Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 59 (1968)

Heft: 15

Artikel: Die Berechnung der elektrischen Belastungen von Industriebetrieben

mit Hilfe digitaler Rechenautomaten

Autor: Weidner, H.-J.

DOI: https://doi.org/10.5169/seals-1057414

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

la figure 3 ne représente que les tensions d'allumage et d'extinction, on peut suivre à la figure 2 la variation de l'intensité de la lumière, en fonction de la tension appliquée à la cellule de Kerr. λ est maintenue constante, à 475 nm.

Pour le contrôle dynamique des résultats d'étalonnage, des impulsions de haute tension ont été appliquées à la cellule de Kerr. La variation de ces impulsions a été enregistrée avec un diviseur de tension ohmique et capacitif. Le signal du diviseur et la variation de l'intensité de la lumière ont été simultanément observés à un oscillographe à deux faisceaux. La figure 6 montre deux exemples typiques de ces oscillogrammes.

La trace du haut représente la variation de la tension, mesurée avec le diviseur. L'impulsion de tension a une polarité négative. De même, le signal du multiplieur (trace du bas) est négatif. On reconnaît la variation caractéristique de $\sin^2 E^2$, qui est toutefois un peu déformée, parce que l'impulsion de tension suit plus ou moins une fonction exponentielle. De plus, on peut constater deux faits: Premièrement, il faut interpréter un oscillogramme de la cellule de Kerr, pour obtenir la variation de la tension, soit en établissant un tableau des tensions d'allumage et d'extinction, soit en dessinant un nomogramme. Deuxièmement, la hauteur des impulsions et leur variation peuvent être déterminées avec une plus grande précision que ne le permettrait la précision de mesure de l'oscillographe avec une tête d'exploration. Dans le domaine de la cinquième tension d'allumage de oscillogramme, une modification de la tension de 1,5 % donne déjà lieu à une modification de l'intensité de la lumière de 25 %. Une modification de 5 % de l'amplitude d'un oscillogramme dessiné en hauteur est encore parfaitement reconnaissable. Dans ce domaine, on peut donc encore enregistrer une modification de la tension de 0,3 %. De plus, la sensibilité augmente avec le nombre des maximums et minimums d'intensité obtenus. La précision absolue de mesure n'est donc limitée que par les défauts d'étalonnage, lors de la détermination de la tension d'allumage. Pour une mesure de précision, il faut bien entendu mesurer également la température du liquide de Kerr et corriger le résultat de la mesure, au cas où la température aurait varié.

Une mesure de basses tensions, dans le domaine entre 0 et la première tension d'allumage, présente toutefois quelques difficultés. Dans notre cas, il s'agit des tensions comprises entre 0 et 15,8 kV, à 475 nm (voir fig. 2). Pour cela il aurait fallu une source de lumière étalon, parce qu'une irrégularité de l'intensité lumineuse fausse le résultat de la mesure. Pour chaque modification du dispositif, qui influence I_0 (par exemple remplacement du conducteur de lumière LL, à la figure 5), tout le système devrait être réétalonné. Il importe par conséquent que la tension d'allumage de la cellule de Kerr soit choisie de telle sorte, que l'oscillogramme de mesure présente au moins un maximum d'intensité lumineuse. ce qui permet alors de normaliser l'ensemble de la mesure. La tension à mesurer doit donc être supérieure à la tension d'allumage de la cellule de Kerr. Il faut alors noter la I_0 de chacune des mesures et il suffit que la source de lumière demeure raisonnablement constante pendant la durée de la me-

Bibliographie

- [1] F.B.A. Früngel: High speed pulse technology. New York/London, Academic Press, 1965, Vol. 2, p. 331.
- [2] G. L. Clark: Dielectric properties of nitrobenzene in the region of anomalous dispersion. Journal of chemical physics 25(1956), p. 125...129.
- [3] *E.F. Kingsbury:* The Kerr electrolastic effect. Rev. scient. instrum. 1(1930), p. 22...32.
- [4] F. G. Dunnington: The electrooptical shutter; its theory and technique. Physical rev. 38(1931), p. 1506...1534.
- [5] O. Hilke: Untersuchungen über den Einfluss verschiedener Substituenten und ihrer Stellung auf den Kerreffekt. Zeitschrift für Physik 103(1936), p. 350...394.
- [6] F. Kohlrausch: Praktische Physik. 21e édition. Stuttgart, Teubner, 1960, t. 1, p. 642.
- [7] E. J. White: The technique of Kerr cells. Rev. scient instrum. 6(1935), p. 22...26.
- [8] L. Chaumont: Recherches expérimentales sur le phénomène électrooptique de Kerr et sur les méthodes servant à l'étude de la lumière polarisée elliptiquement. Annales de physique 9/5(1916), p. 17...78.

Adresse de l'auteur:

Dr H. Schmied, Impulsphysik GmbH, 400, Sülldorfer Landstrasse, Postfach, D-2 Hambourg 56-Rissen.

Die Berechnung elektrischer Belastungen von Industriebetrieben mit Hilfe digitaler Rechenautomaten

Von H.-J. Weidner, Leipzig

621.316.176.016.3:681.322

Am Beispiel eines Strahlennetzes wird gezeigt, wie man für grosse in der Projektierung befindliche Industriebetriebe den Leistungs- und Energiebedarf sowie die Netzverluste mit Hilfe des Digitalsrechners aus den Verbraucherdaten nach der Methode des geordneten Belastungsdiagramms berechnet. Das Rechenprogramm kann zunächst zur Auswahl der Kabel und Transformatoren nach der Erwärmung herangezogen werden. Sind die anderen technischen Forderungen erfüllt und damit die elektrischen Betriebsmittel endgültig dimensioniert, so bestimmt man die tatsächlichen Werte, auch die des Energiebedarfs und der Netzverluste. Durch eine Variantenrechnung können sowohl die jahreszeitlichen als auch die durch den Schichtbetrieb auftretenden Veränderungen erfasst werden. Das Programm ermöglicht die Berücksichtigung der verschiedenen Verbraucherarten sowie der Blindstrom-Kompensationseinrichtungen. Alle benötigten Verbraucher- und Netzdaten werden mittels einer Kartei erfasst.

1. Methoden der Ermittlung des elektrischen Leistungsbedarfes

Seit etwa 15 Jahren beschäftigt man sich eingehend mit Methoden zur Berechnung des elektrischen Leistungsbedarfes grandes entreprises industrielles projetées la manière de calculer sur la base du diagramme de charge ordonné et à l'aide d'une calculatrice numérique le besoin d'énergie et de puissance, ainsi que les pertes au réseau. Le programme de calcul peut servir en premier lieu à la sélection des câbles et des transformateurs choisis en fonction de l'échauffement. Lorsque les autres exigences techniques sont remplies et les moyens d'exploitation électriques définitivement dimensionnés, on détermine les valeurs effectives, à l'inclusion du besoin d'énergie et des pertes au réseau. Un calcul de variantes permet de préciser les modifications causées aussi bien par les saisons que par l'exploitation par équipes alternées. Le programme permet de considérer les cartes de consommation les plus diverses, ainsi que les installations de compensation du courant réactif. Toutes les données relatives aux consommateurs et au réseau sont enregistrées dans une cartothèque.

A l'exemple d'un réseau en antenne on démontre pour les

von Industriebetrieben. Diese Berechnungsverfahren unterscheiden sich meist von den bekannten Berechnungsverfahren der öffentlichen Energieversorgung. Es wurden in erster Linie Berechnungsverfahren für einen zeitlich unbekannten Belastungsverlauf entwickelt. Die graphischen Methoden der Belastungsermittlung für vorhandene Belastungen sind bereits hinlänglich bekannt und bedürfen prinzipiell keiner weiteren Untersuchung.

Auch für die Belastungsberechnung in Netzen von Industriebetrieben werden in immer stärkerem Umfang wahrscheinlichkeitstheoretische bzw. statistische Methoden verwendet. Zu diesen Methoden zählt auch das später beschriebene Verfahren des geordneten Belastungsdiagramms.

Zunächst soll einiges über den zu berechnenden Belastungswert gesagt werden.

1.1 Zu berechnender Belastungswert

Die Berechnung des elektrischen Leistungs- und Energiebedarfes sowie des Spitzenstromes bildet die Grundlage für die Auswahl oder Überprüfung aller elektrischen Betriebsmittel hinsichtlich ihrer zulässigen Erwärmung und gegebenenfalls ihrer wirtschaftlichen Stromdichte. Die Leistungsbedarfsermittlung dient ausserdem zur Berechnung der Verluste, des Spannungsabfalles, der Spannungsschwankungen sowie der Auswahl der Schutzeinrichtungen und der Kompensationsanlagen.

Die zu errechnende Belastung soll deshalb möglichst genau einer dauernd unveränderten Belastung durch einen fiktiven Strom entsprechen. Dieser Strom müsste nach der Wärmewirkung der zu erwartenden sich ändernden Belastung äquivalent sein. Damit wird gefordert, dass die Alterung der Isolation infolge der Wärmewirkung des fiktiven Stromes gleich der Alterung bei der tatsächlichen, sich ändernden Belastung ist. Andererseits darf das betreffende Betriebsmittel unter den Bedingungen der sich ändernden Last keinen unzulässigen Überhitzungen ausgesetzt sein, deren Folgen Änderungen der Materialkonstanten der Isolierstoffe oder gar des konstruktiven Aufbaues sein könnten.

Während man der Forderung nach Äquivalenz bezüglich der Alterung näherungsweise gerecht werden kann, lässt sich das Problem der unzulässigen Erwärmung theoretisch kaum erfassen. Die Verschiedenartigkeit der Konstruktion der elektrischen Betriebsmittel — so der Kabel und Transformatoren — würde es schon nicht gestatten, einen einzigen fiktiven Strom für einen bestimmten Fall wechselnder Belastung für alle zu ermitteln. Gegenwärtig sind Angaben über den Wärmeverschleiss der Isolation oder die höchst zulässige Erwärmung nur vereinzelt ermittelt worden.

In den sowjetischen Richtlinien [84]¹) wird deshalb in Ermangelung exakten Zahlenmaterials festgelegt, dass die Temperatur bei Nennbelastung des Betriebsmittels zu keinem Zeitpunkt um mehr als mit 50 % überschritten werden darf. Nach sowjetischen Erfahrungen erfüllt diese Bedingung der 30-min-Maximalwert der Wirkleistung $P_{30~\text{max}}$ bzw. der Blindleistung $Q_{30~\text{max}}$ (Mittelwerte über 30 min für die am höchsten belastete Schicht innerhalb eines Jahres). Es wird dazu angeführt, dass das 30-min-Maximum der Belastung in der Nähe der dreifachen Zeitkonstanten ($T=3~\tau$) der Erwärmung für die üblichen Kabel kleinen und mittleren Querschnittes liegt. Da die anderen elektrischen Betriebsmittel eine grössere Zeitkonstante aufweisen, wird in der Sowjetunion das 30-min-Maximum berechnet und der Dimensionierung zugrunde gelegt.

1.2 Methode des geordneten Belastungsdiagramms

Diese Methode geht davon aus, dass eine hinreichend grosse Anzahl voneinander unabhängiger Verbraucher zu untersuchen ist, die durch ihre Kennwerte charakterisiert werden. Es ist möglich, das Gruppenbelastungsdiagramm durch ein trapezförmiges oder dreieckiges Modell zu ersetzen, welches dann der weiteren Berechnung zugängig ist. Die Untersuchung von Belastungsdiagrammen hat gezeigt, dass diese Annahme zulässig ist. Zu diesem Zweck wurden gestufte Belastungsdiagramme der am höchsten belasteten Schicht (Stufenbreite 10... 30 min) so geordnet, dass beginnend mit dem niedrigsten Belastungswert die nächstgrösseren Werte bis zum Maximalwert folgen. Dieses so geordnete Belastungsdiagramm ist der ungünstigste Fall, da das betreffende Betriebsmittel beginnend mit der niedrigsten Belastungsstufe bis zu seinem zulässigen Grenzwert erwärmt wird (ohne Pausen für eine Abkühlung).

Folgende Kennwerte sind für die Berechnung zu definieren (im allgemeinen für die am höchsten belastete Schicht):

1.2.1 Ausnützungsgrad k_i , l_i ²)

Der Ausnützungsgrad der Wirkleistung eines Verbrauchers k_i oder einer Gruppe von Verbauchern K_i bzw. der Ausnützungsgrad der Blindleistung l_i , L_i ist das Verhältnis der Mittelwerte zu den Nennwerten der Verbraucher in dem zu untersuchenden Zeitabschnitt:

 $k_{\rm i} = \frac{p_{\rm m}}{p_{\rm n}} \tag{1}$

bzw.

$$K_{\rm i} = \frac{P_{\rm m}}{P_{\rm inst.}} = \frac{\sum (k_{\rm i} p_{\rm n})}{\sum p_{\rm n}}$$
 (2)

worin

 $p_{\rm m}$ mittlerer elektrischer Leistungsbedarf eines Verbrauchers während der Zeit seiner Einschaltung ($t_{\rm e}$);

p_n Nennleistung eines Verbrauchers gemäss Typenschild (also bei Motoren Wellenleistung);

P_{inst} installierte Leistung ohne Reserveverbraucher.

Analog ist der Ausnutzungsgrad für die Blindleistung zu bestimmen.

1.2.2 Formfaktor k_f , l_f

Der Formfaktor ist das Verhältnis der effektiven Wirkleistung eines Verbrauchers oder einer Gruppe von Verbrauchern zur mittleren Belastung in dem zu untersuchenden Zeitabschnitt:

$$k_{\rm f} = \frac{p_{\rm eff}}{p_{\rm m}} \tag{3}$$

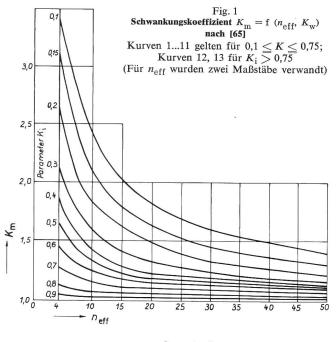
1.2.3 Schwankungskoeffizient k_{m} , l_{m}

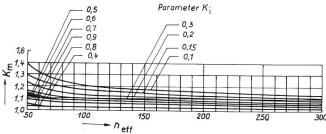
Der Schwankungskoeffizient der Wirkleistung ist das Verhältnis der maximalen zur mittleren Wirkleistung eines Verbrauchers oder einer Gruppe von Verbrauchern in dem zu untersuchenden Zeitabschnitt:

 $k_{\rm m} = \frac{p_{\rm max}}{p_{\rm m}} \tag{4}$

oder

$$K_{\rm m} = \frac{P_{\rm 30~max}}{P_{\rm m}} \tag{5}$$


1.2.4 Relative Einschaltdauer k_{w}


Die relative Einschaltdauer ist das Verhältnis der Einschaltdauer t_e zur Zyklusdauer t_z . Diese (t_z) ist der Zeitraum, in dem sich das Belastungsspiel wiederholt:

684 (A 417)

¹⁾ Siehe Literatur am Schluss des Aufsatzes.

 $^{^2}$) Im folgenden werden Werte von einzelnen Verbrauchern mit kleinen Buchstaben, solche von Verbrauchergruppen jedoch mit grossen Buchstaben symbolisiert. Kennwerte der Wirkleistung werden mit k bezeichnet, analog für die Blindleistung mit l.

 $k_{\rm w} = \frac{t_{\rm e}}{t_{\rm z}} \tag{6}$

oder

$$K_{\rm w} = \frac{\sum (k_{\rm w} p_{\rm n})}{\sum p_{\rm n}} \tag{7}$$

1.2.5 Effektive Verbraucheranzahl $n_{\rm eff}$

Die effektive Verbraucheranzahl gibt diejenige fiktive Anzahl von Verbrauchern mit gleicher Leistung an, die denselben Maximalwert hat wie eine Gruppe hinsichtlich Arbeitsverhältnis und Leistung unterschiedlicher Verbraucher:

$$n_{\rm eff} = \frac{(\sum p_{\rm n})^2}{\sum p_{\rm n}^2} \tag{8}$$

Die Belastungen von Verbrauchergruppen werden nach folgenden Gleichungen berechnet, wobei alle Werte auf die am höchsten belastete Schicht zu beziehen sind:

$$P_{30 \text{ max}} = K_{\rm m} P_{\rm m} = K_{\rm m} K_{\rm i} P_{\rm inst.}$$
 (9)

$$Q_{30 \text{ max}} = L_{\rm m} Q_{\rm m} = L_{\rm m} L_{\rm i} Q_{\rm inst.} \tag{10}$$

Der Schwankungskoeffizient:

$$K_{\rm m}={\rm f}\left(K_{\rm w},n_{\rm eff}\right)$$

ist der Kurvenschar (Fig. 1) zu entnehmen. Die Kurven für $K_{\rm m}$ fussen auf dem erwähnten dreieckigen oder trapezförmigen Belastungsmodell. Es sei hier nochmals darauf hingewiesen, dass diese Gleichungen nicht für Verbraucher gelten, für die feststehende Beziehungen zwischen den Arbeitsdiagrammen bestehen. In die spätere digitale Belastungsanalyse können die Ergebnisse der Untersuchung für derartige Verbraucher übernommen werden.

Die Belastungsanalyse hat auf allen Netzebenen nach den Gl. (1) bis (10) zu erfolgen. Dabei müssen alle Verbraucher, für die die Annahme der Unabhängigkeit nicht zutrifft, gesondert behandelt werden.

Es ist im Rahmen dieses Beitrages — auch im Hinblick auf den Zweck — nicht möglich, weitere Einzelheiten anzuführen. Es sei hier auf die umfangreiche Fachliteratur, insbesondere die Zusammenfassungen in [65; 70; 84], hingewiesen.

2. Die elektrische Belastungsanalyse mit Hilfe digitaler Rechenautomaten

2.1 Gegenstand der durchgeführten Belastungsanalyse

Bei der technischen und wirtschaftlichen Planung grosser Industriebetriebe wird eine möglichst genaue Ermittlung des elektrischen Leistungs- und Energiebedarfes erforderlich, um die Anlagen zweckentsprechend zu dimensionieren, eine energiewirtschaftliche Planung zu ermöglichen und ausserdem die zu erwartenden Energiekosten für Zwischen- und Endprodukte oder Werkteile zu bestimmen. Für grosse Industriebetriebe bereitete bisher die Berechnung der entsprechenden Zahlenwerte Schwierigkeiten und war ausserdem sehr ungenau, so dass das Ergebnis meist als Schätzung aufgefasst werden musste. Es soll nun im folgenden gezeigt werden, wie man in teilweiser Anlehnung an die Berechnungsgrundlagen [65] und mit Hilfe von elektronischen Digitalrechnern für Strahlennetze die verschiedenen elektrischen Leistungs- und Energiewerte berechnen kann. Besonders hervorzuheben ist, dass das später beschriebene Verfahren Änderungen bezüglich des Netzaufbaues und der Verbraucheranzahl zulässt. Diese Elastizität ist in dem Projektierungsstadium unbedingt erforderlich und war bisher nicht zu erreichen.

Das Rechenprogramm soll für ein grosses Netz mit feststehender Struktur aufgestellt werden. Den Aufbau zeigt Fig. 2. Auf allen Netzebenen von der Hauptschaltanlage (Oberspannung) bis zur Hauptverteilung (Unterspannung) werden hierfür die mittlere Wirk- und Blindleistung Pm, Qm der am höchsten belasteten Schicht sowie die 15-min-Maximalwerte P_{15 max}, Q_{15 max} und die sich daraus ergebenden Leistungsfaktoren berechnet. Ausserdem interessiert die Summe der Kabelverluste $\Delta P_{\rm K}$ (unterspannungsseitig), die Summe der Transformatorwirkverluste ΔP_{Tr} und die Summe der Kabelverluste (oberspannungsseitig). Die durch das Schichtregime und die Jahreszeiten bedingten Schwankungen lassen sich auch einfach erfassen. Hierbei wird eine Einteilung in drei Schichten sowie in das Sommer- und Winterhalbjahr als ausreichend betrachtet. Obwohl nach dem gleichen Schema auch die benötigte elektrische Energie ermittelt werden könnte, ist es trotzdem angebracht, bei ihrer Berechnung sich nur auf der untersten Spannungsebene an die Gliederung nach Elektroverteilungen zu halten, sonst aber die vom Ökonomen und Technologen zugrunde gelegte Gliederung nach Objekten anzuwenden. Die Aufteilung in die drei Schichten und in die beiden Halbjahre wird auch für die Energieermittlung beibehalten. Aus der Summe dieser Werte ergibt sich die gesamte benötigte elektrische Energie. Ebenso werden die Energieverluste der Kabel und Transformatoren behandelt.

2.2 Theoretische Grundlagen für die Leistungs- und Energieermittlung

2.2.1 Berechnung der mittleren und maximalen Belastung

Die Berechnung basiert auf der mittleren benötigten Lei-

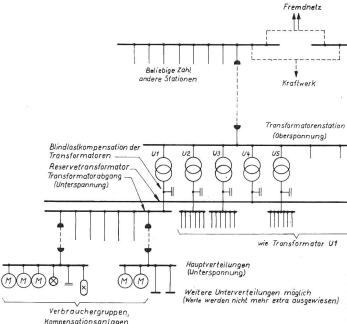


Fig. 2 Vereinfachtes Übersichtsschema für das untersuchte Energieversorgungsnetz [72]

entnommene Wirkleistung p_{m1} eines Verbrauchers aus dem Produkt seiner Nennleistung p_{n2} und dem mittleren Ausnützungsgrad k_i berechnen:

$$p_{m1} = k_i p_{n2} \tag{11}$$

Entsprechend gilt für eine Gruppe von Verbrauchern:

$$K_{i} = \frac{\sum n \, k_{i} \, p_{n2}}{\sum n \, p_{n2}} \tag{12}$$

stung der Verbraucher sowie auf den Kenndaten der elektrischen Betriebsmittel. Hinzu kommen noch einige besondere Kennziffern. Die Ausgangsdaten sind:

Für Motoren, Heizung und Beleuchtung sowie Blindstromkondensatoren

Anzahl gleichartiger Verbraucher, Verbraucheranlagen (wie z. B. Beleuchtung) oder Kondensatoren mit gleichen Daten;

 k_{wabs} . Einschaltzeit pro Schicht (h);

p_{n2} Nennwirkleistung eines Verbrauchers (kW);

 $p_{\rm m2}$ Mittlere tatsächlich benötigte Wirkleistung eines Verbrauchers (kW) während seiner Einschaltung (bei Motoren Wellenleistung);

 $\eta_{\rm n}$ Nennwirkungsgrad;

 $\cos \varphi_n$ Nennleistungsfaktor;

 Mittlere Blindleistung für ein elektrisches Betriebsmittel mit Kompensationswirkung (kvar).

Für Kabel (einschliesslich Daten für die Energieermittlung)

Kabellänge (m);

σ Leitfähigkeit (S/mm²);

A Querschnitt (mm²);

U Spannung (kV);

 Arbeitszeitfonds (h) bezogen auf eine Schicht und ein Halbjahr ³);

α_s Energieausnützungsgrad für das Sommerhalbjahr;

αw Desgleichen, aber für das Winterhalbjahr;

TV Teilvorhabennummer, Objektnummer.

Für Transformatoren

 $q_{\rm K}$ Blindstromkompensation des Transformators auf der Sekundärseite (kvar);

S_n Nennleistung des Transformators (kVA);

 u_k Relative Nennkurzschlußspannung (%);

q₁ Blindleistungsbedarf bei Leerlauf (kvar);

 p_1 Wirkleistungsverlust bei Leerlauf (kW);

 p_{wi} Wirkleistungsverlust bei Nennbetrieb (kW).

Selbstverständlich sind diese Daten nur anzugeben, soweit sie physikalisch sinnvoll sind. Als krasses Beispiel diene der Kondensator, bei dem ausser n, $k_{\rm w}$ und $\hat{q}_{\rm m}$ die anderen Werte gleich null sind.

2.2.1.1 Berechnungsgang für Asynchronmotoren. Nach den sowjetischen Richtlinien [84] würde man die mittlere dem Netz

Letzten Endes ist das aber eine versteckte Addition der dem Netz entnommenen mittleren Leistungen. Zur Zeit fehlen in Deutschland statistische Angaben über den Ausnützungsgrad k_i bzw. für denjenigen der Blindleistung l_i . Sie zu schätzen, ist wegen der verschiedenen Einflussfaktoren, wie z.B. Wirkungsgrad und Leistungsfaktor, unmöglich. Deshalb wird für die Berechnung der mittleren Wirk- und Blindleistung ein anderer Weg eingeschlagen.

Beliebige Zahl Idere Stationen

Die Motorenhersteller geben für Drehstrom-Asynchronmotoren mit Kurzschluss- und Schleifringläufer Kurven $(f_1$ und $f_2)$ an, aus denen man mit guter Näherung die Werte für Wirkungsgrad und Leistungsfaktor bei Teillast bestimmen kann. Die dort eingetragenen Werte werden allgemein in Prozenten der Nenndaten angegeben. Diese Kurven sollen zur Berechnung der dem Netz entnommenen mittleren Wirkleistung p_{m1} der Motoren dienen. Man erhält für Asynchronmotoren die dem Netz entnommene Wirk- und Blindleistung:

$$\eta = f_1 \left(\frac{p_{\rm m2}}{p_{\rm n2}} \right) \eta_{\rm n} \tag{13}$$

$$p_{\rm m1} = \frac{p_{\rm m2}}{n} \tag{14}$$

$$\cos \varphi = f_2 \left(\frac{p_{\rm m2}}{p_{\rm n2}} \right) \cos \varphi_{\rm n} \tag{15}$$

$$q_{\rm m1} = p_{\rm m1} \sqrt{\frac{1}{\cos^2 \varphi} - 1} \tag{16}$$

Die mittlere, dem Netz entnommene Wirk- und Blindleistung der am höchsten belasteten Schicht innerhalb eines Halbjahres (Schichtdauer 8 h) bestimmt man für Gruppen von Motoren nach folgenden Gleichungen:

$$P_{\rm m1} = \frac{K_{\rm K}}{8} \sum n \, k_{\rm w \, abs.} \, p_{\rm m1}$$
 (17)

$$Q_{\rm m1} = \frac{K_{\rm K}}{8} \sum n \, k_{\rm w \, abs.} \, q_{\rm m1}$$
 (18)

Darin ist $K_{\rm K}$ ein Minderungskoeffizient, den man als «Gleichzeitigkeitsfaktor der mittleren Belastungen» bezeichnen kann. Den sowjetischen Richtlinien ist zu entnehmen, dass die gesamte Minderung der Belastung auf der obersten Netzebene nie kleiner als 0.8 anzunehmen ist.

Die Berechnung der 15-min-Maximalwerte $P_{15 \text{ max}}$ und $Q_{15 \text{ max}}$ wird für die unteren Netzebenen nach den sowjetischen Richtlinien über die effektive Verbraucherzahl $n_{\rm eff}$, die relative

³⁾ Unter Arbeitszeitfonds wird der Zeitraum verstanden, in dem die Produktionsanlagen tatsächlich in Betrieb sind. Er wird im wesentlichen durch das Schichtregime und die Regelungen an Sonn- und Feiertagen beeinflusst.

Einschaltdauer $k_{\rm w}$ und die bereits untersuchte mittlere Leistung $p_{\rm m1}$ durchgeführt. An Stelle der relativen Einschaltdauer soll die absolute Einschaltdauer $k_{\rm w}$ abs. während einer Schicht eingesetzt werden. Das erleichtert später die praktische Anwendung. Es gilt für $K_{\rm w}$ und $n_{\rm eff}$:

$$K_{\rm w} = \frac{\sum n \, k_{\rm w \, abs.} \, p_{\rm n2}}{8 \, P_{\rm n2}} \tag{19}$$

$$n_{\rm eff} = \frac{P^2_{\rm n2}}{\sum_{\rm l} n \, p^2_{\rm n2}} \tag{20}$$

Aus $K_{\rm w}$ und $n_{\rm eff}$ erhält man nach der in Fig. 1 wiedergegebenen Kurvenschar den Schwankungskoeffizienten der Wirkleistung $K_{\rm m}$, der etwa dem der Blindleistung $L_{\rm m}$ gleicht.

Der nach der Kurvenschar ermittelte Wert von K_m ist auf 30 min bezogen. Er kann aber näherungsweise für eine von 30 min abweichende Dauer t (h) umgerechnet werden:

$$K_{\rm mt} \approx 1 + \frac{K_{\rm m} - 1}{\sqrt{2 t}} \tag{21}$$

oder speziell für 15 min:

$$K_{15m} \approx 1 + \sqrt{2} (K_{\rm m} - 1)$$
 (22)

Damit ergeben sich die maximale Wirk- und Blindleistung zu:

$$P_{15 \text{ max}} = K_{15 \text{m}} P_{\text{m}1} \tag{23}$$

und

$$Q_{15 \text{ max}} = L_{15 \text{m}} Q_{\text{m}1} \tag{24}$$

Der Anteil der Motorbelastung an den Gesamtwerten P_{\max}^r und Q_{\max}^r der Hauptschaltanlage wurde nach folgenden Gleichungen ermittelt:

$$P_{\text{max}}^{"} = K_{\text{K}} \sum P_{\text{max}}^{"} \tag{25}$$

$$Q_{\text{max}}^{"} = K_{\text{K}} \sum Q_{\text{max}}^{"} \tag{26}$$

Über $K_{\rm K}$ gilt das bereits Gesagte. $P_{\rm max}^{"}$ und $Q_{\rm max}^{"}$ sind die ermittelten Werte für die einzelnen Stationen.

Die Ermittlungen der Leistungswerte über $n_{\rm eff}$ und $k_{\rm w}$ verlieren ihren Sinn, sobald $n_{\rm eff}$ kleine Werte annimmt. Deshalb ist in den sowjetischen Richtlinien festgelegt worden, dass bei $n_{\rm eff} \leq 3$ die mittleren Leistungen jedes Antriebes ohne Minderung zu addieren sind. Im Programm wurde aus Gründen der Sicherheit $n_{\rm eff} = 5$ als Grenze angenommen und die 15-min-Maximalwerte berechnet.

2.2.1.2 Berechnungsgang für Beleuchtung, Widerstands- und Induktionsheizung. Die Belastung durch Beleuchtung und elektrische Heizung stellt praktisch einen konstanten Anteil dar und darf deshalb den Rechnungsgang für Motoren nicht durchlaufen. Die mittlere, dem Netz entnommene Wirk- und Blindleistung ist analog zu Gl. (17) und (18):

$$P_{\rm m1} = \frac{K}{8} \sum n \, k_{\rm w abs.} \, p_{\rm m1} \tag{27}$$

$$Q_{\rm m1} = \frac{K}{8} \sum_{\rm n} n \, k_{\rm w \, abs.} \, q_{\rm m1}$$
 (28)

Es wurden hieran weitere Indizes nicht angefügt. Die Konstante K berücksichtigt lediglich, dass bei grossen Industriebetrieben ein Teil der Lampen oder Heizeinrichtungen defekt oder ausser Betrieb ist. Erfahrungsgemäss ist für fensterlose Arbeitsräume K gleich 0,95 und für alle übrigen Beleuchtungs-

formen etwa zu 0,9 anzunehmen. Der Blindleistungsbedarf ergibt sich für Beleuchtung und Heizung analog Gl. (16) zu:

$$q_{\rm m1} = p_{\rm m1} \sqrt{\frac{1}{\cos^2 \varphi} - 1} \tag{29}$$

In chemischen Betrieben verlangen manche technologischen Verfahren elektrische Heizungen, die eine konstante Temperatur gewährleisten. Wegen der einfachen Steuerung und dem Charakter der Belastungsdiagramme entsprechend unterscheidet man zwischen Anfahr-, Grund- und Regellast. Die Anfahrlast dient dem schnellen Erwärmen von Anlagenteilen bei ihrer Inbetriebnahme und wird nur kurze Zeit in Anspruch genommen. Deshalb ist es zweckmässig, sie nur bei der maximalen Leistung hinzuzufügen. Sowohl das Heizen mit Grundlast als auch mit Regellast kann als «Lichtbelastung» aufgefasst werden. Ist in einem speziellen Fall die Regellast über eine Schicht und innerhalb von kurzen Zeiträumen stark schwankend, so wird sie berechnungsmässig in eine relativ konstante Regellast und eine Anfahrlast zerlegt. Damit erhält man das richtige Ergebnis für die mittlere und maximale Belastung. Eine derartige Aufteilung ist nur für grosse Regellasten angebracht.

2.2.1.3 Berücksichtigung der Kompensationseinrichtungen; Gesamtleistungsfaktor. Da Kondensatoren für die Grundlastkompensation von Transformatoren einen konstanten (negativen) Beitrag zur Blindstromkomponente darstellen, werden sie berechnungsmässig bei der Blindleistung der Lichtverbraucher berücksichtigt. Dadurch wird auch der Fehler umgangen, der durch die Minderungsfaktoren bei motorischen Verbrauchern entstehen würde. Bei der Einzelkompensation von Motoren wird die Blindstromkomponente als Motorenanteil betrachtet, da der Kondensator bei abgeschaltetem Motor nicht mehr wirksam ist.

Die Gruppenkompensation von Verbraucheranlagen, die sich vorwiegend aus Elektromotoren zusammensetzen, wird oft durch automatische Blindleistungsbegrenzer ergänzt, um eine Überkompensierung auszuschliessen. Bei der rechnerischen Behandlung betrachtet man die Mittel- und Maximalwerte gesondert. Es sei im folgenden vorausgesetzt, dass es sich um bereits dimensionierte Anlagen handelt. Zieht man das Rechenprogramm zur Dimensionierung heran, so gilt das Gesagte sinngemäss.

Die Begrenzereinrichtungen verhindern die Überschreitung eines vorher festgelegten Leistungsfaktors. Bei geringer Belastung durch die Motoren wird deshalb ein Teil der Kondensatorenbatterie vom Netz getrennt sein. Die Rechnung würde einen falschen Wert für den Leistungsfaktor ergeben, wenn man für den Mittelwert festlegt, dass die Kompensationsanlagen pro Schicht 8 h mit voller Nennleistung an das Netz angeschlossen sind. Je nach den Besonderheiten der angeschlossenen Verbraucher muss man deshalb für die Mittelwertbildung entsprechend den Kennwerten der angeschlossenen Verbraucher nur mit einer teilweisen Ausnutzung der vollen Nennleistung rechnen.

Es kann aber auch vorkommen, dass die Kompensationsanlagen überdimensioniert worden sind. Dann ergibt sich ein negativer Wert für die Blindleistung auf der untersten Netzebene, und man kann den Anteil der Überkompensierung direkt erkennen. Um bei der weiteren Zusammenfassung der Komponenten auf höheren Netzebenen diesen — den tatsächlichen Verhältnissen widersprechenden — Tatbestand richtigzustellen, wird im Falle der Überkompensierung bei Anlagen mit automatischen Blindleistungsbegrenzern für die weitere Rechnung im Rechenautomaten ein Leistungsfaktor von 0,95 zugrunde gelegt und nach der sich daraus ableitenden Gleichung:

$$Q_{\rm m} = 0.33 \, P_{\rm m} \tag{30}$$

der tatsächliche Blindleistungsanteil bestimmt [s. Gl. (29)].

Die Gruppenkompensation von Beleuchtungsanlagen kommt praktisch nur für Räume mit ständiger Ausleuchtung durch Leuchtstoff- oder Quecksilberdampflampen in Frage und wird üblicherweise nicht automatisch geregelt. Deshalb hat man die volle Kondensatorleistung für die Zeit der Einschaltung in Rechnung zu setzen.

Aus den berechneten Werten für die Wirk- und Blindleistung erhält man auf allen Netzebenen den zu erwartenden Leistungsfaktor:

$$\cos \varphi_{\rm m} = \frac{P_{\rm m1}}{\sqrt{P_{\rm m1}^2 + Q_{\rm m1}^2}} \tag{31}$$

Selbstverständlich können sich $P_{\rm m1}$ und $Q_{\rm m1}$ aus Anteilen von Motoren und Beleuchtung sowie Heizung zusammensetzen. Entsprechendes gilt für den Leistungsfaktor bei den Maximalwerten.

2.2.2 Berechnung der Leistungsverluste

Der Leistungsverlust für Kabel $\Delta p_{\rm K}$ ergibt sich aus:

$$\Delta p_{\rm K} = \frac{1S_{\rm eff}^2}{1000 \,\sigma A \, U^2}$$
 (kW) (32)

Darin ist l (m) die Kabellänge, σ (S/mm²) die Leitfähigkeit, A (mm²) der Leiterquerschnitt und U (kV) die Spannung. Die effektive Scheinleistung errechnet man aus:

$$S_{\text{eff}} = k_{\text{f}} \sqrt{P_{\text{m1}}^2 + Q_{\text{m1}}^2}$$
 (kVA) (33)

Der Formkoeffizient k_t berücksichtigt, dass die elektrischen Betriebsmittel einer veränderlichen und nicht der berechneten mittleren Leistung ausgesetzt sind und durch diese auch erwärmt werden.

Den Wirkleistungsverlust von *n* parallelen Transformatoren erhält man für Teillast nach folgender Gleichung:

$$\Delta p_{\rm Tr} = n p_1 + \left(\frac{S_{\rm eff}}{S_{\rm n}}\right)^2 \frac{p_{\rm wi}}{n} \tag{34}$$

Ebenso wird der Blindleistungsbedarf erfasst. Es gilt für den Teillastfall:

$$\Delta q_{\rm Tr} = n \, q_1 + \frac{u_{\rm k} \, S_{\rm eff}^2}{100 \, n \, S_{\rm p}} \tag{35}$$

Dieser Anteil wird — abgesehen vom Vorzeichen — rechnungsmässig wie ein Kondensator behandelt und somit als «Beleuchtungsteil» betrachtet. Auch bei dem Blindleistungsbedarf der Transformatoren sind der Mittel- und der Maximalwert zu bestimmen. Beide Werte unterscheiden sich wesentlich, da in Gl. (35) die effektive Scheinleistung mit dem Quadrat erscheint.

2.2.3 Berechnung des Energiebedarfs und der Netzverluste

Da die Energiewirtschafter für die kostenmässige Beurteilung die Angaben für die einzelnen Objekte benötigen, werden der Energiebedarf und wegen der einheitlichen Methodik auch die Energieverluste nach Objekten erfasst. Den Wirk-

energiebedarf W errechnet man zunächst getrennt für jede Hauptverteilung (Unterspannung) und fasst ihn dann ohne weitere Minderungsfaktoren zusammen:

$$W = \alpha T P_{\rm m1} \tag{36}$$

Darin ist α der Energieausnützungsgrad und T der Fonds an Arbeitszeit bezogen auf eine Schicht und ein Halbjahr. Analog zu Gl. (36) gilt für die Verluste der Speisekabel zu den Hauptverteilungen:

$$w_{\rm K} = \alpha \, T \cdot \Delta \, p_{\rm K} \tag{37}$$

Während T aus dem festgelegten Schichtregime genau ermittelt werden kann, ist man bei der Festlegung von α für einzelne Objekte zur Zeit noch auf Schätzungen angewiesen. Bei grossen Objekten sind in der Regel mehrere Hauptverteilungen vorhanden, deren Aufteilung meist nach technologischen Gesichtspunkten erfolgt. Man hat deshalb die Möglichkeit, den Energieausnützungsgrad aufbauend auf der Technologie entsprechend den vorgesehenen Verteilungen zu untergliedern.

Durch die Aufteilung der gesamten Berechnungen in drei Schichten und zwei Halbjahre erhält der Energieausnützungsgrad erst seinen Sinn, insbesondere wenn man seine objektgebundene Aufschlüsselung berücksichtigt. Er hat praktisch nur noch jahreszeitliche Einflüsse auszugleichen. Hinzu kommt noch die unterschiedliche Schichtauslastung, soweit diese bei der Untergliederung in Schichten aus Gründen der Vereinfachung nicht schon erfasst worden ist. Prinzipiell ist es mit dem Rechenprogramm auch möglich, unterschiedliche Energieausnützungsgrade für die einzelnen Schichten zu wählen.

Für Motoren grosser Leistung ist bei stark schwankendem Leistungsbedarf der Energieausnützungsgrad — soweit keine Messergebnisse vorliegen — graphisch zu bestimmen. Ein typisches Beispiel hierfür sind die Kompressorantriebe in Klimaanlagen.

Ohne weiteres ist es nicht möglich, einen Wert von αT für die Transformatoren und Zuleitungskabel der Transformatorenstationen anzugeben oder gar zu schätzen. Es erscheint deshalb als zweckmässig, einen Mittelwert für den Ausdruck αT aus den bekannten Ausgangsdaten von α und T zu bilden:

$$(\alpha T)_{\rm m} = \frac{\sum \alpha T P_{\rm m1}}{P_{\rm m1}} \tag{38}$$

Aus den berechneten α *T*-Werten der einzelnen Transformatoren wird anschliessend ein resultierender Wert für das Zuleitungskabel der Station gebildet. Damit kann Gl. (37) sinngemäss auch für Transformatoren und Kabel zu den Stationen Anwendung finden.

2.3 Zur praktischen Durchführung der Leistungs- und Energieermittlung

Der vorangegangene Abschnitt sollte möglichst gedrängt die grundlegenden Gleichungen und den Lösungsgang wiedergeben. Ziel bei der Aufstellung des Rechenprogrammes war es, die durch die reine Rechnung erfassbaren Ungenauigkeiten auf einen Bruchteil zu reduzieren. In einigen Teilen des Programms wird man deshalb einige Schritte als zu genau ansehen. Da aber dadurch die Einfachheit der Anwendung nicht leidet, und man bei grossen Industrienetzen mit den unterschiedlichsten Arten von Verbrauchern nicht immer klar erkennen wird, welchen Einfluss die verschiedenen Eingabedaten auf das Ergebnis haben, kann das nicht als Nachteil betrachtet werden.

Fig. 3 Beispiel einer ausgefüllten Verbraucherkarte

2.3.1 Näherungsfunktionen

Die Berechnung von $K_{\rm m}$, η und $\cos \varphi$ beruht auf Kurven, für die zur Zeit der Bearbeitung aus der Literatur keine analytischen Ausdrücke bekannt waren. Deshalb wurden hierfür Näherungsfunktionen bestimmt.

2.3.2 Erfassung der Verbraucherund Netzdaten

Die Verbraucher- und Netzdaten erfasst man nach einem Karteisystem, das sich nach dem Netzaufbau gliedert. Sowohl für Verbraucher als auch für Kabel und Transformatoren sind jeweils Erfassungskarten erforderlich. Eine ausgefüllte Karte für Motoren zeigt Fig. 3. Den gleichen Kartentyp verwendet man für Beleuchtung und Kondensatoren. Die auf den Transformator- und Kabelkarten vorgesehenen Kennwerte sind bereits am Anfang angegeben worden. Auf den Kabelkarten findet man noch die für Energieermittlung notwendigen Daten vermerkt. Dabei ist der Energieausnützungsgrad für Lichtverbraucher im Rechenprogramm bereits berücksichtigt worden.

Die Karten wird man objektweise ausfüllen und erst später nach dem Netzaufbau sortieren. Durch die Eintragungen im linken Teil des Kartenkopfes ist dies leicht möglich. Es besteht die Möglichkeit, mit den gleichen Karten verschiedene Netzformen zu untersuchen.

Motoren-, Beleuchtungs- und Kondensatorenkarten können, soweit die entsprechenden Verbraucher an eine Hauptverteilung angeschlossen sind, in beliebiger Reihenfolge angeordnet werden. Trotzdem durchläuft jeder dieser Kartentypen seinen eigenen Berechnungsgang.

Alle zu berechnenden Grössen werden einerseits für jede der drei Schichten sowie andererseits für das Winter- und Sommerhalbjahr getrennt ermittelt. Zu diesem Zweck ist auf der Erfassungskarte zu vermerken, in welchen Schichten und in welchem Halbjahr das Betriebsmittel eingeschaltet ist. Nach einem festgelegten Schlüssel kennzeichnet man daher den zweiten Wert der Verbraucherkarte nach dem Schichtregime. Bei Blindstrom-Kondensatorenbatterien mit automatischer Regelung ist auf der Erfassungskarte selbstverständlich das Schichtregime der angeschlossenen Verbraucher einzutragen. Es muss hierbei betont werden, dass die Beschreibung dieser Kennzeichnungen umständlicher ist als deren praktische Handhabung.

Anhand der Erfassungskartei wird eine Lochkartei oder ein Lochstreifen hergestellt. Mit diesem berechnet man jeweils eine der sechs Varianten, beispielsweise Sommer, 1. Schicht.

2.3.3 Der vorgesehene Netzumfang

Das Programm für das Netz nach Fig. 2 bzw. der benützte Digitalrechner erlauben eine Maximalbestückung von 15 Transformatorenstationen mit je 10 Transformatorenabgängen und daran anschliessend jeweils 10 Hauptverteilungsabgängen. An jedem Transformatorabgang könnten in diesem speziellen Fall bis zu 365 *Gruppen* von Verbrauchern gleicher Daten einschliesslich der Kompensationseinrichtungen angeschlossen sein. Ein Netz, das den angegebenen Umfang nicht überschreitet, kann mit dem vorhandenen Programm unterbre-

(M) Stat.	Trafe	Hauptvortlg.	Vertig.	TV	n	Fw	pn	ρm	η	cos	qn
2	4	4.02	D	23	2,1	-4QQ	10	6	0,82	0,8	0
Verwend	unaszwe	d: Kreis	elpun	pe		-					
Anzahl:	2 +	1 R									
Eingesch	ıltet: _	4 Std./S	Sch., SW J	SoWi 1-3	r						
Nennleis											
Mittlere L											
Wirkungs	grad _	0,82	cos 9:	0,80						Wd.	
	Spannung: 0,4 kV							Nar	ne:	2.3.	16
Spannun		DIVALL	7-1 1	D 42				Dat	um. o	6001	00
Spannun Motortyp PosNr.	, Schutze	art: DKM 4	7 /	75				20.			

chungslos berechnet werden, unabhängig vom Vorhandensein oder Fehlen irgendwelcher an sich möglicher Verteilungen oder Transformatorenabgänge. Selbstverständlich wird der zulässige Netzumfang ausschliesslich durch den zur Verfügung stehenden Digitalrechner und seine peripheren Geräte bestimmt.

2.3.4 Dimensionierungsrechnungen

Für einen bestimmten Netzumfang ist es möglich, mit den Verbraucherkarten die Mittel- und Maximalwerte der Wirkund Blindleistung auszurechnen und darauf aufbauend die Kabel und Transformatoren nach der Erwärmung durch den Betriebsstrom auszuwählen. An Stelle der Transformatorenund Kabelkarten sind wegen der Markierungen Blindkarten vorzusehen. Entsprechen die ausgewählten Betriebsmittel den anderen technischen Belangen, so ersetzen die Datenkarten mit den tatsächlichen Werten diese Blindkarten, und man kann somit die zu erwartenden Endwerte genau berechnen. Selbstverständlich sollten schon nach der ersten Rechnung alle Änderungen vorgenommen werden, die sich durch einen schlechten Leistungsfaktor oder ungünstige Lastaufteilung ergeben. Ob eine zentrale oder örtliche Kompensation der Blindleistung angebracht ist, kann durch Variantenrechnungen entschieden werden. Ebenso hat man bei der Dimensionierung der elektrischen Betriebsmittel die gewünschten anderen Schaltzustände, Kupplungsmöglichkeiten und Reserveeinspeisungen entsprechend zu berücksichtigen. - Für Reservetransformatoren sind Blind- bzw. Datenkarten erforderlich.

Bei Industriebetrieben, die in mehreren Baustufen errichtet werden, ist bei der Dimensionierung meist der spätere Anschluss von weiteren Objekten an bestehende Stationen zu beachten. Man wird deshalb Erfassungskarten mit Schätzwerten für Anzahl, Auslastung und Nennleistung der zu erwartenden Verbraucher vorsehen und damit eine Dimensionierungsberechnung durchführen.

2.3.5 Ergebnisdruck und Dokumentation der Ergebnisse

Beim Ergebnisdruck erhält man zuerst die Werte für die Hauptverteilungen (Unterspannung), dann die der Transformatorenabgänge sowie der betreffenden Transformatorenstation und schliesslich die Gesamtwerte für die Hauptschaltanlage. Für die Hauptschaltanlage werden neben den Mittelund Maximalwerten sowie dem Leistungsfaktor die Gesamtzahl aller Motoren, ihre Aufteilung auf einzelne Leistungsstufen, die installierten Nennleistungen (getrennt nach Motoren sowie Beleuchtung und Heizung), die Summe der Netzverluste und deren Aufteilung berechnet. Dazu kommt noch der gesamte Wirkenergiebedarf (einschliesslich aller Netzverluste) und dabei — gesondert ausgewiesen — die Summe der Energieverluste.

Die Aufteilung des Energiebedarfes und der Verluste nach Objekten erhält man als letztes. Mit dem vorhandenen Programm können 30 verschiedene Objekte berücksichtigt werden; dabei sind die verwendeten Objektnummern mit dem Rechenprogramm einzugeben. Die Verluste in den Speisekabeln (Oberspannung) und in den Transformatoren erscheinen unter einer gesonderten Objektnummer. Den Wirkenergiebedarf von sämtlichen Nebenanlagen sollte man stets unter einer Objekt-Scheinnummer erfassen.

Das verwendete Rechenprogramm gestattet eine weitere Untergliederung der Ergebnisse auf allen Netzebenen. Im Hinblick auf die sechs untersuchten Varianten ist es aber angebracht, auf deren Druck zu verzichten, da die grosse Menge des an fallenden Zahlenmaterials eine sinnvolle Auswertung erschwert.

2.4 Besonderheiten für die Leistungs- und Energieanalyse von Werken mit stark veränderlichem Sortiment

In einigen Industriezweigen gibt es Betriebe mit veränderlichem Produktionsausstoss oder Sortiment der Erzeugnisse.
Damit verbunden ist gelegentlich auch eine wesentliche Änderung des Leistungs- und Energiebedarfes. Schenkel [59] führte diesbezüglich eingehende Untersuchungen in verschiedenen Werken durch und stellte die Ergebnisse durch Korrelationsfunktionen dar. Er gibt aber selbst an, dass diese Zusammenhänge stark von den Betriebsbesonderheiten abhängig sind und für eine bestimmte Erzeugnisart nicht allgemeine Gültigkeit haben. Vorhandene Korrelationsfunktionen gelten praktisch nur für in Betrieb befindliche Werke und können deshalb nicht als Grundlage für ein allgemeingültiges Rechenprogramm dienen.

Demgegenüber ermöglicht es das aufgestellte Rechenprogramm, bei veränderlichem Sortiment und energieintensiver Produktion den unterschiedlichen Leistungs- und Energiebedarf zu bestimmen. Im allgemeinen werden nur die Leistungswerte für die energieintensivste Schicht zu berechnen sein, da sie der Auslegung der Anlagen zugrunde zu legen sind. Demgegenüber interessiert die Höhe des Energiebedarfes in Abhängigkeit vom Sortiment. Setzt man voraus, dass mit einer technologischen Ausrüstung zwei verschiedene Erzeugnisse hergestellt werden, so hat man für diesen Teil entsprechend zwei Karteien aufzustellen. Sie unterscheiden sich dann in den mittleren benötigten Leistungen, die in diesem Fall stark produktionsabhängig sein können. In der Regel wird man nur die Änderungen bei den wesentlichen Antrieben und besonders die des Energieausnützungsgrades zu berücksichtigen haben. Es besteht auch die Möglichkeit, mit einer kleinen Änderung im Rechenprogramm auf den Verbraucherkarten mehrere sortimentsbedingte Belastungszustände festzuhalten. Wegen der einfachen Handhabung der Erfassung auch für Hilfskräfte wird man von einer Komplizierung der Erfassungskarte absehen und besser eine Zusatzkartei zusammenstellen. Dabei interessiert - wie bereits gesagt - meist nur der energieintensive Hauptprozess, weil die Nebenanlagen normalerweise einen geringen und dabei relativ konstanten Belastungsteil darstellen. Wichtig ist, dass schon im Projektierungsstadium mit ausreichender Genauigkeit derartige Untersuchungen durchgeführt werden können.

2.5 Vor- und Nachteile des Untersuchungsverfahrens

Wenn auch die Genauigkeit bei dem vorgesehenen Berechnungsgang hoch erscheint, so bedeutet das nicht, dass damit

das Ergebnis frei von Unschärfen wird. Nachteilig wirkt sich das Fehlen statistischer Unterlagen aus. Der Bearbeiter ist damit im Projektierungsstadium weitgehend auf die vom Technologen oder vom Betriebsingenieur angegebenen Werte angewiesen. Gerade diese Werte sind aber meist als zu hoch anzusehen. Man muss sich immer vor Augen halten, dass die Rechnung auf der mittleren dem Netz entnommenen Leistung eines Verbrauchers während der Zeit seiner Einschaltung basiert. Neben der zu erwartenden nicht nötigen, leider aber üblichen Überdimensionierung der Antriebe spielen auch andere Gesichtspunkte der Bemessung eine Rolle. Man denke beispielsweise an die hohe Anheizlast bei Elektroöfen und an Rührwerke für Materialien mit sich zeitlich ändernder Zähigkeit.

Bei der bisher üblichen Art der Energieermittlung konnte die sich jahreszeitlich ändernde Lichtbelastung — insbesondere der Aussenbeleuchtung — besser erfasst werden. In dem Rechenprogramm muss man annehmen, dass für die Berechnung der maximalen Wirk- und Blindleistung im Sommerhalbjahr die Aussenbeleuchtung in einer Schicht und im Winterhalbjahr in zwei Schichten eingeschaltet ist. Die entstehende Ungenauigkeit bei der Energieermittlung ist gering.

Neben diesen Nachteilen sind die Vorteile des Rechenverfahrens vielgestaltig. Es stellt eine neue und vor allem auch umfassende Methode der Berechnung des elektrischen Leistungs- und Energiebedarfes sowie der Netzverluste dar. Es stützt sich auf die Methode des geordneten Belastungsdiagramms, kann dabei aber durch die Anwendung des Digitalrechners die Grenzen dieses Verfahrens überschreiten und zur komplexen Netzuntersuchung herangezogen werden. Ausserdem werden damit die Stichhaltigkeit der Ergebnisse und die Übersichtlichkeit weiter erhöht. Als nicht unwesentlich erscheint es, dass die Bearbeiter von der anstrengenden Arbeit der umfangreichen Berechnungen befreit sind und deshalb mit grösserer Sorgfalt die Erfassung der Daten vornehmen können.

Bei den Gesamtwerten der Hauptschaltanlage erhält man die Anzahl von Motoren einer bestimmten Motorengrösse, die in den einzelnen Schichten in Betrieb ist. Damit ist es schon in der Projektierungsphase möglich, Schlussfolgerungen in bezug auf die benötigten Arbeitskräfte sowie Reservematerialien für Unterhaltung und Reparatur zu ziehen.

Abgesehen von den Rechenergebnissen, bietet eine gewissenhaft aufgestellte Kartei vielfältige Möglichkeiten, Angaben über die Verbraucher und das gesamte Energieversorgungsnetz zu entnehmen. Bei der Vielzahl und der Unhandlichkeit der Elektroprojekte ist das eine grosse Erleichterung, zumal die einzelnen Karten auch Angaben über die Auslastung einzelner Aggregate u.ä. erhalten.

Von besonderem Vorteil ist es, dass im Stadium der Projektierung alle sich aus technologischen Änderungen ergebenden Berichtigungen der Erfassungskartei leicht durchführbar sind und die neuen Ergebnisse durch den Rechenautomaten sofort bereitgestellt werden können. Die nach dem Schichtregime und den Jahreszeiten vorgenommene Untergliederung ist für die Planung der energiewirtschaftlichen Betriebsführung und für die Kosten der Produkte wichtig und war in dieser Art zumindest für elektromotorische Verbraucher grosser Industriebetriebe bisher unmöglich. Auf die vorteilhafte Anwendung für die Dimensionierung der elektrischen Betriebsmittel ist bereits hingewiesen worden.

Literatur

- P. Aime: Basic rules for industrial wiring disign. (Grundregeln für industrielle Stromversorgungsanlagen.) Elektr. Construct. Maintenance)
 –(1952 Juni, S. 86...90, 92, 94...95.
- -(1952 Juni, S. 86...90, 92, 94...95. D. A. Arzamaszew und Ju. S. Skljarow: Die Berücksichtigung des Wahrscheinlichkeitscharakters der Belastungen bei den Berechnungen der elektrischen Netze (= russ.) Elektritschestwo -(1966)4, S. 43...45. F. K. Boiko: Methode zur Präzisierung von Belastungsberechnungen in Niederspannungsnetzen. (= russ.) Mechanisierung und Elektrifizierung der sozialistischen Landwirtschaft (1958)2, S. 36...38. S. M. Bragin, R. Ja. Fedosenko und M. I. Volkov: Über die zulässige Belastung von Starkstromkabeln (= russ.). Elektritschestwo -1962)12, S. 70...73.

- 5. 10...13.
 [5] Ch. 1. Brakmann: Die Ermittlung des berechneten Maximumkoeffizienten unter den Bedingungen des Wärmeverschleisses der Leiterisolation (= russ.). Elektritschestwo -(1965)3, S. 70...74.
 [6] L. W. Brusenzow: Die Automatisierung der Aufzeichnung und Verarbeitung von Graphiken des Prozessablaufes zum Zwecke elektroenergetischer Untersuchungen in der Industrie (= russ.). Hochschulmitteilungen, Elektromechanik (1958)8.
 [7] M. K. Chartschau, Zur. Franze der Ermittlung elektrischer Pelestungen.
- [7] M. K. Chartschew: Zur Frage der Ermittlung elektrischer Belastungen von Industriebetrieben (= russ.). Promyšlennaja energetika -(1957)7, S. 23...28.

- S. 23...28.
 [8] W. Cremer: Bestimmung der motorischen Last in Drehstromnetzen. Elektrizitätswirtsch. 59(1960)12, S. 377...382.
 [9] L. V. Cukernik: Anwendung der Statistik und Wahrscheinlichkeitstheorie zur Belastungsvorhersage, zur Projektierung und zum Betrieb elektrischer Netze (= russ.). Kiew, Gostechizdat, 1963.
 [10] W. A. Dahle u. a.: Die Optimierung elektrischer Netze bei anwachsender Belastung (= russ.). Riga, Verlag der Akademie der Wissenschaften der Litauischen SSR, 1964.
 [11] A. A. Ermilow: Über die Methodik zur Ermittlung elektrischer Belastungen von Industrieber (= russ.). Promyšlennaja energetika -(1957)7, S. 37...38.
 [12] A. A. Ermilow: Grundlagen der Elektrizitätswersorgung in Industrieber.
- [12] A. A. Ermilow: Grundlagen der Elektrizitätsversorgung in Industriebetrieben; Moskau/Leningrad, Gosenergoisdat: 1963 (= russ.). Abschnitt 4: Elektrische Belastungen, S. 23...48.
 [13] A. A. Ermilow: Über die Anwendung neuer Methoden der technischokonomischen Berechnungen in der Industrie-Energetik (= russ.). Elektrische Leiter (1964) 2. 623
- okonomischen Berechnungen in der Industrie-Energetik (= russ.). Elektritschestwo -(1961)3, S. 93.

 [14] B. W. Gnedenko und B. S. Meschel: Die Bewertung der Wirksamkeit der Präzisierung der Berechnung elektrischer Belastungen industrieller Netze (= russ.). Elektritschestwo -(1959)11, S. 70...72.
- [15] B. W. Gnedenko und B. S. Meschel: Über Methoden der Bestimmung elektrischer Belastungen von Industriebetrieben (= russ.). Elektritschest-wo -(1959)2.
- wo -(1959)2.
 [16] B. W. Gnedenko und B. S. Meschel: Die statistischen Methoden der Berechnung und Untersuchung elektrischer Belastungen in Industrienetzen (= russ.). Elektritschestwo -(1961)2, S. 81...85.
 [17] Fr. Heinemann, Müller und Roeder: Begriffe der Elektroenergiewirtschaft. Mitt. Inst. f. Energetik, Leipzig -(1959)18, S. 457...465.
 [18] A. Jakimovisch: Power Requirements and Selection of Electrical Equipment for Tandem Cold Strip Mills. Iron and Steel Engineer. 41(1964)12, S. 113...128.

- S. 113...128.
 [19] G. M. Kajalow: Grundlagen für die Analyse der Belastungen und Berechnung der elektrischen Netze von Industriebetrieben (= russ.). Elektrischestwo –(1951)4, S. 34...37 und Elektrotechnik (Berlin), 5(1951)9, S. 412...417.
- [20] G. M. Kajalow: Methodik experimenteller Forschungen in der inustriellen Energiewirtschaft. Energietechnik 4(1954)10.

- len Energiewirtschaft. Energietechnik 4(1954)10.

 [21] G. M. Kajalow: Bestimmung des Verbrauchs an Wirkenergie für asynchrone Elektromotoren (= russ.). Energetitscheskij bjulleten -(1958)1.

 [22] G. M. Kajalow und S. E. Grodskij: Zur Berechnung des Bedarfes an Blindstrom für industrielle elektrische Antriebe. Energitscheskij bjulleten -(1958)1.

 [23] G. M. Kajalow: Über die Anwendung der Wahrscheinlichkeitstheorie zur Belastungsanalyse elektrischer Industrienetze (= russ.). Hochschulmitteilungen, Elektromechanik -(1958)1.
- mitteilungen, Elektromechanik –(1958)1.
 [24] G. M. Kajalow: Die Bestimmung der berechneten Belastungen von elektrischen Industrienetzen nach der Methode des geordneten Belastungsdiagramms. Materialien der wissenschaftlich-technischen Konferenz über die Bestimmung elektrischer Belastungen und die Spannungsregelung (= russ.). Gosenergoisdat –(1958)3.
 [25] G. M. Kajalow und L. W. Brusenzow: Korrelationsfunktionen der Belastungsgraphiken von Elektromotoren der metallschneidenden Arbeitsmaschinen und ihre Anwendung (= russ.). Hochschulmitteilungen, Elektromechanik –(1958)5.
 [26] G. M. Kajalow: Bestimmung der effektiven Vorbraucherangehl für die
- G. M. Kajalow: Bestimmung der effektiven Verbraucheranzahl für die Berechnungen elektrischer Industrienetze (= russ.). Hochschulmitteilungen, Elektromechanik –(1960)1.

 G. M. Kajalow und S. E. Grodsky: Untersuchungen der elektrischen Belastungen der mechanischen Abteilungen eines Traktorenwerkes (= russ.). Elektritschestwo –(1961)3, S. 22...27.

- (= russ.). Elektritschestwo -(1961)3, S. 22...27.
 [28] G. M. Kajalow: Grundlagen einer allgemeinen Theorie der Belastungen elektrischer Industrienetze. Dissertation. Institut für Energetik der Poletechn. Hochschule, Nowotscherkask 1963.
 [29] G. M. Kajalow und E. G. Kurennij: Anwendung der mathematischen Theorie der Massebedingung zur Berechnung von Spitzenströmen elektrischer Industrienetze (= russ.). Hochschulmitteilungen, Elektromechanik -(1965)7, S. 803...815.
 [30] G. M. Kajalow und E. G. Kurennij, D. Bandeller, and E. Kurennij, D. Bandeller, and D.
- nik -(1965)7, S. 803...815.
 [30] G. M. Kajalow und E. G. Kurennij: Die Berechnung elektrischer Belastungsspitzen leistungsstarker Verbrauchergruppen (= russ.). Hochschulmitteilungen, Elektromechanik -(1966)5, S. 8...12.
 [31] N. W. Kopytow: Die Bestimmung des Gleichzeitigkeitsfaktors für Zuleitungen mit wiederholt-kurzzeitiger Belastung (= russ). Mitteilungsblatt der Elektroindustrie -(1933)9.
 [32] A. G. Kosovskich: Über Netzbelastungskoeffizienten für erdölverarbeitende Werke (= russ.). Energetitscheskij bijulleten (Moskau) -(1956)12, S. 12.
- S. 12...13.
- S. E. Kusin: Einheitliche Methode der Berechnung elektrischer Belastungen von Industriebetrieben (= russ.). Promyšlennaja energetika -(1963) 8. 38...45.
- A. Langner: Untersuchungen zum Elektroenergie- und Leistungsbedarf der Haushalte und Möglichkeiten einer breiteren Ausnutzung der Elektroenergie im häuslichen Sektor. Mitt. Institut für Energetik, Leipzig. –(1958)14, S. 181...189.

- [35] L. W. Litvak: Über den Bedarfskoeffizienten der elektrischen Leistung in der Industrie (= russ.). Promyšlennaja energetika -(1950)2.
 [36] D. S. Livšic: Zur Frage der Bestimmung elektrischer Belastungen in Industriebetrieben (Diskussion) (= russ.). Elektritschestwo -(1964)5, S. 80...89.
- S. M. Livšic: Berechnungsmethoden für elektrische Belastungen
- 5. M. Livstr. Berechnungsmeinden im elektrische Belastungen Industrieller Verbraucher (= russ.). Promyšlennaja energetika (1948). E. Marciani: Der Ausgleich in der Erzeugung, Weiterleitung und Verteilung von elektrischer Energie. Bull. SEV 53(1962)16, S. 757...762. Ch. Morel: Die Analyse der Belastungskurven und die Gleichzeitigkeit. Bull SEV 55(1964)19, S. 992...999.
- [40] B. S. Meschel: Die Anwendung der mathematischen Statistik für die Bestimmung elektrischer Belastungen von Industriebetrieben (= russ.). Mitteilungen der Kiewer Abteilung der Elektroprojektierung für die Schwerindustrie, 1958.

- Schwerindustrie, 1958.
 [41] B. S. Meschel: Bestimmung des wahrscheinlichen rechnerischen Maximums (= russ.). Elektritschestwo -(1962)4, S. 30...32.
 [42] B. S. Meschel und S. E. Grodski: Über die Ermittlung der Dauer des berechneten Maximums (= russ.). Promyšlennaja energetika -(1963)12.
 [43] B. S. Meschel: Berechnete Belastungen von Betriebsnetzen (= russ.). Elektritschestwo -(1964)3, S. 61...65.
 [44] B. S. Meschel: Zur Frage der Ermittlung elektrischer Belastungen von Industriebetrieben (= russ.). Elektritschestwo -(1965)12.
 [45] V. L. Mukoseiew und S. I. Operadnew: Bestimmung elektrischer Be-

- Industriebetrieben (= russ.). Eektritschestwo -(1963)12.

 V. L. Mukosejew und S. I. Ogorodnow: Bestimmung elektrischer Belastungen von Industriebetrieben. Elektritschestwo -(1963)3, S. 46...47.

 H. Müller: Erläuterungen zu den Begriffen der Elektroenergiewirtschaft. Mitt. Institut für Energetik, Leipzig -1960)25, S. 305...321.

 H. Müller: Methodik für die Aufstellung und Analyse von Leistungsbilanzen. Mitt. Institut für Energetik, Leipzig -(1962)50 sowie -(1963)51 und -(1963)52.
- H. Müller und H. Ruff: Die Planung industrieller Niederspannungsnetze. Siemens-Z. –(1957)2, S. 74...84.

 E. Mürner: Rasche Alterung der Kabelmäntel durch häufig wechselnde Belastungen in Papierbleikabeln des Types B. Bull. SEV 52(1961)25, S. 1021...1022.

- S. 1021...1022.
 [50] H. P. Musser: Characteristic power requirements in underground coal mines. Electr. Engng. -(1954)1, S. 57...60.
 [51] S. I. Ogorodnov: Die Ermittlung der elektrischen Belastung von Industriebetrieben (= russ.). Promyšlennaja energetika 17(1962)9, S. 31...33.
 [52] O. Olsovsky: Die Berechnung des elektrischen Leistungsbedarfs für die einzelnen Arbeitsstätten eines Industriebetriebes (= tschech.). Elektrotechnik 16(Prag 1961)3, S. 67...70.
 [53] G. Pelka, G. Matthäus, P. Velte und W. Lange: Fragen der wirtschaftlichen Anwendung von Elektroenergie in den Betrieben einer VVB des Maschinenbaues (Betriebsvergleich). Der Energiebeauftragte (1961)9, S. 193...216.
- M. Petcu, C. Nagy und S. Manca: Elektroenergie- und Leistungsbedarfs-Prognose (= russ.). Revue d'Electrotechnique et d'Energetique. Aca-démie de la Republique Populair Romaine (1962)2.
- W. Sandner: Begründete Berechnungsverfahren zum Bestimmen der el. Belastung von Anlageteilen. Elektrie 20(1966)6, S. 237...239.
- H. Schaefer: Analyse der Kraftwirtschaft in Spinnereien. Melliand Textilberichte (1958)7, S. 722...731.
- [57] H. Schaefer: Arbeitsblatt über Durchführen und Auswerten von Untersuchungen an elektrischen Verteilungsanlagen in Industriebetrieben. Prakt. Energiekde 9(1961)3, S. 42...51.
- [58] H. Schaefer: Analyse des Leistungsbedarfes und ihre Bedeutung für die Energiewirtschaft. ETZ-A 85(1964)15, S. 463...469.
- G. Schenkel: Die Ermittlung von Energieverbrauchsfunktionen. Beiträge zur praktischen Energiewirtschaft. München und Karlsruhe, Techn. Verlag H. Resch, 1961.

- lag H. Resch, 1961.

 P. Schiller: Methoden der Belastungsuntersuchungen in Grossbritannien.
 Bull. SEV 50(1959)5, S 217...220; 7, S. 357...361.

 O. P. Schischkin: Die Berechnung elektrischer Belastungen bei Erdölförderanlagen (= russ.) 6. O. Grosnenzker Buchverlag 1954.

 L. M. Snicer: Die Belastbarkeit von Leistungstransformatoren. Elektritschestwo –(1963)1, S. 73...75.

 L. Schutmann: Zur Vereinfachung der Berechnungsmethode elektri-
- L. J. Schufmann: Zur Vereinfachung der Berechnungsmethode elektrischer Belastungen von Industriewerken (= russ.). Promyšlennaja energitika –(1957)7, S. 29 ..30.
- g. 11ka (1951)7, S. 29...30.

 A. G. Steinike: Die Bed., rfskoeffizienten von Kontaktschweissmaschinen und die Methoden ihrer Ermittlung (= russ.). Materialien der Konferenz über die Ermittlung elektrischer Belastungen (ZENTOEP) 1957.

 S. D. Volobrinsky, G. M. Kajalow F. N. Klein und B. S. Meschel: Die elektrischen Belastungen von Industriebetrieben (= russ.). Verlag «Energie», Moskau/Leningrad 1964.
- S. D. Volobrinsky. G. M. Kajalow und P. N. Klein: Antwort auf den Beitrag von D. S. Livšic zur Diskussion über die Methodik zur Bestimmung der Belastungen von elektrischen Industrienetzen (= russ.). Elektritschestwo –(1964)5.
- S. D. Volobrinsky und P. N. Klein: Über den Entwurf und die Änderungen der vorläufigen Richtlinien zur Bestimmung elektrischer Belastungen von Industriebetrieben. Promyšlennaja energetika –(1965)4, S. 16...20.
- R. Wagner: Richtwerte für die Elektroenergieversorgung von städtischen Wohnkomplexen unter besonderer Berücksichtigung der Folgeeinrichtungen. Mitt. Inst. f. Energetik, Leipzig –(1964)64, S. 225...238.

 R. Wagner: Richtwerte für die Elektroenergieerzeugung kommunaler Einrichtungen in Städten. Mitt. Inst. f. Energetik, Leipzig –(1966)80,
- S. 655...662.
- [70] H.-J. Weidner: Zur Ermittlung elektrischer Belastungen in Industriebetrieben.
 Teil 1. Definition der wichtigsten Begriffe.
 Teil 2. Methodik der Ermittlung, vorhandenes Kennziffernmaterial und
 - Schlussfolgerungen. Energietechnik 13(1963)11, S. 511...515 und 12, S. 538...544.
- [71] H.-J. Weidner und G. Biess: Programmbeschreibung «Leistungs- und Energieermittlung». Leipzig, I' B Chemie, 1964.
 [72] H.-J. Weidner: Der Einsatz von elektronischen Digitalrechnern für um-
- fassende, elektrische Belastungsanalyse (= russ.). Elektritschestwo –(1967)12, S. 70...72.
- [73] H. Witte: Handbuch der Energiewirtschaft. Berlin, Verlag Technik, 1961.
- [74] M. Wolf: Belastungskurven und Dauerlinien in der elektrischen Energie-wirtschaft. Teil 1 und 2. Berlin Göttingen/Heidelberg, Springer, 1959.

- [75] F. Womaczka: Gleichzeitigkeitsfaktor und Leistungsfaktor industrieller Anlagen. ELIN-Z. 3(1951), S. 158...162.
- [76] Rechnerische Belastung von elektrischen Leitungsnetzen (= russ.). Elektritschestwo –(1951)2, S. 84.
- [77] Untersuchung der elektrischen Belastung eines Maschinenbaubetriebes (= russ.). Mitteilung der Charkower Elektroprojektierung, 1956.
- Anweisung zur Untersuchung elektrischer Belastungen von Industriebetrieben (= russ.). Bulletin des Elektroprojektierungsbüros für die Schwerindustrie -(1956)2.

 Sammlung technischer Informationen des Projektierungsbüros der Schwerindustrie (= russ.). -(1959)22/12.
- Entwurf der Richtlinie zur Berechnung elektrischer Belastungen in Industriebetrieben (= russ.). Hg: Kommission ZENTOEP. Promyšlennaja energetika (1959)11, S. 28...32 und 12, S. 42...48.
- [81] Definition einiger bei der Analyse von Belastungskurven verwendeter Begriffe, Bull. SEV 51(1960)17, S. 821...826.
- Einheitliche Begriffe der Energiewirtschaft, Teil I: Hauptbegriffe der Elektroenergiewirtschaft. Hg.: Institut für Energetik, Leipzig, Leipzig, Deutscher Verlag für Grundstoffindustrie, 1961. Energiewirtschaftliche Untersuchungen an Tagebau-Grossgeräten eines Braunkohlenwerkes. Bergbautechnik –(1962)10, S. 510...515.
- Vorläufige Richtlinien über die Ermittlung elektrischer Belastungen von Industriebetrieben (= russ.). Moskau/Leningrad, Staatlicher energetischer Verlag, 1962.

Adresse des Autors:

H.-J. Weidner, Dipl. Ingenieur, Assistent des Technischen Direktors im VEB Chemie-Ingenieurbau, Klosstrasse 31, DDR – 7034 Leipzig.

Commission Electrotechnique Internationale (CEI)

Sitzungen des CE 50, Essais climatiques, des SC 50A, Essais de chocs et de vibrations und des SC 50B, Essais climatiques, vom 29. März bis 5. April 1968 in Stockholm

CE 50, Essais climatiques et mécaniques

Das CE 50 trat unter dem Vorsitz seines Präsidenten, E. F. Seaman (USA), am 4. und 5. April 1968 in Stockholm zusammen. Das Sekretariat lag in den Händen von D. A. Weale und Dr. G. D. Reynolds (Grossbritannien). Aus 12 Ländern waren 41 Delegierte anwesend; das CES war durch 2 Delegierte vertreten. Nach Genehmigung des Protokolls der letzten Sitzungen im November 1966 in London wurde sofort auf das wichtigste Traktandum übergegangen, die Diskussion des Dokumentes 50(Secrétariat)151, Rapport du Groupe de Travail constitué en vue de soumettre au Comité d'Action une recommandation concernant la suite à donner au document 02(Pologne)1. Durch dieses Dokument wurde dem CE 50 vorgeschlagen, alle unnötigen Einschränkungen auf das Gebiet der Elektronik und Nachrichtentechnik fallen zu lassen, so dass die meisten von ihm ausgearbeiteten klimatischen und mechanischen Prüfmethoden in der Zukunft für das ganze Gebiet der Elektrotechnik gelten können. Da ähnliche frühere Anträge bisher immer mit grösster Vehemenz abgewiesen wurden, war es überraschend, dass nun dieser neue Vorschlag beinahe diskussionslos einstimmig angenommen wurde. In Konsequenz zu diesem grundsätzlichen Entscheid wurde weiter beschlossen, im Titel der Publikationen 68-1 und 68-2 und in deren separat gedruckten Abschnitten die Einschränkung «... applicables aux matériels électroniques et à leurs composants» zu streichen. Zudem soll das Bureau Central aufgefordert werden, diese Änderung sofort auch bei den für den Druck bereits freigegebenen Ergänzungen zu berücksichtigen. Es ist nun zu hoffen, dass in Zukunft eine gute Zusammenarbeit mit sämtlichen Comités d'Etudes der CEI, die Empfehlungen für Bauelemente oder Apparate aufstellen, möglich wird, wie dies bisher mit jenen des Sektors Elektronik der Fall war. Durch diese Ausweitung des Geltungsbereiches der vom CE 50 ausgearbeiteten Empfehlungen wird es allerdings nötig sein, dass die Nationalkomitees die zukünftigen Entwürfe ebenfalls von diesem erweiterten Gesichtswinkel aus beurteilen, was voraussichtlich den Zuzug von Fachleuten aus dem Gebiet der Starkstromtechnik sowie des Installations- und Haushaltsmaterials erforderlich machen wird.

Der Bericht des Präsidenten des SC 50A, Essais de chocs et de vibrations, über die in seiner Unterkommission erreichten Ergebnisse wurde genehmigt. Zu einer Diskussion führte lediglich die Anfrage, ob das CE 50 noch immer der Ansicht sei, dass die vom SC 50A bearbeiteten Prüfmethoden nur für unverpackte Bauelemente oder Apparate gültig sein sollen, da die gleichen Methoden ohne weiteres auch zur Prüfung der Qualität von Verpackungen oder von verpacktem Material verwendet werden könnten. Da grundsätzlich die Probleme der Verpackung von der ISO bearbeitet werden, anderseits aber ein Interesse bei den Herstellern elektrotechnischen Materials besteht, festzustellen, ob eine Verpackungsart bei den in der Elektrotechnik üblichen Prüfmethoden eine ausreichende Schutzwirkung gewährleistet, konnte keine Einigung unter den Delegierten erzielt werden. Das Sekretariat erhielt deshalb den Auftrag, durch einen Fragebogen die Meinung der verschiedenen Nationalkomitees zu diesem Problem einzuholen, damit an der nächsten Zusammenkunft hierüber entschieden werden kann. Auch der Bericht über die Tätigkeit des

SC 50B, Essais climatiques, konnte fast diskussionslos genehmigt werden. Die französische Delegation benützte jedoch die Gelegenheit, wieder auf einen schon früher erfolglos vorgetragenen Wunsch zurückzukommen, es solle bei den genormten Erholungsbedingungen (Conditions atmosphérique normales de reprise; normalerweise nach Temperatur- oder Feuchtigkeitsbehandlungen anzuwenden) die relative Feuchtigkeit von 73...77 % auf 63...67 % gesenkt werden, um dadurch eine bessere Anpassung an die Bedingungen des Prüfraumes zu erhalten. Da die Delegierten auf diesen unerwarteten Vorschlag nicht vorbereitet waren, wurde die französische Delegation aufgefordert, den Antrag auf die nächste Zusammenkunft hin schriftlich mit den nötigen Erklärungen und Begründungen einzureichen.

Zu den Berichten der verschiedenen Arbeitsgruppen wurden folgende Beschlüsse gefasst:

WG 4, Corrosion Tests (Sekretariat Schweiz): Die Arbeitsgruppe hatte einen früher von Grossbritannien eingereichten Entwurf für eine Prüfmethode mit feuchter SO2-Atmosphäre, 50(United Kingdom)123, British proposal for industrial atmosphere test for precious metal and precious-metal plated contacts, völlig überarbeitet (insbesondere wurde die Methode so beschrieben, dass hiefür nicht mehr eine bestimmte Prüfkammer nötig ist) und diesen Gegenentwurf dem CE 50 in Stockholm vorgelegt. Diese Arbeit wurde begrüsst, und das Dokument soll den Ländern als Sekretariatsdokument vorgelegt werden. Die Nationalkomitees sollen aufgefordert werden, sofort mit dieser neuen Methode Prüfungen durchzuführen, damit an der nächsten Zusammenkunft des CE 50 über die damit gemachten Erfahrungen diskutiert werden kann. Die Anfrage der Arbeitsguppe, ob zusätzlich auch eine Methode mit feuchter H2S-Atmosphäre zur Prüfung insbesondere von Silberkontakten gewünscht werde, wurde zustimmend beantwortet; die Nationalkomitees sollen durch einen Fragebogen aufgefordert werden, ihre diesbezüglichen Wünsche der Arbeitsgruppe bekanntzugeben. Die Feststellung der Arbeitsgruppe, es sei ihr nicht möglich, eine universelle Methode für die Prüfung der Korrosionsbeständigkeit elektrischen Materials aufzustellen, da die damit verbundenen Probleme zu komplex seien, wurde mit Bedauern akzeptiert, und die Arbeitsgruppe wurde von dieser Aufgabe enthoben. Der von der Arbeitsgruppe ausgearbeitete und Mitte 1966 als Sekretariatsdokument verteilte Entwurf 50(Secretariat)141, Guidance for accelerated tests for atmospheric corrosion, wurde vom CE 50 an seinen letzten Sitzungen in London 1966 wegen zu negativer Tendenz zurückgewiesen. Der Antrag der Arbeitsgruppe auf Wiedererwägung dieses seinerzeitigen Beschlusses hatte nun Erfolg, da sich die Delegierten überzeugen liessen, dass es entsprechend dem heutigen Wissen einfach nicht möglich ist, eine Prüfatmosphäre zu finden, die für alle Metalle und Metallkombinationen wirklichkeitsnahe, reproduzierbare Resultate liefert. Es wurde deshalb beschlossen, diesen Entwurf der 6-Monate-Regel zu unterstellen.

WG 5, Mould Growth Tests (Sekretariat Grossbritannien): Die Arbeitsgruppe hat im wesentlichen ihre Arbeiten abgeschlossen. Eine von ihr ausgearbeitete Ergänzung zum der 6-Monate-Regel unterstehenden Dokument 50(Bureau Central)134, Guide pour l'essai I, Moisissures, soll als Sekretariatsdokument zirkulieren.