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48e année N° 15 Samedi, le 20 Juillet 1957

BULLETIN
DE L'ASSOCIATION SUISSE DES ELECTRICIENS

ORGANE COMMUN
DE L'ASSOCIATION SUISSE DES ELECTRICIENS (ASE) ET
DE L'UNION DES CENTRALES SUISSES D'ELECTRICITE (UCS)

nos ùecteuts

Des circonstances indépendantes de notre volonté nous obligent
malheureusement à réduire sensiblement la matière de notre Bulletin. Jusqu'à présent,

nous nous sommes toujours efforcés de tenir compte des différents vœux de nos

lecteurs; ce sera difficile à présent que nous sommes contraints de recourir à une

telle mesure qui, espérons-le, ne sera que provisoire. Nous prions donc nos

lecteurs de faire preuve d'indulgence et de compréhension.
La rédaction

Einführung in die Theorie der verallgemeinerten Funktionen (Distributionen)
als mathematisches Werkzeug zur Behandlung linearer Regelungen

Vortrag, gehalten am 7. Dezember 1956 an der ETH in Zürich in der Schweiz. Gesellschaft für Automatik,

von E. Stiefel, Zürich 621-52 : 517.1

In der Theorie der linearen Regelungen benützt man seit
Heaviside den Begriff des unendlich kurzen und unendlich
starken Stosses, der mathematisch schwer exakt zu fassen ist.
In den letzten Jahren wurde es möglich, durch die Einführung

verallgemeinerter Funktionen (genannt Distributionen)
in dieser Hinsicht eine strenge mathematische Theorie zu
schaffen. Sie eignet sich vorzüglich zur Behandlung von
Servo-Problemen und ersetzt grosse Teile der Theorie der
Laplace-Transformationen durch physikalisch anschaulichere
Begriffsbildungen. Zunächst werden die Grundlagen mit
Hilfe des Werkzeugs der Zeitserien besprochen und dann
Anwendungen geschildert.

1. Der Begriff des linearen Elements

Der Grundbegriff jeder Servotechnik ist das
Übertragungsglied (Fig. 1), also eine technische
Einrichtung, welche auf eine gegebene Anregung
(Eingang, input) eine gewisse Antwort als Ausgang (output)

liefert. Sowohl Anregung wie Antwort seien als
Funktionen der Zeit t vorausgesetzt. Als Beispiel
denke man etwa an einen elektrischen Stromkreis,
der auf eine äussere angelegte Spannung/(t) als

Anregung eine Stromstärke g(t) als Antwort gibt.
Selbstverständlich können auch mechanische oder

Depuis Heaviside, la théorie des réglages linéaires était
basée sur la notion du choc infiniment bref et infiniment
puissant, notion qu'il est difficile d'exprimer mathématiquement

avec précision. Au cours de ces dernières années, on
est toutefois parvenu à élaborer une théorie strictement
mathématique, par l'introduction de fonctions généralisées
(distributions). Cette nouvelle théorie convient parfaitement
pour l'étude de problèmes de servomécanismes et substitue
à une grande partie de la théorie des transformations de La-
place des notions qui sont physiquement mieux concevables.
L'auteur en expose tout d'abord les principes à l'aide des
séries temporales, puis en décrit certaines applications.

hydraulische Apparate als Übertragungsglieder
verwendet werden.

Wir beschränken uns grundsätzlich auf lineare
Übertragungen. Dies heisst, dass das Superpositionsprinzip

gelten soll, welches in exakter mathematischer

Sprache folgendermassen formuliert werden
kann: Wenn das Übertragungsglied auf die Anregung

fi(t) die Antwort gi(t) erteilt und auf die Anregung

/2(f) die Antwort g2,(t), so soll es auf die Anregung

cl/l W + «2JÜ2 («)
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die Antwort
Clgl(t) + C2g2 (t)

erteilen. Dabei sind c\, C2 irgendwelche Konstanten.
In der ganzen Mathematik und ihren Anwendungen
ist die Einteilung der Probleme in lineare und in
nichtlineare von fundamentaler Bedeutung;
allgemeine und umfassende Theorien existieren heute
nur in den linearen Fällen.

-glt)

Fig. 1

Übertragungsglied
j(t) Anregung; g(t) Antwort

2. Zeitserien

Eine Funktion/(t) der Zeit t kann mittels
gleichförmiger Einteilung der Zeitachse (Schritt h) durch
eine Treppenfunktion approximiert werden (Fig.2).
Sind

fo,fl, •••ifni •••

die Höhen der einzelnen Stufen, so nennen wir die
*. 7

Zahlenfolge

- ,fn, •••)

Fig. 2

Zeitserie

/0, ft.. Höhen der Stufen

die zu f(t) gehörige Zeitserie. Von besonderer
Wichtigkeit ist die Serie

t-m 0

welche also nur aus einer ersten Stufe der Höhe 1 fh
besteht und sonst gleich Null ist (Fig. 3). Dies ist
eine an der Stelle t h unstetige Funktion, welche
anschaulich als Stoss bezeichnet werden kann.

«-I-C
Flg. 3

Dirac-Serle

Wir nennen sie auch Dirac-Serie zu Ehren des

Physikers Dirac, der zum ersten Mal in der Physik
das mathematische Operieren mit Stössen in
grösserem Umfang benützt hat. Wir wollen nun ein
lineares Übertragungsglied durch diesen Stoss

anregen und es möge darauf die Antwort <p(t) erteilen,

die man Stossantwortfunktion nennen kann und die
wir uns ebenfalls (Fig. 4) durch eine Zeitserie

(9?o, <pi, ç>»)

approximiert denken. Welche Antwort gibt das
Glied dann auf eine behebige gegebene Anregung
f(t) Diese Frage lässt sich leicht rein auf Grund des

Superpositionsprinzips beantworten. In der Tat

Fig. 4

Zeitserie der Stossantwort
<pQ, <p± Höhen der Stufen

kann man nach Fig. 2 die Zeitserie aus einzelnen
Stössen zusammensetzen, von denen jeder mit dem
Zeitverzug h auf den vorhergehenden folgt. Der
erste Stoss von der Höhe fo liefert als Antwort die
Zeitserie

hfo<po, hfo<pi, h/o?>2, ••• » hfo<Pn, —

Beim zweiten Stoss von der Höhe fi ist zu
beachten, dass die Antwort des Gliedes mit der
Verzögerung h eintritt; wir erhalten also die Serie

0, hfifo, hfi<pi,

Im ganzen erhalten wir also folgendes Schema

hfoyo, hfocpi, hf0(p2, hf0(p3, — hf0<pn —

hfi<po, hfl9?i, hfiyi,
hf2<P0, hf2<pi, hf2(pn-2, ».

hfnfOi

Nach dem Superpositionsprinzip ergibt sich die
gesuchte Antwort g(t) auf die Anregung f(t) durch
Addition aller Zeilen; der n-te Term in der
zugehörigen Zeitserie (g0, gl, g2, gn, •••) ist also
gegeben durch die Formel

gn h (focpn + jfl9>»-l +/2Ç'» — 2 + ^rfnfo) (1)

Man bezeichnet die Serie g(t) auch als Produkt oder
Faltung der beiden Serien /(t) und <p(t).

Merken wir uns das Prinzip von Duhamel:

Die Antwort eines linearen Übertragungsgliedes ist
das Faltungsprodukt aus Anregung und Stossantwortfunktion.

Dieses Prinzip ist charakteristisch für die Linea-
rität.

Beispiel :

f(t) (0, 1, 2, 3,
<p(t) (1, 1/2, 1/3, 1/4, (2)

g(t) (0, 1, 5/2, 13/3,

Die Multiplikation der Zeitserien gibt also die
Möglichkeit, in grob approximativer Weise die Ant-
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wort eines linearen Gliedes zu berechnen, wenn dessen

Stossantwortfunktion bekannt ist. Dieser Kalkül

ist von A. Tustin [1] x) erfunden und in der
Schweiz von M. Cuénod [2] weiterentwickelt und in
zahlreichen Beispielen angewendet worden. Es ist
festzuhalten, dass für diese Faltungsmultiplikation
alle Rechenregien der elementaren Algebra gelten;
speziell existiert eine eindeutig ausführbare Division

der Zeitserien, auf die wir im Anhang kurz
eingehen.

Die Dirac-Serie (1/A, 0, 0, 0, spielt bei der
Multiplikation die Rolle der Einheit, denn setzt man
sie in die Formel (1) für die Serie (990, cpiitpz, •••) ein,
so ergibt sich gn fn, d. h. eine Serie bleibt bei
Multiplikation mit der Dirac-Serie unverändert.

«

3. Grenzübergang und Grundsätzliches

Das Rechnen mit Zeitserien wird natürlich umso
genauer, je kleiner der Schritt h in der Zeiteinteilung
gemacht wird, und man wird den Wunsch haben,
zur Grenze h -> 0 überzugehen. Man kann z. B.
Gl. (1) deutlicher so schreiben:

g(t) h [/(OMlj + f(h)<p(t—h

+/(tM0)]
und in der Grenze h -> 0 ist

t

g(t) f d* (3)
o

(Faltungsintegral). Ein solcher Grenzübergang ist
jedoch mathematisch unzulässig, indem der Begriff
des Stosses — der unseren Rechnungen im Wesentlichen

zugrunde liegt — sich verflüchtigt. In der Tat
wird für h -> 0 aus der Fig. 3 ein «unendlich»
schmales aber «unendlich» hohes Rechteck, das den
endlichen Flächeninhalt 1 hat; es wird als Dirac-
Funktion bezeichnet, obwohl offensichtlich keiner der
klassischen Funktionsbegriffe so etwas erlaubt. Die
mathematischen Theorien sind — historisch gesehen
— den Weg gegangen, dass zu Zeiten von Heaviside
diese Schwierigkeit zunächst unberücksichtigt
geblieben ist und dann durch Einführung der Laplace-
Transformation umgangen wurde. Trotz ihrer vielen
guten und auch in Zukunft unentbehrlichen Vorteile

kann aber die Laplace-Transformation nichts
zur Erklärung solcher verallgemeinerter Funktionen
beitragen. Da jedes Laplace-Integral uneigentlich
ist (d. h. unendliche Integrationsgrenzen hat), werden

ausserdem zusätzliche Schwierigkeiten
eingeschleppt. Der Ausweg ist offenbar der, dass eben
der klassische Funktionsbegriff gehörig erweitert
werden muss. Um 1950 führte L. Schwartz zum
ersten Mal solche allgemeinere Funktionen ein, die
er Distributionen nannte. Unsere folgende kurze
Einführung in diese neueren Begriffsbildungen der
Mathematik stützt sich auf eine Vorlesung von
A. Erdélyi [3] über die bedeutend einfachere Theorie

der Distributionen von J. Mikusinski.

4. Distributionen

Im folgenden seien Zeitfunktionen /(î), g(t),
stets für t 0 definiert und stetig. Das durch die
Gl. (3) definierte Faltungsprodukt

*) Siehe Literatur am Schluss des Aufsatzes.

g W ffWr) dr (4)
o

zweier beliebiger Zeitfunktionen/(f), 99(f) spielt offenbar

eine grundlegende Rolle in der Servotechnik und
wir werden es kurz mit

g=f<p (5)

bezeichnen. Wir benützen also nicht den zwischen/
und 99 gestellten Stern als Bezeichnung der Faltung.
Um aber Verwechslungen mit dem gewöhnlichen
algebraischen Produkt zu vermeiden, müssen wir
ein anderes Abkommen treffen. Wir unterscheiden
streng zwischen einer Funktion / als Individuum
(z. B. einer Kurve in graphischer Darstellung) und
ihrem Wert /(f) zur Zeit f (eine Ordinate in
graphischer Darstellung). Es ist also fip das Faltungsprodukt,

während /(f) 99(f) das gewöhnliche Produkt
der beiden Funktionswerte zur Zeit f ist.

Wie bereits bei den Zeitserien erwähnt, gilt auch
hier, dass alle elementaren Rechenregeln auch für das
Faltungsprodukt gültig bleiben, also z. B.

fg gf-> f(g+h) fg +fh, (fg)h f(gh)
Wie bei den Zeitserien kann man auch hier zeigen,
dass die Umkehrung der Faltungsmultiplikation,
nämlich die Division eindeutig ist, falls der Quotient
als stetige Funktion existiert 2).

Dies ist durchaus nicht immer der Fall, z. B.
existiert der Quotient/:/nicht als stetige Funktion
g. Denn dies würde bedeuten, dass

fg=f
also

t

/W ffWgi*—-
0

Für f 0 ergibt dies/(0) 0, was ein Widerspruch
ist, sobald/(f) nicht zufällig den Anfangswert 0 hat.

Es gelten auch alle Regeln des Bruchrechnens,
wie Erweitern, Kürzen usw. Wir definieren nun:
Eine Distribution ist der Faltungsquotient zweier
stetiger Funktionen, falls die Division nicht «auf-
geht», also keine stetige Funktion ergibt. Distributionen

sind also Faltungsbrüche.
Diese Erklärung mag im ersten Moment etwas

abstrakt erscheinen; sie ist jedoch gar nicht
abstrakter, als das, was die Schüler lernen müssen,
wenn sie in der 5. Primarklasse zum Bruchrechnen
kommen. Der Lehrer erklärt dann folgendes: «Eine
rationale Zahl ist der Quotient zweier ganzer Zahlen,

falls die Division nicht aufgeht.» Ausserdem
versucht er, eine gewisse Vorstellung vom Bruch zu
wecken, indem er etwa einen Kuchen in Stücke
teilt. Auch wir haben hier eine solche anschauliche
Vorstellung. Um g:f zu veranschaulichen, approximieren

wir /(f) und g(t) durch Zeitserien und bilden
nach den Methoden des Anhangs durch Division
eine neue Zeitserie. Diese veranschaulicht die
Distribution g :fumso besser, je kleiner der Schritt h für
die Zeiteinteilung gewählt wurde.

2) Diese Einschränkung muss bei den Zeitserien nicht
gemacht werden. Wie im Anhang ausgeführt, ergibt die Division
zweier Serien immer wieder eine Zeitserie.
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wenn

Zwei Distributionen f:g und h:k heissen gleich

1 A
g

fk gh

Die Operationen mit Distributionen werden durch
die Regeln des Bruchrechnens definiert, nämlich:

Addition

/ _| - —
gkgk

Faltungsmultiplikation

lh fh
g k gk

5. Spezielle Distributionen

Ist / eine beliebige Funktion, so ist nach obiger
Gleichheitsdefinition die Distribution f:f=l
unabhängig von der Auswahl von /. Wir bezeichnen sie
mit /, weil sie bei der Multiplikation die Rolle der
Einheit spielt. In der Tat ist

f f&

(Im letzten Schritt beachte man die Erlaubnis zum
Kürzen bei Division stetiger Funktionen.) Was
bedeutet die Distribution / anschaulich Wir haben
im Anhang erwähnt, dass die Division einer Serie
durch sich selbst immer die Dirac-Serie von Fig. 3

ergibt. Die Distribution / ist also genau das unendlich

schmale und unendlich hohe Rechteck, das wir
früher als Dirac-Funktion bezeichnet haben. Man
wird dies nun besser Dirac-Distribution nennen.

2. Wir bezeichnen die stetige Funktion, welche
zu jeder Zeit den konstanten Wert 1 hat mit e. Es
ist also

e(t)1 (6)

Aus der grundlegenden Definition in den Gl. (4)
und (5) des Faltungsprodukts folgt:

t t

ef=fe Jf(r)e(t—r)dr Jf(r)dr(7)
0 0

Die Multiplikation mit e bedeutet also (im Sinne
des unbestimmten Integrals) die Integration.

Die wichtigste spezielle Distribution ist nun wohl

/
P=-e (8)

Sie wird durch Fig. 5 erklärt (vergl. den Schluss des

Anhangs). Für eine stetig differenzierbare Funktion
f(t) gilt die Grundformel

/'+/(«)/ (9)

wobei/' die zeitliche Ableitung von/ist. Wie in der
gewöhnlichen Algebra vernachlässigen wir
normalerweise den Faktor / beim Schreiben:

Beweis : Aus der elementaren Gleichung zwischen
Funktionswerten

i

m m + ff'(r)àr

folgt wegen den Gl. (6) und (7) die Gleichung
zwischen Funktionen

/= /(°) • « + e/'
Die Division durch e ergibt

-/=/(<>)+/'
e

und aus Gl. (8) folgt dann die Behauptung: Die
Grundformel besagt, dass die Multiplikation mit p
im wesentlichen eine Differentiation bedeutet.

HCM

•c

5EV2S579

Fig. 5

Die p-Serie
(Differentiation)

3. Für eine Distribution, die keine stetige Funktion

ist, existiert der Begriff«Funktionswert» nicht.
Es hat also z. B. keinen Sinn, vom Wert der Dirac-
Distribution zur Zeit t 0 zu reden. Man kann
höchstens anschaulich sagen, dass dort ein unendlich

starker Stoss von unendlich kurzer Dauer
vorliege.

Das Grundproblem der Distributionstheorie ist
es nun, festzustellen, ob eine gegebene Distribution
eine stetige Zeitfunktion ist, also Funktionswerte
hat. Ausserdem soll dann bejahendenfalls diese
Funktion berechnet werden. Zur Erläuterung nehmen

wir etwa als Beispiel die Distribution

y — (H)
p—a

worin a eine numerische Konstante ist. Durch
Beseitigen des Nenners folgt

py—ay /

Die Division mit p ergibt wegen Gl. (8)

J « (ey) + e

Soll nuny eine stetige Funktion sein, so bedeutet dies

wegen Gl. (7) folgende Gleichung zwischen
Funktionswerten.

t

y(t) —aJy(r) dr + 1

pf =f + m (10)

Für t 0 folgt daraus zunächst

M») i
anderseits durch Differentiation

y'(t)

(12)

(13)
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Die einzige Lösung der Differentialgleichung (13)
unter der Anfangsbedingung in GL (12) ist aber

somit
y £

/

at

zat
a

(e 2,71828...) (14)

Man kann sich leicht überzeugen, dass auf Grund
dieses Teilresultats jeder rationale Ausdruck in p
als zeitliche Funktion geschrieben werden kann,
falls der Grad des Zählers kleiner als derjenige des
Nenners ist. Man wende einfach Partialbruchzer-
legung an.

Zur Übung bestätige man z. B.

/

p2 -f- a'
— sin at
a

(15)

Zur Lösung des Grundproblems existierten
Tabellen, lange schon bevor die Distributionen erfunden

wurden. Wie die Gl. (14) und (15) ahnen lassen,
kann man einfach eine Tabelle von inversen Laplace-
Transformationen benützen, um den Wert einer
gegebenen Distribution zur Zeit t zu berechnen,
(falls sie eine Funktion ist) 3).

6. Übertragungen der Elektrotechnik

Der Stromkreis von Fig. 6 bestehend aus dem
Widerstand R und der Selbstinduktion L werde
durch eine zeitlich veränderliche Spannung u(t)
gespeist. Fasst man u(t) als Anregung und die Strom-

u(t)-4=

SEV25580

Fig. 6

Einfacher RL-Stromkreis

stärke i(t) als Antwort auf, so entsteht im Sinne der
Servotechnik das Übertragungsglied von Fig. 7.
Bekanntlich genügt i(t) der Differentialgleichung

L — -f- Ri(t) — u(t)
dt

Falls zur Zeit t 0 kein Strom vorhanden ist,
können wir dies mit Hilfe der Grundgleichung (10)
schreiben :

Lpi -f- Ri — u
also

'
(16)l u

R -f- Lp R Lp

i ist also das Faltungsprodukt aus der Anregung
u und der Distribution l:(R-\-Lp). Unter Bezugnahme

auf das Duhamelsche Prinzip wird man daher

/ 1 /
(17)R -f- Lp i

R
P + T

als Stossantwortfunktion oder besser als Stossant-

wort-Distribution des gegebenen elektrischen Gliedes

bezeichnen (Fig. 7). Im vorliegenden Spezialfall
ist wegen Gl. (14) dies tatsächlich eine Funktion,
nämlich

R
1 ~T%

£

L
Gl. (16) liefert also das Faltungsintegral

R

1 i ~L~ T

i(t) — —J u(t—r)e dr (18)

als Lösung des vorgelegten elektrischen Problems.

u(t) 1 itt)
R+Lp

Fig. 7

Ersatzschema für den
RE-Stromkreis

In der Elektrotechnik interpretiert man Gl. (16)
noch etwas anders. Diese Formel erinnert stark an
das Ohmsche Gesetz und man wird daher R -f- Lp
als verallgemeinerten Widerstand (Impedanz)
bezeichnen und speziell der Selbstinduktion die Impedanz

Lp zuweisen. Definiert man noch die Impedanz

einer Kapazität C mit —, so gelten für Wechsel-
Cp

Stromnetze ausser dem Ohmschen Gesetz auch die
Kirchhoffschen Verzweigungsgesetze, genau gleich,
wie für Gleichstromnetze.

Beispiel : Gleichstrom-Kompoundmaschine.
Im Blockschema von Fig. 8 ist links der
Erregerstromkreis (Impedanz Ro + Lop). Der Ausgang io
wird durch Multiplikation mit der Konstanten k in
eine Spannung u verwandelt, welche über den Be-

3) Eine ausführliche Tabelle ist enthalten in [4].

Fig. 8

Ersatzschema einer Gleichstrom-Kompoundmaschine

lastungs-Stromkreis (Impedanz R + Lp) zum Strom
i führt. Zu Steuerungszwecken ist eine Rückkopplung

eingebaut, welche einen Teil —gi dieses Stromes

bei A wieder einspeist. Wenn also i wächst,
wird die resultierende Erregung der Maschine
herabgesetzt. Wegen

uo
lo

Ro + Lop

ist die unmittelbar hinter dem Punkt A vorhandene
Stromstärke

uo

somit

und

Ro + Lop

u ~ k

Ql

Uo

k
l

R -f- Lp

R0 + L0p

up

.Ro -f- Lpp

Ql

Ql
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Die Auflösung dieser Gleichung nach i liefert

k
i

(Ro -|- Lop) (R + Qk -f- Lp)
uo (19)

Hierin ist der Faktor von uo die Übertragungsfunktion

<p der ganzen Servosteuerung :

(p
k

(Ro + Lop) (R + Qk -f- Lp)

Führt man zur Abkürzung ein:

R
a

o b R-\- gk

Lo L

so ergibt ein Laplace-Lexikon

k -bt -at
<p{t)

L0L
(20)

a

Das ist also die Antwort der ganzen Schaltung
auf einen Dirac-Stoss. Da diese mit der Zeit
abklingt, ist die Steuerung unter allen Umständen
stabil.

Ist z. B. die Erregungsspannung uo(t) konstante
17, so folgt nach dem Duhamelschen Prinzip oder
direkt aus Gl. (19) :

ir

i(t) U J cp (r) dr

Durch Auswertung dieses Integrals findet man

i(t)
kU
LoL ab

— £-bt — — g - at
b a

a b

Nach langer Zeit stellt sich also die Stromstärke ein
auf:

./x M 1 kU /<mi (t) & • —r _ —— (21)
LqL ab Ro (R + Q^)

Man kann zum Schluss mit Genugtuung
feststellen, dass diese Theorie genau auf dieselben
Rechnungen führt, wie sie der Ingenieur seit Heavi-
sides Zeiten gewohnt ist. Der Unterschied liegt nur
in der Begründung, die nun — genau wie die La-
place-Transformation — mathematisch einwandfrei
ist, sich aber doch mehr auf physikalische
Anschauungen stützt.

Anhang
Operieren mit Zeitserien mit Hilfe einer erzeugenden

Funktion
Es ist bequem, einer Zeitserie f(t) (/o, /i, jfe,

••• ,/«» in r^in formaler Weise eine Potenzreihe
in einer Variabein x zuzuordnen:

oo

/o flx +/2#2 + ••• + fnxn + ••• — yt fn%n
n — o

welche man erzeugende Funktion der Serie nennt.
Ist

<p(t) (9^0? 9^1? 9^2? ••• •> (pn, •••)

eine zweite Serie und

00

<P0 + <Plx+-<P2X2 + — + <PnXn + — Y] <Pnxn

n—o

ihre erzeugende Funktion, so liefert die gewöhnliche
Ausmultiplikation der beiden Reihen die neue
Reihe :

(ftfpo) + {fo<Pl +fl(Po)X + (fo?2 +fl<pi +f2<Po)x2 +
Hierin ist nach Gl. (1) der Koeffizient von xn

(abgesehen vom Faktor h) der n-te Term im
Faltungsprodukt der beiden Serien. Mit anderen Worten:

Die erzeugende Funktion des Faltungsprodukts
zweier Serien ist das gewöhnliche Produkt der
erzeugenden Funktionen der einzelnen Serien (multipliziert

mit h). Um also den Faltungsquotient der
Serien f(t) und 9o(t) zu bilden, muss man einfach die
zugehörigen erzeugenden Funktionen ausdividieren
nach den Regeln des Rechnens mit Potenzreihen.

»

Beispiel: f(t) (1, 7, 21, 35,

9o(t) (1, 4, 6, 4,

(1 + Ix -f- 21a;2 -f- 35a;3 •••) •

:(1 -f- 4a; + 6A;2 -f- 4a;3 + •••)

1 + 4A; -f- 6a;2 + 4A;3

3A; -f- 15A;2 + 31A;3

3a; + 12A;2 -f- 18A;3

—13a;+3a;2-f-a;3-f-...

3a;2 -f- 13a;3

3a;2 -f- 12a;3

a;3

/
9

Übungen

a) Zeige, dass bei Division einer Serie durch sich
selbst immer die Dirae-Serie entsteht:

{foi jfl? •••? fni •••) : {foi fl* ••*) 0,0,...

b) Zur Funktion e der Formel (6) gehört natürlich
die Serie (1,1, I, Man verifiziere, dass bei
Division der Dirac-Serie durch diese e-Serie das
Resultat die Serie von Fig. 5 ist, welche also die
Distribution p approximiert:

i, 0, 0, : (1,1,1,...) (7, —7 ' °> —
h j \n2 ft2
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