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Beugung einer ebenen elektromagnetischen Welle
an einem kreisförmigen Ferritzylinder ')

Von W. Eggimann, Cleveland
621.396.677.8 : 538.566

Einleitung
Die Beugung von elektromagnetischen Wellen an einem

dielektrischen Kreiszylinder ist in mehreren Arbeiten
behandelt worden. Die vollständige Lösung für beliebige
Einfallsrichtung wurde von Wait angegeben [l]2). Näherungsformeln

für dünne Zylinder (d. h., wenn die Wellenlänge
gross ist verglichen mit dem Zylinderdurchmesser) und für
das Fernfeld wurden in jener Arbeit ebenfalls behandelt.

Die vorliegende Arbeit beschränkt sich auf den Fall
senkrechter Einfallsrichtung, für welchen eine genaue
Lösung in Form einer Reihenentwicklung von Zylinderfunktionen

angegeben werden kann. Der Ferritzylinder ist durch
ein konstantes Magnetfeld längs seiner Achse magnetisiert.
Dank den nichtreziproken Eigenschaften des Ferrites ist
eine unsymmetrische Verteilung des Beugungsfeldes bezüglich

der Einfallsrichtung zu erwarten. Das Beugungsfeld ist
eine Funktion des Permeabilitätstensors des Ferrites,
welcher seinerseits durch die Magnetisierung des Materials
bestimmt ist. Es muss daher möglich sein, das Beugungsfeld
mittels der angelegten magnetischen Feldstärke zu
beeinflussen.

Die mathematische Lösung

Gegeben sei ein unendlich langer Ferritzylinder, dessen

Achse mit der z-Achsc und der Richtung eines konstanten
Magnetfeldes Ho identisch ist. Die ebene elektromagnetische
Welle fällt in Richtung der positiven x-Achse ein. Unter
diesen Umständen kann das Problem zweidimensional in
der xy-Ebene behandelt werden. Die Polarisation der Welle
ist behebig angenommen. Das Feld kann in diesem Fall in
zwei Felder zerlegt werden, von welchen eines senkrecht

(E E ey), das andere parallel (E E ez) zur Zylinderachse

polarisiert ist (Fig. 1). Im ersten Falle ist die magnetische

Feldstärke der Welle parallel zur Magnetisierung des

Ferritzylinders, und der Permeabilitätstensor ist ein Skalar.
Man kann deshalb den Ferritzylinder wie einen dielektrischen

Zylinder behandeln. Ist hingegen die Welle parallel
zur z-Achse polarisiert, dann stehen die Magnetisierung und
das magnetische Feld der Welle senkrecht aufeinander, und
es findet eine Wechselwirkung mit den präzessierenden

magnetischen Elektrondipolmomenten des Ferrites statt.
Daraus folgt, dass in den Maxwellschen Gleichungen die
Permeabilitätskonstante durch einen Tensor ersetzt werden

muss:

1) Die Arbeit wurde im Auftrag des Electronic Research
Directorate of the Air Force Cambridge Research Center ausgeführt
und ist in englischer Sprache in den IRE Transactions on Microwave

Theory erschienen.
2) Siehe Literatur am Schluss des Aufsatzes.
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Da alle Ableitungen in der z-Richtung verschwinden,
kann Gl. (lb) durch eine zweidimensionale Tensorgleichung
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Z

—je

!2a

P(x,y,o)

^>|^J

Fig. 1

Senkrechter Einfall der ebenen Welle auf den Ferritzylinder
a Zylinderradius; x, y, z rechtwinklige Koordinaten; r, <P

Polarkoordinaten; P Feldpunkt; E elektrische Feldstärke; V Fortpflan¬
zungsrichtung; Ff magnetische Feldstärke

B
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1 0
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(Hier bedeutet V den zweidimensionalen Gradient.)
Für die magnetische Feldstärke im freien Raum ergibt sich

H
und im Ferrit

JE
jco

1

G"o)
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-1 0
• V Ez (3)

H= - AC«)-!
JCO

V Ez (4)
0 1

- 1 0
Der Permeabilitätstensor kann mit Hilfe eines einfachen

Elektronenmodells berechnet werden [2]. Die magnetischen
Eigenschaften des Elektrons können durch einen magnetischen

Dipol, welcher um die Richtung des magnetischen
Feldes präzessiert, dargestellt werden. Die Wechselwirkung
zwischen den induzierten magnetischen Feldstärken in der

x- und y-Richtung wird dann durch den Permeabilitätstensor

ausgedrückt, welcher in zwei Dimensionen lautet:
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H — jk
jk H

Die beiden Komponenten ff und k sind:

y2 ffo Ho Bz — co2
H Ho

k ho

B.

y2 ho2 Ho2 — cd2

o) y ho Mz
y2 ho2 Ho2 — co'2

Ho (Ho + Mz)

(5)

(6)

(7)

bedeutet.

(y gyromagnetisches Verhältnis für den Elektronspin.)
Mit Gl. (5) kann der reziproke Permeabilitätstensor

berechnet werden:
1^ 1 ~

h2 ~ k2

Gl. (4) und (8) ergeben:

H=-~ • J~ -7 'VÉ
jeu h k"

In rechtwinkligen Koordinaten erhält man:
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-jk V

- jfc V

- H - jk

Hx
1

H«=-r

jco (h2 — k2)

1

(}k
DEz

_ ï>Ez\
~öx Dy /

l>Ez -, DEA

jeo(ff2~k2) ~ix ^
Dy /

und in zylindrischen Koordinaten :
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Das Primärfeld

Die Randbedingung, die das elektromagnetische Feld
erfüllen muss, ist die Stetigkeit der tangentiellen elektrischen
und magnetischen Feldkomponenten an der Zylinderoberfläche.

Aus diesem Grunde ist es vorteilhaft, die einfallende
Primärwelle in Zylinderkoordinaten auszudrücken. Eine

zweckmässige Darstellung kann durch eine Reihenentwicklung

in Zylinderfunktionen geschehen [3]:

Ezp Eo exp j(cul — ßx) Eo exp j(cu/ — ßr costf>)
OO

Eo exp (jcot) 2 (j)" Jn (ßr) exp — j n 0) (12)
n —OO

Das magnetische Feld kann mit Gl. (11) berechnet werden

(h Ho, k 0) :

1 1 DEZ

œ ho r Dt?

Eo

HrP

co ho r ^ (j)m Jn (ßr) n exp — j n <J>) (13a)
n=— oo

Hop J ~t>Ez
_

co ho Dr

_ jßEo

zweckmässig wäre, da in diesem Falle die asymptotische
Näherung für grosse Argumente eine auslaufende Welle

ergibt :

Ezs ^ a„s Hn{2) (ßr) exp (— j n 0) (14)
n= — oo

Hr
1 1

co ho r
ans Hn{2) (ßr) n exp (— j n 0) (15a)

n=—oo

Hos= £ ans Hn<-2) (ßr) exp — j n 0) (15b)

Das Innenfeld

Für das Feld innerhalb des Ferritzylinders wählt man
Zylinderfunktionen erster Art:

2 anJn(ßzr)exp( — j n 0) (16)
»

OO

kßi'Yi CnJn'(ß2r)exp( — jn 0) +Hr
1

Ho

CD (h2 — k2)

+ H_

r

j
o> (h2 — k2)

k

n =—oo

(17a)2 anJn(ß2r)nexp (— jn 0)
OO

OO

Hß2 anJn'(ß2r)exp(—jn0) +

(I7b)+ y y a„Jn(ß2r)nexp(— jn0)
n— oo

Es kann gezeigt werden, dass die Wellenzahl im Ferrit
gegeben ist durch:

Die effektive Permeabilität ist :

H2 — k2
keff (19)

In Gl. (13)...(17) wurde die harmonische Zeitfunktion
exp (jo)/) weggelassen.

Die Randbedingungen

Der stetige Übergang der tangentiellen elektrischen und
magnetischen Feldkomponenten verlangt:

Ezp + £A Ez für /• a (20)

Hop + Ho* =Ho für r a (21)

Setzt man Gl. (12) bis (17) in (20) und (21) ein und
eliminiert an, so ergibt sich

ans — Eo ())n

Dn(ß2 0) Jn'(ßa)
Jnißzd) Jn(ßü) I Jn (ß d)
Dn(ß2 0) Hn'W(ßa) (Hn^(ßä)
Jn(ßza) Hn{2) (ß a) J (22)

o> ho

Alle Ableitungen der Zylinderfunktionen sind bezüglich
des Argumentes vorzunehmen.

Das Streufeld

Für das Streufeld ist es angebracht, eine zweckentsprechende

Darstellung zu wählen. Es zeigt sich, dass die
Anwendung der Hankelfunktionen zweiter Ordnung hier

Wobei
HQ ßs_

Heff ß L"" vf^"' 1

h ß2d"

Für k -> 0 wird der Permeabilitätstensor skalar, und
man erhält den Fall des dielektrischen Zylinders.

£ (})nJn'(ßr)exp( j n0) (13b) Dn(ß2a) J^.feljn'(ß2a) + jL"jn(ß2a)] (23)
=—oo Heff ß L H P2« 1

Näherungsformeln

a) Der dünne Zylinder

ß a < 1, ßz a < 1
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c±„
l—. A

1 £0 ßi [it A~) Jn+l ißz a)~

Jn (182 a)
n Jn+i(ßa)

ß a Jnißa) Jn(ßa)
\±_.ß_
^£0 ßi iita

Jn+1 iß2, a)

Jn(ßza)
n Hn+1(2) (ß a)

ßa^~ Hn^(ßa)
Ht2Hßa)

Eo (31)

Für den Fall, wo die Wellenlänge verglichen mit dem

Zylinderradius gross ist, können die Zylinderfunktionen in
Potenzreihen entwickelt werden. Bei Vernachlässigung der
höheren Potenzen erhält man für die Streuungskoeffizienten :

aos -V4n (ß a)2 - l) Eo • j (24)

1

Für den dünnen Zylinder erhält man mit den Gl. (25)
und (30):

ßo
n ßeff \ ~ ß,C±n — dz

22m (n!)2 n (ß ä)2n
1±-) 1

;(l±4
-Eo (32)

1

i«0 ('±t)
22re (k!)3 ßo + *)-Fl

ßeff \ W

Eo (j)+1

(25)

Für den dielektrischen Zylinder (k 0) gilt die Beziehung

ans — aî-n (26)

/rp

ßeff \ ~ ß,
d. h. die Koeffizienten sind reell. Es kann gezeigt werden,
dass Ez (/', 0) eine gerade Funktion von 0 ist. Für eine

asymmetrische Feldverteilung muss C±» komplex sein, d. h.
eine zweite Näherung in Gl. (22) muss berücksichtigt werden.

Für den dünnen Zylinder ist daher ein symmetrisches
Fernfeld zu erwarten.

Es ist bemerkenswert, dass der Phasenwinkel 6 des Streufeldes

eine ungerade Funktion des Streuwinkels 0 ist. Gl.
(29) ergibt

tg<

£ (- l)»(C-„ - Cn) sin (n0)
n—l

CO

Co + £ (- 1)" (Cn - Cn) COS (« 0)

(—)
V ßeff!ßeff! ß

-sin 0
a sin 0

mv+m-Acos ® (/Z— i J f/Zi°_ + i )2_ f 1

2 V £0 / L\ [*eff J \fj> jUeff/ J

b cos 0 — c
(33)

In erster Näherung können alle Glieder ausser n — 0,
1 vernachlässigt werden:

Ez* (r,0) ^ n(ßa)2E0 )«,»<« +

a, b und c sind durch Gl. (33) bestimmt. Der Streuwinkel
für maximale Phasendifferenz ergibt sich mit

dS<«<»

0max arc COS

0 zu

b
(34)

Äi(2> (ß r)

ßo

ßeff (>+tH
ßo

'-ßeff il+t + '
exp (— j 0) -

ßo

ßeff (-?)-
J«0_ ('-*) + '

exp (j 0) (27)

b) Näherungsformeln für das Fernfeld
Für grosse Argumente können die Hankelfunktionen

ersetzt werden durch:

Numerische Berechnungen
Gl. (33) zeigt, dass der Phasenwinkel 6 des Streufeldes

für den dünnen Zylinder in erster Näherung unabhängig
von der Wellenlänge oder dem Zylinderradius ist. Für typische

Werte
ßo j ±_
ßeff ' £0

erhält man für Gl. (33) :

11

lim Hn(ï) (z) \ — exp [
Z-»co

" 7ZZ L
- j 2 + j T" (2 " >]1)

tg<

k _— sin 0
ß

(7) cos 0
(35)

20

(j)»Äo<2>(z) (28)

Mit den Gl. (14), (22) und (28) erhält man:

E,J j Ho{2) (ß r) Co+ J] (- 1)" (C~n + C") cos » 0 +

(29)+ j (C-n — Cn) sin n 0

wo die Koeffizienten Cn gegeben sind durch :

C±»=-(j)1-n«£„ (30)

Für Berechnungszwecke ist es vorteilhaft, die Koeffizienten
C±n durch positive Zylinderfunktionen auszudrücken.

Für den dielektrischen Zylinder ist Cn C-n, und der
Sinus in Gl. (29) verschwindet. Damit wird das Streufeld
symmetrisch bezüglich 0 0.

In Fig. 2 ist 6 (0) für verschiedene Werte des Parameters

k/n aufgetragen. Für kleine und grosse kfß erhält man die

grösste Phasenverschiebung (bezogen auf die Phase der

Einfallsrichtung 0 0) für einen Streuwinkel 0 90°. Im
Bereich 1,83 < klß < 2,24 wird tg 6 für gewisse Werte von
0 unendlich, und der Phasenwinkel 6 nimmt mit zunehmendem

Streuwinkel 0 stetig zu. Das Streufeld erscheint in
Form einer Spiralwelle (Fig. 3). Die Ursache für dieses

Verhalten ist in den präzessierenden magnetischen
Dipolmomenten der Elektronen zu suchen. Aus Gl. (33) ist zu
ersehen, dass für den nichtdielektrischen Zylinder (e/eo 1)

die Streuwelle für alle Werte des Magnetfeldes (d. h. für
alle kjß 1) spiralförmig ist. Für grosse und kleine kjß
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sind jedoch die dielektrischen Eigenschaften des Ferrites
vorherrschend, und die Spiralwelle wird durch die am
dielektrischen Zylinder gestreute Welle unterdrückt.

Fig. 4

Amplitude E2 des gestreuten elektrischen Feldes als Funktion des
Streuwinkels 4»

a ßa 0,475 ß2a 142 a .2,5 mm klß 0,25 ßr 20
b ßa 0,475 ßza 142 a 2,5 mm k/ß 0,5 ßr 20

c ßa 0,475 ßza 142 a 2,5 mm kl ß 3,0 ßr 20

d ßa 0,475 ßza 285 a 2,5 mm k/ß 0,25 ßr 20

e ßa 0,475 ßza 380 a 5,0 mm k/ß 3,0 ßr 20

Fig. 5

Phasenwinkel 9 des gestreuten Feldes als Funktion des Streuwinkels f
a ßa 0,475 ßza 142 a 2,5 mm kl ß 0,25 ßr 20
b ßa 0,475 ßza 142 a 2,5 mm k/ß 0,5 ßr 20

c ßa 0,475 ßza 142 a 2,5 mm kl ß 3,0 ßr 20
d ßa 0,475 ßza 142 a 2,5 mm k/ß 0,25 ßr 20

e ßa 0,475 ßza 142 a 5,0 mm klß 3,0 ßr 20

Fig. 2
Phasenwinkel des elektrischen Feldes als Funktion des Streuwinkels

Näherung für das Fernfeld und den dünnen Zylinder (Gl. 35)

a: — 1 ; 6: — 1,5; c:
*

1,8; d:
*

2; e: *=2,5
ß ß ß ß ß

Numerische Berechnungen der Gl. (14) wurden mit Hilfe
einer Univac-Rechenmaschine ausgeführt. Um das

Rechenprogramm zu vereinfachen, wurde die Gl. (31) verwendet,
wo die Ableitungen der Zylinderfunktionen und Funktionen

negativer Ordnung durch solche positiver Ordnung
ersetzt worden sind.

Fig. 3

Am dünnen Zylinder gestreute Spiralwelle
Die Spirale gibt den Ort konstanter Phase für das elektrische Feld an

Amplitude und Phasenwinkel sind in Fig. 4 und 5

aufgetragen. Für gewisse Werte der Parameter a, kjii und ß% a
erhält man auch hier eine Spiralwelle. Es ist interessant,
dass ausgenommen für grosse k/fi entweder die Amplitude

oder der Phasenwinkel eine ungerade Funktion des

Streuwinkels ist, so dass die einfallende Welle stets

unsymmetrisch gebeugt wird.

Schlussbemerkungen

Die Berechnungen zeigen, dass die Richtung grösster
Feldstärke für die gestreute Welle von der Magnetisierung
des Ferrites abhängt. Durch eine passende Anordnung von
mehreren Ferriten kann das Streufeld in eine Richtung
konzentriert werden (Fig. 6). In dieser Richtung sind die ge-

380 (A 242) Bull. SEV 52(1961)10, 20. Mai



streuten Felder in Phase mit dem Primärfeld, während sie

in der entgegengesetzten Richtung in Gegenphase sind.
Wird das angelegte Magnetfeld zyklisch verändert, so rotiert
das Streufeld um die Antennenachse. Mit einer grossen
Zahl von Ferritzylindern kann das gewünschte Feld
theoretisch mit beliebiger Genauigkeit angenähert werden. Fig. 5

Fig. 6

Kreisförmige Anordnung von 6 Ferritzylindern / um eine Antenne A

Die von den Zylindern gestreute Welle ist in Phase mit dem Antennenfeld

in der gewünschten Richtung und in Gegenphase in der entgegen¬
gesetzten Richtung

zeigt, dass der Phasenwinkel 0 innerhalb kleiner
Streuwinkeländerungen starken Schwankungen unterliegt. Dies
sollte sehr schmale Strahlenbündel möglich machen. Die

grossen Amplitudenschwankungen ergeben jedoch starke
Seitenbänder.

Für die praktische Konstruktion einer solchen Antenne
muss zuerst das Streufeld experimentell bestimmt werden.
Von diesem wird dann das Magnetfeld, welches das

gewünschte Strahlungsfeld ergibt, berechnet. Dies scheint

allerdings eine Aufgabe, welche mechanisch und elektrisch

grosse Anforderungen stellt. Der Vorteil einer solchen
Antenne ist, dass die Rotation des Antennenfeldes elektronisch

und damit trägheitslos erfolgen kann. Damit sind
auch viel grössere Umdrehungsgeschwindigkeiten möglich
als mit einem rein mechanischen System.
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JAMES WATT
1736—1819

Am 29. Januar 1736 wurde James Watt, der Erfinder der Dampfmaschine, im englischen Städtchen
Grennock am Clyde geboren. Er erlernte in Glasgow und London den Beruf eines Mechanikers und erhielt
in Glasgow die Stelle eines Universitätsmechanikers.

In den englischen Bergwerken hatte man sich schon lange
bemüht, an Stelle menschlicher und tierischer Kräfte den Dampf
einzusetzen, vor allem für Pumpwerke. Eine um 1712 von
Thomas Newcomen konstruierte Maschine fand zwar sowohl in
England als auch auf dem Festland einige Verbreitung, wies
aber zahlreiche Mängel auf. 1763 erhielt Watt den Auftrag, diese
Newcomensche Maschine zu verbessern. Er fand die Ursache für
die grossen Wärmeverluste der Maschine, entwickelte ein eigenes
Modell, für das er am 5. Januar 1769 das Patent erhielt.

James Watt konnte, wie wenige seinesgleichen, die Früchte
seiner Erfindung gemessen. Als er im Jahre 1800 seinem Sohne
die Nachfolge übergab, waren in der Fabrik schon mehr als 600
Arbeiter beschäftigt. 1817 reiste Watt selber mit dem Dampfer
über den Kanal und auf dem Rhein bis Koblenz, überall begrüsst
und bejubelt. Zwei Jahre später erlebte er noch, dass das erste
Dampfschiff den Atlantik überquerte.

Am 19. August 1819 starb James Watt. Sein Leichnam wurde
in der Westminster-Abtei unter den Grossen heigesetzt. Er ist
auch einer der wenigen Ingenieure, denen ein Denkmal errichtet
wurde; es befindet sich ebenfalls in Westminster. Ihm zu
Ehren heisst die Einheit der Leistung das Watt. H. W.
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