Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 59 (1968)

Heft: 7

Artikel: Eine neue Speicherschaltung zur Messung von Spannungsimpulsen

Autor: Wiesinger, J.

DOI: https://doi.org/10.5169/seals-1057389

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN

DE L'ASSOCIATION SUISSE DES ELECTRICIENS

Organe commun de l'Association Suisse des Electriciens (ASE) et de l'Union des Centrales Suisses d'électricité (UCS)

Eine neue Speicherschaltung zur Messung von Spannungsimpulsen

Von J. Wiesinger, München

621.374.5:621.317.326

Es wird eine neue, für viele messtechnische Aufgaben einsetzbare Impulsspeicherschaltung beschrieben, mit der Spannungsimpulse von einigen 10 bis zu einigen 100 V registriert werden können. Am Ausgang der Schaltung, die nur aus Bausteinen der Festkörperelektronik besteht, erscheint eine der Amplitude des Spannungsimpulses proportionale, auf einem Kondensator gespeicherte Gleichspannung, die maximal einige 100 mV beträgt. Diese Gleichspannung kann mit einem hochohmigen Leistungsverstärker gemessen werden. Auf Grund der Kennlinien einer in der Schaltung verwendeten schnellen Rechendiode und eines Feldeffekttransistors wird der Speichervorgang bei Impulsen mit einer Stirn- und Rückenzeit von 0,3 μs und 30 ms berechnet und der auftretende Fehler ermittelt. Nach einer Diskussion der Einsatzmöglichkeiten der Schaltung wird ein batteriebetriebenes Messgerät beschrieben, das die Speicherschaltung beinhaltet und die Spannungimpulshöhe auf einem Mikroampèremeter anzeigt. Das Gerät ist u. a. zur Messung voller oder abgeschnittener Normstoßspannungen und Langwellen geeignet.

L'auteur décrit un couplage intégrateur d'impulsions capable d'enregistrer des impulsions de tension de quelques 10 à quelques 100 V, applicable à beaucoup de tâches relatives à la technique des mesures. A la sortie du couplage, uniquement formé de blocs solides électroniques, apparaît une tension continue de quelques 100 mV au plus, qui proportionnelle à l'amplitude de l'impulsion de tension est accumulée sur un condensateur. Cette tension continue peut être mesurée à l'aide d'un amplificateur de puissance à résistance élevée. Sur la base des caractéristiques d'une diode de calcul rapide utilisée dans ce couplage et d'un transistor à effet de champ, l'accumulation des impulsions d'une durée de front et de dos de 0,3 µs à 30 ms est calculée et l'erreur déterminée. Une discussion sur les facultés d'application du couplage est suivie de la description d'un appareil de mesure alimenté par batterie, renfermant le couplage d'accumulation. Cet appareil indique la hauteur des impulsions de tension sur un microampèremètre et s'adapte entre autres aux mesures des tensions de choc normalisées pleines ou coupées.

1. Einführung

Es ist bei vielen messtechnischen Aufgaben notwendig, den Scheitelwert von einmalig und kurzzeitig auftretenden Spannungsimpulsen für mehrere Sekunden als Messwert zu speichern. So soll z.B. in der Hochspannungstechnik der Scheitelwert einer über einen Stoßspannungsteiler übertragenen 1,2|50 Stoßspannung registriert werden.

Die Aufzeichnung von Spannungsimpulsen ist mit einem Oszillographen möglich. Weniger aufwendig und leichter zu handhaben sind jedoch Messgeräte, die den Scheitelwert unmittelbar auf einem Messinstrument anzeigen. Diese Geräte besitzen eine Speicherschaltung, deren Grundprinzip Fig. 1 zeigt: Ein Kondensator C wird über eine Diode D auf den Scheitelwert des am Eingang 1...1' anstehenden Spannungsimpulses aufgeladen; eine Entladung von C nach dem Ende des Impulses soll durch den Sperrwiderstand von D verhindert werden. Die an C und damit am Ausgang 2...2' anliegende Gleichspannung kann mit einem elektrostatischen Voltmeter oder einem Leistungsverstärker mit hochohmigem Eingang, an den ein Drehspulinstrument oder dgl. angeschlossen ist, zur Anzeige gebracht werden.

Die Kapazität des Kondensators C soll auf Grund folgender Überlegungen möglichst klein gehalten werden: C belastet die Impulsspannungsquelle; C bestimmt den über

Fig. 1

Prinzip einer Speicherschaltung

C Kondensator; D Diode;

Weitere Bezeichnungen siehe im Text

D beim Anstieg des Spannungsimpulses fliessenden Strom:

$$i = C \frac{\mathrm{d}u}{\mathrm{d}t} \tag{1}$$

C legt die Bandbreite f_b des Eingangskreises fest, wenn die Impulsspannungsquelle einen Innenwiderstand R_i besitzt oder der Impuls über ein Kabel mit dem Wellenwiderstand Γ übertragen wird:

 $f_{\rm b} = \frac{1}{2 \pi R C}$

bzw.

$$f_{\rm b} = \frac{1}{2\,\pi\,\Gamma\,C} \tag{2}$$

Anderseits bestimmt die Grösse von C zusammen mit dem Sperrwiderstand der Diode $R_{\rm sp}$ die Entladezeitkonstante $T_{\rm e}$:

$$T_{\rm e} = R_{\rm sp} C \tag{3}$$

Wenn C zu 100 pF gewählt wird, müsste $R_{\rm Sp}$ für $T_{\rm e}=1000$ s einen Wert von $10^{13}~\Omega$ annehmen. Da herkömmliche Dioden einen so hohen Sperrwiderstand nicht ohne weiteres aufweisen, wurden verschiedene Speicherschaltungen entwickelt, mit denen die Entladung von C verzögert werden kann (Fig. 2).

Ein Teil der Schaltungen basiert auf einer Umladung des Eingangskondensators $C_{\rm e}$ auf einen wesentlich grösseren Kondensator $C_{\rm u}$. Die Umladung erfolgt über einen Schalter (Fig. 2a) oder einen Widerstand (Fig. 2b), wobei die Umladezeitkonstante wesentlich grösser sein muss als die Dauer des zu messenden Impulses. Bei weiteren Schaltungen wird die Diode durch einen Schalter oder einen elektronisch gesteuerten Relaiskontakt nach dem Impulsende vom Kon-

Fig. 2 Speicherschaltungen

a Umladung über Schalter; b Umladung über Widerstand; c Abtrennung des Eingangskondensators durch Schalter

 $C_{\rm e}$ Eingangskondensator; $C_{\rm u}$ Umladekondensator; D Diode; $R_{\rm u}$ Umladewiderstand; S Schalter

densator abgetrennt (Fig 2c). Auf die Vor- und Nachteile dieser Schaltungen, bei denen z. T. Röhren als Dioden verwendet werden müssen, kann hier nicht näher eingegangen werden.

$\begin{array}{c|c} C_{e} & C_{u} \\ C_{e} & C_{u} \\ C_{e} & C_{u} \end{array}$

2. Funktion der neuen Speicherschaltung

Um ein Messgerät erstellen zu können, das den Scheitel-

wert von Spannungsimpulsen mit einer Dauer in der Grössenordnung von 100 ns bis zu Bruchteilen von Sekunden zu
registrieren imstande ist, wurde eine neuartige Speicherschaltung entwickelt (Fig. 3), die gegenüber den bisher bekannten
Schaltungen für viele Anwendungsgebiete eine Reihe von Vorteilen besitzt. Insbesondere enthält sie keine Schalter, Relaiskontakte oder Röhren, sondern ist nur mit Halbleiterelementen aufgebaut. Somit ist ein extrem kompakter Schaltungsauf bau möglich, Voraussetzung für die Messung sehr kurzzeitiger Impulse.

Der Erkenntnis zur Folge, dass Halbleiterdioden mit sehr guten Durchlasseigenschaften, wie geringer Durchlasswiderstand, hohe Strombelastbarkeit und geringe Erholzeit in in Sperrichtung keinen extrem hohen Sperrwiderstand besitzen, wurden die beiden Funktionen, das Aufladen eines Speicherkondensators C_2 und die Verhinderung der Entladung, zwei verschiedenen Diodentypen übertragen.

Die Aufladediode D_1 ist eine diffundierte Silizium-Diode, ausgesucht auf hohe Sperrspannung (etwa 140 V bei 0,1 μ A Sperrstrom). Die Durchlasskennlinie, d. h. den Durchlassstrom I_{d1} als Funktion der Durchlaßspannung U_{d1} , zeigt Fig. 4, den Sperrwiderstand $R_{\rm sp1}$ als Funktion der Sperrspannung $U_{\rm sp1}$ Fig. 5. Diese Diode hat eine Erholzeit in Sperrichtung von nur einigen Nanosekunden.

Als Sperrdiode D_2 wird die Gitter-Anoden- oder die Gitter-Kathodenstrecke eines N-Kanal-Feldeffekttransistors verwendet. Diese Diodenstrecke ist auf kleinen Gitterleckstrom in Sperrichtung ausgesucht (einige pA bei Sperrspannungen von etwa 1 V). Die Durchlasskennlinie dieser Diode zeigt Fig. 6.

Neben den Dioden besitzt die Speicherschaltung einen Ober- und einen Unterspannungskondensator mit $C_1 = 100 \text{ pF}$

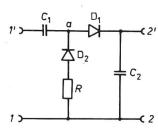


Fig. 3 Neue Speicherschaltung C_1 Oberspannungskondensator (100 pF); C_2 Unterspannungskondensator (30 nF); D_1 Aufladediode; D_2 Sperrdiode; R Entladewiderstand (100 k Ω)

bzw. $C_2 = 30$ nF und einen Entladewiderstand $R = 100 \text{ k}\Omega$. Natürlich ist man bei der Dimensionierung der Schaltung für eine bestimmte Aufgabe nicht an die angegebenen Werte gebunden; sie sollen aber den weiteren Betrachtungen zugrundegelegt werden.

Im folgenden wird der Speichervorgang beim Anlegen eines linear ansteigenden und linear abfallenden Spannungsimpulses am Eingang 1...1' der Schaltung berechnet. Den zeitlichen Verlauf des Impulses mit dem Scheitelwert U_0 , der Stirnzeit $T_{\rm S}$ und der Rückenzeit $T_{\rm R}$ zeigt Fig. 7. Da die Vorgänge bei relativ raschen und langsamen Impulsen verschieden sind, wird die Berechnung für einen Impuls mit 0,3 μ s Stirn- und Rückenzeit sowie mit 30 ms Stirn- und Rückenzeit durchgeführt. Hiebei werden die Vorgänge beim Anstieg, beim Abfall und nach dem Ende des Impulses behandelt. Im Laufe des Rechnungsganges wird auch die Funktion der Speicherschaltung erläutert und der Messfehler ermittelt.

2.1 Speichervorgang bei einem Kurzzeitimpuls

An den Eingang 1...1' der Schaltung wird ein Impuls gelegt: $U_0=+100~{\rm V},~T_{\rm S}=T_{\rm R}=0,3~{\rm \mu s}.$ Zur Veranschaulichung ist in Fig. 8a der prinzipielle Spannungsverlauf am Punkt a der Schaltung (Fig. 3) dargestellt.

2.1.1 Anstieg des Impulses

Der Berechnung kann die Ersatzschaltung in Fig. 9a zugrundegelegt werden. Der Zweig mit der in Sperrichtung

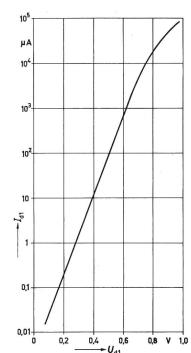


Fig. 4

Durchlasskennlinie der
Aufladediode

 I_{d1} Diodendurchlaßstrom; U_{d1} Diodendurchlaßspannung

beanspruchten Diode D_2 ist während des Anstiegs des Impulses ohne Bedeutung.

Für die Dämpfungszeitkonstante der Ersatzschaltung gilt:

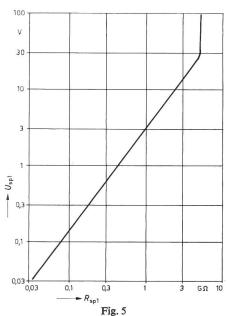
$$T_{\rm d} = \frac{L}{R_{\rm d1}} = 5,56 \text{ ns}$$
 (4)

wenn nach Fig. 4 bei Strömen von einigen zehn mA der Diodendurchlasswiderstand $R_{\rm d1}=3,6~\Omega$ und die Schaltinduktivität $L=20~{\rm nH}.$ Da $T_{\rm d}\ll T_{\rm S},$ kann L für die weiteren

Betrachtungen ausser Acht gelassen werden.

Die Spannung

$$u = U_0 \frac{t}{T_S}, \quad 0 \le t \le T_S \tag{5}$$


bewirkt einen Strom

$$i = \frac{U_0}{T_{\rm S}} \cdot \frac{C_1 C_2}{C_1 + C_2} \left(1 - e^{-\frac{1}{T_1} \left(t - T_{\rm S} \frac{U_{\rm S1}}{U_0} \right) \right)}$$

wobei

$$T_1 = R_{\rm d1} \frac{C_1 C_2}{C_1 + C_2}$$

$$T_{\rm S} \frac{U_{\rm S1}}{U_0} \le t \le T_{\rm S}$$
 (6)

Sperrkennlinie der Aufladediode U_{sp1} Sperrspannung; R_{sp1} Sperrwiderstand

Die untere Zeitgrenze ist dadurch gegeben, dass zunächst die Schwellspannung $U_{\rm s1}$ von $D_{\rm 1}$ überwunden werden muss, bevor der Stromfluss einsetzen kann.

Wenn $t = T_S$, ist die Spannung an C_2 :

$$U_{c2} = \frac{U_0}{T_S} \cdot \frac{C_1}{C_1 + C_2} \left\{ T_S \left(1 - \frac{U_{s1}}{U_0} \right) - T_1 \left[1 - e^{-\frac{T_S}{T_1} \left(1 - \frac{U_{s1}}{U_0} \right)} \right] \right\}$$
(7)

Bei $T_{\rm S}=0.3~\mu {\rm s}$ ist $U_{\rm c2}=0.3292~{\rm V}$, wenn aus Fig. 4 $U_{\rm s1}=0.74~{\rm V}$ und $R_{\rm d1}=3.6~\Omega$ bei $i\approx33~{\rm mA}$.

Es sei darauf hingewiesen, dass D_2 während der betrachteten Zeit nur mit einer sehr geringen Sperrspannung beansprucht wird. Diese beträgt zur Zeit $t = T_8$:

$$U_{\rm sp2} = U_{\rm c2} + U_{\rm s1} + i R_{\rm d1} = 1,08 \text{ V}$$
 (8)

 $\begin{array}{cccc} \textbf{Durchlasskennline} & \textbf{der Sperrdiode} \\ I_{\rm d2} & \rm Diodendurchlaßstrom; & U_{\rm d2} & \rm Diodendurchlaßspannung \\ \end{array}$

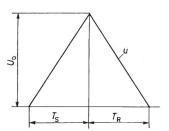
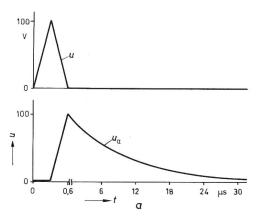


Fig. 7
Spannungsimpuls

 U_0 Scheitelspannung; u Spannung des Eingangsimpulses; T_{S} Stirnzeit; T_{R} Rückenzeit

2.1.2 Abfall des Impulses


Es wird die Ersatzschaltung der Fig. 9b herangezogen. Mit dem Rückgang der Spannung an 1...1' wird D_2 in Durchlassrichtung beansprucht, D_1 in Sperrichtung. Da während des Spannungsrückgangs $R_{\rm sp1}\approx 1...5$ G Ω (vgl. Fig. 5) und die Sperrschichtkapazität von D_1 , $C_{\rm sp1}=1$ pF, gilt:

$$T_2 = R_{\rm sp1} C_{\rm sp1} \gg T_{\rm R} \tag{9}$$

Somit kann der Einfluss von $R_{\rm sp1}$ während $T_{\rm R}$ ausser Acht gelassen werden. Da weiterhin über R während $T_{\rm R}$ keine wesentliche Entladung erfolgt, weil:

$$T_3 = \left(C_1 + \frac{C_{\rm sp1} C_2}{C_{\rm sp1} + C_2}\right) R \gg T_{\rm R}$$
 (10)

kann auch R als unendlich gross angesehen werden.

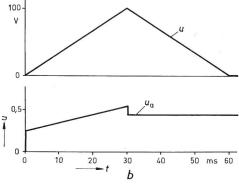
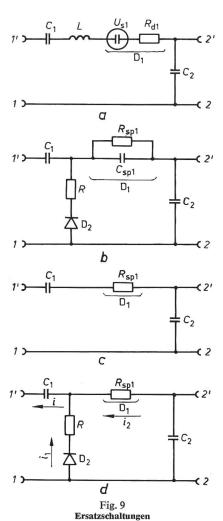


Fig. 8

Spannungsverlauf am Punkt a der Fig. 3

: b Langzeitimpuls: u Spannung des Eingans


a Kurzzeitimpuls; b Langzeitimpuls; u Spannung des Eingangsimpulses;
 u_a Spannung am Punkt a der Speicherschaltung in Fig. 3; t Zeit

Während $T_{\mathbb{R}}$ wird C_{sp1} aufgeladen. Hierbei wird C_2 Ladung entzogen:

$$\Delta Q = C_2 U_{c2} \left[1 - \frac{1}{1 + C_{sp1} \left(\frac{1}{C_1} + \frac{1}{C_2} \right)} \right] = 0.988 \cdot 10^{-10} C$$
(11)

wenn U_{c2} nach Gl. (7) eingesetzt wird. Die am Ende der Aufladung an C_{sp1} anstehende Spannung ist:

$$U_{\rm sp1} = \Delta Q \cdot C_{\rm sp1} \approx 99 \, \text{V} \tag{12}$$

a Anstieg des Impulses;
 b Abfall des Impulses;
 c Umladung des Oberspannungskondensators;
 d Abfall des Langzeitimpulses;

Spannungskondensators, a Abrian des Langzenmipuises, C_1 Oberspannungskondensator; C_2 Unterspannungskondensator; D_1 Aufladediode; D_2 Sperrdiode; $C_{\rm sp1}$ Sperrschichtkapazität von D_1 ; $R_{\rm d1}$ Durchlasswiderstand von D_1 ; $R_{\rm sp1}$ Sperrwiderstand von D_1 ; $U_{\rm s1}$ Schwellspannung von D_1 ; L Schaltinduktivität; R Entladewiderstand; i, i_1 , i_2 Ströme

Da die Erholzeit in Sperrichtung von D_1 nur 1 bis 2 ns beträgt, kann der nicht auf $C_{\rm sp1}$ gespeicherte und damit verlorene Ladungsanteil vernachlässigt werden.

2.1.3 Entladung der Oberspannungskapazität

Nach dem Ende des Spannungsimpulses werden die auf etwa 99 V aufgeladenen Kondensatoren C_1 und $C_{\rm sp1}$ über R entladen mit der Zeitkonstanten T_3 nach Gl. (10). Da $T_3 \ll T_2$ der Gl. (9) ist, kann $R_{\rm sp1}$ für den Entladevorgang als unendlich angesehen werden. Die Entladung der Kondensatoren erfolgt bis auf die Diodendurchlaßspannung von D_2 , die kleiner als 1 V ist; somit wird C_2 nahezu die gesamte Ladung von $C_{\rm sp1}$ wieder zugeführt und der unter Abschnitt 2.2.2 behandelte Ladungsverlust von C_2 praktisch ausgeglichen.

2.1.4 Umladung der Oberspannungskapazität

Wenn C_1 auf die Durchlaßspannung von D_2 , $U_{\rm d2}$, entladen ist, beginnt mit einer wesentlich grösseren Zeitkonstante die Umladung von C_1 auf $U_{\rm c2}$ über $R_{\rm sp1}$ und den an 1...1' angeschlossenen äusseren Kreis. Die Ersatzschaltung nach Fig. 9c gilt, wenn $U_{\rm d2}$ auf ca. 0,2 V abgesunken ist und damit der Strom über $R_{\rm sp1}$ den Strom über den Zweig mit R und D_2 zu überwiegen beginnt. Somit wird C_1 von etwa -0,2 V auf $+U_{\rm c2}$ umgeladen mit der Zeitkonstanten:

$$T_4 = R_{\rm sp1} \frac{C_1 C_2}{C_2 + C_2} = 1.5 \cdot 10^{-2} \,\mathrm{s}$$
 (13)

wenn der mittlere Wert von $R_{\rm sp1} \approx 1.5 \cdot 10^8 \, \Omega$ nach Fig. 5 ist.

Während dieser Umladung wird C_2 Ladung entzogen und die endgültige Spannung an C_2 ergibt sich damit:

$$U_{c2}^{\star} = \frac{U_{c2} C_2 - U_{d2} C_1}{C_1 + C_2} = 0,327 \, 4 \, V \tag{14}$$

wenn U_{c2} nach Gl. (7) eingesetzt wird.

2.1.5 Speicherzeit

 C_1 und C_2 sind jetzt parallel geschaltet und haben die Spannung $U_{\rm c2}^*$; sie werden durch den Sperrstrom $I_{\rm sp2}$ über D_2 entladen. Da $I_{\rm sp2} < 3$ pA, erfolgt eine Entladung um $0.5\,\%$ in:

$$t = \frac{0,005 \ U_{\text{c2}}^{*} \ C_{2}}{I_{\text{sp2}}} \ge 16,5 \text{ s}$$
 (15)

Somit ist die Forderung, den Messwert über mehrere Sekunden zu speichern, hinreichend erfüllt.

2.2 Speichervorgang bei einem Langzeitimpuls

An den Eingang 1...1' der Speicherschaltung wird wiederum ein Spannungimpuls nach Fig. 7 gelegt: $U_0 = +100 \text{ V}$, $T_S = T_R = 30 \text{ ms}$. In Fig. 8b wird der prinzipielle Spannungsverlauf am Punkt a der Schaltung (Fig. 3) gezeigt.

2.2.1 Anstieg des Impulses

Nach der Ersatzschaltung der Fig. 9a und Gl. (7) ergibt sich: $U_{\rm c2}=0.3314$ V, wenn bei einem Strom von ca. 0,33 μA aus Fig. 4 $U_{\rm s1}\approx 0.2$ V und $R_{\rm d1}\approx 1.2\cdot 10^5~\Omega$.

2.2.2 Abfall des Impulses

Es ist die Ersatzschaltung der Fig. 9b zu betrachten. Während des Abfalles des Langzeitimpulses wird $C_{\rm sp1}$ praktisch nicht aufgeladen, da $T_{\rm R} \gg C_1 R$ ist. Somit kann $C_{\rm sp1}$ vernachlässigt werden und es gilt die Ersatzschaltung nach Fig. 9d. Bei einem Entladestrom i über C_1 , der etwa gleich dem Strom i_1 ist:

$$i_1 \approx C_1 \frac{U_0}{T_{\rm R}} = 0.33 \,\mu{\rm A}$$
 (16)

ergibt sich aus Fig. 6:

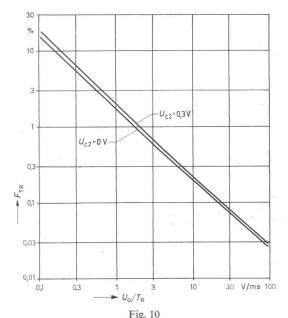
$$U_{d2}=0,4 \mathrm{\ V}$$

Während des Absinkens der Eingangsspannung fliesst nun, bedingt durch die Spannungsdifferenz an D_1 , über $R_{\rm sp1}$ ein Strom i_2 , der eine Spannungssenkung an C_2 bewirkt:

$$\Delta U_{\rm c2} = \frac{T_{\rm R}}{C_2} \cdot \frac{U_{\rm d2} + i_1 R + U_{\rm c2}}{R_{\rm sp1}} = 2,12 \cdot 10^{-3} \,\text{V}$$
 (17)

wenn (nach Fig. 5) $R_{\rm sp1}=3.6\cdot 10^8~\Omega.$ Somit wird $U_{\rm c2}=0.329~\rm 3~V.$

2.2.3 Umladung der Oberspannungskapazität


Die Umladung erfolgt gemäss den Ausführungen unter Abschnitt 2.1.4. Nach Gl. (14) ergibt sich:

$$U_{\rm c2}^* = 0.3275 \, {\rm V}$$

2.3 Messfehler

Die hier angegebenen Berechnungen für einen Scheitelwert des Eingangsimpulses $U_0 = 100 \text{ V}$ wurden auch für 30 und

306 (A 164) Bull. SEV 59(1968)7, 30. März

Messfehler, abhängig vom Spannungsrückgang des Eingangsimpulses $F_{
m TR}$ Messfehler; $T_{
m R}$ Rückenzeit; $U_{
m c2}$ Spannung an der Unterspannungskapazität; U_0 Scheitelspannung des Eingangsimpulses

60 V durchgeführt. Das jeweils ermittelte Übersetzungsverhältnis

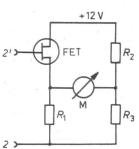
$$\ddot{u} = U_0/U_{c2} \tag{18}$$

ist in Tab. I zusammengestellt. Es wird auch bei den verschiedenen Spannungen U_0 die Fehlspannung:

$$\Delta U = \frac{\ddot{u}_{(U_0 = 100 \text{ V})} - \ddot{u}_{U_0}}{\ddot{u}_{(U_0 = 100 \text{ V})}} U_0 \tag{19}$$

angegeben, bei der Annahme, dass bei $U_0 = 100 \,\mathrm{V}$ richtig gemessen wird.

Vergleich zwischen Kurz- und Langzeitimpulse


<i>U</i> ₀ V	$T_{ m S}=T_{ m R}=0$,3 $\mu { m s}$		$T_{\mathrm{S}}=T_{\mathrm{R}}=30\mathrm{ms}$	
	ü	Δ <i>U</i> V	ü	Δ <i>U</i> V
30 60	312 307	0,63 0,35	312 307	0,66 0,35
100	305	_	305	

 $T_{\rm S}$ Stirnzeit; $T_{\rm R}$ Rückenzeit; U_0 Scheitelspannung; ΔU Fehlspannung; \ddot{u} Übersetzungsverhältnis

Man erkennt, dass bei den beiden extrem unterschiedlichen Impulsen kaum Differenzen auftreten. Mit abnehmender Spannung ergibt sich - im wesentlichen bedingt durch den zunehmenden Einfluss der Schwellspannungen der Dioden ein negativer Fehler.

2.4 Besonderheiten der Speicherschaltung

2.4.1 Grösstmögliche Stirnzeit des Spannungsimpulses

Wenn die Stirnzeit Ts des Spannungsimpulses so gross wird, dass noch während des Anstiegs ein merklicher Ladungsteil über

Prinzip eines Brückenverstärkers FET Feldeffekttransistor; M Drehspulinstrument; R1, R2, R3 Brückenwider-

den Zweig mit R und der in Sperrichtung beanspruchten Diode D_2 abfliesst (Fig. 3), wird C_2 nicht auf die erforderliche Spannung aufgeladen. Bei $I_{\rm sp2} < 3$ pA ist der durch den Sperrstrom bedingte Fehler am Ende der Stirnzeit:

$$F_{\rm T_S} \approx \frac{T_{\rm S} I_{\rm sp2}}{U_0 C_1}$$
 (20)

Für $F_{\rm TS}=0.5\,\%$ und $U_0=100\,{
m V}$ ist die maximal zulässige Stirnzeit 16,6 s.

2.4.2 Grösstmögliche Rückenzeit des Spannungsimpulses

Es ist die Ersatzschaltung nach Fig. 9d zu betrachten. Während der Rückenzeit T_R des Spannungsimpulses soll der Strom i, der über C_1 fliesst, auch über den Zweig mit R und D_2 fliessen. Ein Fehlerstrom i_2 über $R_{\rm sp1}$ bedingt eine teil-

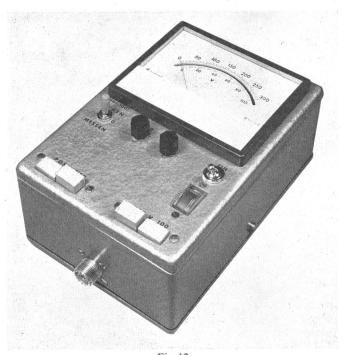


Fig. 12 Impulsmessgerät Abmessungen: 19×13×9 cm

weise Entladung von C2 während der Rückenzeit. Als Fehler bei einem linear abfallenden Impuls ergibt sich:

$$F_{\rm TR} = \frac{i_1}{i_1 + i_2} \tag{21}$$

 $F_{
m TR}$ in Abhängigkeit von dem Spannungsrückgang $U_0/T_{
m R}$ kann mit Hilfe der Fig. 5 und 6 und folgender Gleichungen ermittelt werden:

$$i = i_1 + i_2$$
 (22)

.
$$i=i_1+i_2$$
 $ipprox C_1rac{U_0}{T_{
m R}}$ [siehe Gl. (16)]

$$i_1 = \frac{U_{d2} + i_1 R + U_{c2}}{R_{sp1}} \tag{23}$$

Somit ist:
$$F_{\text{T}_{\mathbf{R}}} = \frac{1}{1 + \frac{R_{\text{sp1}}}{R}} + \frac{U_{\text{d2}} + U_{\text{c2}}}{R + R_{\text{sp1}}} \cdot \frac{1}{C_1 \frac{U_0}{T_{\text{R}}}}$$
(24)

 $F_{\rm T_R}$ als Funktion von $U_0/T_{\rm R}$ ist in Fig. 10 aufgetragen. Man entnimmt dem Diagramm, dass für $F_{\rm TR}$ < 0,5 % $U_0/T_{\rm R}$ \geq 4 V/ms sein muss, d. h. bei $U_0 = 100$ V: $T_R < 25$ ms.

Durch folgende Massnahmen — ersichtlich aus Gl. (24) kann die Speicherschaltung auch für kleinere Werte von $U_0/T_{\rm R}$ eingesetzt werden:

- a) Erhöhung von $R_{\rm sp\ 1}$ durch Einsetzen eines Feldeffekttransistors als D_1 ;
 - b) Vergrösserung der Kapazität von C_1 .

2.4.3 Überschwingungen beim Spannungszusammenbruch

Überschwingungen bei zusammenbrechenden Spannungsimpulsen führen solange zu keiner Fehlmessung, als für ihre Dämpfungszeitkonstante T_d gilt:

$$T_{\rm d} < C_1 R \tag{25}$$

Ist $T_d > C_1 R$, muss R erhöht werden, z.B. auf 1 M Ω .

2.4.4 Schaltung für höhere Eingangsimpulse

Bei Impulsspannungen mit einer max. Amplitude über etwa 100 V müssen als D₁ mehrere Dioden in Reihe geschaltet werden. Da an D2 immer nur eine Sperrspannung in der Grössenordnung von einigen Volt auftritt, kann diese Diode auch für höhere Spannungen beibehalten werden.

3. Messgerät mit der neuen Impulsspeicherschaltung

Die am Ausgang der Speicherschaltung anstehende Gleichspannung, die max. einige 100 mV beträgt, kann mit einem Leistungsverstärker gemessen werden, dessen Eingangswiderstand grösser als etwa 100 GΩ ist. Der Verstärker kann z. B. ein Mikroampèremeter aussteuern.

Als Leistungsverstärker gut geeignet sind u. a. Brückenschaltungen mit Feldeffekttransistoren als Kathodenfolger, deren Prinzip Fig. 11 zeigt. Eine Spannung am Eingang 2...2' bewirkt eine Brückenverstimmung und damit eine Anzeige auf dem Drehspulinstrument. Zweckmässigerweise wird die Brücke symmetrisch aufgebaut, also in jeden Brückenzweig ein Feldeffekttransistor geschaltet, um Temperaturdriften auszugleichen.

Mit dem geschilderten Prinzip ist es möglich geworden, ein batteriebetriebenes Messgerät für Spannungsimpulse zu erstellen mit Messbereichen für 100 und 300 V positiver und negativer Polarität, das bei der Messung voller oder bis zu 0,3 µs abgeschnittener Normstoßspannungen sowie üblicher Langwellen einen Fehler von 1,5 % besitzt. Ein Bild des ausgeführten Gerätes zeigt Fig. 12.

Adresse des Autors:

Dr.-Ing. Johannes Wiesinger, Institut für Hochspannungs- und Anlagentechnik der Technischen Hochschule München, Arcisstrasse 21, D-8 München 2.

Dimensionierung von unsymmetrisch belasteten, einphasigen Transformatoren

Von D. Gronwald, Berlin

Es wird ein Verfahren zur graphischen Ermittlung der Primärströme in unsymmetrisch belasteten Gleichrichtertransformatoren angegeben. Die für diese Transformatoren allgemein gültigen Bedingungen für den Verlauf des Primärstromes in Abhängigkeit vom Laststrom und anderen Einflüssen sind dargestellt. Es zeigt sich, dass bei unsymmetrisch belasteten Transformatoren im Normalfall der aufgenommene Magnetisierungsstrom so weit vergrössert wird, bis der Primärstrom ein reiner Wechselstrom ist. Dabei erhöht sich der Effektivwert des Primärstromes bei rein induktiver Belastung, im ungünstigsten Belastungsfall, mindestens auf das 1,5fache des Laststromes. Diese Vergrösserung ist jedoch stark von der Auslegung und der Art der Belastung des Transformators abhängig.

L'auteur décrit un procédé de détermination graphique des courants primaires dans des transformateurs de redresseurs à charge asymétrique. Il expose les conditions valables d'une manière générale pour ces transformateurs au point de vue de l'allure du courant primaire en fonction du courant de charge et d'autres influences. Il s'avère que le courant magnétisant absorbé par des transformateurs à charge asymétrique peut être augmenté dans des conditions normales jusqu'à ce que le courant primaire ne constitue qu'un courant alternatif pur. Lors d'une charge purement inductive et de conditions de charge les plus défavorables, la valeur effective du courant primaire augmente pour atteindre au moins 1,5 fois la valeur du courant de charge. Cet accroissement dépend toutefois fortement de la disposition et de la nature de la charge appliquée au transformateur.

1. Einleitung

Wenn einpulsige Gleichrichterschaltungen über Transformatoren an das Netz angeschlossen werden, muss bei der Auslegung der Wicklungen die Gleichstromvormagnetisierung durch den Lastgleichstrom berücksichtigt werden. Eine genaue Kenntnis des durch diese Vormagnetisierung erhöhten Primärstromes ist zur richtigen Dimensionierung der Primärwicklung notwendig.

2. Berechnung der Ströme, Spannungen und Flüsse eines unsymmetrisch, speziell einpulsig, belasteten Transformators

Eine einpulsige Belastung kann z. B. aus einer Serieschaltung von einem Gleichrichterventil und der Belastung bestehen (Fig. 1). Dabei fliesst der Strom in der Sekundärwicklung nur in einer Richtung, der Transformator ist unsymmetrisch belastet [1]1).

Für diesen Transformator kann man nicht, wie oft angegeben wird, davon ausgehen, dass in der Netzwicklung nur ein reiner Wechselstrom fliessen kann. Es gelten für einen Transformator im stationären Betrieb nur zwei Bedingungen:

1. Im stationären Zustand muss die Flussänderung $\Delta \Phi$ im Kern des Transformators in positiver und negativer Richtung den gleichen Scheitelwert haben. Damit kommt der mittlere Arbeitspunkt auf der Magnetisierungskennlinie zum Stillstand. Dann ist zu jedem Zeitpunkt t während der Periodendauer T:

$$\Delta \Phi = \Phi_{(t=t_1)} - \Phi_{(t=t_1+T)} = 0 \tag{1}$$

$$\frac{i_2}{u_1}$$

$$u_2$$

$$L$$
Fig. 1

Transformator mit einpulsiger Belastung

 i_1 , i_2 primärer und sekundärer Transformatorstrom; u_1 , u_2 primäre und sekundäre Transformatorspannung; R, L Ohmisch-induktive Transformatorbelastung

¹⁾ Siehe Literatur am Schluss des Aufsatzes.