 - L) \/Li~ü] X
co [([/ZT + /Li)2 - 2 (1 - k) /LiTi] + 2X

(8)
wobei die Vereinfachung durch hundertprozentige Kopplung
(k 1) leicht abzulesen ist.

Fig. 5

Zweigbrücke aus vier Induktivitäten
mit Abschluss X

Fig. 6
Zweigbrücke aus vier Induktivitäten und Kondensatorabschluss,

äquivalent dem Ersatzbild eines elektromechanischen Schwingers

und einem Kondensator günstiger und auch mit kleinerem
Verlustwinkel herstellbar sein.

Schaltet man an Stelle einer Kapazität einen Serie- oder
Parallelkreis in die Brücke, so ändert sich das Ersatzbild
Fig. 6b nicht; wohl hat man einen zusätzlichen Freiheitsgrad
und damit mehr Möglichkeiten in der Darstellung des Ersatz-
bildes. In vielen Fällen dürfte der Freiheitsgrad von geringem
Nutzen sein.

Eine Erhöhung des Einflusses der Grösse X ergibt sich erst,
wenn man dafür drei Elemente einsetzt, z. B. einen Serienkreis
mit Parallelkapazität (Fig. 7) oder Parallelinduktivität.
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Fig. 7

Zweigbrücke aus vier Induktivitäten mit
Kristall als Abschluss

Mit 1 co2 — Ws''

ai C co2 — cop'-

liefert Gl. (10):

2 Li Li to4 — (cop'2 + cos2) co3 + cos'2 cos3

(13)

A co
Li + La cu4 — (cop'2 + (Up2) cu2 + cus'2 (Up2

(cu2 - CUii) (cu2 - co3i)
co L (14)

CU 3p 2

Jlp

1 _ A

7i/ / 1

/ CD/ / 1f 00

/ 1 //' 1 /
I /

X

C'M/'G

Fig. 9

Zweigbrücke aus vier Kapazitäten
mit Abschluss X

so folgt:

X=-

mit

Ci + Ci
2 Ci Ci co

L (Ci + Ca)

Ci + C2
~

2 L Ci C2

COs-1

CU C CU2 — CUp2

(19)

CUS-

CUp2

L (Ci + C2) ' CUp2

COs

COs

(Ca - C1)2

4 Ci Ca

Ci + Ca

2LCiCa '

2CiCaC
Ci + Ca

(20)

(cu2 - cuj) (cu2 - CU3f)

wobei für L, cus und cup Gl. (12) gilt.
Für die Resonanzfrequenzen ergibt sich:

CU32 y [Wp'2 -L fUs2 + 1 (CUp'2 — CUs2)2 + 4 CUs2 (CUp'2 — COs'2)j

CUJ y [cOp'2 + CUs2 — l (cUp'2 — Cüs2)2 + 4 CUs2 (CUp'2 — COs'2)j

(15)

[cup'2 + CUp2 + lAcUp'2 — CUp2)2 + 4 CUp2 ((Up'2 — cus'2)j

[cup'2 + (Up2 — )^(cOp'2 — CUp2)2 + 4 (Up2 (CUp'2 — CUs'2)j

(16)
Der Verlauf von X in Abhängigkeit von der Kreisfrequenz cu

ist in Fig. 8 wiedergegeben.
Der Reaktanzverlauf in Fig. 8 lässt sich auch durch die

Serienschaltung einer Induktivität zu einem Kristall mit
Parallelinduktivität erzielen. Die Wicklungskapazität der
Serieninduktivität ist dabei nicht kompensierbar, während die Wiek-

+ oo

X

Den Gin. (19) und (20) entnimmt man, dass die Anordnung
in Fig. 9 mit einer Induktivität ein brauchbares Ersatzbild für
einen Schwingkristall abgibt [2],

Fig. 10
Zweigbrücke aus vier Kapazitäten mit

Induktivität als Abschluss

Interessant ist das Verhalten der Brücke, wenn statt der

Induktivität in Fig. 10 ein Serienkreis:

A coL
1

cu C

CUs -

co L
CUs

LC (21)

benutzt wird. Es ergibt sich:

X Ci 4- Cu

2 Ci C2 cu

CU2 — (CPs'2 + CUs2)

cu2 — (CUs'2 + CUp2)

CUs

coC CUp
2

(22)

Fig. 8

Blindwiderstandsverlauf der
Anordnung in Fig. 7 in Abhängigkeit

von der Kreisfrequenz co

"ip U1S u3p W3S

lungskapazitäten in der Brücke kompensierbar sind. Sie können
den Abschlusswiderständen als parallel liegend betrachtet
werden, wodurch eine Verschlechterung des Dämpfungsverlaufs

möglich wird [5], Man braucht in der Brücke zwei

Induktivitäten mehr, falls nicht eine der Anordnungen gemäss

Fig. 3a oder 3b genommen werden kann.

2.4 Brücken mit vier Kapazitäten

Im Aufwand sehr günstig sind Brücken mit vier Kapazitäten,
wie sie Fig. 9 zeigt, zumal je zwei Kapazitäten durch einen
Differentialkondensator ersetzt werden können (Fig. 2).

Aus Gl. (2) und Fig. 9 ergibt sich:

2 — eu (Ci C2) X

wobei für cus2 und cup2 und C die Gin. (20) gelten. Zu den

Quadraten beider Resonanzstellen der Gin. (20) addiert sich das

Quadrat cus'2:

CUs"2 CUs2 + CUs'2

'2

COp

cop"2

COs

COs"2 COp2 — COs2 (23)

COs COs CUs '

Mit der gegenüber Fig. 10 zusätzlichen Kapazität C erhält

man einen Freiheitsgrad. Der Reaktanzverlauf der Grösse X
[Gl. (22)] entspricht dem der Grösse X [Gl. (19)].

Fig. 11

Zweigbrücke aus vier Kapazitäten mit
elektromechanischem Schwinger als

Abschluss

Eine Erhöhung der Resonanzstellen verlangt ein weiteres

Element. Wählt man die in Fig. 11 gezeigte Brücke, so gilt:

(17) CO2 — CUs '

- eu (Cl + C2) + 2 cu2 Gl Ci X
Ist der Zweig X eine Induktivität (Fig. 10)

X co L (18)

X co L —r.

und mit Benutzung der Gin. (20) eingesetzt in Gl. (17):

(24)

A Ci + Ca cu4 — (cus'2 + cus2) cu2 + cup'2 cus2 _
2 Cl C2 CU CU4 — (cUs'2 + CUp2) CU2 + CUp'2 CUp2

1 (cu2 — Cü^) (cu2 — CÜ31)_

cu C (cu2 - CUp2) (cu2 - CO32)
(25)
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Fig. 12
Blindwiderstandsverlauf der
Anordnung in Fig. 11 in Abhängigkeit

von der Kreisfrequenz co

mit den Resonanzfrequenzen:

> 2
1

(3s 2

» 2
1

'is 2

«3p

"1p "iS w3p W3S

2S

X 2 ta Ci X + co2 Li C2 — 1

Sei Xeine Induktivität:
X= coL

so ergibt sich mit Gl. (28) :

2 Li
X co

LiL L1LC2
2L+Li co

2 Li

1
co L -

)2 - COs

(2L + Z.i)C2

1

L1LC2 '

COs* COp

~p (2L + Li)C2

2(L + Li)2 >!

X
folgt entsprechend:

co C

1

X= - C2 + 2C
co C C2

Li (C2 + 2 C)
C + 2C2
L1C2C

1
2 _ C + 2 C2

08 LI(C2 + 2C) ' Wp Li C2 C

COp2 COa2

_ 2 (C+C2)2 >1 (34)
cos2 C2 C

Auch bei Hinzunahme von weiteren Elementen ergeben sich

zum Teil grosse Frequenzabstände (eine Resonanzstelle hat
immer grossen Abstand), so dass auf eine Erweiterung der

(26)

J- [«s'2 + COp2 + |/(C0S'2 — COp2)2 + 4 COp2 (cos'2 — COp'2) j

COj p Y |[cos'2 + cop2 — \'(C0a2 — COp2)2 + 4 COp2 (cos'2 — cop'2)j

(27)

Den Reaktanzverlauf zeigt Fig. 12. Die Verwendung der
Zweige Fig. 7 und Fig. 11 in einer Brücke ergibt Phasen-

drehglieder und Bandsper-
+ OO

X ren, wie der Verlauf der
Reaktanzen in Fig. 13 und

Fig. 14 (die Sperrbereiche
sind schraffiert)wiedergibt.

Fig. 13
Blindwiderstandsverlauf eines

Phasendrehgliedes in Brücken¬
schaltung aus zwei Zweig¬

brücken in Fig. 11

Fig. 14
Blindwiderstandsverlauf einer Bandsperre in Brückenschaltung aus zwei

Zweigbrücken in Fig. 11

Untersuchung verzichtet wird. Ein Zusammenrücken der

Frequenzen kann man durch Hinzunahme einer Kapazität in den

Zweig Xi erzielen. Damit sind zwei Kapazitäten mehr
erforderlich. In den folgenden Abschnitten seien hiezu Beispiele
gegeben.

2.6 Brücken mit zwei Serienkreisen und zwei Kapazitäten

Mit den Zweigen

Vi COil ^(C02~ COa2)
co Ci co

COa
1

LiCi ' - 1

co Ca
(35)

2.5 Brücken mit zwei Induktivitäten und zwei Kapazitäten

Weitere Möglichkeiten bietet die in Fig. 15 gezeigte Brücke
mit zwei Induktivitäten Li und zwei Kapazitäten C2. Mit
Gl. (2) gilt:

(CO2LIC2- \)X-2COLI

liefert Gl. (2) :

[ft>2 — COa2jM[co2 - COa2 1(' + -&) ] CO X

CO2 — C0a2 1(' + -&)

(28)

(29)

Wählt man für X eine Induktivität (Fig. 16):

X= coL

und führt als Abkürzung ein:

2

~CC2
so ergibt sich aus Gl. (36) :

2 i
Li

(36)

(37)

(38)

COp

(30)

copä LiL ^31)

Damit ist diese Anordnung im allgemeinen nur bei tiefen

Frequenzen brauchbar.
Mit einer Kapazität C:

1

X= coLLi
2 l + l7

CO4 — CO2 COa2 (.+£)+H + COa2 COp2

CO2

1+^-1
CO2 - COa2

Ca

l+o
OJL (m2~^l)(ta2~M3i) (39)

CO2 (co2 — COp2)

mit den Resonanzfrequenzen:

®ll + C03l COa2 (l + + Wt>2 ' COil CÖ32 COa2 CO b2

1 +
(32)

02 — COa2

wc CO2-COp2

C1

c2
1 + y

(40)

(33)

Fig. 15
Zweigbrücke aus zwei Induktivitäten und zwei

Kapazitäten mit Abschluss X

1112 (A 694) Bull. SEV 59(1968)24, 23. November



Den Reaktanzverlauf zeigt Fig. 17. Ein solcher ist auch mit
einer Induktivität in Serie zu einem Schwingkristall erzielbar.
Hiebei kann die Wicklungskapazität stören, aber auch die

Dimensionierung kann schwieriger sein.

Den Beziehungen (40) entnimmt man, dass geringe
Frequenzabstände der Resonanzfrequenzen erzielbar sind, wenn:

C1 < C2 COI» COb

Man setzt daher:

Ci
C2

1 COb =00 a

und erhält aus den Gin. (40):
^ coa2 (2 + e)Chi ces! CDls CO3S

COpz

C03s — ßa ^1 H—g" + "J" |/£ j;

1 + e

1 +4fi

COls — COa I 1 + "5

Cüp COa (l —

(41)

(42)

(43)

Es ist sinnvoll, C2 möglichst gross zu wählen, damit Ci
nicht zu klein und Li zu gross wird.

Vorteilhafter ist die Brücke, wenn man in den Zweig X
mehr Elemente hineinsteckt. Als Beispiel sei die Anordnung in
Fig. 18 mit:

- ös2
X coL-

cou — CO p"
gewählt.

Mit den Gin. (35) und (38) folgt aus Gl. (36):

(44)

Fig. 16
Zweigbrücke aus zwei Serienkreisen mit zwei

Kapazitäten mit Induktivität als Abschluss

Den Reaktanzverlauf zeigt Fig. 21. Für Li < Li lassen sich

die Resonanzfrequenzen ausreichend nahe aneinanderreihen.
Bei diesem Abschnitt wurden nur Zweigbrücken betrachtet.

Es lassen sich sowohl in den Zweigen Xi und Xi als auch im

Zweig X verschieden aufgebaute Zweigbrücken X (Xi und Xi)

Fig. 17

Blindwiderstandsverlauf der
Anordnung in Fig. 16 in Abhängigkeit

von der Kreisfrequenz co

"IS wp 3S

erzielen. Diese Verschiedenheiten können besonders zur
Anpassung von Kristalldaten wertvoll sein. Sind die Zweige Xi
und Xi in den beiden Brückenzweigen gleich, so lässt sich nach
Bartlett [6] die aus Xi und Xi bestehende Brücke aus der
Brückenschaltung herausnehmen. Dieser Fall wird im nächsten
Abschnitt behandelt.

Die Zweigbrücken lassen sich entsprechend dem erzeugten
Reaktanzverlauf in II- und T-Gliedern oder beliebigen anderen

Schaltungen verwenden.

X
co L Li

2L + Li

CO6— CO4 COa2 ('+£) + COb2 + COS2]

CO2 CO4 -
COa2

CO2

(1 +

+ CO2 COs2 COs2 (•+£) + COb2 (COa2 + COp2) — COa2 COb2 COp2

Çl]
Cl + COp2 + V COs2 COs2 ('+£) COp2

1 +v
J (co2 - coj) (tu2 - ft>3j) (co2 - co52)

CO2 (CO2 - CÜ!2) (CO2 ~ C032)

Auch hier bringen die Vereinfachungen (41) nahe

beieinanderliegende Resonanzfrequenzen. Den Blindwiderstandsverlauf

zeigt Fig. 19. Zur Erzielung des umgekehrten Reaktanzverlaufes

müssen einige Elemente umgetauscht werden.

2.7 Brücke mit zwei Parallelkreisen und zwei Induktivitäten
Betrachtet sei die Anordnung in Fig. 20, die einen Schwingkristall

enthalten kann.

Xi

Zu den Zweigen
1 co

C7"(

kommt daher

co^

X= -

Li Ci

COs

co C

Xi coLi (46)

(47)

hinzu. Mit der Abkürzung:
2

LiC
2 C
Ci

3. Brücken mit gleichen Zweigbrücken und
verschiedenem Abschluss

3.1 Symmetrische Zweigbrücken aus zwei verschiedenen

Elementen

Werden bei den in Abschnitt 2 behandelten Brückenzweigen
solche Zweige zu einer Brücke zusammengesetzt, bei denen die

Grössen Xi und Xi 3) in beiden Zweigen dieselben sind und der

ct.
Fig. 18

Zweigbrücke aus zwei Serienkreisen und
zwei Kapazitäten mit elektromechanischem

Schwinger als Abschluss

Unterschied lediglich in den X-Werten (Xi und Xi) besteht, so

kann man die aus Xi und Xi bestehende Brücke — um

(48)

berechnet man X zu:

3) Die bisherigen Zweigbenennungen X^ und X2 erhalten einen
Strich, damit für die Abschlüsse X die Indizes 1 und 2 frei werden.

X= - 2C+Ci
co C Ci

(l + Ti-) w W CD COa CDs' (<+ë)
1 + w 1 + w

1

^COa2 1 + + COb2 + COp2 j + CO2 |]cOa2 COp2 ^ 1 + + COb2 («a2 + COB2) ] — COa2 COb2 COs2

1 co2 (co2 - ciql) (CO2 — Co3j)
(49
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Fig. 19

Blindwiderstandsverlauf der
Anordnung in Fig. 18 in
Abhängigkeit von der Kreisfre¬

quenz CO

"is u1p W3S w3p W5S

Elemente einzusparen — aus der Brückenschaltung
herausnehmen. Allgemein lässt sich nach Bartlett [6] (s. auch Feldt-
keller [7] und Rieger [8]) die in Fig. 22 wiedergegebene
Zerlegung vornehmen. Hiebei ist der Vierpol beliebig, insbesondere
kann er unsymmetrisch sein. Eine Umwandlung in
Differentialbrückenfilter (Fig. 23) oder andere äquivalente Brücken ist
möglich, falls die Vierpole aus symmetrischen Brücken (Xi,
Xz) bestehen.

Als Beispiel seien zwei der in Fig. 15 gezeigten Zweige X,
wobei für X die beliebigen Zweige Xi und Xz zu wählen sind,
in einer Schaltung entsprechend Fig. 23 dargestellt (Fig. 24).

3.2 Symmetrische Zweighriicken aus drei verschiedenen

Elementen

Wenn man die Vierpole in Fig. 22 durch Brücken aus drei
verschiedenen Elementen ersetzt, so benutzt man zweckmässig
die in Fig. 25a dargestellte äquivalente Schaltung, in welcher
die mittlere Brücke durch eine äquivalente Brücke ersetzt

Mit
Aa 2X£Xi + (Xi + Xz)X{ (51)

Xi + Xi + 2 Xi
lässt sich aus Gl. (50) die Form von Gl. (2) zurückgewinnen:

2XiX* + (X{+ X*)XX
X{ + Xa + 2 X (52)

Damit ergibt sich das zu Fig. 26a äquivalente Ersatzbild
gemäss Fig. 26b.

Bekanntlich [2] liefert eine Brücke mit drei verschiedenen

Zweigen (Fig. 25a) einen frequenzmässig stark auseinandergezogenen

Reaktanzverlauf. Im folgenden soll daher untersucht
werden, welche Möglichkeiten die Anordnung in Fig. 26 als

Brückenzweig bietet.

Als Zweig X sei ein Schwingkristall gewählt, wobei
vermutet wird, dass derselbe die Resonanzfrequenzen zusammenzieht.

Die gegebenen Elemente seien (Fig. 27):

1

x{ - co C i

X

Mit den Abkürzungen:

X2 — co E

1

Xi q X2 :

CO* — CDs*

co C co2

1

7.2 Cl

folgt aus den Gin. (50) und (53):

Ci
C

(53)

(54)

X= - 1 a(2 + ß)coe — [(1 + q) (1 + ß)coa2 + 2 amp2 + a ß cos2] co4 + coa2 [ß co a2 + (1 + «) (coP2 + /?toB2)] tu2 — ßcoa4cos2

oj Ci q co6 — [(1 + q)(l + ß)coa2 + acop2] co4 + coa2 [(1 + 2ß)coa2 + (1 + a)(cop2 + ß cos2)]co2 — coa4(cop2 + 2 ß cos2)

(55)

werden kann, wobei sich wegen der Erdungsmöglichkeit die

in Fig. 25b gezeigte Anordnung empfiehlt. Es genügt auch hier
die Untersuchung einer Zweigbrücke, wie sie in allgemeiner

(X{ + X2) (X{ + X3) + (2 X{ + X2 + X0 X
(50)

Der Zweig X besitzt drei Serienresonanz- und drei
Parallelresonanzstellen (Fig. 28), so dass man für X schreiben kann:

X= - 2 + ß (co2 — cöJ) (co2 3.3I) (co2 ®5P
(56)

Fig. 20
Zweigbrücke aus zwei Parallelkreisen

und zwei Induktivitäten mit
Kristall als Abschluss

Form Fig. 26 wiedergibt. Die drei Brückenelemente in den

Zweigbrücken, die zu einem Filter zusammengesetzt werden,
können verschieden sein.

Die Verwendung einer unsymmetrischen Brücke (mit vier
verschiedenen Elementen) bringt einen Freiheitsgrad mehr.
Eine Vermehrung der Elementenanzahl des vierten Zweiges
kann den Wert der Zweigbrücke erhöhen, was auch bei den
anderen Brückenzweigen möglich ist. Von einer Behandlung
der unsymmetrischen Brücke wird daher abgesehen,

In Erweiterung von Gl. (2) erhält man für den Blindwiderstand

X der Zweigbrücke gemäss Fig. 26a :

X Xî X2 (X> + XS) + Xi Xi (Xj + Xj) + (Xi + Xi) (X{ + Xi) X

COC1 (co2 - co^) (co2 - co32) (co2 - co52)

wobei sich durch Vergleich der Gin. (55) und (56) die Formeln
ergeben :

«il + ®sl + «al
(1 + q) (1 + ß) co a2 + q (2 oop2 + ß cos2)

«(2+ß)

+ «il «al + «3I 2 _ (Oa2 [ßcO'd2 (1 + q)(cOp2 + /?COs2)]

q(2 + ß)
'CO S*9 9 9 ß CO a4 C- a(2 + ß)

(57)

«lp

W3p

u3p "

®1P ®5P

35p2=^[(1 +«)(! ß)C0a q öp-

®3P ®5P

(0/
q

[(1 +2ß)O0a

®1P ®sp co52

Xt

-d 4

-(cop2

q) (cup2 + ß a>s2)]

+ 2 ß cos2) (58)

Fig. 21
Blindwiderstandsverlauf der
Anordnung in Fig. 20 in
Abhängigkeit von der Kreisfre¬

quenz co

Fig. 22
Brücke mit Zweigbrücken und ihre Zerlegung nach Bartlett

Bull. SEV 59(1968)24, 23. November



Fig. 23
Differentialbrücke entsprechend Fig. 22

Zur Überprüfung der Resonanzfrequenzen kann man bei
einem Schwingquarz <wp2 cos2 setzen und erhält die
Näherungsformeln :

2 2 l 2 0 + a) (1 + ß)
œls + Cü3g + CU5S — «(2 + j8)

®a2 + COs2

«il «3i + wj ®52 + m3l <w52

taj w3| (ö5|

«(2 + ß)~* 1

(1 +a)(l + /?)«aW
«(2 + ß)

__
ß OJa4 «s2

~ «(2 + ß)
(59)

«iP + «3P + «5P2 4_ „,_2 _1_ 2 (1 +«)(!+

1+2)5

a
COs

«15 «3P + «1P «35 + «3P «5p ;

(1 + a) (1 +j5)ftJa2ft»s2

2 2 « 1+2)5 „«lp «3p «5P «a «s2 (60)

Fig. 24
Brücke nach Fig. 23 mit Zweigbrücken der Fig. 15

Es ist leicht ersichtlich, dass die Resonanzfrequenzen nicht
nahe beieinander liegen können.

4. Brücken mit gleichen Wellenwiderständen in Kette

Zur Vervollständigung der Möglichkeiten mit Brücken sei

hier eine früher behandelte [1] Darstellung erwähnt.
Schaltet man Brücken mit gleichen Wellenwiderständen,

aber sonst verschiedenen Brückenzweigen in Kette, so erhält
man einen symmetrischen Vierpol [9] und somit eine resul-

F
xl

1 x2
C_| |_

c

o

o

Fig. 25
Brücke nach Fig. 22 mit Zweigbrücken aus drei Elementen

tierende Brücke, die den gleichen Wellenwiderstand besitzt.

Für das in Fig. 29 gezeigte Beispiel mit zwei Brücken in Kette
gilt :

Xia X2* Ahß Ahß Ahb (61 >

Mit den Formeln für die Zweige der resultierenden Brücke:

Aha + Ahß
Ahb X-2a

Vau Aloe

Aha + Aiß

+2-/ + Alß
Aha + Ahß

erhält man für den Quotienten derselben:

tXib
X2b

i / Xig -, / Ahß
F ATaa ^ V Ahß

1 + it f*

(62)

(63)

Ahß

Damit kann jede der Einzelbrücken Pole erhalten, die von
denen der anderen Einzelbrücken verschieden sind. Besonders

X -

Fig. 26
Zweigbrücke aus der Brücke in Fig. 25a mit Ersatzschaltbild

interessant ist die Zerlegung einer komplizierten Brücke in

Einzelbrücken, da die Einstellung derselben viel leichter ist und
bei Schwingkristallen die Nebenresonanzen der Kristalle einer
Brücke von den anderen Brücken gedämpft wird. Ausführliche
Unterlagen finden sich in der angegebenen Literatur.

5. Gemischte Brücke
5.1 Berechnung eines Tiefpasses

Die Kombination von Brücken oder auch FI- und T-Glie-
dern mit Zweigbrücken und Zweigen üblicher Art bietet neue

C1..

Fig. 27
Zweigbrücke nach Fig. 26a

Möglichkeiten. Viele Kristallschaltungen lassen sich nicht
realisieren, weil die für einen vorliegenden Filterwunsch
erforderlichen Serienkapazitäten zu verschieden und damit nicht
herstellbar sind. Dieses gilt besonders bei unsymmetrischem
Dämpfungsverlauf. Als Beispiel sei ein Tiefpass mit den

Fig. 28
Blindwiderstandsverlauf der Anordnung Fig. 27 in Abhängigkeit von der

Kreisfrequenz <y
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Fig. 29
Zwei Brücken mit gleichem Wellenwiderstand in Kette und resultierende

Brücke

Brückenzweigen Xi und Xz der Fig. 30 untersucht. Fig. 31

zeigt den Blindwiderstandsverlauf der beiden Zweige in
Abhängigkeit von der Frequenz. Der Sperrbereich beginnt bei

der Grenzkreisfrequenz eoz.

Für die Brückenzweige gelten die Gleichungen :

Ai

Xz —

1 co2 (co2 — ca3|)

co Ci
1

0CO2

(co2 -

®lp) («a - ®3p)

É021) (co2 - co4i)
CO Co (co2 - co21) (cu2 - ra4f

(64)

Es sind vier Dämpfungspole möglich. Die Berechnung er¬

folgt nach einem früheren Aufsatz [10],
wobei das dort behandelte Bandfilter
mit E 0 und /i 0 in den vorliegen-

O
den Tiefpass umgewandelt wird.

Für die Polstellen/ioo (coioo 2 ti /ioo)

rOti
Fig. 30

Brückenzweige eines Tiefpasses

i 1...4 wird abgekürzt:

fih
/ h2

1...4 (65)

Mit den Abkürzungen:

A mi + mz + »73 + wî4

B mi mz + m\ ms + nii m4 + mz ms + mz m4 + ms m4

C mi mz ms + mi mz m4 + mi ms mi + mz ms mi (66)

D mi mz ms m4

ergeben sich die Resonanzfrequenzen zu:

C

fâ

fâ

A + C

B+2D

/22

\/b2 4 D

+8 '

®2S ®4S

Ausserdem gilt :

2(1 + B + D)

B + 2 D - ]/B2-AD
2(1 +B + D)

9_ B+2D
a4s 1 + B + D

D

/22

/22 (67)

CO 2

1+J3 + Z)
C024

i Co_

Ci
k

A + C

XiXz
1 1

R2 (69)
Cr Co eoz2 — co2

Zur Vereinfachung sei die Anpassung auf co — 0 gelegt :

(70)
1 1

7? 2
~ • ir — Ro2

Ci Co COz

Die Umrechnung auf einen anderen Wert (R) wird durch die
Gin. (69) und (70) ermöglicht.

Die Gin. (70) und (68) ergeben :

Cr
1

Co
k eoz Ro u

C02 Ro

Für die übrigen Schaltelemente gelten die Formeln [11]:

(71)

Li
1

C3

Cr

Ca

Co

C4

Co

Ls
1

Cr eoz2 (U4|

(co4l — CCJ3I) (o>sl - Ct)2l)

(Ohl - a>21) («22 - COzI)

«2S (®4l — ®2s)

(coj- CO31) (eoz2 - COiI)

01il (01il nr2s)

1

(72)

Lz
«2! Cz

Mit

/ioi=/22(l +2AO-
wird aus Gl. (65) :

1 +2 Ak

U
1

Ct>42 C4

AF
h

mh 2 Ak i 1...4

7 1...4 (73)

(74)

wobei Ai der ungefähre Abstand der Polstelle /ico von der
Grenzfrequenz fz ist.

Für die Resonanzstellen wis 2 jt/iS führt man ein:

/ii=/22(l -2fii') i 2...4

und erhält aus den Gin. (67) und (72):

(75)

£3 Ei
2 + B- ]/B2-\D

2 (A + C) 4 (1 + B + D)

2 + B+ ]/B2 -4ü£ 2
4(1 + B + D)

(76)

C3 4 (£3' — £4') (£2' — £3') C2

"CT" (1-2 fis')2 ~ÖT
2 (£2' — fl3') £2'

(1-2 fl3')2 Co (1-2 £2') (£2' - £4')

2 (£3' — £4') £4'C_4_

Co (1 — 2 £4') (fia' — Si)
(77)

(68)
1 +B + D

Den Wellenwiderstand bei einer beliebigen Frequenz kann
man an einen gewünschten Abschlusswiderstand R anpassen.
Dafür liefern die Gin. (64) : <"2S "2p w'2«. w4°o

Fig. 31
Blindwiderstandsverlanf
der Zweige des

Tiefpasses in Fig. 30
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Als Zahlenbeispiel sei gewählt:

Ai 0,02 zf2' 0,03

j3' 0,04 At 0,05

Die Gin. (74), (66), (75) und (76) liefern die Werte:

»ii 5,099 020 m2 4,203 173

A 16,293 052 B 98,648 441

k 0,774 563 62' 0,134 313

(78)

Q
Cr

0,011 380
Ca

Co
0,018 968

ins= 3,674 235

C 263,185 588

eC 0,005 159

C2

Co
0,299 066

mA 3,316 625

D 261,172 342

e3' 0,029 149

Ci
Co

0,001 936

und damit
C2 : C3 : Ci 154,48 : 9,80 : 1

L%'
co»s C2

Lo'
«0p «2P Co

(81)

W2 P (Oil '
CO.J (Dil U

für die Umrechnung die folgenden Formeln gefunden:

t-py

(82)

p- t±
u

1 -_
(j_

u

2 — u - qy
SP —

1 -y

«OP A~ ru2p —
1 -y

Co' — — Co

— —

Dabei ist y eine in Grenzen wählbare Grösse — ein Freiheitsgrad

— eingeführt durch die Beziehung:

y
2 Cib Cab

Co (Cib + C2b)
0 <y < 1 (84)

Da nach Fig. 31 q < u ist, so muss y < 1 (Co' > 0) sein,
während Gl. (84) lediglich y > 0 verlangt.

Mit den aus Fig. 31 zu entnehmenden Beziehungen:

CU2p <w3s

erhält man mit Gl. (67) :

(U4p (02 (85)

J2P ' (Oil «si + «22 ^+2Jr «22 t

«2P«4P «31«22

A + C

C

c u>2* (86)

(79)

(80)

Damit sind alle Grössen des Zweiges X2 zu ermitteln.

Zu berechnen ist das Verhältnis C2' : C3, um die Herstellbarkeit

mit Kristallen zu überprüfen.

Die Gin. (67), (68) und (72) liefern:

Ein Verhältnis der Kristallserienkapazitäten von 150: 1 ist
überhaupt nicht herstellbar. Der Zweig X2 in Fig. 30 muss daher
umgewandelt werden. Gleichwertig ist die Brücke in Fig. 32. Sie

irCfcn

Cs
Co

(1 + B + D) [A (B C - A D) - C2]
C2(A + C)2

während sich aus den Gin. (81) bis (83) und (86) ergibt:

C[A (CB- AD) - C2]

(87)

H—IP"

Fig. 32
Der Zweig X., des Tiefpasses in Fig. 30 und seine Umwandlung in eine

Zweigbriicke

hat einen Freiheitsgrad, der zur Anpassung der Serienkapazitäten
der Kristalle benutzt werden kann.

5.2 Umwandlung des Brückenzweiges X2

Für den Abschlusszweig der Zweigbrücke X2 in Fig. 32

gelten die Formeln:

^ ^ («2P - «2!) («2% - «OP)
C 2 Co JÂ

«28

1

C-2

Co (A + C) [C( 1 + B) - A D] (CB - A D)2

[C(\+B+D)-yD(A + C)] (88)

Da sich y innerhalb der Grenzen 0 und 1 bewegen darf, ohne

dieselben zu erreichen, kann man eine Abschätzung von C2'/Co

für die beiden Grenzwerte durchführen. Es ist:

/C2'\ ^ C2(l + B +D)[A(CB-AD)-C2]
l Co Jy o~ (A + C)[C(1 + B) - A D](C B - A D)2

/C2'\ _ C[A (C B — A D) — C2]
l Co / y l (A + C) (C B — A D)2

Für das vorliegende Beispiel ergeben sich die Werte:

=0,018 968
Co

0,002457

In einer vorangegangenen Arbeit [2] wurden mit den

Gin. (68) und den Abkürzungen:

fëL.-0'0

(~) 0,000 568 3
V Co /y= 1

(89)

(90)

(91)

(92)

(93)

(83)

Der zu dem Verhältnis C3/Co günstigere Wert C2'/Co liegt bei y 0
und bringt ein Verhältnis 7,72: 1. Jetzt sind die Quarzkristalle
herstellbar.

Inwieweit der eine Quarz in der Brücke in Fig. 32 die beiden

Quarze der äquivalenten Darstellung ersetzen kann, wird in
einer späteren Untersuchung überprüft. Möglicherweise ist
die Dämpfungsverschlechterung nur gering.

5.3 Berechnung eines Beispiels

Als Grenzfrequenz /2 sei /2 300 kHz gewählt. Bei dieser
Frequenz liegen die Grenzen der Serienkapazität eines Schwingquarzes

zwischen 1 10~2 pF und 14 • 10~2 pF.
Nach Gl. (91) gibt man C3 den Wert:

und erhält :

C3 14- IQ-2 pF

Co - 7,37 pF Ci ~- 12,28 pF

(94)

(95)

Da die Parallelkapazität eines Quarzes der Frequenz 300 kHz
bei etwa 6 pF liegt, ist der Wert Ci ausreichend.
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Bezüglich der Grösse y wurde gefunden, dass die geringste
Abweichung der Kapazität Ca' von C3 für y 0 erzielt wird. Nach
Gl. (83) wird C26 0 für y 0. Es ist daher für C20 ein möglichst
grosser >'-Wcrt: y < 1 erwünscht. Da der mögliche Grenzwert von
Ca' zu Ca' — 1 • 10~2 pF festgestellt wurde, kann man hiezu die
Grösse y berechnen.

Aus den Gin. (88) und (89) ergibt sich :

Ca'

Co (f-LJ 1 -y
D (A + C)

-]

und hieraus:

C(1 + B + D).

('-'!) (%l

y 1 -
Ca'

Co

(tu.

Co'

BC-AD
(1 + B)C — AD

A(BC - AD) - C2

(022 Ca' [(1 +B)C-AD] (BC-AD)
16,1 mH

und schliesslich aus den Gin. (67), (71) und (72):

k
/3s 291,124 kHz ; Ro

C
Li DkC\ CO22

(02 Co

29,8 mH

56 k£î ;

K
A:2 1

und vereinfacht mit den Gin. (73), (75) und (76):

(97)

Mit Ca' 1 • 10~2 pF und den Werten der Gin. (95) und (92)
folgt:

y 0,582 5 (98)

ein relativ hoher Wert, der daher kommt, dass ein Verhältnis der
Serienkapazitäten der Quarze von 14:1 möglich ist, während für
y 0 nur 7,72:1 benötigt sind. Obwohl ein niedrigerer >>-Wert
benützt werden kann, wird er wegen der Kapazität C2b beibehalten.

Man berechnet aus den Gin. (83) und (81):

Co' 13,3 pF ; Cid 16,7 pF ; C2b 2,46 pF (99)

M V „ „ fz 298,198 kHz

1

(100)

K (1 + 3 x') (x + £2') (x + S3) (x' + £4')

2(k2 — l) (x' — A\) (x' — Az) (x' — ZI3') (x' Ai)
(102)

-006 -Q04

Damit sind alle Werte des Filters bekannt.

Für die Betriebsdämpfung a erhält man mit den Gin. (64)
und (71) die Formeln:

Fig. 33
Dampfungsverlauf des Tiefpasses in Fig. 30

Die Darstellung des Dämpfungsverlaufs in Abhängigkeit
von x' zeigt Fig. 33.
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