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Technische Mitteilungen — Communications de nature technique

Die dritte grosse Krise in der Mathematik
51 (091)

[Nach C. K. Gordon, jr.: The third great crisis in mathematics. IEEE
Spectrum, May (1968), S. 47...52]

Die moderne Mathematik durchläuft wiederum eine Phase
gewaltiger Umwandlung, um mit dem Prozess der technologischen
Entwicklung schrittzuhalten. Die hervorstechendste Manifestation
dieser «neuen Mathematik» ist die zunehmende Betonung und
vermehrte Anwendung der Gruppentheorie.

Die erste Krise in der Mathematik bahnte sich etwa 600 v.
Chr. an, als man feststellte, dass sich vergleichbare geometrische
Grössen nicht mit identischen Maßstäben messen Hessen. Diese
Krise wurde erst 310 n. Chr. gelöst, als Eudoxus den Begriff der
Grössen und Proportionen revidierte. Seine Analyse der irrationalen

Zahlen hielt jeder Prüfung stand, bis dieser Begriff in der
zweiten Hälfte des 19. Jahrhunderts durch Dedekind in ein neues
Licht gerückt wurde.

Die zweite Krise bahnte sich im 17. Jahrhundert an. Die neu
entwickelten Rechenmethoden führten zu Widersprüchen und
Paradoxen, welche die Grundlagen der Mathematik erschütterten.
Erst Gauss und Gauchy 1) brachten anfangs des 19. Jh. eine
Wendung, als es ihnen gelang, den vagen Begriff des Infinitesimals
durch die präzise Methode des Grenzübergangs zu ersetzen. Ihrem
Werk folgte die «Arithmetisierung» der Analysis durch Weier-
strass, Bolzano, Dedekind, Cantor und andere.

Die dritte Krise erschütterte die Grundpfeiler der Mathematik
um die Jahrhundertwende. Sie konnte bis heute noch nicht zur
Zufriedenheit aller Mathematiker gelöst werden. Die Ursache
bildete die Entdeckung von Widersprüchen an den Grenzen von
Cantors allgemeiner Gruppentheorie.

Nach Cantor ist eine Gruppe «jedwelche Zusammenfassung
von definierten unterscheidbaren Objekten m unseres Denk- und
Erfassungsvermögens zu einem Ganzen M». (Beispiele: Die m
Musiker eines Orchesters M. Die Gruppe M aller m 50jährigen.
Die Gruppe M aller lebenden Menschen m, die über 500 Jahre alt
sind; eine durchaus legitime Gruppe, allerdings mit Inhalt null.
Demgegenüber die Gruppe M aller geraden Primzahlen m, die
bloss aus einem Mitglied, der Zahl 2, besteht usw.)

Cantors Theorie der transfiniten Ordinal- und Kardinalzahlen
ist wohl eines der genialsten und originellsten Postulate dieser
modernen Mathematik: Die Kardinalität einer Gruppe M ist im
grossen ganzen ein Mass für die darin enthaltene Anzahl Mitglieder

m. So beträgt die Kardinalität der Gruppe gerader Primzahlen
1, die Kardinalität der Gruppe aller Punkte eines Linienzuges ist
interessanterweise grösser als beispielsweise diejenige aller positiven

ganzen Zahlen.
Wenn eine Gruppe aus N Mitgliedern besteht und N eine

beliebig grosse ganze positive Zahl bedeutet, hat sie eine endliche
Kardinalzahl, und man nennt deshalb die Gruppe endlich. Was ist
nun die Kardinalzahl der Gruppe aller positiven ganzen Zahlen?
Da keine positive ganze Zahl N gross genug ist, um die Kardinalität

dieser Gruppe zu beschreiben, erfand Cantor hierfür ein neues
Symbol, das Aleph Null, die erste transfinite Kardinalzahl.
(«Erste» deshalb, weil deren noch beliebig viele andere denkbar
sind: grösser als die vorgenannte, ist die transfinite Kardinalzahl
aller positiven ganzen Zahlen!) Cantor stellte das Theorem auf,
dass es keine grösste transfinite Kardinalzahl gibt. (Äquivalent
dem bekannten Theorem, dass es keine grösste positive ganze
Zahl gibt.) Zugleich entdeckte er auch folgenden Widerspruch:
Ebenso berechtigt wie die genannten Beispiele ist eine «Super-
gruppe», eine Gruppe, die als Mitglieder alle Gruppen einschliesst.
Die transfinite Zahl dieser Übergruppe ist grösser, als alle anderen

transfiniten Zahlen, was aber obgenanntem Theorem
widerspricht! Die Schwierigkeiten jedoch gingen weiter.

Bertrand Rüssel entdeckte um 1902 das Paradoxon der Gruppen,

indem er zwei verschiedene Arten unterschied. Jene, die sich
selber als Mitglieder beinhalteten, nannte er ausserordentlich. Die
Gruppe aller Konzepte ist selbst ein Konzept und deshalb eine
ausserordentlichen Gruppe. Die meisten Gruppen sind jedoch
ordentlich und enthalten sich selbst nicht. Die Gruppe der geraden

*) Man erinnere sich an die didaktische Entwicklung des Integrals
über die Riemannsche Summe.

Zahlen ist selber keine gerade Zahl und darum ordentlich.
Man bilde nun eine Gruppe O aus allen Gruppen, die sich

selbst nicht enthalten. Gehört nun O zu der Art der ordentlichen
oder der ausserordentlichen Gruppen? Wäre O ordentlich, dann
gehörte O zu O, der Gruppe aller ordentlichen Gruppen, und wäre
deshalb ausserordentlich. Wenn aber O zur Sammlung der
ausserordentlichen Gruppen gehört, wollen wir es mit E bezeichnen.
O gehört dann zu E und nicht zu O. weshalb es also ordentlich
wäre! Die Quintessenz lautet somit: O ist dann und nur dann
ordentlich, wenn es ausserordentlich ist.

Rüssel versuchte diese Widersprüche durch ein Verbot der
impredikativen, selbstbezüglichen Definitionen zu beseitigen, was
jedoch nicht befriedigte.

Zermelo wählte einen anderen Weg und legte der Gruppentheorie

ein System von Axiomen zugrunde, das durch Fraenkel,
Bernais, von Neumann und anderen verbessert wurde. So
entstanden verschiedene Theorien mit spezifischen Eigenheiten.. Alle
vermeiden die Widersprüche, welche ursprünglich zur Krise
geführt hatten, doch keine ist die Beste.

Die weitreichendsten Folgen hatte Zermelos Axiom der
Auswahl. Mit ihm lässt sich eine Vielzahl unwidersprochener
Theoreme beweisen, wie beispielsweise das Theorem, dass jede
Gruppe wohlgeordnet werden kann. Borel zeigte später, dass in
diesem Fall Theorem und Axiom gleichbedeutend sind, doch zeigten

sich bald ganz unwahrscheinliche Konsequenzen. Das
Hausdorff-Theorem (1914) besagt, dass die Hälfte einer
Kugeloberfläche mit einem Drittel kongruent ist. Das allgemeinere
Banach-Tarski-Theorem erscheint noch viel unglaubwürdiger. Es

kann daraus gefolgert werden, dass es theoretisch möglich ist. die
Sonne in kleine Stückchen zu zerschneiden und aus diesen eine
Erbse zu arrangieren, ohne auch nur eines wegzulassen, zu
komprimieren oder sonstwie zu deformieren!

So paradox diese Aussage auch klingt, im Beweis des Theorems,

aus dem sie abgeleitet wurde, hat man bis heute keinen
Fehler entdeckt. Auch das Axiom der Auswahl führte noch nie

zu einem Widerspruch, und es wurden aus ihm schon eine sehr

grosse Zahl gültiger Resultate abgeleitet.
Nach den Arbeiten von Cohen (1963) scheint es heute so zu

sein, dass das Axiom der Auswahl ein unabhängiges Axiom
darstellt. Es liegt eine ähnliche Situation vor, wie seinerzeit in der
Geometrie, als die Ablehnung des fünften Postulats von Euklid
(Parallelen zur nicht-Euklidschen Geometrie führte. Man
spricht denn auch heute von Cantorscher und nicht-Cantorscher
Gruppentheorie. M. S. Buser

Plasmaschweissverfahren
621.791.755

[Nach A. H. Wagenleitner: Plasmaschweissverfahren. Bull. Sécheron
-(1967)35d, S. 14...25]

Im vergangenen Jahrzehnt sind an die Schweisstechnik eine

Menge neuer Anforderungen gestellt worden, zu deren Lösung in
erster Linie eine Erhöhung der bisherigen Lichtbogentemperatur
von 6000 °K notwendig war. Das Prinzip der Einengung eines

Hochstromlichtbogens bietet hiezu die beste Möglichkeit. Die
Einschnürung wird durch einen Gasstrahl erzielt.

Die ohne besondere Vorbereitungsarbeiten miteinander zu
verschweissenden zwei Blechkanten werden durch den Plasmastrahl

aufgeschmolzen und seitlich verdrängt, wobei ein durchgehendes

Loch gebildet und der Stossfuge entlang geführt wird. Der
Kern des Lichtbogens und die ihn unmittelbar umschliessendenen
heissen Gase schmelzen die obere Partie des Werkstoffes auf. Der
untere Bereich wird nur schmal aufgeschmolzen, weshalb die
Naht wegen der typischen Form auch Weinglas-Form genannt
wird.

Ein wesentlicher Vorteil des Plasmaschweissens liegt darin,
dass die zu verschweissenden Blechkanten keiner speziellen
Vorbereitung bedürfen. Gegenwärtig können 12 mm dicke Bleche
ohne Zusatzdraht stumpf in einer Lage durchgeschweisst werden.
Eine Mindestblechdicke von 2...3 mm ist aber immer erforderlich.
Oft müssen auch Dünnbleche verschweisst werden. Hiezu werden
Schwachstromlichtbogen von 0,5...15 A verwendet.

A. Baumgartner
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