Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 49 (1958)

Heft: 18

Artikel: L'encyclopédie des isolants electriques

Autor: Senarclens, G. de

DOI: https://doi.org/10.5169/seals-1058542

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN

DE L'ASSOCIATION SUISSE DES ELECTRICIENS

ORGANE COMMUN

DE L'ASSOCIATION SUISSE DES ELECTRICIENS (ASE) ET DE L'UNION DES CENTRALES SUISSES D'ELECTRICITE (UCS)

L'Encyclopédie des Isolants Electriques

Par G. de Senarclens, Breitenbach

03.621.315.61

L'article donne les raisons qui ont incité le Comité Technique 15 du Comité Electrotechnique Suisse à rédiger une Encyclopédie des Isolants, dont la première partie vient de sortir de presse. Il montre comment ont été conçus la Classification des Isolants, les Tableaux synoptiques et les Feuilles signalétiques, qui doivent permettre aux utilisateurs d'isolants, et notamment aux constructeurs, de choisir rapidement l'isolant dont ils ont besoin.

Der Artikel legt die Gründe dar, die das Fachkollegium 15 des Schweiz. Elektrotechnischen Komitees bewogen haben, eine Enzyklopädie der elektrischen Isolierstoffe abzufassen, deren erster Teil soeben im Druck erschienen ist. Er beschreibt die Klassifikation der Isolierstoffe, die ÜbersichtsTabellen und -Blätter, die es den Verbrauchern und besonders den Konstrukteuren ermöglichen sollen, das zweckentsprechende Isoliermaterial ohne zeitraubendes Nachforschen auszuwählen.

Il a été indiqué ici même [1] 1) les raisons pour lesquelles le Comité Technique pour les Matériaux isolants (CT 15) du Comité Electrotechnique Suisse (CES) avait jugé nécessaire d'entreprendre la rédaction d'un manuel, dans lequel les utilisateurs d'isolants électriques, notamment les constructeurs, trouveraient, d'une façon simple et rapide, les isolants qu'ils peuvent utiliser pour un but déterminé, en même temps que leurs propriétés physiques et chimiques et leur mise en œuvre.

Le choix judicieux d'un isolant, dont dépendent le fonctionnement et la durée de vie d'une machine ou d'un appareil électrique, devient de plus en plus difficile. Les isolants sont aussi nombreux que leurs applications sont diverses. Leur désignation commerciale couvre bien souvent des produits ayant des propriétés différentes. La documentation technique qui les accompagne passe volontiers sous silence leurs points faibles et présente leurs caractéristiques d'une façon qui ne permet pas toujours de les situer les uns par rapport aux autres. Les valeurs chiffrées qu'elle contient résultent de mesures sur éprouvettes et ne sont pas toujours en rapport avec celles qui peuvent être admises en service.

Le CT 15 du CES qui comprend une vingtaine de spécialistes de la fabrication et de l'utilisation des isolants ²), vient de présenter aux réunions de la Commission Electrotechnique Internationale (CEI) la première partie de l'Encyclopédie des Isolants Electriques. Ce travail considérable a trouvé l'approbation unanime, aussi bien en raison de la multitude de renseignements qu'il contient, que de l'originalité et de la simplicité de sa présentation.

La base de toute encyclopédie est une classification. Celle qui a été adoptée par le CT 15 est basée sur des considérations pratiques d'emploi, à savoir:

1) Voir la bibliographie à la fin de l'article.

- l'état final de l'isolant dans la machine (gazeux, liquide, solide)
- —la destination de l'isolant (enrobage, vernissage, etc.)
- les transformations que l'isolant subit pendant sa mise en œuvre
- certaines particularités qui influencent son emploi, par exemple les produits subsidiaires contenus dans l'isolant (solvants, pigments, etc.)
- l'état et la forme de l'isolant au moment de sa mise en œuvre.
- 2) La sous-commission pour l'Encyclopédie des isolants électriques du CT 15 du CES est composée actuellement de MM.: de Senarclens, G., D⁷, sous-directeur, Schweizerische Isola-Werke, Breitenbach (président).
- Held, F., Prof. Dr. sc. techn., Abteilung für industrielle Forschung (AfiF) des Instituts für Technische Physik der ETH, Zürich (secrétaire).
- Aeschlimann H., Dr. sc. techn., Emil Haefely & Cie. A.-G., Basel. Bohnenblust, J. P., Dr., A.-G. Brown, Boveri & Cie., Baden (AG).

Brändli, U., Dr., Meierskappel (LU).

Burnier, P., ingénieur, Battelle Memorial Institute, Genève. Caflisch, Ch., physiciste, Maschinenfabrik Oerlikon, Zürich. Châtelain J., ingénieur, S. A. des Ateliers de Sécheron, Genève. Flütsch, Chr., Dr., chimiste, Emil Haefely & Cie. A.-G., Basel. Froideveaux, J., ingénieur, S. A. des Ateliers de Sécheron, Genève.

Gerber, Th., Dr. phil., ingénieur, Forschungs- und Versuchsanstalt der Generaldirektion PTT, Bern.

Grimm, G. O., Dr., H. Weidmann A.-G., Rapperswil (SG).
Kappeler, H., Dr. sc. techn., sous-directeur, Vorstand der Technischen Abteilung, Micafil A.-G., Zürich.

Michel, K., Dr., A.-G. Brown, Boveri & Cie., Baden (AG).

Muriset, G., directeur, Standard Telephon & Radio A.-G.,

Zürich.

Schaer, J.-J., physico-chimiste, S. A. des Ateliers de Sécheron, Genève.

Schaeren, P., Dr., Standard Telephon & Radio A.-G., Zürich. Scheuble, M., Dr., chimiste, Dätwyler A.-G., Altdorf.

Schrade, J., Dr., Micafil A.-G., Zürich.

Stierli, R., Dr. sc. techn., ingénieur-chimiste, Ciba A.-G., Basel. Zürcher, M., Dr. sc. techn., Station d'essai des matériaux de l'ASE, Zürich.

Marti, H., secrétaire du CES, Zürich.

Shah, R., ingénieur au Secrétariat de l'ASE, Zürich.

Les isolants électriques ont été divisés en 40 groupes, comme le montre le Tableau 1 en annexe. Les isolants d'un même groupe ont ceci de commun, qu'ils ont le même état final et la même forme, qu'ils s'utilisent de la même manière et qu'ils subissent pendant l'emploi une transformation similaire.

Deux produits chimiquement identiques, l'un solide, l'autre liquide, sont dans deux groupes différents, puisqu'ils ne s'utilisent pas de la même manière. Par contre deux isolants chimiquement très différents sont dans le même groupe, s'ils peuvent être utilisés de la même manière, pour un même but.

Les groupes contiennent une vingtaine d'isolants, parfois davantage. Il a été jugé avantageux de présenter leurs propriétés générales et les caractéristiques qui les différencient d'une manière telle qu'un premier choix puisse se faire dans un délai assez court. Pour cela des Tableaux synoptiques ont été rédigés. Ils contiennent une orientation sur les propriétés générales des isolants du groupe, sur leur mode d'emploi, sur les précautions à prendre et sur leur fabrication, pour autant qu'elle influence leurs propriétés. Ils présentent en outre, le plus souvent à l'aide de symboles graphiques, les caractéristiques particulières de chaque isolant du groupe.

Les symboles suivants ont été adoptés:

- O Signifie mauvais ou défavorable (quelques exceptions sont indiquées dans les tableaux).
- Signifie excellent ou très favorable.
- Le segment noir représente les caractéristiques minimum atteintes, par tous les isolants vendus sous une même dénomination et le segment gris celles obtenues avec des qualités spéciales, généralement au détriment d'autres propriétés. Le segment gris donne ainsi, pour une fabrication normale, la variation des caractéristiques imputables au choix des matières premières, au mélange choisi et au processus de fabrication. Il donne aussi la variation due à la mise en œuvre et au genre d'utilisation.

Les symboles ont pour but de permettre une comparaison entre les comportements en service des isolants d'un même groupe ou de deux groupes différents. Ils ne visent pas à donner sous forme graphique des valeurs numériques exactes et ne doivent pas servir de base de calcul pour une construction. Ils ne font que remplacer des adjectifs de qualité. Cependant, pour donner un ordre de grandeur et permettre la comparaison entre les tableaux, les valeurs limites, correspondant aux symboles \bigcirc et \bigcirc , ont été indiquées au bas de chaque tableau. Les valeurs intermédiaires correspondant aux sec-

teurs noirs ou gris sont données, à titre d'orientation, en annexe 1 de l'Encyclopédie. L'échelle logarithmique et les nombres normaux ont été adoptés.

Tous les Tableaux synoptiques de groupe ne se présentent pas d'une façon identique. On a surtout cherché à donner à chacun d'eux une valeur pratique. Seules les propriétés qui caractérisent réellement les isolants du groupe y ont été décrites. Les Tableaux 111, 332, 342 et 521, présentés en annexe, en sont une illustration.

Dans quelques cas, il n'a pas été possible de présenter les caractéristiques des isolants d'un groupe sous forme synoptique. On a alors rédigé une Feuille signalétique, qui, sous forme d'un texte, décrit les isolants du groupe. La Feuille signalétique 522, également en annexe, en est un exemple.

Les Tableaux synoptiques de groupe et les Feuilles signalétiques sont là pour donner une première orientation. Ils ne contiennent pas tout ce qu'il est utile de savoir sur un isolant pour pouvoir l'utiliser dans les meilleures conditions possibles. Ces renseignements complémentaires se trouvent dans les Monographies, qui vont être rédigées incessamment. Elles comprendront vraisemblablement quatre parties distinctes:

- 1. Renseignements généraux sur la constitution, la fabrication, les formes commerciales, les propriétés et les applications de l'isolant.
- 2. Caractéristiques physiques et chimiques.
- 3. Expériences faites avec l'isolant en service.
- 4. Sources bibliographiques.

Il est prématuré de dire quelle forme exacte leur sera donnée. Leur rédaction, que va entreprendre le CT 15 du CES, en étroite collaboration avec le Comité d'Etudes (CE) 15 de la CEI, prendra plusieurs années.

La première partie de l'Encyclopédie des Isolants Electriques, comprenant la classification, les tableaux synoptiques et les feuilles signalétiques vient de sortir de presse [2] ³). Nous sommes convaincus qu'elle rendra de grands services à tous les utilisateurs d'isolants électriques et qu'elle justifiera pleinement les efforts qu'elle a demandés pour son achèvement.

Bibliographie

- [1] de Senarclens, G.: L'Encyclopédie des Isolants Electriques. Bull. ASE t. 47(1956), nº 9, p. 420...430.
- [2] Comité Technique 15 du Comité Electrotechnique Suisse: Encyclopédie des Isolants Electriques. Association Suisse des Electriciens, Zurich: 1958 3).

Adresse de l'auteur:

G. de Senarclens, D^r ès sc. techn., ingénieur-chimiste, président du Comité Technique 15 (Matériaux isolants) du Comité Electrotechnique Suisse, sous-directeur de la Fabrique suisse d'Isolants, Breitenbach (SO).

³⁾ Voir aussi la communication à la page 896 de ce numéro

Classification	Tableau nº 1 des isolants électriques et numés	rotation des groupes
Classification	-	les groupes
1 Isolants gazeux	1	11 Gaz et vapeurs
2 Isolants liquides	2	11 Isolants liquides
		11 Masses molles pétrissables 12 Poudres, flocons, fibres
		21 Fils et cordes 22 Fils et cordes imprégnés
3 Isolants solides de toutes formes, ne subissant pas de transformation pendant leur mise en œuvre	33 Isolants solides planiformes 3.	31 Isolants planiformes inorganiques (mica, etc.) 32 Films et feuilles 33 Papiers, cartons et produits similaires 34 Tissus et produits similaires 35 Papiers et tissus imprégnés ou enduits (également sous forme de gaines) 36 Stratifiés planiformes (isolants d'encoches, etc.)
	34 Isolants solides «spaciformes» 3 3 3	 Isolants spaciformes inorganiques (céramiques, verres, etc.) Isolants moulés thermodurcis Isolants moulés thermoplastiques Elastomères (caoutchoucs vulcanisés, etc.) Autres isolants «spaciformes» non stratifiés
	35 Isolants solides «spaciformes» 35 stratifiés	51 Stratifiés «spaciformes»
	41 Isolants solides planiformes	11 Films adhésifs12 Papiers et tissus adhésifs13 Stratifiés planiformes adhésifs
4 Isolants solides planifor- mes, pour enroulage ou empilage, suivi d'une fixa-	42 Isolants solides planiformes 43	21 Films collant à chaud 22 Papiers et tissus collant à chaud 23 Stratifiés planiformes collant à chaud (principalement produits micacés)
tion des couches superpo- sées (les isolants des grou- pes 411431 sont, pour	43 Isolants solides planiformes collant à chaud; l'adhésif contient un solvant	31 Isolants planiformes «humides» (principalement produits micacés)
cela, recouverts d'une colle)	44 Isolants solides planiformes collant par simple fusion	41 Films et feuilles collant par simple fusion
	45 Isolants solides planiformes collant par fusion et transformation chimique	51 Films et feuilles collant par fusion et trans- formation chimique
	51 Isolants rendus solides par transformation physique (con- gélation, évaporation d'un solvant ou gélification) 52	 Masses isolantes fusibles, sans charge, liquides à chaud Masses isolantes fusibles, avec charge, liquides à chaud Vernis isolants non pigmentés, séchant par évaporation d'un solvant Vernis isolants pigmentés, séchant par évaporation d'un solvant Plastisols et organosols Colles et mastics, séchant par évaporation d'un solvant
5 Isolants solides à l'état final, mais liquides ou pâ- teux à l'emploi, pour rem- plissage, vernissage, enduc- tion ou collage	transformation chimique (polymérisation, polycondensation ou polyaddition)	Résines durcissables sans solvant, non pigmentées, pour coulage ou imprégnation 22 Résines durcissables sans solvant, pigmentées, pour coulage ou imprégnation 23 Masses pâteuses durcissables sans solvants
ноп он сопаде	53 Isolants rendus solides par transformation physique et chimique (évaporation d'un solvant, puis oxydation, poly- mérisation, polycondensation ou polyaddition)	181 Vernis isolants d'imprégnation des bobinages et de protection du matériel électrique, séchant par évaporation d'un solvant et processus chimique 182 Vernis isolants de finition pigmentés, séchant par évaporation d'un solvant et processus chimique 183 Vernis isolants pour l'émaillage des conducteurs électriques 184 Colles et mastics séchant par évaporation d'un solvant et processus thermique

Tableau synoptique de groupe

Groupe 111: Gaz et vapeurs

CES/CE 15 sous l'égide de la CEI

Edition provisoire Juillet 1958 Les propriétés générales des isolants de ce groupe sont contenues dans la Feuille signalétique 111.

Symboles:

p pression

 ${\cal V}$ volume

 ∂ température

c chaleur spécifique

Q masse volumique

→ conductivité calorifique

Aj énergie d'ionisation

 U_d tension disruptive a distance des électrodes $E_d = \frac{U_d}{a}$ rigidité électrique

uices.

sans indice conditions arbitraires

conditions normales, 0°C, 1 at

V.	valeur	au	point	critique

					-							-							
						Са	ract	ėrist	ique	s géi	néral	e s					6		
Désignation	Formule	Poids moléculaire	Masse volumique norm. 1) 0°C, 1 at	Densité rel. air = 1	Chaleur spécifique à pression constante 0°C, 1 at	Chaleur spécifique à volume constant 0°C, 1 at	Quotient des chaleurs spécifiques	Conductivité calorifique 1) 0"C, 1 at	Température au point critique	Pression au point critique	Masse volumique au point critique	Energie d'ionisation	Rigidīté électrique 0°C, 1 at, 1 cm	Toxicité 8)	Danger de corrosion 8) après décharge	Résistance à la combustion	Valeurs comparatives de prix par unité de poids	Précautions dans l'emploi	Numéro de la monographie
Symbole		M	ϱ_0		c_p 2)	c_v 2)	$\frac{c_p}{c_v}$	λ ₀ 3)	θ_K	p_K	ϱ_K	Aj	E_{d_n}						
Unité		g mole	_g_ _l	J	10 ³ J kg·"C	10 ^{3 J} kg⋅°C	-	W m ⋅ °C	"C	at 1)	_g_ 	eV	kV cm						
Air		(28,96)	1,251	1	1,005	0,717	1,401	0,0236	(-140,7)	38,4	(310)		32		•	1			
Hydrogéne	Н2	2,016	0,0869	0,06952	14,22	10,10	1,408	0,165	-239,9	13,2	31,02	15,43	19		•	0	•		
Azote	N ₂	28,02	1,210	0,9672	1,042	0,740	1,405	0,02425	-147,2	34,6	311,0	14,48	33		0		•		
Oxygène	02	32,00	1,381	1,103	0,907	0,648	1,402	0,023	-118,8	51,35	430		29				•		
Anhydride carbonique	CO ₂	44,01	1,912	1,529	0,832	0,639	1,301	0,01435	31,0	75,3	460	13,73	29	•	0		•		
Hélium	He	4,003	0,1727	0,1380	5,265	3,215	1,66	0,1415	-267,9	2,337	69,3	34,48	10_						
Néon	Ne	20,18	0,871	0,6964	1,028	0,627	1,64	0,0455	-228,7	27,77	483,5	21,47	2,9		•		\bigcirc		

Argon	Ar	39,94	1,726	1,380	0,524	0,314	1,668	0,0163	-122,4	49,6	530,8	15,68	6,5	•			•		
Krypton	Kr	83,80	3,59	2,868	6) 0,251	0,150 6)	1,689	0,00873	-62,6	56,1	909	13,94	8				0		
Vapeur d'eau	H ₂ 0	18,016	6) 0,779	6) 0,622	7) 2,005	7) 1,503	7) 1,324		374,0	226	400		~ 30		•	0		,	
Hexafluorure de soufre	SF ₆	146,1	6,39	5,106	0,618	0,560	1,104		45,55	38,35	751,7	19,3	~ 80	•	(1			
Tétrafluoro-méthane	CF ₄	88,01	3,812	3,047	0,652	0,531	1,228		-45,50	38,15		17,8	~ 40	•		1			
Trifluoro-chloro-méthane	CF ₃ CI	104,5	4,15 ⁴) 4,515 ⁶)	3,318 4)	0,617	0,533	1,158		28,78	39,5	581			•		1	•		
Difluoro-dichloro-méthane	CF ₂ CI ₂	120,9	5,33 5,225 6)	4,262	0,588	0,512	1,149	0,00835	111,5	40,85	557,6	11,7	68	•		•	•		
Trifluoro-méthane	CHF ₃	70,02	3,465 ⁴⁾ 3,032 ⁶⁾	2,769 ⁴⁾	0,726				32,3	52,2	492,6			•	•	•			
Difluoro-chloro-méthane	CHF ₂ CI	86,48	6) 3,745	2,993	0,595	0,4925	5) 1,178		96,0	50,3	525			•	•	•	•	a	
Hexafluoro-éthane	C ₂ F ₆	138,00	5,982	4,781					19,7			14,3				•			
Trichloro-méthane	CHCI3	119,39	5,17	4,12 6)	0,605	6) 0,525	1,15		263		516		~120(?)		•	1	•		
Tétrachloro-méthane	cci ₄	153,84	6) 6,65	5.31	0,58	6) 0,514	1,13		283,1	46,5	558		~180 (?)		•	•	•		
(Trifluoro-méthyl) pentafluorure de soufre	CF ₃ SF ₅	196,1	6) 8,48	6) 6,76									~ 120 (?)			1			

mauvais

excellent

dispersion entre les propriétés des produits purs et celles des produits techniques de pureté médiocre (p.ex. humides).

- 1) 1 at == 1 kg/cm² == 735,5 Torr
- 2) ${}^{10_{\substack{\text{kg."C}}}} = 0.2395 \text{ kcal} \atop \text{kg."C}}$ 3) ${}^{1} \text{ W}_{\substack{\text{m."C}}} = 0.863 \text{ m.h."C}}$
- 4) Conditions incertaines

5) 47,3°C

> 1000

6) théorique 7) 110°C, 1 at

- < 0,30
- 8) Les expressions -mauvais- et -excellent- ne conviennent pas bien à toutes les caractéristiques des isolants de ce groupe, notamment pour la toxicité et le danger de corrosion après décharge.

Tableau synoptique de groupe

Groupe 332: Films et feuilles

CES/CE 15 sous l'égide de la CEI Edition

provisoire

Juillet 1958

Ce groupe comprend des produits en matière plastique, homogènes, planiformes, ne dépassant pas env. 0,5 mm d'épaisseur pour des feuilles rigides et env. 1 mm pour des feuilles souples. Ces feuilles peuvent être fabriquées par: coulée (coagulation ou évaporation d'une couche mince de la solution), laminage ou calandrage, extrusion, au moyen d'une filière plate ou annulaire, quelquefois suivie d'un étirage (p. ex. soufflage), moulage par compression ou tranchage de blocs. On obtient par coulée des feuilles d'environ 0,01... 0,2 mm d'épaisseur et par tranchage des feuilles d'environ 0,01... 0,3 mm. Les feuilles plus épaisses s'obtiennent par calandrage, extrusion et moulage par compression. L'étirage subséquent des feuilles conduit à une orientation moléculaire dont résulte une modification de leurs propriétés mécaniques (p. ex. une augmentation de la résistance à la traction). Les feuilles étirées sont anisotropes, c'est-à-dire que certaines propriétés (p. ex. résistance à la traction, allongement de rupture) ne sont pas identiques dans toutes les directions. — En incorporant des plastifiants, on peut rendre la plupart des produits thermoplastiques plus souples, ce qui toutefois en général influence de façon détavorable certaines propriétés mécaniques, diélectriques et thermiques. — Les feuilles sont utilisées comme isolation intermédiaire dans les appareils et machines électriques et pour le revêtement de conducteure et de bobines. Soumises à des efforts électriques de courte durée, la plupart des feuilles révêtent des rigidités électriques élevées. Toutefois, comme la résistance aux effluves de toutes les feuilles est moyenne ou mauvaise, l'effort électrique, s'il est prolongé, doit être maintenu sous la limite à laquelle les effluves se produisent dans les couches d'air adjacentes. Ce n'est que dans les isolations sans inclusion d'air, c'est-à-dire en remplissant intégralement d'un isolant solide ou liquide tous les intersices, qu'on peut tirer le maximum de profit de la rigidité électrique exceptionnelle des

							(Carac	téri	stiqu	es (géné	rales									
Désignation	Méthode de fabrication			P	ropriétés	diélectric	ques		Pr	opriétés	mécaniq	ues		Résista	nce aux a	agents ch	nimiques				Précautions dans l'emploi	
		Poids spécifique g/cm³	Résistivité transversale	Facteur de pertes tg 5 de 50 à 10º Hz	Pouvoir inducteur spécifique Er	Résistance aux effluves (effet corona)	Constance des propriétés diélectriques en fonction de la femoérature	Constance des propriétés diélectriques en fonction de l'humidité	Résistance à la traction	Allongement à la rupture	Résistance à la déchirure	Constance des propriétés mécaniques en fonction de la température	Température maximum admise en service °C	Eau	Solvants des vernis d'imprégnation	Huiles minérales	Diélectriques chlorés	Perméabilité à la vapeur d'eau	Soudabilité 3)	Valeurs comparatives de prix		Numéro de la monographie
Cellulose régénérée	coulée	1,41,5		•	6,58	•		0			•	•	60105	0		•		•		•	en présence d'humidité danger de corrosion électrolytique	
Acétate de cellulose (principalement diacétate)	coulée, extrusion	1,21,3		(3)	37	1	•	•	•		0	(60105	•	•	•				•		
Triacétate de cellulose	coulée	1,21,3		•	3,56	•	0	•			0		60120									
Acétobutyrate de cellulose	coulée, extrusion	1,21,3		•	3,56	•	•	•	(1)				60120				0					
Ethylcellulose	coulée	1,11,2			34	•	•		(3)				5590		0	0	0	•				
Polyéthylène	calandrage, extrusion (soufflage)	7,9			2,3	•			•			0	6090		•	•	0	•			sensible à la lumière solaire	

Polystyrène	coulée, extrusion	1,01,1			2,23						•		6090		•	•	0	0	•	
Chlorure de polyvinyle, non plastifié	calandrage, coulée, extrusion	1,31,4		()	34	•	•					0	7590				0			
Chlorure de polyvinyle, plastifié	calandrage, coulée, extrusion	1,21,7		•	47	•	1	•	(0	7590			0	0			
Chlorure de polyvinylidène	calandrage, coulée, extrusion	1,61,7			35	•			(1)			0	7590			•	0	•		
Polytétrafluoréthylène	tranchage, coulée	2,2	4	•	2	•	0	•	0			•	180250						0	
Polytrifluorochloréthylène	coulée, extrusion	2,1	•		2,12,8	•	•		•	•		•	130155					•	0	
Polyamide	extrusion	1,1		•	46	•	0	•				()	90105			•				
Téréphtalate de polyéthylène	coulée	1,4		(a) ³⁾	3	•	•	•			•		90130		•					
Chlorhydrate de caoutchouc	coulée	1,1			3				(•	•	0	7590	•	•		•		•	
	~					,														

	1		Valeurs numério				n du tableau (échelli ise de construction)	es loga	rithmiques)			
mauvais	Méthode d'essai et unité] Ω cm	1 .	kg / cm²	%	ASTM		Absorp-	l g ·	mm	1	
excellent						kg/cm		tion %	m2·o	d-Torr		
dispersion entre les moins	0	< 10 ⁹ > 0,3		< 250	< 4	< 6.3		> 25	>	30	> 100	
bonnes et les meilleures qualités		> 1016 < 0,000		> 6300	> 500	> 160		< 0,2	<	0,01	< 4	

¹⁾ C'est la raison pour laquelle il n'est pas possible de donner des valeurs comparatives utilisables sur la rigidité électrique des feuilles.

²⁾ Les produits représentés dans cette colonne (films et feuilles collant par simple fusion) appartiennent également au groupe 441 de la classification.

³⁾ Les pertes à hautes fréquences sont considérablement plus élevées qu'à 50 Hz.

Tableau synoptique de groupe

Groupe 342: Isolants moulés thermodurcis

CES/CE 15 sous l'égide de la CEI

Edition provisoire Juillet 1958 Les isolants de ce groupe sont des objets formés par compression au moule. Ils sont constitués d'une résine thermodurcie dans laquelle ont été incorporées des charges inorganiques ou organiques, sous forme de poudres, de fibres ou de rognures, dans le but d'en améliorer les qualités mécaniques. — La fabrication s'effectue en comprimant sous haute pression le mélange résine-charges dans des moules chauds. Sous l'influence de la température, la résine se fluidifie, épouse la forme du moule, puis se transforme chimiquement pour devenir dure et infusible. — Les isolants moulés thermodurcis sont caractérisés par une bonne thermostabilité, c'est-à-dire que leurs formes et leurs propriétés mécaniques varient peu jusqu'à la température de décomposition. Ils peuvent être considérés comme isotropes; leurs propriétés sont pratiquement les mêmes dans toutes les directions. Ils résistent généralement bien à la corrosion. — On les utilise là où un grand nombre de pièces peu éprouvées mécaniquement sont nécessaires.

		-																			
							C	aract	éris	tiqu	es g	énér	ales								
Résine	Charge			Pr	opriétés	diélectri	ques		Proprié	tés méca	aniques	Compoi à ch		s s	Résista	nce aux à	agents cl	nimiques	2)	Précautions dans l'emploi	
		Poids spécifique g/cm³	Rigidité électrique	Résistivité transversale	Facteur de pertes tg δ de 50 à 10 ⁶ Hz	Résistance au cheminement	Constance des propriétés diélectriques en fonction de la température	Constance des propriétés diélectriques en fonction de l'humidité	Résistance à la traction et à la flexion	Résilience	Constance des propriétés mécaniques en fonction de la température	Température maximum admise en service	Résistance à la combustion	Stabilité des formes sous l'influence de l'humidité, de tensions internes ou de cristallisation	Eau	Solvants des vernis d'imprégnation	Huiles minérales chaudes	Diélectriques chlorés	Valeurs comparatives de prix		Numéro de la monographie
	sans charges	1,3	•	•	•	0	•	•	•	0	•	105	•	•	•		•		•		
	poudres végétales (farine de bois etc.)	1,4	•	•	•	0	•	1		•	•	105 120	•		•			•	•		
	fibres végétales	1,4		•	•	0				(3)		105 120	•						•		
Phénol-formaldéhyde 1)	rognures de tissus	1,4		•		0	0					105 120	•								
	flocons d'amiante	1,8		()	0					0		120 130							•		
	poudre de mica	1,8			•	•			(0		120 . 130		•	•		•		•		
	fibres de verre	1,8		•	•	•		•				120 130		•	•		•				
Phénol-formaldéhyde	poudres végétales	1,3			•	0			•	()	•	105 120	•		•				•		
+ caoutchouc	flocons d'amiante	1,8		•	•	0			•	0	•	120 130	•		•				•		
Urée-formaldéhyde	poudres végétales	1,5	•	•	•				•	0	•	105	9	•	•			•	•		
	fibres végétales	1,5								(1)		105	•								

	poudres végétales	1,5	•			•					•	105 120	•								
Marine formed difference	fibres végétales	1,5		•		•				(1)		105 120	•	•							
Mélamine-formaldéhyde	flocons d'amiante	1,9		•	•	•	•	•	•	(3)	•	120 130		•	•		•		•		
	fibres de verre	1,9		③	•	•		•	•			120 130	•	•	•		•				
	sans charges	1,3	•			•	0		•			90 105	•	•	•		•	•	•		
	flocons d'amiante	1,8		•	•		0				0	120 130		•			•		4	·	
Polyesters non saturés	poudres minérales	1,8	•	•		•	•	•		0		120 130		•		•			•		
	fibres de verre	1,8	•				•	②		•		120 130									
Allundan	poudres minérales	2,0	•	•	•	•			•	(120 130	•								
Alkydes	fibres de verre	2,0	•	•	•	•					9	120 130	•	•	•			0.			
	sans charges	1,1 . 1,3							•			120	•		•				0		
Ероху	poudres minérales	1,2 3,2			•	•			•		•	130 155	•						•		
	fibres de verre	1,8 2,0	•		•		•	•		•	0	130 155	•		•						
Silicones	poudres minérales	1,8	0	•		•			•	(0	180	•	•	•	•	•	•	•		

	1					à la rédaction du tableau (échelles logarithmique ls servir de base de construction)	ies)		
mauvais excellent	Méthode d'essai et unité	kV/cm	Ω cm		kg/cm²	ti	osorp- tion %		
dispersion entre	0	< 25	< 10°	> 0,3	< 250	>	> 25	> 100	
et les meilleures qualités		> 630	· > 10¹6	< 0,0001	> 6300	*	0,2	< 4	

Les isolants moulés à base de résine phénol-furturol ont des propriétés très semblables à celles des phénoplastes phénol-formaldéhyde. On en fait abstraction dans ce tableau pour éviter une répétition

Les valeurs comparatives indiquées dans cette colonne n'ont pas beaucoup d'interêt, le prix des objets moulés étant surtout fonction du prix du moule et du nombre de pièces à mouler.

Isol	ants électriques	CES/CE 15
Table	eau synoptique de groupe	de la CEI
upe 521	Résines durcissables sans solvant, non pigmentées, pour coulage ou imprégnation	Edition provisoire Juillet 1958

Les isolants de ce groupe sont des résines synthétiques, liquides au moment de l'emploi, qui se solidification, qui selfectue à froid ou à chaud sans libération sensible de matières volatiles, mais souvent avec fort dégagement de chaleur, est le résultat d'une réticulation des molécules en macromolécules. — Lorsque les agents de durcissement et les résines sont liquides à température ordinaire, leur mélange en une masse homogène se fait sans peine. Si l'un ou l'autre sont solides ou s'ils se seisonent mal l'un dans l'autre, il peut être nécessaire de les fondre avant de les métanger. — La viscosité, la stabilité et la vitesse de durcissement du mélange, qui peut varier de quelques jours à quelques minutes, sont fonction de la résine utilisée, des agents de durcissement et de la lemperature. La chaleur dégagée pendant le durcissement vivaires de quelques jours à quelques minutes, sont fonction de la résine utilisée, des agents de durcissement et de la femperature. La chaleur, de la masse en réaction et, souvent, de la quantité de durcisseur. Un retrait volumique apparait pendant la solidification. Il peut atteindre 15%, suivant la résine et la lemperature de durcissement. — Le fait qu'il n'y a pas de dégagement de matières volatiles pendant la solidification, permet de couler les résines dans des moules et de les daurcis sans application de pression. On peut également imprégner des bobinages, qui, après le durcissement, sont exempts de porosité. Cependant seules les masses additionnées d'une charge conviennent au coulage de pièces de grandes dimensions (voir tableau synoptique de groupe 522). Les résines durcies sont infusibles et insolubles dans la plupart des solvants.

Etat de la résine avant	Désignation	Conditions de		tés de la exempte	Chan	np d'appl	lication					(Carac	téri	stiqu	es gé	néra	ales	d e s	résir	nes o	durci	e s						Précautions	
le durcissement		durcissement	d'ageni durciss	exemple Is de sement	-	Cou	ulage	Prop phys	riétés iques			Propri	étés diéle	ectriques			Pr	ropriétés	mécaniq	ues		ortement haud	Ré	sistance	aux ager	its chimi	ques		dans l'emploi	
			Stabilité à 20°C	Sensibilité à l'humidité avant et pendant l'emploi	Imprégnation de bobinages	Pièces de petites dimensions	Pièces de grandes dimensions après addition de charqes (groupe 522)	Poids spécifique g/cm³	Retrait volumique au durcissement	Rigidité électrique	Résistivité transversale	Facteur de pertes 1g δ de 50 à 10 ⁶ Hz	Pouvoir inducteur spécifique &	Résistance au cheminement	Constance des propriètés diélectriques en fonction de la temnérature	Constance des propriétés diélectriques en fonction de l'humidité	Résistance à la flexion	Résilience	Module d'élasticité	Adhérence sur les métaux et les matières plastiques	Stabilité de forme	Température maximum admise en service ⁰ C	Eau	Huiles minérales chaudes	Diélectriques chlorés	Acides dilués	Alcalis dilués	Valeurs comparatives de prix		Numéro de la monographie
		durcissement à froid		•	•	0		1,2 1,25	0	•	•		45	•	•		0	•	1		•	7090		•	•	1	•	•		
	Résines époxy	durcissement à chaud	•	•	•	0	•	1,2 1,25		•	•	0	3,55	9		9	•		•	•		100150	•	•	•	•	•	•		
	Delegation and of	durcissement à froid	•	•		0	1	1,25 1,35		•	•		3,55	•		•	•		•			7090	•			•		0		
Liquide à froid	Polyesters non saturés	durciss'ement à chaud	•		•	()		1,25 1,35	•	•		•	35	•		•	•		•	•		100130	•		•	•		0		
	Résines phénoliques	durcissement à chaud			0	•	•	1,2 1,3	4	0		0	2030	0		•	•		•	•	•	90	9		•	•		•		
	Résines cardanols (CNSL)	durcissement à froid ou à chaud	•	•	•	•	•	1,0		•	•	•		•								90	9	•						
				_	_			10				0		2			0	0	-								-		a	
Liquide à chaud	Résines époxy	durcissement à chaud		•		•	•	1,2	•	•	•	0	3,55	9		•	0		•			100130	•		•	9	•			ـــــــــــــــــــــــــــــــــــــ

mauvais	Valeurs numériques ayant servi à la rédaction du tableau (échelles logarithmiques) (ne doivent pas servir de base de construction)												
excellent	Méthode d'essai et unité	%	kV/cm	Ω cm			kg / cm²		g / cm²-10 ⁱ	Absorption %	-		
dispersion entre les moins bonnes et les meilleures qualités	0	> 16	< 25	< 10°	> 0,3		< 63		< 4	> 25		> 100	
		< 0,6	> 630	> 1016	< 0,0001		> 1600		> 100	< 0.2		< 4	

Feuille signalétique

Groupe 522: Résines durcissables sans solvant, pigmentées, pour coulage ou imprégnation

CES/CE 15 sous l'égide de la CEI

Edition provisoire Juillet 1958

Les isolants de ce groupe sont constitués par les isolants du groupe 521 dans lesquels ont été dispersés des solides très finement divisés, qu'on appelle des charges.

Il a été jugé préférable de ne pas placer les masses chargées dans le même groupe que les masses non chargées, parce que ce sont des corps hétérogènes à particularités bien définies, qui imposent à l'utilisateur certaines servitudes. Les masses doivent donc être remuées soigneusement avant l'emploi.

Les charges sont généralement les matières inorganiques décrites dans le Tableau 312, notamment la farine de quartz, la poudre de craie, d'ardoise, d'amiante, de mica, le kaolin, le talc, etc. L'humidité, qui a été absorbée pendant le stockage, revêt une importance particulière. Elle n'est généralement pas expulsée par la résine dans laquelle la charge est dispersée et diminue de ce fait d'une façon appréciable les propriétés mécaniques et diélectriques de l'ensemble. Les charges doivent donc être séchées soigneusement avant l'emploi, quelquefois en les portant au rouge.

La quantité de charge à ajouter dépend beaucoup de la nature, de la grosseur et de la forme des grains. Elle peut atteindre 300 %.

L'adjonction de la charge sèche se fait soit à froid, soit à chaud, de préférence sous vide. Les agents de réticulation sont ajoutés ensuite. Il est indispensable, pour obtenir des pièces sans pores, d'expulser par le vide les bulles d'air de la résine chargée, avant, pendant, ou après la coulée.

L'effet des poudres, des flocons et des fibres ajoutées aux résines du groupe 521 se manifeste, d'une part au moment de l'emploi de l'isolant, qui est à l'état liquide, d'autre part sur les propriétés finales de l'isolant solide.

Influence des charges sur les isolants du groupe 521

a) A l'emploi

Les charges augmentent la viscosité. Les grains grossiers, denses, sphériques, à surface lisse ont l'influence la plus faible, les corps fins, poreux, à surface irrégulière et les fibres qui peuvent s'interpénétrer ont l'influence la plus forte.

Les charges diminuent le retrait au moment de la solidification, surtout si la forme des grains est irrégulière et si la teneur en charge est élevée. Cette propriété revêt une importance particulière pour faut tenir compte en service.

l'enrobage de pièces métalliques ou en céramique.

Le durcissement de la résine est toujours accompagné d'un dégagement de chaleur, qui provoque une augmentation de température d'autant plus grande que les pièces sont plus volumineuses, que la capacité calorifique de la résine chargée et les possibilités d'évacuation de la chaleur sont plus faibles. Les charges abaissent la température et facilitent sa répartition uniforme.

Les charges diminuent le prix de revient, les isolants du groupe 312 étant d'un prix sensiblement plus bas que celui des isolants du groupe 521.

b) A l'état final

Les charges augmentent la densité. Elles modifient les propriétés mécaniques. La dureté, la résistance à la compression et le module d'élasticité sont plus hauts, tandis que la résilience, la résistance à la flexion et à la traction sont plus bas.

Elles changent les propriétés diélectriques, mais il n'y a pas de règle valable à ce sujet. Les charges qui résistent à la flamme et qui se décomposent à haute température sans libérer de résidus conducteurs, améliorent la résistance à l'arc et aux courants de surface.

Les charges améliorent généralement la résistance aux agents chimiques, si l'action est de courte durée. Si elle se prolonge et que la surface de l'isolant est attaquée, la détérioration de l'isolant se produit plutôt plus rapidement.

Elles modifient les propriétés thermiques. Les charges améliorent généralement la conductivité calorifique et élèvent quelque peu la résistance thermique. Le coefficient de dilatation thermique diminue sensiblement, mais pas proportionnellement au volume de la charge. En utilisant, par exemple, de la poudre de quartz, on peut le réduire d'environ 4 fois. Il reste cependant plus élevé que celui du fer ou de la porcelaine.

Les charges changent l'apparence, en rendant l'isolant opaque. Certaines d'entre elles le colorent.

Les charges peuvent rendre *l'usinage* difficile, lorsqu'elles sont constituées d'un matériau abrasif et lorsqu'elles sont en quantité importante.

Il résulte de ceci que, comme indiqué au Tableau synoptique de groupe 521, seules les masses additionnées d'une charge conviennent au coulage de pièces de grandes dimensions, mais que cette addition a une influence sur les propriétés de la masse, dont il faut tenir compte en service.