Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 47 (1956)

Heft: 13

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

cité statique, ou dynamique et tournant à la vitesse du rotor.

Les méthodes que nous venons d'exposer sont donc utilisables avec succès pour le contrôle général de la qualité de couplages des voies parallèles. Pour cela, il suffit généralement de dessiner l'étoile des tensions et le polygone de Görges des voies parallèles pour $p \pm 1$ paires de pôles (voir fig. 5 et 6).

Afin d'amortir suffisamment les champs tournants $p \pm 1$ dus à l'excentricité, responsables de l'attraction magnétique unilatérale, le coefficient de dispersion des voies parallèles pour $p \pm 1$ paires de pôles doit être faible. Le polygone de Görges doit donc s'écarter le moins possible de la forme circulaire [3]. Les enroulements à deux étages conviennent mieux à la compensation de l'attraction magnétique unilatérale que les enroulements concentriques, car ils permettent d'obtenir un meilleur polygone de Görges des forces magnétomotrices compensatoires.

Le polygone de Görges doit en outre présenter une symétrie circulaire, car une symétrie par rapport à un seul axe signifie qu'il s'agit d'un champ elliptique, dont la composante inverse provoque une force vibratoire au double de la fréquence du réseau (bourdonnement de transformateur) par interférence avec le champ fondamental, lors d'un décalage statique du rotor de moteurs à rotor bobiné. C'est pourquoi il faut considérer comme mauvais les enroulements à deux étages à quatre pôles et plus, avec deux voies parallèles selon les fig. 1A et 2A, mais sans les connexions équipotentielles dessinées.

Le polygone de Görges des forces magnétomotrices compensatoires permet enfin un jugement plus facile de l'influence des harmoniques de champ sur les bruits ou autres perturbations.

Les voies parallèles classiques selon les fig. 1A et 2A présentent quelques dangers. Lorsqu'elles sont couplées uniformément selon les schémas des fig. 1B et 2B, de sorte que les courants compensateurs ne puissent se produire lors d'une excentricité du rotor, on s'épargne l'analyse des couplages, mais on renonce aussi à la réduction de l'attraction magnétique unilatérale, souvent très désirable, même dans les cas où il n'y a pas lieu de craindre une autoexcitation de vibrations.

Bibliographie

- Bibliographie

 [1] Rosenberg, E.: Einseitiger magnetischer Zug in elektrischen Maschinen. E & M t. 35(1917), n° 44, p. 525...531; n° 45, p. 539...546.

 [2] Richter, R.: Ankerwicklungen für Gleich- und Wechselstrom. P. 204...207. Berlin: Springer 1920.

 [3] Krondl, M.: La dispersion différentielle dans les machines d'induction. Rev. Gén. Electr. t. 23(1928), n° 10, p. 433...450; n° 11, p. 479...496.

 [4] Nürnberg, W.: Die Asynchronmaschine. Ihre Theorie und Berechnung unter besonderer Berücksichtigung der Keilstab- und Doppelkäfigläufer. Berlin/Göttingen/Heidelberg: Springer 1952.

 [5] Krondl, M.: Die parasitären Kräfte in Induktionsmaschinen. Bull. Oerlikon t. -(1931), n° 124, p. 654...658; n° 125, p. 665...668; n° 126, p. 670...676.

 [6] Jordan, H.: Geräuscharme Elektromotoren. Lärmbildung und Lärmbeseitigung bei Elektromotoren. Essen: Girardet 1950.

- 1950.
 [7] Leonhard, A.: Die selbsttätige Regelung. Theoretische Grundlagen mit praktischen Beispielen. P. 192 et suivantes. Berlin/Göttingen/Heidelberg: Springer 1949.
 [8] Hull, E. H.: The Effect of Foundation Stiffness on the Resonant Frequencies of Rotating Machines. J. Appl. Mech. t. 8(1941), n° 3, p. 121...129.
 [9] Jordan, H. et F. Lax: Über die Wirkung von Exzentrizitäten und Sättigungserscheinungen auf den Körper- und Luftschall von Drehstrom-Asynchronmotoren. AEG-Mitt. t. 44 (1954), n° 11/12, p. 423...426.

Adresse de l'auteur:

 $\it M.\,Krondl$, ingénieur-docteur, 23, Alfred-Escher-Strasse, Zurich 2.

Technische Mitteilungen — Communications de nature technique

Die Flugsicherung des interkontinentalen Flughafens Zürich

[Nach A. Fischer: Die Flugsicherung des interkontinentalen Flughafens Zürich. Tech. Mitt. PTT Bd. —(1955), Nr. 11, S. 449...470]

1. Das Wesen der Luftverkehrskontrolle im allgemeinen

Der Pilot eines Verkehrsflugzeuges findet seinen Weg durch Nacht und Nebel zum Zielflughafen mit Hilfe einer grossen Zahl am Boden ständig in Betrieb stehender radioelektrischer Navigationshilfen, in der Hauptsache ungerichteter und gerichteter Funkfeuer. Die Ausstrahlungen dieser Sender bewirken gewisse Anzeigen an Instrumenten im Flugzeug, die der Pilot zur Lösung seiner Navigationsaufgabe benützt. Die Luftverkehrskontrolle, eine Organisation am Boden, deren Wirkungskreis international weitgehend vereinheitlicht ist, hat sich demnach weniger um die Navigation der Flugzeuge zu kümmern, sondern ihre Aufgabe ist, die blindfliegenden Flugzeuge vor Zusammenstössen zu bewahren, dafür zu sorgen, dass sich der Luftverkehr reibungslos und fliessend abwickelt, und den Piloten alle jene Informationen zu vermitteln, die ihnen nützlich sein können. Die Luftverkehrskontrolleure machen sich anhand von laufend übermittelten Positionsmeldungen der Flugzeuge ein Bild davon, wie sich die Verkehrslage in den nächsten Viertel-stunden entwickeln könnte, um dann auf Grund dieser Überlegungen den Flugzeugbesatzungen Anweisungen über getrennt zu befliegende Höhenstufen oder einzuhaltende Mindestabstände zu übermitteln. Luftverkehrskontrolle bedeutet eine geistige Arbeit, wobei es vor allem auf richtiges Vorausdisponieren ankommt. Besondere Peil- und vor allem Radargeräte ermöglichen den Kontrolleuren, die Flugzeug-Bewegungen zu überwachen und eventuelle Navigationsfehler zu verhüten.

Von einem guten Übermittlungsdienst hängt es ab, ob die Ideen der Luftverkehrskontrolle realisiert werden können. Kurze und mittellange Verbindungen werden heute durchwegs mit UKW-Radio-Telephonie hergestellt, wobei als Sprache das internationale Englisch eine grosse Rolle spielt. Auf grosse Distanzen wird noch Morse-Telegraphie verwendet, doch geht man auch hier immer mehr auf Kurzwellen-Tele-

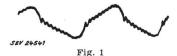
2. Die besonderen Verhältnisse auf dem Flughafen Zürich

Der Verkehrsabfluss des Flughafens Zürich ist wegen der hügeligen Topographie und der Nähe der Alpen schwieriger zu meistern als auf Flughäfen in der Ebene. Sechs Mittelfrequenz-Funkfeuer bezeichnen die An- und Abflugwege zum Flughafen, wobei das Navigationsfunkfeuer «Trasadingen» das stärkste ist und die Hilfsfunkfeuer «Zürich-Ost» bei Stammheim und «Zürich-West» im Birrfeld weitere «Tore» zum Flughafen markieren. Für den schwierigsten Teil eines Fluges, den Anflug gegen die Piste des Flughafens zur Landung bei schlechtem Wetter, ist ein besonders präzises Navigationsmittel vorhanden, das sog. ILS (Instrument Landing System). Es besteht aus einem Kurssender, der mittels gebündelter Wellen eine vertikale Leitebene, und einem zweiten Sender, der eine leicht ansteigende Gleitweg-Ebene in den Anflugsektor hinausstrahlt. Die Schnittlinie der beiden fiktiven Ebenen, die an Instrumenten an Bord der Flugzeuge erkannt werden kann, führt genau auf den Anfang der Blindlandepiste zu. Noch genauer kann mit Hilfe des Präzisions-Landeradars angeflogen werden, indem ein Verkehrs-Kontrolleur, der das anfliegende Flugzeug als Lichtpunkt auf dem Radarschirm verfolgen kann, dem Piloten genaue Instruktionen über Flugrichtung und Höhe erteilt, solange, bis er sich nur noch wenige Meter vor dem Pistenanfang befindet.

Die Verkehrskontrolle des Flughafens Zürich ist unterteilt in eine Bezirkskontrolle, die den östlichen Teil der Schweiz, ungefähr von Bern an kontrolliert, und die Nahverkehrskontrolle, die den Luftverkehr in der unmittelbaren Umgebung des Flughafens leitet. Beiden Stellen steht ein Überwachungsradargerät zur Verfügung, das den Luftraum ringsherum bis auf eine Entfernung von etwa 100 km abtastet. Die Echos der Berge werden durch einen technischen Kunstgriff unterdrückt, so dass auf dem Radarschirm nur die Echos der bewegten Objekte, der Flugzeuge, erscheinen.

In der Übermittlungszentrale des Flughafens Zürich endigen alle Flugsicherungsverbindungen der Schweiz mit den Flughäfen des Auslandes. Direkte Fernschreiber-Kabelverbindungen mit den umliegenden Ländern und Radio-Kurzwellenverbindungen mit weiter entfernten Stationen, vor allem des Nahen Ostens, ermöglichen es, die für die Sicherheit der Flugzeuge notwendigen Meldungen rasch von Land zu Land zu befördern. In der Übermittlungszentrale werden auch die Wetterinformationen aus aller Welt gesammelt und den schweizerischen Flugwetterwarten und der Meteorologischen Zentralanstalt weitervermittelt.

Die Sendeanlagen der Telegraphieverbindungen sind in Waltikon konzentriert, 15 km vom Flughafen entfernt; die Sendestation Waltikon wird von den Arbeitsstellen in Kloten aus über eine Mehrkanal-Tonfrequenzanlage fernbedient.


Arf

Zum Einsatz von Stromrichterlokomotiven

621.332.018.3 : 621.335.2-831.1 : 621.314.65 [Nach R. Jötten und L. Lebrecht: Die Primärströme der Stromrichterlokomotive in Fahrleitungsnetz und Drehstromnetz. ETZ-A Bd. 77(1956), Nr. 7, S. 205...216]

Eine Gleichrichterlokomotive mit nur einer Fahrleitung erzeugt beträchtliche Oberwellen, so dass der Primärstrom der Lokomotive praktisch alle Harmonischen ungerader Ordnungszahl enthält. Einzelne dieser Harmonischen können mit ca. 30 % des Grundwellenstromes auftreten; es ist daher verständlich, dass wegen der starken oberwellenhaltigen Belastung und dem hinzukommenden schlechten Leistungsfaktor der 50-Hz-Netze gegen den Einsatz dieser Lokomotiven einige Bedenken erhoben wurden.

Hohe Oberwellenströme führen, zusammen mit den in den Netzen eingebauten Kapazitäten, zu Resonanzerscheinungen, welche die mit dem Bahngleis meistens parallel verlegten Fernsprechkabel sehr stark stören können.

Unterwerkstrom bei Resonanz (im Modellversuch gemessen)

Eine solche Resonanzerscheinung wurde denn auch an der Höllental-Versuchsstrecke beim Einsatz von Stromrichterlokomotiven beobachtet. Die darauf durchgeführten Untersuchungen und Modellversuche zeigten aber, dass die Resonanzerscheinungen durch in das Fahrleitungsnetz eingebaute RC-Glieder so stark vermindert werden können, dass keine Störungen mehr im Fernsprechkabel zu befürchten sind.

Die Dämpfung der Resonanzen durch RC-Glieder sollte mit relativ bescheidenen Mitteln durchgeführt werden können. Das Dämpfungsglied, das aus der Serieschaltung von

Fig. 2

Zunahme des Oberwellenanteils im Strom bei Annäherung an das Unterwerk, jedoch mit einem zusätzlichen Dämpfungsglied

Widerstand mit Kondensator besteht, soll im allgemeinen mit der Primärseite des Lokomotivtransformators parallel geschaltet sein. Ein Einbau in die Fahrleitung oder ins Unterwerk kann aber unter Umständen auch ins Auge gefasst werden. Die Wirkung eines RC-Gliedes kann an Hand von Fig. 1 und 2 beobachtet werden. Fig. 1 zeigt den Stromverlauf eines Unterwerkes bei Resonanz, Fig. 2 dagegen die Zunahme des Oberwellengehaltes, im Strom bei Annäherung an das Unterwerk, jedoch mit einem eingebauten Dämpfungsglied. Die Kondensatorenblindleistung des RC-Gliedes soll bei 20 kV Fahrleitungsspannung 100...200 kVar betragen. Der entsprechende Widerstandswert fällt dann zwischen 100 und 300 Ω . Durch die Anordnung eines solchen Dämpfungsgliedes kann die grösste Resonanzüberhöhung auf ca. 1,5 beschränkt vermindert werden.

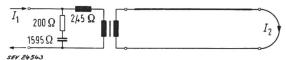


Fig. 3

Drehstrom-Einfachleitung, gekoppelt mit Einphasen-Fahrdrahtleitung über einen Transformator 20 /100 kV (Dämpfungsglied zwischen Fahrdraht und Schiene) I₁ Fahrleitungsstrom 20 kV; I₂ Strom der Drehstrom-Einfachleitung

Allfällige Resonanzerscheinungen im Drehstromnetz können durch den Einbau von Dämpfungsgliedern zwischen Fahrleitung und Schiene ebenfalls stark vermindert werden. Die Untersuchungen zeigten, dass ein solches Dämpfungsglied (Fig. 3) eine Herabsetzung der Resonanzüberhöhung auf der Primärseite um ca. 90 % erlaubt. Der Einbau von Dämpfungsgliedern in das Hochspannungsprimärnetz wäre zwar wirksamer, würde aber zu grösserem Aufwand führen, und es müsste auch mit grösseren Verlusten gerechnet werden.

Damit sollte erwiesen sein, dass die Verwendung von Stromrichterlokomotiven, bei erträglichen finanziellen Aufwendungen und bei sorgfältigen Berechnungen, für die Fernsprechkabel und das 50-Hz-Drehstromnetz keine bemerkenswerte Nachteile mit sich bringt.

E. Schiessl

Messunsicherheit und Fehlergrenzen

53.088.3 : 519.24

[Nach W. Fritz: Was ist unter Messunsicherheit zu verstehen; was sind Fehlergrenzen? Amtsbl. phys.-techn. Bundesanst. Bd. — (1955), Nr. 2, S. 107...112]

1. Vorbemerkung

Bei der Normung von Prüfverfahren hat es sich gezeigt, dass die verschiedenen bisherigen Prüfnormen keine einheitliche Basis zur Angabe der Messunsicherheit hatten. Wie kann man nun die Grössen Messunsicherheit und Fehlergrenzen einheitlich festlegen?

Als Voraussetzung für die folgenden Überlegungen sei angenommen, dass es sich bei den Messungen, die hier betrachtet werden, stets um voneinander unabhängige Einzelmessungen handle und dass bei einer genügend grossen Zahl dieser Messungen eine normale Zufallsverteilung auftrete entsprechend der Gaußschen Glockenkurve.

2. Ursache und Einteilung von Fehlern

Bei den verschiedenen Messungen weichen die aus der gleichen Messung stammenden Resultate voneinander und deshalb auch von dem aus ihnen gebildeten arithmetischen Mittelwert

$$\bar{x} = \frac{x_1 + x_2 + \dots x_n}{n} = \frac{\sum x_i}{n}$$

ab. Dieser Mittelwert weicht wiederum vom wahren Wert der Messgrösse x_0 ab. Die Ursachen dieser Abweichungen sind: a) Fehler der Messgeräte; b) Fehler des Messverfahrens; c) Umwelteinflüsse, wie Druck, Temperatur, Feuchtigkeit usw.; d) Persönliche Fehler des Beobachters.

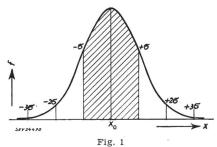
Wir müssen nun streng zwischen zufälligen und systematischen Fehlern unterscheiden. Die zufälligen Fehler rühren von nicht bestimmbaren, vom Willen des Beobachters unabhängigen Schwankungen in den genannten Hauptfehlerquellen her. Die systematischen Fehler sind von einer ausserdem vorhandenen einseitigen Tendenz in diesen Fehlerquellen verursacht und müssen durch Korrektionen beseitigt werden.

3. Definition der Messunsicherheit

Unter Messunsicherheit versteht man den ganzen Komplex der zufälligen Schwankungen einer zu messenden Grösse. Das wichtigste Mass für diese Schwankungen ist die Standardabweichung einer Stichprobe s:

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}}$$

Darin bedeuten: x_i gemessener Wert;


arithmetischer Mittelwert aus n Messungen; Anzahl Messungen; die Summe ist von i=1bis i = n zu bilden.

Der Grenzwert der Standardabweichung s für grosse Werte n heisst die Standardabweichung einer Grundgesamt-

$$\sigma = \lim_{n \to \infty} s \approx \sqrt{\frac{\sum (x_i - x_0)^2}{n}}$$

Die Bedeutung von σ ist aus Fig. 1 zu ersehen.

Jeder Flächenstreifen, der durch zwei Messwerte x_1 und x_2 begrenzt ist, gibt die Wahrscheinlichkeit für das Auftreten von Messwerten zwischen x1 und x2 an. Innerhalb des Bereiches $x_1 = x_0 - \sigma$ und $x_2 = x_0 + \sigma$ sind 68,3 % aus der Gesamtheit aller Messwerte x_i enthalten. Tabelle I zeigt die Abhängigkeit der sog. statistischen Sicherheit S vom Schwankungsbereich.

Normalverteilung der Häufigkeit einer Messgrösse (Laplacesche oder Gaußsche Verteilung; Glockenkurve) x Messwert; f Häufigkeit; $x_{\rm o}$ wahrer Mittelwert der Messgrösse σ Standardabweichung der Grundgesamtheit

Abhängigkeit der statistischen Sicherheit vom Schwankungsbereich

		Tabene
Schwankungsbereich $x_0 \pm k \sigma$	Von 1000 Messwerten fallen durchschnittlich z Messwerte in den Bereich $x_0 \pm k$ σ	Statistische Sicherheit
kσ	z	S
0,675 σ 1,00 σ 1,96 σ	500 683 950	50 % 68,3 % 95 %
3.00 σ	997	99.73%

Je grösser der zulässige Schwankungsbereich gewählt wird, um so grösser ist die statistische Sicherheit, d. h. die Wahrscheinlichkeit, mit welcher Messwerte in dem jeweilig abgegrenzten Bereich auftreten.

4. Neue Normenvorschläge

Bei diesen Normvorschlägen gilt immer die Annahme, dass die Standardabweichung σ aus sehr vielen Versuchen bekannt sei. Die Deutschen Normen (DIN 51489) nehmen relativ hohe Werte der Messunsicherheit in Kauf und definieren diese durch die Grenze \pm 3 σ . Mit der statistischen Sicherheit von 99,7 %, mit der man hier rechnet, ist für 997 unter 1000 Fällen zu erwarten, dass zwei unabhängig voneinander ermittelte zufällige Messwerte um weniger als den Betrag

$$|x_1-x_2| \leq \sqrt{2} \cdot 3 \ \sigma = 4,24 \ \sigma$$

voneinander abweichen.

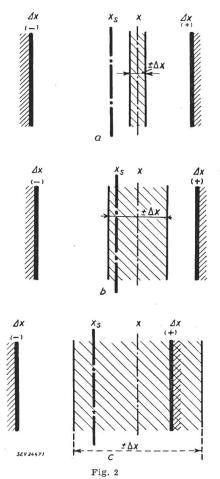
Der Mittelwert \bar{x} aus einer Zahl n von Einzelmesswerten ist nicht gleich dem wahren Wert xo. Man muss einen um so grösseren Unterschied erwarten, je kleiner n ist. Die Mess-

unsicherheit, mit der \bar{x} behaftet ist, nennen wir Vertrauensbereich. Es gilt

Vertrauensbereich =
$$\pm \frac{3 \sigma}{\sqrt{n}}$$

Den amerikanischen ASTM-Standards liegt eine statistische Sicherheit von 95 % zu Grunde. Dies entspricht nach Tabelle I einem Schwankungsbereich von ± 1,96 σ . Der Unterschied zweier beliebiger Einzelmesswerte, der in der amerikanischen Norm als Messunsicherheit festgelegt werden soll, ist

Repeatability =
$$r = \sqrt{2} \cdot 1,96 \ \sigma = 2,77 \ \sigma$$


Der Vertrauensbereich eines Mittelwertes ergibt sich zu

$$\pm \frac{r}{\sqrt{2 n}} = \pm \frac{r}{1,414 \sqrt{n}}$$

Wenn die Standardabweichung σ nicht bekannt ist, sondern nur die Abweichung s, welche sich aus einer Stichprobe von n Einzelversuchen ergeben hat, so muss an Stelle der Konstanten k (Tabelle I) ein veränderlicher Faktor t eingesetzt werden. Dieser ist in Tabellenform berechnet und bekannt; er wird um so grösser, je kleiner die Zahl n ist, und hängt wie kvon der statistischen Sicherheit ab.

6. Verhältnis von Messunsicherheit und Fehlergrenzen

Die Definition der Fehlergrenzen deckt sich weitgehend mit der Definition der Toleranz. Es ist die von Fall zu Fall zuge-

Verhältnis von Messunsicherheit und Fehlergrenzen

- anzustrebender Idealfall: die Messunsicherheit ist viel kleiner als die Fehlergrenzen im Verhältnis von etwa 1:10;
- besonders häufig vorkommender Fall: die Messunsicherheit ist kleiner als die Fehlergrenzen, aber nur im Verhältnis von ca. 1:3;
- zu vermeidender Fall: die Messunsicherheit ist praktisch gleich den Fehlergrenzen
 - x Messwert; x, Sollwert; $\pm \Delta x$ Fehlergrenzen; + Δx Messunsicherheit

standene oder allgemein festgelegte Abweichung einer zu prüfenden Grösse vom vereinbarten oder vorgeschriebenen Wert. Für das Verhältnis von Fehlergrenzen und Messunsicherheit lassen sich drei Hauptfälle angeben:

a) Anzustrebender Idealfall (Fig. 2a): Die Messunsicherheit ist viel kleiner als die Fehlergrenzen im Verhältnis von etwa 1:10. In diesem Falle ist eine eindeutige und scharfe

Beurteilung des Prüflings möglich.

b) Besonders häufig vorkommender Fall (Fig. 2b): Die Messunsicherheit ist kleiner als die Fehlergrenzen, aber nur im Verhältnis 1:3. Wenn der Messwert in der Nähe liegt, wird man vielfach in Schwierigkeiten kommen. Es muss angestrebt werden, die Messunsicherheit zu verringern.

c) Zu vermeidender Fall (Fig. 2c): Die Messunsicherheit ist praktisch gleich den Prüffehlergrenzen. Dieser Fall beruht entweder auf einer falschen und zu engen Festlegung der Prüffehlergrenzen oder einer nicht genügenden Verringerung der Messunsicherheit.

7. Zusammenfassung

Mit dem vorhergehenden kurz angedeuteten Verfahren lassen sich die meisten praktischen Probleme der Fehlerfest-setzung eindeutig und befriedigend lösen. Welche der beiden Definitionen der Messunsicherheit schlussendlich als Norm gewählt wird, ist eine Frage der Zweckmässigkeit.

F. Binggeli

Die Ergebnisse siebenjähriger Erfahrung mit Hochleistungs-Freiluft-Ölschaltern

621.316.57.064.25

[Nach C. J. Balentine und K. G. Darrow: The Results of 7 Years' Experience With High-Capacity Outdoor Oil Circuit Breakers. Trans. AIEE Bd. 74(1955), Part III: Power Apparatus and Systems, Nr. 19, S. 665...671]

In den USA wurden die ersten 230-kV-Schalter im Jahre 1947 für die Kraftwerkanlagen am Grand Coulee Dam benötigt. Es wurden zwei Ausführungen als ölarme Schalter und als normale Ölkesselschalter mit knapp 10 GVA (10 000 MVA) Abschaltleistung aufgestellt. Auf Grund der Erfahrungen mit diesen Schaltern entstand der Wunsch, einen Schalter mit mindestens 10 GVA Abschaltleistung für die ganze Spannungsreihe zwischen 138 kV und 380 kV zu entwickeln. Der maximale Dauerstrom sollte 1,6 kA und der Spitzenstrom 45 kA betragen; die Abschaltzeit wurde auf 3 Perioden und die Wiedereinschaltzeit auf 15 Perioden festgesetzt. Dazu waren minimales Ölvolumen und Gewicht vorgeschrieben.

Die Entwicklung führte zu einem neuen Typ mit einem Kessel aus Stahlblech in ellipsenartiger Form und mit Impuls-Unterbrecher ausgerüstet. Nachstehend wird der 230-kV-Schalter beschrieben (Fig. 1).

Die äusseren Abmessungen eines Ölschalters, d.h. der Ölinhalt bestimmen ausschlaggebend dessen Wirtschaftlichkeit. Es wurde deshalb eine neue Form gewählt, bei welcher der Kessel aus zwei ellipsenförmigen Halbschalen zusammengeschweisst ist. Diese Konstruktion ist elastischer als Rundkesselschalter und ermöglicht bei schweren Abschaltungen eine gewisse Druckentlastung. Fig. 2 zeigt einen Schnitt durch einen Pol.

Der Unterbrecher wurde aus dem 161-kV-Typ entwickelt (Fig. 3). Alle Ausführungen enthalten eine mechanisch angetriebene Ölpumpe, welche vor allem bei kleinen Abschaltströmen einen zuverlässigen Ölfluss erzeugt und sich dadurch eine vom Strom unabhängige Schaltzeit ergibt. Für die Spannungen von 138 kV, 161 kV und 230 kV werden je zwei Unterbrechereinheiten in Serie geschaltet, bei 330 kV sind drei Unterbrecher vorhanden. Für die Abschaltleistungen von 15 GVA und 25 GVA werden die gleichen Kontakte wie für die normale Ausführung verwendet, hingegen sind die Schaltfedern verstärkt und die Schaltkammern weisen grössere Abmessungen auf. Jede Unterbrechereinheit besteht aus drei Hauptbestandteilen: der Schaltkammer, der Öldruckpumpe und den Widerständen für die Spannungsverteilung. Die Schaltkammer selbst besteht aus zwei dickwandigen ineinander geschobenen Isolierzylindern mit den Schaltkontakten. Jeder von diesen ist durch eine eigene Blaskammer mit eigenem Ölfluss umgeben. Die Schaltkammer ist oben und unten mit einer elektrostatischen Abschirmung versehen.

Besondere Anforderungen wurden unter Berücksichtigung der Abschaltleistungen und der Ausschaltzeit von nur 3 Perioden an die Antriebe gestellt. Bei der Ausführung für 138 kV, 161 kV und 230 kV ist nur ein Antrieb für alle

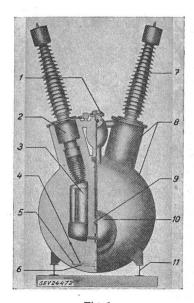
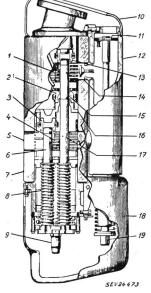



Fig. 1 Schnitt durch einen Pol, gültig für alle Konstruktionen von

138 kV bis 330 kV Ersichtlich sind der Kessel und die inneren Hauptbestandteile

- 1 Schalterantrieb
 - Stromwandler 8 Gehäuse
- 3 Unterbrecher
 - Kontaktfinger Kolbenantrieb
- Traverse
- 7 Klemme
- 9 Schaltstange
- 10 Mannloch
- 11 Schaltergestell

drei Pole vorhanden, während bei 330 kV jeder Pol seinen eigenen Antrieb hat, welche elektrisch gekuppelt sind. Sie sind pneumatisch gesteuert und weisen möglichst wenige bewegte Teile auf. Sie sind für Wiedereinschaltung mit einer Wiedereinschaltzeit von 15 Perioden vorgesehen.

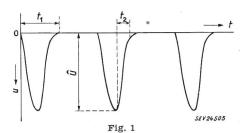
Schnitt durch einen Zweiserie-Unterbrecher, welcher für 138 kV, 161 kV und 230 kV verwendet wird

Ersichtlich sind die inneren

Hauptbestandteile

- Löschkammern
- beweglicher Kontakt fester Kontakt
- Löschkammern
- Auspufföffnung
- 6 Kontaktstift
- Gehäuse
- 8 Öffnungsfeder
- 9 äusserer Kontakt
- Abschirmung 10
- Kolben 11
- Zylinder
- fester Kontakt 13
- Ventil 14
- 15 Kontaktstift
- 16 Kontaktfingerträger
- 17 Schaltstift
- 18 Abschirmung
- 19 Kolbenantrieb

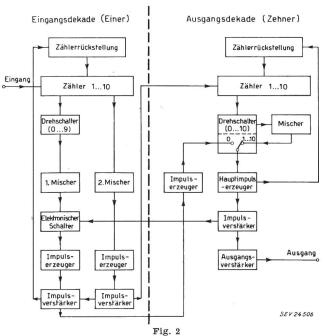
Für die Prüfung der neuen Konstruktion wurde ein ausführliches Prüfprogramm aufgestellt. Bei den Isolationsprüfungen sind alle Schaltertypen einer um 10 % höheren Beanspruchung ausgesetzt worden, als die normalen 60-Hzund Stoßspannungsprüfungen es vorsehen. Der Erwärmungs-


versuch wurde mit 1,6 kA durchgeführt, wobei sich eine maximale Übertemperatur von 24 °C ergab. Mit allen Antrieben wurden 5000 Schaltungen ausgeführt. Um das Verhalten bei Kurzschluss- und Lastabschaltungen zu untersuchen, sind über 10 000 Versuche unternommen worden und spezielle Untersuchungen haben das Abschalten von kapazitiven Strömen bei ca. 70 Schaltungen mit einem Gesamtstrom von ca. 465 kA abgeklärt. Zudem konnten in den letzten sieben Jahren mit den neuen Schaltern weitere umfassende Erfahrungen gesammelt werden.

Nachrichten- und Hochfrequenztechnik — Télécommunications et haute fréquence

Ein Frequenzteiler über vier Dekaden

[Nach G. K. Jensen und J. E. McGeogh: Four-Decade Frequency Divider. Electronics Bd. 28(1955), Nr. 4, S. 154...158]


Die zu teilende Frequenz wird dem Eingang des Frequenzteilers in Form negativer Impulse zugeführt (Fig. 1). Die Impulswiederholungsfrequenz umfasst den Bereich von einigen Hz bis zu 500 kHz. Das Teilerverhältnis N lässt sich mittels Drehschaltern auf jeden ganzzähligen Wert zwischen 1 und 10 999 einstellen.

Eingangssignale des Frequenzteilers

u Spannungsamplitude; t Zeit; $t_{\rm i}$, $t_{\rm i}$ Impulsdauer (< 0,6 μ s) bzw. Impulsabfall ($< 0.4 \mu s$); \hat{U} Impulsspitzenspannung (> 50 V)

Die Untersetzung erfolgt durch fortlaufendes Zählen der Eingangsimpulse. Nach je N Impulsen erscheint am Teilerausgang ein Ausgangssignal. Der Zählvorgang findet in einem vier Dekaden umfassenden elektronischen Zähler statt. Jede Dekade ist als steckbares Chassis ausgebildet, an dessen Stirnseite ein Drehschalter die Einstellung des ge-

Blockschema eines Frequenzteilers über zwei Dekaden

wünschten Teilerverhältnisses erlaubt. Die Dekaden für die Einer, Zehner und Hunderter sind identisch, während die Ausgangsdekade der Tausender etwas einfacher aufgebaut ist.

Zur Erklärung der Arbeitsweise des Teilers genügt die Betrachtung eines aus Eingangsdekade (Einern) und Ausgangsdekade (Zehnern) zusammengesetzten Zählers, mit dessen Hilfe eine beliebige, zwischen 1...109 einstellbare, Untersetzung stattfinden kann.

An Hand des Blockschemas, Fig. 2, wird zunächst die Division durch eine zwischen 10...109 liegende Zahl untersucht, welche durch die Stellung der Drehschalter beider Dekaden bestimmt ist.

Die Eingangsimpulse gelangen in den Zähler der Eingangsdekade, welcher sie einzeln abzählt. Sobald die der Drehschalterstellung entsprechende Anzahl vorhanden ist, tritt am 1. Mischer ein Signal auf, welches über einen elektronischen Schalter einen Impulserzeuger erregt. Nach dem Durchgang eines Mischersignals durch den elektronischen Schalter wird dieser für weitere Signale aus dem 1. Mischer bis zum Eintreffen eines Öffnungsimpulses aus der Ausgangsdekade gesperrt. Der dem Schalter folgende Impulserzeuger liefert einen Rückstellimpuls, der über einen Impulsverstärker die Zählerrückstellung betätigt. Die Zählerrückstellung bringt den Zähler vor dem Eintreffen des nächsten Eingangsimpulses in die Nullstellung zurück. Der Zähler zählt nun weitere 10 Impulse, worauf im 2. Mischer ein Signal entsteht, das einen Impulserzeuger zur Impulsabgabe veranlasst. Nach erfolgter Verstärkung bringt dieser Impuls einerseits den Zähler der Eingangsdekade wieder in die Nullstellung und gelangt anderseits in den Zähler der Ausgangsdekade.

Aus der Folge der Eingangssignale werden nun solange Serien von je 10 Impulsen ausgezählt, bis die am Drehschalter der Ausgangsdekade markierte Anzahl erreicht ist. In diesem Augenblick tritt am Mischer der Ausgangsdekade ein Signal auf, das den Hauptimpulserzeuger anstösst, dessen Impuls einerseits über die Rückstellung den Zähler wieder in die Nullage bringt und anderseits in einen Verstärker mit zwei Ausgängen gelangt. Der eine Ausgang führt den Hauptimpuls zum Ausgangsverstärker, der andere öffnet den elektronischen Schalter der Eingangsdekade, worauf der Auszählvorgang ein zweites Mal beginnt.

Bei der Division durch eine kleinere Zahl als 10 muss der Drehschalter der Ausgangsdekade auf null stehen. In dieser Stellung wird der Rückstellimpuls der Eingangsdekade nicht nur zur Nullrückstellung des Zählers, sondern auch zur sofortigen Umschaltung des elektronischen Schalters verwendet. Er erregt nämlich in der Ausgangsdekade einen Impulserzeuger, dessen Ausgang über ein zusätzliches Segment des Drehschalters an Stelle des abgeschalteten Mischers in den Hauptimpulserzeuger geleitet wird. Der Hauptrückstellimpuls schaltet einerseits sofort den elektronischen Schalter der Eingangsdekade um und gelangt anderseits über den Ausgangsverstärker an den Signalausgang.

Der Frequenzteiler verwendet Miniaturröhren (6J6, 6AS6) und macht ausgiebigen Gebrauch von Germaniumdioden zur Erzielung der benötigten kurzen Umschaltzeiten und zur Vermeidung von unerwünschten Einschwingvorgängen.

W. Thierstein

Automatisches Mikrometer zum Sortieren von Isolationsplättchen

621.317.79 : 531.714.7

[Nach E. T. Fearon: Automatic Micrometer Sorts Insulating Wafers. Electronics Bd. 28(1955), Nr. 5, S. 156...157]

In Telephon-Wählern müssen die Abstände der Kontakt-Ebenen beim Zusammenbau auf 3/100 mm genau eingehalten werden. Die verwendeten Phenolharzplatten, aus welchen die Zwischenlagen ausgestanzt werden, können aber nur mit Dicketoleranzen von 7/100 mm hergestellt werden. Selbst innerhalb einer Platte bestehen noch Streuungen.

> Fortsetzung des allgemeinen Teils auf Seite 605 Es folgen «Die Seiten des VSE»