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Fig.9

Voie centrale et voie latérale Ouest

Les deux arteres ne sont séparées que par une bordurette
en plots béton, il est dés lors possible de justifier un aménage-
ment susceptible d’apporter un complément aux différents
facteurs de réflexion des revétements (béton: Voie latérale
Ouest bitume: Voie centrale) en créant également un léger
contraste de couleur (fig. 9) (apres 200 h d’usage).

Eclairement
Résultats des mesures d’éclairement (suivant cahier des
charges). A 2000 heures de fonctionnement.

Température 22°; Tension R: 226 V; S: 228 V; T: 226 V
Chaussée seche — temps nuageux couvert.

Valeurs: Emax :351X Emin :21 Ix Emea :28,2 Ix

Emin

=1:1,6
Emed ’
Emin

=1:1,66
Emax

En conclusion, nous pouvons dire que les moyens mis en
ceuvre pour réaliser I’installation de la Voie centrale donnent
de bon résultats.

Des réglages et controles seront encore effectués a basse
température. Il sera ensuite possible de tirer les conclusions
qu’impose une solution qui, sans étre un prototype, n’en est
pas moins une réalisation particuliére sur laquelle des amélio-
rations peuvent étre apportées en vue d’obtenir de meilleurs
résultats sans augmenter les prestations financiéres.

Adresse de I'auteur:

R. Serex, Services Industriels de Genéve, Service de I’Electricité, Rue du
Stand 12, Case postale 16, 1211 Geneve 11.

Allpisse als Phasenkorrektoren und Gruppenlaufzeitfilter
Von K. H. Mueller, Ziirich

Als Phasenkorrektoren und Laufzeitentzerrer von Leitungen
und Nachrichtenkandlen werden hdufig Allpassnetzwerke ver-
wendet. Die vorliegende Arbeit fiihrt ein in die Grundziige und
wichtigsten Eigenschaften dieser Vierpole und ihrer Ubertragungs-
funktionen. Vor- und Nachteile verschiedener Realisierungsmdog-
lichkeiten, sowie die Anzahl der jeweils bendtigten Reaktanzen
werden diskutiert und am Schluss tabellarisch zusammengestellt.

1. Einleitung

Allpisse sind Netzwerke, welche eine fiir alle Frequenzen
konstante Dadmpfung besitzen. Sie werden iiberall dort ange-
wendet, wo ohne Beeintriachtigung des Amplitudenganges eine
vorgegebene Phasen- oder Laufzeitcharakteristik realisiert
werden muss. Insbesondere als nachgeschaltete Korrektoren
zur Linearisierung des Phasenganges im Durchlassbereich von
Tiefpassfiltern sind die Allpdsse in der Impulstechnik ein wich-
tiges Hilfsmittel. Daneben spielen solche Schaltungen eine zu-
nehmende Rolle fiir die Entzerrung von Ubertragungsleitungen.
Wihrend ndmlich die Laufzeitcharakteristik einer Telephon-
leitung fiir die Sprachiibertragung von sekundirer Bedeutung
ist, bestehen bei der Ubertragung von Daten- oder Fernseh-
signalen relativ strenge Forderungen nach einer fiir alle betei-
ligten Frequenzen konstanten Laufzeit (Erhaltung der Signal-
form). In solchen Fillen kann durch ein entsprechend dimen-
sioniertes Korrekturnetzwerk ein in gewissen Grenzen aus-
geebneter Verlauf erzielt werden. Als weitere Anwendungs-
moglichkeit sei noch auf den Entwurf von Verzogerungsnetz-
werken mittels Allpass-Schaltungen hingewiesen, obschon fiir
diesen speziellen Problemkreis noch andere Losungsmethoden
zur Verfiigung stehen.

Ausgehend vom symmetrischen Kreuzglied werden zunichst
die wichtigsten Eigenschaften der Allpass-Grundglieder her-
geleitet. Danach wird die allgemeine Allpass-Ubertragungs-
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On utilise souvent des réseaux passe-tout comme correcteurs
de phases et de temps de propagation. Le présent exposé fournit
une introduction aux bases et aux propriétés essentielles de ces
quadripoles et a leurs fonctions de propagation. Les avantages et
les inconvénients des diverses possibilités de réalisation, ainsi que
la quantité des réactances indispensables, sont discutés, puis ré-
sumés a la fin par un tableau.

funktion und ihre mogliche Zerlegung in einfachere Faktoren
untersucht. Schliesslich wird noch eine Anzahl weiterer Schal-
tungsmoglichkeiten gezeigt, welche sich fiir die Realisierung
besser eignen als das symmetrische Reaktanzkreuzglied. Auch
auf eine einfache Methode zur Beriicksichtigung der Verluste
in den Induktivititen und Kapazititen wird hingewiesen.

Der vorliegende Artikel wendet sich nicht primédr an den
versierten Filterspezialisten. Fiir ihn sind ja wiahrend der letzten
Jahre in der einschligigen Literatur eine Reihe von neuen
Arbeiten iiber Allpass-Schaltungen erschienen (siehe Literatur
am Schluss des Aufsatzes). Trotzdem werden in den meisten
Lehrbiichern iiber Netzwerktheorie die Allpdsse nur sehr
spirlich oder iiberhaupt nicht behandelt. Die folgenden Aus-
fithrungen mochten daher dem nur mit den Grundziigen der
allgemeinen Filterschaltungen vertrauten Ingenieur eine Ein-
fihrung in das Gebiet der Allpass-Vierpole geben, nicht zu-
letzt um das Studium neuerer Publikationen zu erleichtern
(Allpass-Synthese mittels iterativer Computerverfahren, Reali-
sierung von Ubertragungsfaktoren durch aktive RC-Schal-
tungen, usw.).

2. Allgemeines zum symmetrischen Kreuzglied

Das in Fig. 1 gezeichnete symmetrische Kreuzglied besitzt
die a-Matrix:

(A 381) 635



Z4 Fig. 1
Symmetrisches Kreuzglied mit den
Briickenimpedanzen z, und 22

Z, Z,

Z4

(@) =

1 Zo+ 71 2Z1Z»
(€))

Za—7Z1 2 Ze+ Z1

Daraus, oder auch direkt aus der Figur ist ersichtlich, dass:

Zu=zw= D12 o
- 2017
Zlc_— Zoe = “Zl I 73

woraus sich Wellenimpedanz und Ubertragungsmass bestim-
men zu:

=V Z1o Z1c = VZ20 Zoe =V Z1 Zo 3)
Zie _ 2VZiZs r ./ z:
tgh I'= ‘/Zm 7T Zs tgh—z— =z 4)

Durch Ubergang auf das halbe Ubertragungsmass gewinnt
man also einen wesentlich einfacheren Ausdruck; d. h. es ist
von Vorteil, sich das Kreuzglied in zwei «imaginire Halb-
glieder» zerlegt zu denken (praktisch nicht ausfiithrbar). Fiir
ein solches Halbglied ist zugleich:

Ziw=22und Zic =21

Hat man nun » angepasste Kreuzglieder in Kaskade, so
addieren sich fiir den Gesamtvierpol die Einzeliibertragungs-
masse:

r=7% Ik [falls Zwk = Zw(c+1)] )
k=1
Kreuzglied mit reinen Reaktanzen (Spezialfall):
Zi=jX1 } o L X1
7o —ixe) Zr=iVAXe  wh % @ ©
Man kann sofort die beiden Fille unterscheiden:
X1 X2 >0 — Sperrbereich;
Zyimagindr, tgh g reell )
X1 X2 <0 — Durchlassbereich;
Zw reell, tgh g imaginir (8)
Zuordnung zwischen Filter- zu Impedanztypen
Tabelle I
X,
L c S P
. -
L BP BS1) TP HP
C BS1) BP HP TP
S TP HP BP BSY)
P HP TP BSY) BP

L Induktivitit; C Kapazitit; S Seriekreis; P Parallelkreis;
TP Tiefpass; HP Hochpass; BP Bandpass; BS Bandsperre

1) Decken sich je die Nullstellen von X{ mit den Polen von
X9 und umgekehrt, so besitzen X{ und X, iiber den ganzen
Frequenzbereich verschiedene Vorzeichen. Man erhilt so an-
stelle der Bandsperre einen Allpass.
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Mit Hilfe dieses einfachen Kriteriums ldsst sich eine Tabelle
angeben iiber die gegenseitige Zuordnung der Impedanz- und
Filtertypen (Tab. I).

3. Reaktanzphasenschieber
Wihlt man beim symmetrischen Kreuzglied:

Zyw2=konst. = R2=Z12Z2= — X1 X> 9
so erhidlt man durch Einsetzen fiir das Ubertragungsmass:
A+jB _. X1 _ . R .
tgh——j—AJT_ i, -A=0 (10)

Die Betriebsdimpfung verschwindet und das Phasenmass
des Allpasses ergibt sich zu:

B
R 2

Xo =—L:—cot

X2 = ——
R X1

B
5 an

Bei gegebenem B(w) lassen sich aus Gl. (11) die Reaktanzen
X1 und Xz bis auf einen konstanten Faktor bestimmen, da man

I
!
I
1
!
I
I
l
I
|
I
I
I
I
|
I

Fig. 2
Zusammenhang zwischen Phasengang B(w) und Reaktanzverlauf X 1(a))
Die Stiitzstellen im Abstand m 7 ergeben Pole und Nullstellen der
gesuchten Reaktanz. Diese ist allerdings nur bis auf einen kon-
stanten Faktor k bestimmt

die Lage der Pole und Nullstellen gemiss Fig. 2 leicht festlegen
kann. Das Verfahren besitzt den Vorteil, dass auf diese Art
auch Phasenginge approximiert werden konnen, die nur in
Form einer Kurve vorliegen, also nicht in mathematischer
Form gegeben sind. Im allgemeinen Fall [also wenn tan (B/2)
nicht eine Reaktanzfunktion ist] wird durch dieses Vorgehen
die gegebene B-Kurve mit einer gewissen (nicht konstanten)
Welligkeit approximiert (gestrichelte Kurve in Fig. 2). Wenn
zwischen B(w = 0) und B(w = ) die Phase um n t dndert,
so ergibt das fiir einen Briickenzweipol des Kreuzgliedes eine
aus 7 Elementen bestehende Reaktanz. Besitzt X1 eine Null-
stelle bei @ = 0 (L- oder P-Typ), so ist B(w = 0) = 0; andern-
falls verlduft die Kurve zwischen B(w = 0) = w und B(w = )
=n+ 1D

Bull. SEV 59(1968)14, 6. Juli



Allerdings ist zu bemerken, dass nach dem beschriebenen
Verfahren die gesuchte Reaktanzfunktion nur bis auf einen
konstanten Faktor bestimmt ist, der so gew#dhlt werden muss,
dass eine moglichst kleine Welligkeit entsteht ).

In den meisten Fillen wird man jedoch nicht einen be-
stimmten Phasengang, sondern eine gegebene Gruppenlaufzeit
approximieren miissen (z. B. Laufzeitentzerrung von Leitungen
fiir Daten- und Fernsehiibertragung). Es gilt:

dB ~
T= o B— By :ofr(a))da) (12)
oder falls nur ein Bereich w1 < @ < ws interessiert:
B—Bi= [tw)do; (01L0=w2) (13)

w1

Bei vorgegebener Gruppenlaufzeit 7(w) ist also aus Gl. (12)
B(w) bis auf eine Konstante (Bo = 0 oder w) bestimmt. Ist
7(w) empirisch oder in Form einer Kurve gegeben (also nicht
als mathematische Funktion), so ldsst sich Gl. (12) auch gra-
phisch integrieren, worauf man Z; und Z2 mit dem bereits be-
schriebenen Verfahren bestimmen kann. Ein derart bestimmtes
Kreuzglied approximiert den z-Verlauf im allgemeinen nicht
mit konstanter Welligkeit. Der korrekte Wert wird immer
zwischen den n-Stellen der Phase durchlaufen, da es dort eine
Frequenz gibt, wo in der Figur die Tangenten an die aus-
gezogene und die gestrichelte Kurve dieselbe Steigung be-
sitzen.

Der erste Teil von Gl. (12) ldsst sich iibrigens noch durch x;
ausdriicken:

dB _ d 2

dxy
=2 T —
) do (2 arctan x1)

1_+ x12 ' dw

T(w) = 14
womit der direkte Zusammenhang zwischen der Reaktanz X3
und der Gruppenlaufzeit v hergestellt ist.

4. Aufwandabschitzung bei Laufzeitfiltern

Es sei ein bestimmter Verlauf t(w) vorgegeben, der durch
einen Allpass approximiert werden soll. Aus G1.(12) folgt dann:

(o]
fr(co)dw:BooABo=nn
0

1s)

Aus der Laufzeitfliche kann also die Ordnung # des All-
passes bestimmt werden. Da nun aber nicht jede beliebige
Funktion 7(w) gerade Gruppenlaufzeitfunktion eines Allpasses
ist, wird man je nach der gewiinschten Approximationsgiite n
etwas grosser als den nach GI. (15) bestimmten Minimalwert
wéhlen miissen.

Beispiel: Verzogerungsschaltung.
Im Bereich bis 4 kHz werde eine konstante Verzogerung von
1 ms Dauer gewiinscht.

Fig. 3
Approxamation einer kon-
stanten Verzogerung
Die praktische Laufzeit-

flaiche wird etwas grosser
als die vorgegebene Recht-
eckfliche
@y 7(w) Laufzeit;
G w; Grenzfrequenz

T(w)

B

1) Siehe auch Abschnitt 8.
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L1 Fig. 4
Struktur des Grundgliedes
1. Ordnung
w17
HAmin = p =2 Tfl S 8

Praktisch wird man — falls die Welligkeit bis zur Grenz-
frequenz verniinftig klein gehalten werden soll — mit etwa
n = 10...12 rechnen miissen (Fig. 3).

5. Das Grundglied 1. Ordnung (Fig. 4)

Zi=pL »x1= %
(16)
Z = - Xz = 1
e ETT WRC
: L
R=VZ1Z2s =Zyw = el X1 Xe=—1 (17)
Mit
O S S .
"L  RC Y}
und (18)
fo PN
o
ergibt sich schliesslich:
x1=8
und (19)
e L
und fiir den Phasenverlauf nach Gl. (11):
B=2arctan Q2 (20)
woraus sich nach Gl. (14) auch 7(w) ergibt zu:
2 1
O = T e @D

Bei Vertauschen von Z; und Zz dndert sich die Laufzeit-
kurve nicht, dagegen wird die B-Kurve um den Wert r senk-
recht zur 2-Achse verschoben. Wegen des monotonen z-Ver-
laufes (Fig. 5) bietet das Glied 1. Ordnung wenig Moglich-
keiten zur Approximation einer vorgegebenen Laufzeitfunktion.

6. Das Grundglied 2. Ordnung (Fig. 6)

ol 1
MZ="R 1T-—w?Li G 22
w L2 ( 1 )
= 23
X2 R 1 @2 Ls Ca (23)
R ST
Q
45°. [ 05
1
0 1 g 0 a
Fig. 5
Phasen- und Laufzeitfunktion beim Grundglied 1. Ordnung
Q = w/w( normierte Frequenz
Weitere Bezeichnungen siehe Fig. 2
(A 383) 637



Fig. 6
Struktur des Grund-
gliedes 2. Ordnung

_ L _ L1 _ 2
x1x2=—1— .= Cz_R 24)
w \2
W2L1 Ci=w2LsCo = 22 = (—) (25)
o
o L1
. LiCy L2 Cs

Zusitzlich bleibt noch ein Parameter (K) frei, niamlich:

Ly Ce

- =_"9 — 2
L2 Ci X 6)
Damit ergeben sich GI. (22) und GIl. (23). zZu:
_ K®Q
X1= T o7
und (27)
S i §
=Ko

Somit kann man auch Phase und Gruppenlaufzeit be-
stimmen:

KQ
B(w) = 2 arctan T— o0 (28)
_dB 2 K@+
T =g T TF O (KT—2) T OF 29)
Fiir K = 2 geht GI. (29) iiber in:
2 2

Fig. 7
Phasen- und Laufzeitfunktion beim Grundglied 2. Ordnung
Die Laufzeitkurven schliessen (unabhingig vom Parameter K) mit den .
Koordinatenachsen konstante Fldchen ein

Weitere Bezeichnungen sieche Fig. 2

638 (A 384)

was einer Kaskadenschaltung zweier gleicher Glieder 1. Ord-
nung entspricht. Allgemein zeigt man leicht, dass sich ein Allpass
zweiter Ordnung fir K = 2 in zwei Allpisse erster Ordnung
zerlegen ldsst. Fir K < 2 dagegen entstehen neue Laufzeit-
kurven, welche fiir K < 1/3_ sogar ein Maximum aufweisen,
also nicht mehr monoton verlaufen (Fig. 7). Dieses Maximum
tritt auf bei der Frequenz:

o (tmax) = V V& — K% — 1 G1)
Die zugehorige maximale Laufzeit wird:
2 K
Tmax — (32)

@0 2)4_K® — (4— K?)

Das Laufzeitmaximum wéchst mit kleiner werdendem K und
ndhert sich zugleich der Frequenz 2 = 1. Bei den Frequenzen
Q = 0und 2 = 1 ergeben sich fiir 7 die einfachen Ausdriicke:

Ll und  RT —2 (3
2 |a=o0 2 |jo=1 K

Wie bereits erwidhnt kann man fiir K = 2 das Glied 2. Ord-
nung in zwei Glieder 1. Ordnung aufteilen mit den Norm-
frequenzen w: und ws; umgekehrt kénnen zwei solche Glieder
wieder zu einem Glied 2. Ordnung zusammengefasst werden.
Die Umrechnungsbeziechungen findet man leicht mit GI. (20)
und GI. (28) oder Gl. (21) und GI. (29); sie lauten (wo = Norm-
frequenz des Gliedes 2. Ordnung):

o = (K + VK> = 4)

(34)
we = %(K— YKT— 1)
wo = le w2
K — w1 + w2 (35)
le w2

Wie man noch sehen wird, lassen sich Allpésse beliebiger
Ordnung immer zerlegen in Glieder 1. und 2. Ordnung. Durch
Kaskadenschaltung sind daher auch kompliziertere Laufzeit-
kurven realisierbar. Diese Aufteilung ist allerdings nur bei
Schaltungen mit konstantem Wellenwiderstand maglich.
Andere Netzwerke mit kleinerer Elementenzahl, welche fiir den
praktischen Aufbau vorzuziehen sind, besitzen zum Teil diese
Eigenschaft nicht. Eine Zerlegung der phasenbestimmenden
Impedanz lisst sich in solchen Fillen nur durch Trennverstirker
erreichen.

7. Forderungen fiir verzerrungsfreie Ubertragung

Damit die Ubertragung in dem in Fig. 8 angedeuteten
System verzerrungsfrei ist, muss gelten:

Us(t) =vo Ui (t — 1)  [im Zeitbereich] (36)

us(p) = vour(p) - e P [im Operatorbereich] 37N

Es sind also Ubertragungsfaktoren von folgender Form zu-
gelassen:
uz (p)

= = -pT
v (p) = oy =we (38)
Fig. 8
Lineares Ubertragungssystem mit
der Ubertragungsfunktion 1(p)
Ulplo——  vlp) | ——oUy(p) U, Eingangsspannung;
Us Ausgangsspannung

Bull. SEV 59(1968)14, 6. Juli
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Fig. 9
Anforderungen an den Phasengang B(w) fiir die verzerrungsfreie Uber-
tragung eines spektral beschrinkten Signals
@i und @y bilden die Bandgrenzen des Ubertragungsbereiches

Da u(p) transzendent ist, reale Ubertragungsfaktoren aber
rational sind, ldsst sich Gl. (38) offenbar nur niherungsweise

approximieren (ausser im trivialen Fall t = 0).
Mit p = jw:
|v(jow) | = vo = konst. [Allpass]

—argv=B=wt+kn (39)

Die Bedingungen in Gl. (39) sind fiir eine verzerrungsfreie
Ubertragung notwendig und hinreichend (k ganzzahlig). Aus
der 2. Zeile ergibt sich:

g‘g = 7 = konst.

Man erkennt, dass Gl. (40) zwar notwendig, aber nicht hin-
reichend ist; zusitzlich muss niamlich gelten:

Bw=0)=kn

(40)

(41)
Ubertrigt man nur Signale mit Spektrum o1 < o < ws,

so geniigt es, wenn die Bedingungen in Gl. (39) im entsprechen-
den Frequenzbereich giiltig sind (Fig. 9).

Beispiel: Laufzeit einer Koaxialkabelstrecke.

Da man mit Allpissen keine negativen Gruppenlaufzeiten
realisieren kann, addiert man zur Korrektur einen Verlauf At

_— T(w)

—= AT(w)

&y

—_— )

Fig. 10
Laufzeitentzerrung einer Koaxialkabelstrecke

Gemaiss Vorschrift muss die Laufzeitabweichung A 7 < 0,1 pus beim

Fernsehen betragen. Der untere Teil der Figur bezieht sich auf den
Korrekturvierpol

Weitere Bezeichnungen siehe Fig. 9

Bull. ASE 59(1968)14, 6 juillet

(Fig. 10). Die Summe ergibt dann einen z-Verlauf, welcher die
Forderungen erfiillt. Dabei ist es oft notwendig, wesentlich
mehr Glieder zu nehmen als nach der minimalen Korrektur-
laufzeitfliche zundchst notig erscheint (Addition einer kon-
stanten Zusatzlaufzeit), um {iiber den gesamten Frequenz-
bereich einen verniinftigen Approximationsfehler zu erhalten.
[Extremes Beispiel: Verlauf 7(w), der nach GI. (15) nur die
Fliache kleiner oder angenéhert gleich nt besitzt, aber stark von
Gl. (21) abweicht.]

8. Rechenbeispiel

Setzt man die normierte Reaktanz x an als:

P(Q) .
=_—= = ungerade Funktion
so erhilt man fiir die Gruppenlaufzeit:

wt _dx 1 QP —-PQ
2 dQ 14+x2  P2LQ2

Unter anderem ergibt das bei den Polen und Nullstellen die
einfachen Ausdriicke:

wot O ;
7 = P bei den Polen von x
wo T P’ .
7 = o bei den Nullstellen von x

Aus dem in Abschnitt 3 angegebenen graphischen Verfahren
erhilt man x nur bis auf einen konstanten Faktor, da ja von

Fig. 11
Laufzeitkoeffizient g(x) bei Anderung der Reaktanz x und dem Faktor k
Fiir jedes k erhidlt man einen andern Verlauf des Korrekturfaktors g(x)

der Phasenkurve nur Stiitzwerte im Abstand m m beniitzt
wurden. Praktisch ist es daher wichtig zu wissen, wie sich die
Laufzeit dndert bei Multiplikation von x mit einer Konstanten:

dx _ k(A +x%)
dQ 1+k2x2 1+ k2x2

wo T dx 1

0 kx) =k

T

> (x)

Speziell gilt:
t(kx)=kz(x) beiden Nullstellen von x
T(kx)= —11— - 7(x) bei den Polen von x
Uber den Verlauf des Multiplikationsfaktors gibt Fig. 11
Aufschluss.

Wie man praktisch vorgeht, soll an einem Zahlenbeispiel
gezeigt werden:

(A 385) 639



Ein Laufzeitglied mit konstanter Verzogerung (bzw. ein
frequenzproportionaler Phasenschieber) soll mit 8 Reaktanzen
approximiert werden. Als Niherung wird eine Reaktanz mit
dquidistanten Pol- und Nullstellen angesetzt:

(22— %) @ — 0% (62— 2

Y=k ooy i o (R - o) (P — )

Die Laufzeit bei den Pol- und Nullstellen berechnet sich zu:

Q=0 ZL- & 1?‘;2;?29 — 0,20898 k
ot ol TS ]
Q=2: ZLf- ki:;‘:;?i?=0,21672k
usw.

Um einen flachen Verlauf bei tiefen Frequenzen zu erhalten,
miisste man k = 7,48 wihlen. Damit wird aber die Welligkeit
bei den hoheren Frequenzen sehr gross; man wird deshalb
einen Kompromiss schliessen und k& etwas kleiner wihlen.
Tabelle II zeigt die Laufzeitwerte bei & = 6,8. Bis Q = 3

Laufzeitschwankungen des gerechneten Beispieles fiir k = 6,8
Tabelle I1

w0 T
Q -
b

0,905
1,096
0,938
1.014
1,066
0,830
1,476
0,447
0

8\10\&1!-&'«)!\)'—0

nimmt die Welligkeit ab; nachher wieder zu. Durch Wahl
eines etwas grosseren k-Wertes konnte der Verlauf bei tiefen
Frequenzen noch betrichtlich linearisiert werden, allerdings
wiirden die Schwankungen bei hohen Frequenzen dafiir noch
ausgepragter.

Die praktisch ausnutzbare Laufzeitfliche (bei vorgegebener
maximaler Abweichung) ist wesentlich kleiner als bei Tscheby-
scheff-Approximation. Dafiir besitzt die Methode den Vorteil,
dassirgendwelche Laufzeitkurven mit geringem Rechenaufwand
approximiert werden koOnnen (numerische oder graphische
Integration ergibt die Phasenkurve).

Die im Beispiel bestimmte Impedanz ldsst sich durch eine
Partialbruchzerlegung leicht in eine Serieschaltung einzelner
Parallelschwingkreise zerlegen (Nachteil: Die LC-Verhiltnisse
der einzelnen Kreise sind um Grdssenordnungen verschieden)
oder nach Ausmultiplizieren von Zéhler und Nenner in einen
Kettenbruch entwickeln. Eine solche Realisierung (z. B. als
Kreuzglied in Sparschaltung) ist jedoch sehr empfindlich, in
Bezug auf Verluste und Einhaltung der Dualitdt. Besonders
bei Impedanzen mit relativ viel Reaktanzen treten daher im
Amplitudengang starke Schwankungen auf. Zum Gliick stehen
aber fiir den Schaltungsentwurf noch weitere Moglichkeiten
offen.

Bei einer ungeraden Zahl von Schaltelementen kann die
Gruppenlaufzeit in zwei Anteile aufgespalten werden mit ent-
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gegengesetzter Welligkeit. Die beiden Einzelallpdsse werden
dann in Kette geschalten. Da die Einzelwelligkeiten aber gros-
ser und das ausnutzbare Band bei den einzelnen Schaltungen
kleiner sind, ist der Gewinn unbedeutend.

9. Die Ubertragungsfunktion eines Allpasses

Fiir die Ubertragungsfunktion wird der, zunichst noch all-
gemeine Ansatz:

Fi(p) _ Gi(p) + Ui(p)
F2(p)  Ga2(p)+ U2(p)

gemacht. G und U bedeuten den geraden, bzw. ungeraden Teil
des Zihler- bzw. Nennerpolynoms. Soll »(p) die Ubertragungs-
funktion eines Allpasses sein, so muss gefordert werden, dass:

v(p) = 42)

| v (jw) | = vo = konst.

v(jw) = voe-iB( (43)

Klammert man in Gl. (42) aus dem ungeraden Teil p aus,
so verbleibt noch ein gerader Teil G’ und man bekommt bei
p =jow:

G2 + w? G2

1 2 e s L = 2
v(o) 2=l v (44)
Dies ist aber nur moglich, falls:
G _ | G
[ (83}

Das obere Vorzeichen gibt den trivialen Fall B = km.
(Idealer Verstdrker, bzw. Ohmsches Diampfungsglied.) Das
untere Vorzeichen dagegen fiithrt auf die Ubertragungs-
funktion:

Goe—pGyY G2 —Us

(P =G 6~ Gt Us

Damit kann man folgenden Satz formulieren:

Eine rationale Funktion v(p) ist dann und nur dann Uber-
tragungsfunktion eines Allpasses, wenn sie folgende Form
besitzt:

_ H(=p) _ G —U(p) _ 1—R(p
Y=g G TG+ U P TF R 4O
Dabei wurde noch folgender Quotient eingefiihrt:

G(p) H(p)+H(—p)

Man erkennt, dass R(p) offenbar eine Reaktanzfunktion ist
[ungerade, Grad von G und U um eins verschieden, dazu die
weiter unten erwihnten Eigenschaften von H(p)?2)].

Die Ubertragungsfunktion eines Allpasses ist also durch ein
einziges charakteristisches Polynom H(p) bis auf einen kon-
stanten Faktor bestimmt. Ist H(p) n. Grades, so nennt man das
zugehorige Netzwerk einen Allpass n. Ordnung. Verlangt man,
dass das System stabil ist, so darf die Ubertragungsfunktion
bekanntlich keine Pole in der rechten Haibebene besitzen, d. h.
H(p) ist ein Hurwitz-Polynom. Ausgeschrieben lautet die
Ubertragungsfunktion (46):

H(—p) _ 1—Aip+ Asp®— ...+ Aup®
H (p) 1+ Aip+ A2p% + ... + A p®

?) Tats#chlich erhélt man zwar, wie erwihnt eine Reaktanzfunktion,
falls R(p) nach Gl. (47) gebildet wird. Wie im 12. Abschnitt noch ge-
zeigt wird, ist es dagegen umgekehrt nicht notwendig, dass R(p) eine
Reaktanzfunktion ist, damit Gl. (46) Ubertragungsfaktor eines All-
passes wird.

v(p) =uwo (48)
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Alle Koeffizienten Ax von H(p) sind positiv. Der Voll-
stindigkeit halber seien auch noch die Zusammenhdnge
zwischen U(p), G(p) und H(p) angegeben:

U= U(-p= 3 H@~H(p)| @)

G)= GCp=gH@+HD (0

H((p)=G(p)+U(p;

Aus der Beziehung

H(—p)=G(p)—U(p) 51

. . 1-R(jo)
— ~IB—py— D)
v(jw)=wvoe™! vo T+ R(jo) (52)
folgt fiir die Phase B:
. . jB ., B
R(jo)=jx(w)=tghd> =jig = (s3)
jB=2artgh R(jw) - B (w) = 2 arctg x (w) 54)

Vergleicht man GI. (53) mit Gl. (11), so stellt man fest, dass
die mit Gl. (47) eingefiihrte Reaktanzfunktion R(p) — welche
sich sehr einfach aus der Ubertragungsfunktion des Allpasses
bestimmen ldsst — offenbar gerade die (auf den Wellenwider-
stand normierte) Impedanz Zi(p) ist, falls der Allpass in Form
eines symmetrischen Kreuzgliedes mit den Briickenreaktanzen
Z1 und Zs ausgefiihrt wird. [Entsprechend: x(w) in Gl. (54) ist
gleich x1(w) in GI. (11).] Da zur Reaktanzfunktion das zuge-
horige Netzwerk relativ einfach gefunden werden kann (Ent-
wicklung nach Polen oder Kettenbruch), kann somit bei ge-
gebener Ubertragungsfunktion eine erste Realisierungsmdoglich-
keit fiir den Allpass angegeben werden.

Aus Gl. (47) und GIl. (48) sieht man noch:

U@0)=0; GO)=0 R@O=0
[Auch v (jw, w —0) = vo; d. h. arg v (0) = arg vo]

(55)

Man findet fiir die Phasengrenzen des Allpasses:

B(0) =vrn _ .
B(®)=(n+wm (v = 0,1) fiir Allpass #n. Ordnung  (56)
10. Bestimmung der Gruppenlaufzeit aus H(p):

~dB _d(jB)
wla) = do  dp |p=io 57

Durch logarithmieren von GI. (43):
jB=Invo— Inv (58)

d v d d
* = N S _ =
™*(p) ap Inv > dp InH (—p)+ dp 1nH((197;
5

Durch geringfiigige Umformung erhidlt man schliesslich:

H’(p)
®) = 2R {—}
T@ = 2Re ()
Statt durch das Hurwitz-Polynom H(p) kann man die
Gruppenlaufzeit t natiirlich auch durch die Reaktanz R(p) aus-
driicken:

(60)

r=ijow

2 dR(p)
— R%(p) dp

Fiir das in diesem Abschnitt verwendete Symbol *(p) gilt:

™(p) = 4 2arcte R(p) = 61)
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Imp Fig. 12
L Pol- und Nullstellenlage eines All-
x|___ ——?_ p in der k 1 p-Ebene
|
*mpoodd
[ | |
}——+——o-
[ I ! Re p
=
| 1
¥——T——9-
™*(p=jw)=1(w) (62)

7*(p) und 7(w) sind gerade Funktionen von p bzw. w.

11. Zerlegung des Allpasses in Glieder 1. und 2. Art

Bestimmt man die Wurzeln px der Gleichung H(p) = 0, so
lautet die Faktorzerlegung des charakteristischen Polynoms:

H((p)=1+ A1p+ A2p®+ ...+ Anp* =

=An(p—p)(p—p2)...(p —p™  (63)

Dabei konnen sowohl reelle Nullstellen (mindestens eine
falls » ungerade ist) als auch Paare von konjugiert komplexen
Nullstellen auftreten. Fig. 12 zeigt eine mogliche Pol- und
Nullstellenverteilung der Ubertragungsfunktion eines Allpas-
ses 6. Ordnung.

Die in Faktoren zerlegte Ubertragungsfunktion lautet:

H(=p) _,
H (p)

(—p—p))(—p—p2)...(—p—pn)
(p—p)(p—p2)...(p — pn)
(64)
Man kann nun v(p) in zwei Arten von Teiliibertragungs-
faktoren zerlegen:
a) Solche, die von reellen Nullstellen herrithren (Glieder
1. Ordnung):

v(p) = vo

_ oy PP %k—p
DPx = — ax — vk (p) = vok —— Vok %+ p (65)
Zugehorige Phase: By = 2 arctg —Z)—k (66)
Gruppenlaufzeit: . (67)
uppenlaufzeit: Te=-_—"= 5

b) Solche, die von einem Paar konjugiert komplexer Null-
stellen herrithren (Glieder 2. Ordnung):

(=px—p)(=Pc—p) _

Pk = — ox +j fx = vk (p) = vox =

(=P +p)(=px+p)
0 ax® + Pf® —2ap +p2 (68)

o a2 + P2 + 2 akp + p?

v . . 2axw
Zugehérige Phase: Bx = 2 arctg PR s (69)
L 4 o (ax® + P + w?)

Gruppenlaufzeit: 7x = @ F ax® — Bu?) + A B (70)

Da alle Polstellen px in der linken Halbebene liegen, ist
oax = — Re px immer positiv; die 7k in Gl (67) und Gl. (70)
sind daher auf jeden Fall positiv. Die Gesamtlaufzeit setzt sich
aus der entsprechenden Summe der Einzellaufzeiten zusammen,
denn:

v=Ilvre iBx =ypge B

_dB < dBx _
"o do ~Zrk

B=Z.Bk;

Es konnen daher die folgenden wichtigen Sidtze formuliert
werden:
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Zusammenhang zwischen den verschiedenen Parametern des Allpassgrundgliedes 2. Ordnung

a) Die Gruppenlaufzeit eines Allpasses ist immer positiv.

b) Die Phase B eines Allpasses kann mit der Frequenz nur zu-
nehmen.

¢) Eine Funktion 7(®) ist dann und nur dann Gruppenlaufzeit-
funktion eines Allpasses, wenn sie sich als Partialsumme von Sum-
manden (67) und (70) schreiben ldsst. 7(w) ist eine gerade Funktion
von :

Co + Cr? + ... + Cp1 @2(0-1)
bo + b1 @2 + ... + bp @20

T(w) =

(71)

d) Jede Allpasscharakteristik hoherer Art ldsst sich zerlegen in
Glieder 1. und 2. Ordnung. Falls eine Realisierungsart mit konstan-
tem Wellenwiderstand gewihlt wird, kann man die einzelnen Glieder
unmittelbar in Kette schalten. Eine nach dem Verfahren von Ab-
schnitt 3 gefundene Briickenreaktanz fiir Z1(p) / G(p) kann auf ein-
fache Weise auf Einzelglieder 1. und 2. Ordnung verteilt werden
[Nullstellenbestimmung der Gleichung U(p) + G(p) = 0].

Fiir das Glied 2. Ordnung ist in Tabelle III der Zusammen-
hang zwischen den im 6. Abschnitt eingefiihrten Grossen o
und K, den Konstanten A:1 und A2 der charakteristischen
Funktion, sowie den Nullstellen p1 und p1 angegeben.

Die Werte der Schaltelemente bestimmen sich daraus zu:

Schaltelemente (Glied 1. Ordnung):

a=n L= 72)
Schaltelemente (Glied 2. Ordnung):
(mit « = — Re p1)
Parallelkreis Z1:
Coo A 1 RK_ . 2aR
@ RK RA1 2aR’ o |p1l?
(73)
Seriekreis Zs:
R T Gl S
(74)

12. Einige weitere Realisierungsmoglichkeiten

Von den vielen moglichen Realisierungsarten fiir Allpisse
sollen einige hier kurz gestreift werden.

Fig. 13 zeigt die Umwandlung des symmetrischen Kreuz-
gliedes in eine dquivalente Schaltung mit einem iiberbriickten
T-Glied (das allerdings einen idealen Ubertriiger enthilt). Die
Ubertragungsfunktion eines solchen Vierpols lautet allgemein:

Us R2(Z2 — Z1) (75)

U~ ' Re+t R)(Za+ Z1) + 2(Ri Rz + Z1 Z2)
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Tabelle III
wo, K pL,2 A1 A2
™ :
wo = — —
0 D1 ‘/Az
K — o . 2Re p1
[p1]
Ko 4 Al V4 As— Ap2
§ — — et + - — —
P12 5 (1 + X2 1) 2A4s — 2 As
4 = X _ 2Repr. _
0 | p1|
1 1
Ao = [P S -
wo? | |p1|2

Mit dem Ansatz |/ Z1 Zz = Zw = reellund z1 = Z1/Zy

(76)
lasst sich Gl. (75) iiberfithren in die Form:
_ R 1—z(p)

"“Ri+Re 1+ z1(p) @7

Das ist nach Gl. (46) die Ubertragungsfunktion eines All-
passes. Der Ubergang Gl. (75) — (77) ist durchfiihrbar unter
der Bedingung:

Zw=R: oder/und Zy=Re (78)

Falls eine konstante Betriebsdimpfung zugelassen wird, ist
es also keinesfalls notig, den Vierpol beidseitig mit R = Zy
abzuschliessen, vielmehr geniigt es, wenn die wesentlich allge-
meinere Bedingung in Gl. (78) erfiillt ist. Unter anderem sind
folgende Spezialfille moglich:

A R1 =Zy = 1/21 Z>, R9 beliebig, Anpassung nur primér;
b) Ro = Zy = l/Zl Zs2, Ri beliebig, Anpassung nur sekundér;
¢) Ri =Ry =Zy = 1/21 Zs , beidseitige Anpassung.

Vor- und Nachteile der eben besprochenen Allpass-Schal-
tung sind:

Vorteil: Da die Eingangsimpedanz (nur falls Re = Zy = 1/2122)
konstant und gleich Zy ist, konnen eine grossere Anzahl von Einzel-
gliedern ohne weiteres in Kette geschaltet werden (Vorteil beim Ab-
stimmen, Toleranzen bei Gliedern 1. und 2. Ordnung weniger kritisch
als bei Allpdssen hoherer Ordnung, die aus nur einem einzigen Kreuz-
glied bestehen).

Nachteil: Die Pole von Z; und die Nullstellen von Zz (bzw. um-
gekehrt) miissen dusserst genau iibereinstimmen, da der Amplituden-
gang sonst starke Schwankungen aufweist. Zudem werden relativ
viele Reaktanzen bendtigt und bei der Sparschaltung ein eng gekop-
pelter Ubertrager.

Die Ubereinstimmung der Pole und Nullstellen der beiden
dualen Impedanzen Z1 und Z: ldsst sich vermeiden, falls man
die eine Briickenimpedanz (z. B. Z2) durch einen Widerstand
ersetzt. Man erhdlt damit das Netzwerk (Darlington-Schal-
tung) gemdss Fig. 14.

Fig. 13
Symmetrisches Kreuzglied und aquivalentes Netzwerk in Sparschaltung
R; = Quellenwiderstand; Ry = Abschlusswiderstand

Weitere Bezeichnungen siehe im Text
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z, Z; =——
Z,
1-m? L 2
m 1-m? M
1 Nl e B
=]
[=4
©
S 1-m? T
- m 1 m 2
N 1 -m
0 -m? T-m? =z
Il
o
< 7
.
m 1-m?
K(1-m?) )1 _m_
K(1-m )K(1-m2)1-m2
(=
3
=
o
[ 1
o i 1 m
o w  Ka-m?) 1-m?
0 m
(%]
o
e
brs m
1-m2 ' _K_
K 1-m?
Imp
Fig. 16
Allpassimpedanz
4] und ihre Dualimpedanz )
Auf R und o, normierte oY
Schaltelemente: 0]
Allpass 1. Ordnung; o Re p
1 = 1 [1 =1
Allpass 2. Ordnung; Parallelkreis Klw
! ! K
0 = — =
1=7 1

1
lhy=—
K
Fiir das Glied 2. Ordnung ist noch die Nullstellenlage in der
komplexen p-Ebene angegeben
K, m Parameter

Seriekreis ¢, = K

Wihlt man den Widerstand R so, dass die Bedingung

R2 = R1 R: (79)

erfiillt ist, so wird namlich die Ubertragungsfunktion (75) zu:
R> R—Z 1—2z(p)
Ri+R:+2R R+zZ “T+z(p

U=

mit z = R (80)
was nach Gl. (46) die Ubertragungsfunktion eines Allpasses
ist (falls Z eine Reaktanz oder ein Zweipol der im folgenden
beschriebenen Art ist).

Vorteil der Darlington-Schaltung: Nur die halbe Anzahl Reak-
tanzelemente wird (gegeniiber dem Glied mit dem dualen Z; und Z2)
benotigt. Die Reaktanz Z kann relativ leicht nach dem graphischen

22

Fig. 14
Darlington-Allpass als Kreuzglied und Sparschaltung

Bezeichnungen siehe Fig.13
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Verfahren von Abschnitt 3 gefunden werden. Die duale Impedanz
und das Problem der Pol-Nullstellen-Identitédt entfallt.

Nachteil: Die Eingangsimpedanz des mit R abgeschlossenen
Darlington-Netzwerkes betrigt:

Z(R2+2R)+ R2R
Z+ R+ 2Re

Zein = 81

Zein ist (wegen dem in Zihler und Nenner auftretenden Glied
Z(p) eine Funktion der Frequenz. Eine Kettenschaltung (ohne Trenn-
verstédrker) einzelner Darlington-Allpédsse ist daher nicht méglich.

Die bis jetzt beschricbenen Schaltungen erforderten als
Zweipole u. a. verlustfreie Reaktanzen. Es stellt sich die Frage,
wie dieser Nachteil umgangen werden kann. Auf die Moglich-
keit der Vorverzerrung der Ubertragungsfunktion (Predistor-
tion) soll hier nicht niher eingegangen werden, dagegen sei an
die im 9. Abschnitt gemachte Fussnote angekniipft und eine
allgemeinere Realisierungsmoglichkeit fiir die in Gl. (77) ein-

m
o—{ 1
z— Lot Z,(1-mP)
o
_m_
1-m
o— I
1
21 = m
o
Fig. 15

d von der

Realisierungsmoglichkeiten fiir die RLC-Imped: Zys
verlustlosen LC-Impedanz Z; und dem Parameter m

Erkldrungen siehe im Text

gefithrte Impedanz zi1(p) gezeigt. Vergleicht man namlich die
Allpassiibertragungsfaktoren Gl. (46) und (77) so erhélt man:

H(—p) _1—zi(p)
H(p) 1+ zi(p)

Bisher wurde stillschweigend vo = co angenommen, da ja
z1(p) als Reaktanz ausgebildet wurde. Man kann allgemeiner
den Ansatz:

v(p) = vo (82)

vo  1—m _ €0 — o

c 1+m’ " co+wo 3
einfithren und Gl. (82) nach zi(p) aufldsen:
A+mH@=(A=mH (D)

zi(p) = A+mH )+ (A —m)H(—p)

Definiert man eine normierte Reaktanzfunktion zo(p) durch

den Quotienten des geraden und ungeraden Anteils von H(p)
in der Form:
H(p)— H(—p)
H (p)+ H(—p)
so ergibt sich durch Einsetzen in Gl. (84) schliesslich fiir die
Briickenimpedanz zi(p):

zo(p) = (85)

m + zo (p)
1+ mzo(p)
Fig. 15 zeigt zwei Realisierungsmoglichkeiten fiir die Impe-
danz zi(p). Zeichnet man die Zweipole fiir die Allpésse 1. und
2. Ordnung im Detail auf, so sieht man, dass — wenigstens bei
diesen einfachen Gliedern — Verluste in den Reaktanzen weit-

zu(p) = 0 =m<il) (86)
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Fig. 17
Allpass-Netzwerk, das durch zwei
hasige Quell gest ¢
wird
U, Eingangsspannung;
R{, R Quellenwiderstand;
Rg Abschlusswiderstand

z

Ry
ocU1J
| : Ry :
||r — 1
u2 -
U\l (i) I R-Ry
Ry
gehend mit den beiden zusitzlich vorkommenden Wider-
stinden beriicksichtigt werden k6nnen.

Die auf diese Weise entstehenden Zweipole sind in Fig. 16
angegeben. Der Parameter m darf im Bereich 0 < m < 1 ge-
wihlt werden. Im Spezialfall m = 0 (d. h. vo = ¢o) erhélt man
als Zweipol das schon frither besprochene verlustlose LC-Netz-
werk. Der Grenzwert m = 1 (d.h. vo = 0) dagegen ergibt
z1 = 1 und entspricht einer ohmschen abgeglichenen Briicke.
Zusitzlich sind in der Abbildung noch die normierten Werte
der Schaltelemente zusammengestellt, ausgehend vom Pol-Null-
stellenschema der Ubertragungsfunktion.

Zuletzt soll nun noch eine Schaltung gezeigt werden, welche
gleichviel Elemente benotigt wie das Darlington Netzwerk, bei
der aber zudem der Ubertrager noch wegfillt.

Die beiden gegenphasigen Spannungsquellen in Fig. 17
konnen mit irgendeiner der bekannten Phasenkehrschaltungen,
wie sie zur Aussteuerung von Gegentaktverstdrkern gebrauch-
lich sind, realisiert werden. Fiihrt man noch einen Faktor « ein,
um den sich die Verstirkungen der beiden Phasenkehrkanile
unterscheiden (schaltungstechnisch problemlos), so kann, trotz
der Quellenimpedanzen R: und R2 sowie des Abschlusses Rs3
mit dem gezeichneten Netzwerk die Ubertragungsfunktion
eines Allpasses erreicht werden. Man findet:

Us R3 (@R* —R2)— Z

Damit dies die Form (82) annimmt, muss offenbar gelten:

R* R3
* _ Ro = et RS
a R Re = R + R* T R
Demnach wird:
_2Re Rs
~ R* R* + R3 (88)
und die Bezugsimpedanz:
N R* R3
R=R>+ I_Qm (89)
Mit z = Z/R erhéalt man schliesslich:
Rs3 1—z(p) (90)

Dies ist nach den Gl. (46), (77), (80), (82) die Ubertragungs-
funktion eines Allpasses.

Zuletzt sei noch auf die unsymmetrischen Kreuzglieder hin-
gewiesen, welche die symmetrischen Briicken mit den dualen
Zweigen sowie auch die Darlington-Schaltung als Spezialfall
enthalten. Tatsdchlich kann man mit einem solchen Kreuzglied
einen Allpass erhalten, wobei die Impedanz Z nur in einem
Briickenzweig vorkommt, wihrend die anderen drei Zweige
reine Widerstdinde enthalten. Auch hier ist — wie beim
Darlington Netzwerk — die Eingangsimpedanz nicht konstant.
Eine Kettenschaltung (ohne Trennstufen) ist also nicht mog-

Fig. 18

— ) (87) Unsymmetrisches Kreuzglied, welches als Watanaba-Allpass ausgebildet ist
Ui Rs+ R* Ro 4 R* R3 Lz Drei der vier Briickenimpedanzen Z = Z; (bzw. Zo) konnen durch
2T R* + R3 Widerstinde R ersetzt werden
Zusammenstellung der wichtigsten Eigenschaften der im Text besprochenen Schaltungen
Tableau IV
Schaltung R imieos i Be];fx‘;isr\lvgil:elsseand Konstante ¢y = ¥y —i i Z
Symmetrisches Kreuzglied )
mit je zwei dualen Impe- Z=2 = R
danzen. Zs R
S e
VZy Zs = Zy = R = konst. R=VZ Z» Ri + Re
Aquivalente Schaltungen fiir . _ 58
Allpasse 2. Ordnung s. Fig.19 B* + Ry = BE (), + By)
Darlington-Allpass -
& P R = VRl R2 ———Rz
Zw == konst. Ry + Rs + 2R
Briicke mit Phasenverkehr- 2R R3
schaltung. o=+ R B* Rs
Zy nicht definiert e B Rs R* Rs - R*
Ausgansimpedanz == konst. =R+ Rs + R*
Watanaba-Allpass Ri<2Re
(spez. unsymmetr. Kreuzglied). Ry — Ry = 2Rs — Ry —Rg (2R2—Ry)
Zw =+ konst = |Re(8R2—3R1)+R(AR:—Ry)
v : R = Rs = J/Ri(2Rz — Ry)
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lich. Fig. 18 zeigt einen solchen Vier- Iy ) & G
pol, wobei hier Quellen- und Ab- i DN D ey B
schlusswiderstand sowie die drei Briik- O=<K=o k=1 ;é‘ T 2L,
kenwiderstande alle gleich gewihlt Kupplung: 5 %,
wurden. Die Ubertragungsfunktion ke i AR T k=l’?(’:_}
ergibt sich in diesem speziellen Fall zu: ° °1° °
d 2L, e 2L f ]
g  __ i i w 1) Y o "%(C,—c,)
G 8 REZO) T T R S
Das Netzwerk besitzt also Allpass- . 266,
charakter. Das Minuszeichen in GI. o Tl & "“’i cchg: 50
(91) kann vermieden werden, falls
man Z und einen der Diagonalwider- Fig. 19
stinde vertauscht. Wie in simtlichen Hqmixalenis Echialix ity Synimétiichen Kiedzslicd
angegebenen Schaltungen, ldsst sich sichaltelemente;
auch hier die Impedanz Z(p) als reine L, = i Ly, = A C = i Cy = A
Reaktanz oder als RLC-Zweipol aus- @o K g i -

bilden durch geeignete Wahl von m.

Das Netzwerk gemiss Fig. 18 benotigt weder Ubertrager noch
Phasenkehrstufe, Dagegen ist keine durchgehende Erdverbin-
dung vorhanden; wird eine solche gewiinscht, so miisste —
mindestens auf einer Seite — ein Ubertrager verwendet werden.

Zum Schluss sind noch die verschiedenen besprochenen
Schaltungen mit ihren wichtigsten Eigenschaften in Tabelle IV
zusammengefasst. Dass damit die Moglichkeiten der Allpass-
Synthese bei weitem noch nicht erschopft sind, versteht sich
von selbst.

Das Nullstellenschema einer gegebenen Allpassfunktion
wird sich im allgemeinen mehrheitlich aus konjugiert kom-
plexen Wertepaaren zusammensetzen. Reelle Nullstellen wer-
den eher selten sein; mit Allpidssen 1. Ordnung lassen sich ja
auch nur monoton abnehmende Laufzeitkurven realisieren.
Die hauptsichlich vorkommenden Allpésse 2. Ordnung werden
wiederum mehrheitlich K-Werte im Intervall 0 < K < 1 auf-
weisen. In Fig. 19 sind eine Anzahl von Schaltungen, die zwar
zum Kreuzglied dquivalent sind, sich aber fiir die Realisierung
besser eignen, zusammengestellt. Die Schaltung in Fig. 19f ist
dabei fiir die praktische Ausfithrung besonders geeignet. Der
gesamte Allpass kann dann durch eine Kettenschaltung der
einzelnen Elementar-Allpdsse aufgebaut werden. Der kon-
stante Wellenwiderstand gestattet auch durch Zu- und Ab-
schalten einzelner Glieder das Laufzeitverhalten in gewissen
Grenzen zu variieren.

Unter den Schaltungen, welche die gesamte Ubertragungs-
funktion mit einem einzigen Reaktanzzweipol realisieren, ist
die Briicke mit Phasenkehrstufe sehr beliebt, da sie mit der
halben Anzahl Einzelreaktanzen (gegeniiber den oben er-

wihnten Schaltungen) auszukommen vermag und ebenfalls
eine durchgehende Erde besitzt (Anwendung u. a. fiir Ver-
zogerungsglieder).
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Worterbuch Bausteine der Elektronik (Halbleiter, Rohren, Bau-
elemente, Werkstoffe). Von Ernst Peter Pils. Telekosmos-Ver-
lag, Stuttgart 1968; 19,5X 13 cm, 191 S., 77 Fig.

Die Elektronik ist im Verlauf weniger Jahrzehnte zu einem
sehr umfangreichen Teilgebiet der Elektrotechnik angewachsen,
und sie dehnt sich rasch noch weiter aus. Eine Fiille von Fachaus-
driicken ist entstanden. Da ist die Schaffung eines Lexikons der
Fachausdriicke der Bausteine der Elektronik, das heisst der Halb-
leiter, der Rohren, der Bauelemente und der Werkstoffe, sehr zu
begriissen. Der erfahrene Autor bietet mit seinem Werk eine lange
Liste von Fachausdriicken; sie ist alphabetisch geordnet, bringt zu
jedem Ausdruck eine knappe, aber leicht verstdndliche Erklarung

Bull. ASE 59(1968)14, 6 juillet

und verweist iiberdies in sehr vielen Fillen auf Literaturstellen. In
einer Reihe von Fillen sind auch Abbildungen beigefiigt. Auf 188
Seiten sind iiber 1100 Fachausdriicke zusammengestellt. Dann
folgt noch ein Literaturverzeichnis.

Im Gebiet der Elektronik werden oft englische Ausdriicke be-
niitzt, sei es weil entsprechende deutsche Ausdriicke noch nicht
existieren, oder dass solche noch nicht allgemein eingefiihrt sind.
Der Autor hat daher auch viele englische Ausdriicke in sein Lexi-
kon aufgenommen. Zu Recht ldsst er allgemeine Ausdriicke, wie
Spannung und Strom und alle Einheitennamen, weg.

Mit dem Worterbuch Bausteine der Elektronik wird der Fach-
welt ein praktisches Werkzeug vorgelegt, das bestens empfohlen
werden kann. M. K. Landolt
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