Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 47 (1956)

Heft: 11

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

$$P = \frac{W(1+k)}{\Phi_{\alpha}} \left(\chi_A p_A + \chi_K p_K \frac{\delta}{k} \right) \quad (20)$$

Pour trouver le minimum du prix en fonction de k, il faut différencier l'équation (20) selon k et déterminer la valeur k_{max} par égalisation à zéro de la dérivée. Nous obtenons:

$$k=\pm\,rac{a_A}{a_K}\,\sqrt{rac{\chi_K\,p_K\,E_A}{\chi_A\,p_A\,E_K}}$$

dont la valeur positive donne, après introduction dans l'équation (20), le minimum désiré du prix.

f) Conclusions

Dans ce qui précède, nous avons tenté de montrer comment on peut s'y prendre pour réaliser, dans le cas d'un déclencheur thermique, des propriétés optima avec un minimum de frais de matériel. Pour cela, nous avons été obligé d'admettre quelques simplifications, ce dont il faut se rappeler lors de l'interprétation des résultats obtenus.

Nous avons notamment montré à partir de quelle valeur de la courbure ou du courant les bimétaux viennent en contact avec le levier de déclenchement et à quel moment le déplacement du cliquet doit commencer, lorsque l'on exige, pour un courant de référence déterminé, une valeur maximum du travail d'ouverture extérieur, qui peut être un bon critère de la résistance aux trépidations.

Nous avons également montré quel doit être le rapport entre le volume de la compensation et celui de déclenchement, afin d'obtenir des frais totaux minima pour le bimétal.

Nous tenons à remercier ici Monsieur H. Vogler, ingénieur, qui a procédé aux études fondamentales pour ce travail et nous a également apporté une aide précieuse dans l'élaboration des détails.

Bibliographie

- Kirchdorfer, J.: Eine qualitative Betrachtung der stationären Erwärmung an Thermoauslösern. Arch. Elektrotechn. t. 42(1955), nº 1, p. 32...42.
 Kirchdorfer, J.: Theoretische Darstellung des Betriebsverhaltens thermischer Auslöser. Arch. Elektrotechn. t. 42(1955), nº 106, 106
- nº 2, p. 126...136.
- Granville, W. A. et P. F. Smith: Differential and Integral Calculus. War Dep. Educational Manual, EM 324, U.S.A.F. Inst. Wisconsin.
- [4] Dubbel, H.: Taschenbuch für den Maschinenbau, 10° édition, t. 1, Berlin: Springer 1949, p. 408.
- [5] Bovet, H.: Termobimetalle. Pro-Metal, t. 2(1949), n⁰ 12, p. 511...520.
- [6] Kirchdorfer, J.: Die Ausbiegung des Bimetalles. Oesterr. Maschinenmarkt, 7° année, fascicule 20, p. 471...475.

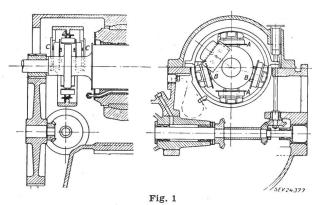
Adresse de l'auteur:

J. Kirchdorfer, S. A. Sprecher & Schuh, Aarau.

Technische Mitteilungen — Communications de nature technique

Uberwachungsgerät zur Anzeige von Formänderungen bei Dampfturbinenwellen

621.317.39 : 621.165-233.1

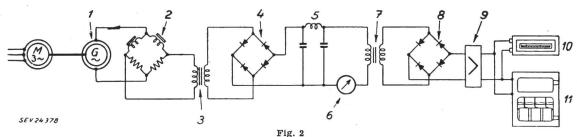

[Nach D. Antrich, H. W. B. Gardiner und R. K. Hilton: Supervisory Equipment for the Indication of Shaft Distortion in Steam Turbines. Proc. Instn. Electr. Engrs. Bd. 102(1955), Part A, Nr. 2, S. 121...130]

Entsprechend der heutigen Tendenz, Dampfturbinen in stets grösseren Einheiten zu bauen und diese gleichzeitig schärfer auszunützen, besteht ein grosser Bedarf nach einem Gerät, welches die im Betrieb auftretenden elastischen und thermischen Verformungen des Turbinenrotors kontinuierlich misst und aufzeichnet. Die wichtigsten dieser Formänderungen bestehen in der ungleichen axialen Wärmeausdehnung von Rotor und Stator sowie in der Verlagerung der Wellenachse bezüglich des Lagerzentrums, welche mannigfaltige Ursachen haben kann. Für die Analyse dieser Störungen ist überdies die Kenntnis der Geschwindigkeit, bei welcher sie auftreten, unerlässlich. Das im Folgenden beschriebene Messgerät gestattet, vier Grössen direkt zu messen, aus denen die Bewegung des Turbinenrotors in jedem Zeitmoment genau bestimmt werden kann:

- Die vertikale Exzentrizität des Wellenendes (Δy) ;
- Die horizontale Exzentrizität des Wellenendes (Δx) ;
- Die axiale Verschiebung des Wellenendes in bezug auf das Gehäuse (Δz) ;
- Die momentane Drehzahl der Welle (n).

Zusätzlich wird auch die mittlere Verschiebung der Zapfenmitte gegenüber der Lagermitte angezeigt, sowohl horizontal wie vertikal.

Als Messgeber wird auf der Turbinenwelle, ausserhalb des Lagers, eine Stahlscheibe aufgepresst, oder mit der Welle aus einem Stück geschmiedet. Um diese Scheibe herum sind drei Paare Magnetspulen am Turbinengehäuse befestigt, wie in Fig. 1 angedeutet, wobei sich die beiden Spulen eines Paares gegenüberliegen. Das erste Spulenpaar (A-A in Fig. 1) wirkt in vertikaler Richtung, das zweite (B-B) in horizontaler und das dritte (C-C) in axialer Richtung. Zur Erleichterung der Montage sind die Spulen B-B etwas unterhalb der Mittelebene angeordnet. Die beiden Spulen eines Paares sind zusammen mit zwei Widerständen zu einer Brücke geschaltet, wie aus Fig. 2 ersichtlich ist. Wird diese Brücke mit einer Spannung gespeist, deren Frequenz wesentlich höher liegt als die Rotationsfrequenz der Turbine — im vorliegenden Fall wurde eine Frequenz von 1000 Hz gewählt -, so erscheint infolge der Veränderung der Spuleninduktivitäten bei exzentrischem Lauf der Turbinenwelle bzw. axialer Verschiebung gegenüber dem

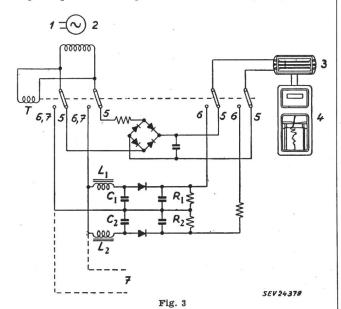

Anordnung der Geber an der Turbine A vertikale Geberspule; B horizontale Geberspule; C axiale Geberspule

Gehäuse am Isoliertransformator 3 die Trägerfrequenz im Takt der Störungen moduliert. Diese Spannung wird nun gleichgerichtet und die Trägerfrequenz durch ein Tiefpass-filter 5 herausgesiebt. Es bleibt die niederfrequente Störspannung, der ein Gleichspannungsanteil überlagert ist. Dieser konstante Anteil ist ein Mass für die mittlere Exzentrität des Lagerzapfens und kann in einem Gleichstrominstrument 6 direkt gemessen werden. Der Wechselspannungsanteil wird über einen weiteren Transformator 7 abgegriffen und gleichgerichtet und speist sodann über einen magnetischen Verstärker 9 ein Anzeige- und Registrierinstrument 10, mit welchem somit sämtliche Bewegungen des Wellenendes in der

jeweiligen Messrichtung erfasst werden. In axialer Richtung (Spulen C-C in Fig. 1) wird auf die Messung des Mittelwertes verzichtet, wodurch die Schaltung etwas einfacher ausfällt. Zur Speisung der Spulen mit 1000 Hz dient eine rotierende Umformergruppe, bestehend aus einem zweipoligen Dreiphasen-Asynchronmotor von 1 PS, starr gekuppelt mit einem

tung geschieht mit Hilfe eines Quarzoszillators von 1000 Hz in Verbindung mit einem Kathodenstrahl-Oszillographen (Methode der Lissajous-Figuren).

Im praktischen Betrieb wurden mit diesem Messgerät Exzentrizitäten des Wellenendes von einigen Hundertstel Millimeter sowie axiale Verschiebungen von der Grössen-



Prinzipschema der Exzentrizitätsmessung

1 Synchrongenerator 1000 Hz, 120 V; 2 Geberspule; 3 Isoliertransformator; 4, 8 Brücken-Gleichrichter; 5 Tiefpassfilter; 6 Instrument zur Messung der mittleren Lagerexzentrizität; 7 Trenntransformator; 9 magnetischer Verstärker; 10, 11 Instrument zur Momentananzeige und Registrierung der Exzentrizität

42 poligen, permanent-erregten Synchrongenerator. Zur Eichung der Messeinrichtung ist an einem Wellenende der Umformergruppe eine Scheibe mit genau bekannter Exzentrizität und ein zugehöriges Spulenpaar angebracht.

Die Messung der Drehzahl erfolgt mit Hilfe der Schaltung nach Fig. 3. Ein permanent-erregter Tachometerdynamo 2 erzeugt eine Wechselspannung, deren Amplitude und Frequenz der Drehzahl genau proportional ist. Diese Spannung wird zunächst gleichgerichtet und den Instrumenten zugeführt, welche einen Skalenbereich von 0...3000 U./min aufweisen. Um im Gebiet der Nenndrehzahl der Turbine die Genauigkeit zu verbessern, wird bei einer Drehzahl von ca. 2750 U./min durch das Relais T eine Kombination zweier Schwingkreise (L_1C_1 und L_2C_2 in Fig. 3) zugeschaltet, deren Eigenfrequenzen so eingestellt sind, dass die gleichgerichtete

Prinzipschema der Drehzahlmessung

1 Welle des Hauptgenerators; 2 Tachometerdynamo; 3, 4 Geschwindigkeits-Anzeige- bzw. Registrierinstrument; 5 Messbereich 0...3000 U./min; 6 Messbereich 2700...3300 U./min; 7 Messbereich 3200...3500 U./min

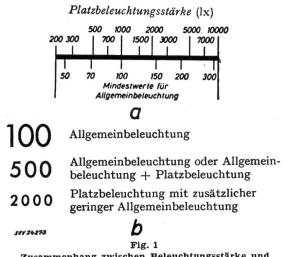
Summenspannung über 6-6, welche nun den Instrumenten 3 zugeführt wird, bei 2700 U./min null ist und bei 3300 U./min den Maximalwert erreicht. Es wird also nun zwischen diesen beiden Drehzahlwerten die ganze Skala bestrichen. Ein weiteres Relais mit analogen Schwingkreisen bewirkt eine zweite Umschaltung bei etwa 3250 U./min, wodurch ein dritter Messbereich von 3200...3500 U./min bei voller Skalenausnützung entsteht. Die Eichung dieser sehr empfindlichen Messeinrich-

ordnung eines Zehntelmillimeters noch einwandfrei gemessen und registriert. Durch die Aufzeichnung der Momentandrehzahl auf dem gleichen Registrierstreifen kann die Ursache der Störung oft leicht ermittelt werden.

C. W. Lüdeke

Über neue englische Leitsätze der Innenraumbeleuchtung

389.6(42): 628.93


[Nach W. Arndt und D. Fischer: Über neue englische Leitsätze für Innenraumbeleuchtung. Lichttechnik Bd. 7(1955), Nr. 10, S. 379...382]

Die englische lichttechnische Gesellschaft hat im Jahre 1955 unter dem Titel «I. E. S. Code for Lighting in Buildings» neue Leitsätze veröffentlicht, denen die neuesten Untersuchungen und Erkenntnisse aus den Gebieten der Physiologie des Sehens und der Lichttechnik zugrunde gelegt sind. Die Leitsätze sind in 3 Teile gegliedert, nämlich: 1. Licht und

Vergleich von typischen Beleuchtungsarten in bezug auf Schattigkeit, Leuchtdichteverteilung und Wirkungsgrad Tabelle

					Tabelle	
	Beleuchtungsart					
Faktor	direkt	vor- wiegend direkt	gleich- förmig	vor- wiegend indirekt	indirekt	
	0- 10% ¹) 90-100% ³)	10-40%¹) 60-90%²)	40-60%¹) 40-60%³)	60–90%¹) 10–40%²)	90-100% ¹) 0- 10% ²)	
Schattigkeit		Schatten etes Licht				
				weiche S diffus	Schatten, ses Licht	
	hohe Leuchtdichte, Lichtschwerpunkte					
Leuchtdichte- verteilung						
	niedrige Le geri für Refle				e Gefahr	
Wirkungsgrad der	hoher Beleuchtungswirkungsgrad, wenig beeinflusst durch Reflexionsgrad der Raumoberflächen					
Beleuchtung	niedriger Beleuchtungswirkungsgrad, erheblich beeinflusst durch Reflexionsgrad der Raumoberflächen					
1) Anteil de	s Lichts r	ach ohen	r.			

Anteil des Lichts nach oben.
 Anteil des Lichts nach unten.

Zusammenhang zwischen Beleuchtungsstärke und Beleuchtungsart

Verhältnis der Beleuchtungsstärken von Allgemeinbeleuchtung und zusätzlicher Arbeitsplatzbeleuchtung
 Beleuchtungsarten nach Beleuchtungsstärkenskala (Fig. 2)

Sehen; 2. Beleuchtung mit künstlichem Licht; 3. Tageslicht. In 3 Anhängen sind zu finden: a) Empfohlene Werte für Beleuchtungsstärken; b) Literaturangaben und c) ein Verzeichnis britischer Normblätter.

Im Kapitel Licht und Sehen werden kurz folgende Gebiete behandelt: Sehvorgang; Zusammenhang zwischen einfallendem und reflektiertem Licht in Abhängigkeit von der Oberfläche des Sehobjektes; der Einfluss des Sehobjektes auf dessen Erkennbarkeit; die Abhängigkeit der Sehschärfe und der Sehgeschwindigkeit von der Leuchtdichte; Adaptation, Lenkung der Aufmerksamkeit und Blendung in Abhängigkeit von der Leuchtdichtenverteilung im Gesichtsfeld; Wohlbefinden und Behaglichkeit.

Die im Kapitel Beleuchtung mit künstlichem Licht enthaltenen Empfehlungen beruhen auf wissenschaftlichen Untersuchungen, auf die in den Literaturangaben im Anhang hingewiesen wird. Die Beleuchtungsanlage ist wie die Fenster als wesentlicher Bestandteil des Gebäudes zu betrachten, weshalb eine frühzeitige Zusammenarbeit zwischen Architekt und Lichtingenieur erforderlich ist.

Aus den für die Planung der Beleuchtungsanlage nötigen Angaben wie Zweck des Gebäudes und der einzelnen Räume, deren Abmessungen und Einrichtung, Reflexionseigenschaften, Art der Sehaufgaben muss der Lichtingenieur die Wahl der Beleuchtungsart, die Beleuchtungsstärke und die Licht-

farbe entscheiden. Die Leuchten werden hinsichtlich Lichtverteilung in 5 Kategorien nach Tabelle I eingeteilt. Die Aufgabe der Leuchten besteht, ausser wenn dekorative Gründe dagegen sprechen, darin, Licht zur Wahrnehmung von Gegenständen zu liefern, und nicht darin, auffallend zu wirken.

Für längeren Aufenthalt bestimmte Räume sollen mit einer Allgemeinbeleuchtung von mindestens 60 lx auf 85 cm Höhe beleuchtet werden. Es sollen keine dunklen Zonen und keine Schwankungen der Adaptation entstehen. Für besondere Sehaufgaben ist eine zusätzliche Arbeitsplatzbeleuchtung nötig, wobei das Verhältnis von maximaler zu minimaler Beleuchtungsstärke im Arbeitsbereich aus Fig. 1a hervorgeht.

Für die meisten Sehaufgaben werden Beleuchtungsstärken empfohlen, die nicht mehr als 500 lx betragen und also mit Allgemeinbeleuchtung erreicht werden können. Die Anfangswerte der Beleuchtungsstärke werden mit Vorteil um das 1,3...1,5fache, in besonderen Fällen um das 2fache, höher gewählt, als die empfohlenen Werte betragen.

Die Blendung soll durch folgende Massnahmen vermieden werden:

- a) Die Lichtstärken und Leuchtdichten der Lichtquellen und spiegelnder Oberflächen müssen in Richtung auf das Auge so gering als möglich sein;
- b) Die Umgebung der Lichtquellen ist so aufzuhellen, dass keine unangenehmen Leuchtdichtekontraste entstehen;
- c) Alle sichtbaren Lichtquellen sollen möglichst weit ausserhalb der normalen Blickrichtung liegen;
- d) Die mittlere Beleuchtungsstärke auf horizontaler Arbeitsebene soll mindestens dreimal so hoch sein wie die von allen sichtbaren Lichtquellen direkt auf vertikalen Flächen erzeugte Beleuchtungsstärke;

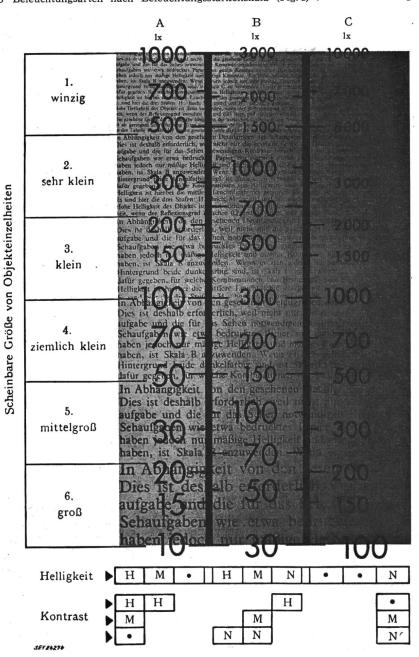


Fig. 2

Beleuchtungsstärkenskala

H hoch: M mittel: N niedrig

Höchstzulässige mittlere Leuchtdichte (in sb) für Leuchten in heller Umgebung

Tabelle II

	Sichtbare Fläche der Leuchte						
Mittlere horizontale	grösser als 0,13 m ²			kleiner als 0,13 m ²			
Beleuchtungs- stärke	Aufhängehöhe über Boden						
lx	< 2,5 m	2,5-5 m	> 5 m	< 2,5 m	2,5–5 m	> 5 m	
< 150	0,15	0,3	0,45	0,3	0,6	1,05	
150500	0,3	0,6	1,05	0,45	0,9	1,5	
> 500	0,45	0,9	1,5	0,75	1,05	1,5	

- e) Die mittlere Leuchtdichte jeder sichtbaren Lichtquelle sollte innerhalb eines Winkelbereiches von 110° die Werte der Tabelle II nicht überschreiten. Wird der Blick oft von der Horizontalen erhoben, so ist ein Winkelbereich von 135° notwendig;
- f) Die Leuchtdichte der Lichtquellen, die der Beleuchtung von Verkehrswegen, Treppen und nur kurzzeitig betretenen Räumen dienen, soll in einem Winkelbereich von 110° den Wert von 0,6 sb nicht überschreiten;
- g) Arbeitsplatzleuchten müssen derart abgeschirmt sein, dass die Leuchtdichte der nach aussen sichtbaren Fläche 0,03 sb nicht überschreitet, bei transportablen Leuchten soll dieser Wert nicht grösser als 0,15 sb sein.

Die Beleuchtungsstärkeskala beruht auf der Tatsache, dass die Beleuchtungsstärke für bequemes, schnelles und richtiges Sehen u.a. vom Abstand der Sehaufgabe vom Auge, der Grösse des Sehobjektes, seiner Farbe und seinem Reflexionsgrad, sowie dem Kontrast zwischen Farbe und Leuchtdichte des Sehobjektes und der Umgebung abhängt. Innerhalb eines Bereiches von 10...10 000 lx, welche Beleuch-

Beispiele für die Einteilung der Sehobjekte

Tabelle III

Scheinbare Grösse	DĮS	Wirkliche Objektgrösse S im Abstand D soll nicht kleiner erscheinen als untenstehende Buchstaben aus 30 cm Betrachtungsabstand	Industrielle Sehaufgaben
winzig	4100 3600 3200	MCM194140407W11404177114470171047	Uhrmacherei
sehr klein	2800 2450	MOWHKUCFIBYGMAGIBXURQYIO	technisches Zeichnen
klein	2150	R M S K A L S P W R O H D F S C V N	Handnähen
ziemlich klein	1900 1700 1500	LRNVKGZHOIWUP	Maschinen- nähen
mittel- gross	1300 1150	B S O N F V B C K	grobe Maschi- nenarbeit
gross	1000 850	ADETUT	Ziegelpressen

tungsstärken für Innenräume in Betracht kommen, ergeben gleiche prozentuale Steigerungen der Beleuchtungsstärke ungefähr gleiche lineare Steigerung des Sehvermögens.

Die Beleuchtungsstärkenskala des I.E.S.-Code weist 3 Skalen auf, wie aus Fig. 2 hervorgeht. Skala A ist anzuwenden bei grossem Kontrast, Skala B bei mittlerem (häufigste Anwendung) und Skala C bei geringem Kontrast. In jeder Skala sind die Beleuchtungsstärken abgestuft nach der Grösse des Sehobjektes, wie in Tabelle III erläutert. Die zweckmässigste Beleuchtungsart wird durch die Grösse der Zahlen angegeben (siehe Fig. 1b).

Wenn das Sehobjekt sich in Bewegung befindet, sollte die Beleuchtungsstärke mindestens einen Skalenschritt über der Beleuchtungsstärke liegen, welche auf Grund von Kontrast und Grösse gewählt wird (also ca. 50 % höher).

Im Anhang ist eine Liste der für verschiedene Sehaufgaben empfohlenen Beleuchtungsstärken zu finden, wobei diese an Hand von Fig. 2 ermittelt wurden. Die Tabelle IV zeigt einen Auszug daraus.

Liste der Beleuchtungsstärken für bestimmte Arbeiten

Tabelle IV

					IC IV
Raum	lx	Grad	Raum	lx	Grad
Schlafraum	30	6 B	Turnhalle	100	5 B
	100	5 B	Weben,	200	
Wohnzimmer	70	5 B	dunkle Stoffe	300	3 A
Lesen, gelegentlich .	70	4 A	helle Stoffe	200	3 A
dauernd	150	3 A	Kontrolle,		
Nähen	200	4 B	winzig	2000	1 B
Krankenzimmer	150	4 B	sehr klein	1000	2 B
Schreibzimmer	70	5 B	klein	500	3 B
Zeichenraum	150	5 B	mittel	200	4 B
Zeichentisch	300	3 B	gewöhnlich	150	5 B
Klassenzimmer und			Giesserei, Kern-		
Laboratorium	150	4 B	machung und		
Bäckereien	200	6 B	feine Formung	200	5 C
Restaurants	100	6 B	Farbabmusterung .	700	4 C
l l		1 . 1	25 25		

Das letzte Kapitel behandelt die Tageslichtbeleuchtung von Innenräumen. Der erforderliche Tageslichtfaktor $({}^0/{}_0)$ kann aus Fig. 2 durch Division der abgelesenen Beleuchtungsstärken durch 50 errechnet werden.

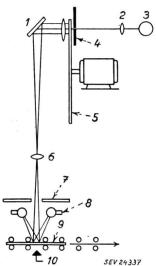
Bemerkungen des Referenten

Der I. E. S. Code, der bereits auch in Frankreich angewendet wird, verdient auch bei uns Interesse, um so mehr, als unsere schweizerischen Leitsätze für elektrische Beleuchtung derart veraltet sind, dass sie praktisch überhaupt nicht mehr angewendet werden können und man sich bisher trotzdem nicht zu einer Revision hat entschliessen können. Auffallend an der englischen Beleuchtungsstärkenskala ist, dass man im Gegensatz zu den amerikanischen Empfehlungen mit verhältnismässig geringen Beleuchtungsstärken auskommt.

 $E.\,Bitterli$

Nachrichten- und Hochfrequenztechnik — Télécommunications et haute fréquence

Photoelektrischer Leser für Druckzeichen

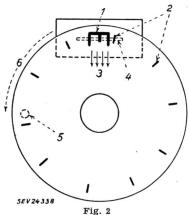

[Nach D. H. Shepard und C. C. Heasly: Photoelectric Reader Feeds Business Machines. Electronics Bd. 28(1955), Nr. 5, S. 134...138]

Das Übertragen geschriebener Information in eine von der Rechenmaschine verarbeitbare Form benötigt normalerweise eine Arbeitskraft, welche das Dokument liest und eine Tastatur betätigt. Dieser zeitraubende Vorgang beschränkt oft die wirtschaftliche Verwendung von Rechenautomaten und ist auch Bedienungsfehlern unterworfen.

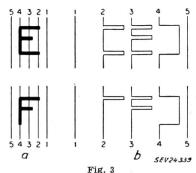
Der photoelektrische Leser setzt gedruckte Zeichen mit einer Geschwindigkeit von 3600 Worten/Minute in das Speichermedium einer Rechenmaschine um, entweder in die Form von Lochkarten, Lochstreifen oder auf Magnetband. Es ist auch möglich, die Information zum Sortieren, Heraussuchen oder für das Ablesen von Tabellen zu verwenden. Die Prinzipanordnung ist in Fig. 1 dargestellt. Das Schriftstück wird mit gleichförmiger Geschwindigkeit durch die Lesestelle geschoben, wo es hell beleuchtet wird. Das reflektierte Bild der Zeichen wird über ein optisches System durch eine rotierende Abtastscheibe auf eine Photozelle geworfen. Diese Abtastscheibe (Fig. 2) enthält eine Anzahl radialer Schlitze, welche nacheinander über eine feste Schlitzblende gleiten. Dadurch fällt durch den Schnittpunkt der beiden Schlitze ein Lichtstrahl aus einem kleinen Bildelement auf die Photozelle. Mit der Rotation der Scheibe bewegt sich der Schnittpunkt und bestreicht das Bild senkrecht. Durch die gleichförmige Bewegung des Schriftstückes in der Zeilenrichtung wird dann ein Schriftzeichen mit etwa 25...30 solcher «Schnitte» gelesen.

Während des Abtastens eines Zeichens variiert die Ausgangsspannung der Photozelle. Sie enthält positive Impulse,

welche den dunklen Stellen der Zeichen entsprechen, während die Spannung zwischen diesen Impulsen die Helligkeit des Papiers wiedergibt. Das Ausgangssignal entspricht Fig. 3.



In einer Regelstuse werden die Kontrastdisserenzen für verschiedene Papiere und Druckfarben im Signal elektrisch auskorrigiert, worauf dieses noch beidseitig beschnitten wird. Das Signal enthält eine jedem Zeichen charakteristische Impulsfolge und wird dem Auswerter zugeführt; dieser ent-


Fig. 1 Optisches System zum Lesen einer Textzeile

1 Spiegel; 2 Linse; 3 Vervielfacher-Photozelle; 4 Platte mit waagrechtem Schlitz; 5 rotierende Abtastscheibe; 6 Objektiv; 7 Abdeckmaske; 8 Beleuchtung; 9 Schriftstück; 10 Lesestelle

spricht in seinem Aufbau einem speziellen Stellen-Rechner, welcher aus den Impulsfolgen diejenigen aussucht, die für einzelne Zeichen charakteristisch sind. Der Buchstabe «E» z.B. wird zu Beginn des Abtastvorganges eine Reihe von drei gleichen Impulsen aufweisen, welche von mindestens einem langen Impuls gefolgt sind.

Abtastscheibe für 25 bis 30 vertikale Abtastungen pro Zeichen 1 Bild; 2 radiale Schlitze; 3 Bewegungsrichtung des Bildes; 4 waagrechter Schlitz; 5 Photozelle für Zeitmarkierung;

Charakteristische Impulsfolgen beim Lesen der Buchstaben E und F a Abtastungen; b resultierende Impulsfolgen

Die Maschine kann unmögliche Impulskombinationen als Irrtum erkennen und ein Rückweisesignal auslösen, welches seinerseits dazu verwendet wird, um das betreffende Schriftstück auszuschneiden. Bei klarem Schriftbild erreicht der elektronische Leser dieselbe Zuverlässigkeit wie ein Lochkarten-Abtaster.

H. Probst

Messeinrichtung zur visuellen Anpassung sehr breitbandiger Impedanzen im Frequenzbereich von 80...250 MHz (Reflektometer)

[Nach R. Dalziel und A. Challands: Visual Impedance-Matching Equipment for 80-250 Mc./s Wirel. Engr. Bd. 32(1955), Nr. 4, S. 99...107]

Mit der Entwicklung sehr breitbandiger Antennen im Ultrakurzwellenbereich hat sich zwangsläufig das Bedürfnis nach einer geeigneten praktischen Impedanzmesseinrichtung ergeben. Die punktweise Messung im Frequenzspektrum mittels der klassischen Brückenmethoden wird um so zeitraubender und unbefriedigender, je breiter der Anpassungs-

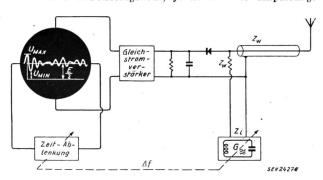


Fig. 1

 Δf Frequenzhub von 80...250 MHz; G Generator mit konstanter Ausgangsspannung; Z_i innere Impedanz des Generators $Z_i \leqslant Z_w$; Z_w Wellenimpedanz des Kabèls

bereich des Messobjektes ist. UKW-Antennen für Flugzeug-Überwachungsempfänger z.B. können eine gute Impedanz-Anpassung über eine ganze Oktave oder mehr verlangen. Eine genaue Berechnung solcher Antennen ist nicht möglich und der Abgleich erfolgt in jedem Falle empirisch. Die punktweise Kontrolle führt hier kaum oder doch nur äus-

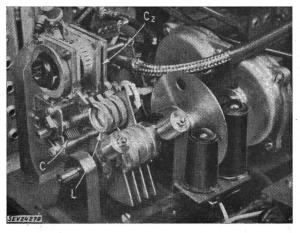


Fig. 2

Oszillatorschwingkreis

C, C_2 variable Kapazitäten; L Induktivität mit veränderlichem induktivem Kurzschluss (erzielt durch zwischen den Spulenwindungen bewegte Kondensatorplatten)

serst mühsam zum Ziel, bedeutet doch eine Verbesserung der Anpassung bei einer bestimmten Frequenz sehr oft eine Verschlechterung bei anderen Frequenzen und umgekehrt.

Für solche und ähnliche Fälle wurde das beschriebene Messgerät entwickelt, das eine direkte Übersicht der Impedanzanpassung über einen Frequenzbereich von 80...250 MHz mit guter Messgenauigkeit erlaubt. Frühere Geräte ähnlicher Art benötigten hiefür mehrere Meßstufen. Im Prinzip (Fig.1) handelt es sich um die Aufzeichnung der Spannungswelligkeit in Funktion der Frequenz. Diese Methode gibt nur dann einfach zu deutende Ergebnisse, wenn der Messgenerator über den gesamten Frequenzbereich sehr gut an den Wellenwiderstand des Messkabels angepasst ist, welches für die Ver-

bindung des Messgerätes mit dem Messobjekt benötigt wird, so dass die Eingangsreflektion vernachlässigt werden darf. Im vorliegenden Gerät wird dies erreicht durch einen sehr niederohmigen Generator (<1 Ω über den ganzen Frequenzbereich) in Verbindung mit einem besonders ausgesuchten, ohmisch wirkenden Seriewiderstand. Die meisten praktischen Schwierigkeiten bereitet aber dem Konstrukteur in der Regel die ebenfalls erforderliche hohe Konstanz der Meßspannung, die bei einem derart breiten Schwingbereich des Oszillators nur durch besondere Massnahmen gelöst werden kann. Die Lösung wurde hier gefunden einerseits durch eine spezielle Ausbildung des mechanisch durchgestimmten Schwingkreises (Fig. 2), anderseits durch eine automatische Amplituden steuerung durch Rückführung der gleichgerichteten Ausgangsspannung des Messgenerators über einen stabilisierten Gleichstromverstärker auf die Speisespannung des Messoszil-

lators. Die Durchstimmung des Schwingkreises erfolgt gleichzeitig kapazitiv und induktiv, wobei die Induktivitätsänderung durch zwischen den Spulenwindungen bewegte Kondensatorplatten erzielt wird (veränderlicher induktiver Kurzschluss). Zur Vermeidung unzulässiger Störspannungen beim raschen Durchdrehen des Schwingkreiskondensators (ca. 1500 U./min), mussten die Metall-Lager durch ein Isoliermaterial ähnlich dem «Ganevasit» ersetzt werden («Tufnol»). Die elektrische Länge des Messkabels beträgt 15 m, entsprechend einer geometrischen Länge von etwa 10 m bei Polythen-Vollisolation, so dass bei einem Frequenzhub von 170 MHz 34 Reflexions-Nullstellen durchlaufen werden. Bei genauen Impedanzmessungen muss dann der Frequenzgang der Kabeldämpfung berücksichtigt werden. Die mit diesem Gerät erzielten Resultate zeigen, dass die Messgenauigkeit vergleichbar ist mit normalen Brückenmessungen. W. Klein

Wirtschaftliche Mitteilungen — Communications de nature économique

Nach der Volksabstimmung über die Rheinau-Initiative II

342.572 : 347.247.3

Das überparteiliche Rheinau-Komitee und der Schweizerische Naturschutzbund haben erneut eine Schlacht verloren. Das Schweizervolk verwarf nach einem allerdings etwas im Schatten der Hovag stehenden Abstimmungskampf am 13. Mai 1956 die Rheinau-Initiative II mit 266 435 gegen 453 456 Stimmen. Alle Standesstimmen, mit Ausnahme jener der Kantone Zürich, Schaffhausen und Baselstadt, lauteten auf Verwerfung. Die Verwerfung fiel diesmal etwas weniger wuchtig aus als bei der Abstimmung über die Rheinau-Initiative I, die am 5. Dezember 1954 mit 229 000 gegen 503 000 Stimmen und allen Standesstimmen gegen jene von Schaffhausen abgelehnt worden war. Dabei ist allerdings die geänderte Fragestellung zu berücksichtigen. Die Ablehnung des Abbruches eines bereits im Bau stehenden Kraftwerkes musste leichter zu erreichen sein, als die Verneinung der Vermehrung der Volksrechte auf dem Gebiete der Erteilung von Wasserrechts-Konzessionen.

Der Entscheid des Volkes ist um so höher zu werten, als auch dieses Mal mit allen Mitteln versucht wurde, Herz und Verstand gegeneinander auszuspielen und die moderne Technik als reine Dekadenzerscheinung und Verrat an der Heimat hinzustellen. So wurde dem Bürger mit dem Gemsenplakat, mit Inserat, Flugblatt und Zeitungsartikel immer wieder die Behauptung eingehämmert, einzig die Annahme der Rheinau-Initiative II rette die Schweiz vor der Gefahr einer unmittelbar drohenden Verschandelung. Insbesondere versuchten die Naturschutzkreise die Öffentlichkeit unter Druck zu setzen und zu erschrecken, indem sie von riesigen Staumauern im Nationalpark, von einer völligen Trockenlegung des Inns im ganzen Unterengadin und von übermässigen Gewinnen des Elektrokapitals auf Kosten des Volkes sprachen.

Dass von solchen Übertreibungen und Entstellungen das Urteil des Stimmbürgers nicht stärker getrübt wurde, darf als Erfolg der systematischen Aufklärung gebucht werden. Besonders erfreulich ist die Feststellung, dass die angeschlagenen Klassenkampftöne in den Arbeiterhochburgen der Städte nicht mehr verfangen haben. Der Arbeiter liess sich offenbar mit Ausnahme von Zürch und Basel eher vom Slogan «Strom schafft Brot» überzeugen, als sich vom zu Unrecht gezeichneten Zerrbild eines verschandelten Nationalparkes erschrecken zu lassen.

Die Fragestellung am 13. Mai war deshalb nicht ungefährlich, weil sie demokratische Urinstinkte zu wecken trachtete. Es bedurfte einer grossen staatspolitischen Einsicht und Bescheidung, die Erweiterung der Volksrechte abzulehnen und sich zu dem Gedanken zu bekennen, dass wir durch ein Mehr von Volksabstimmungen das Verhältnis von Natur und Technik nicht verbessern. Darf man hoffen, dass die Kreise um den Naturschutzbund nun erkennen, dass der von ihnen zweimal in Volksabstimmungen versuchte Weg nicht zum gewünschten Erfolg führt?

Soll die Naturschutzbewegung mit ihren wichtigen und berechtigten Anliegen nicht schwere Rückschläge erleiden, so ist jetzt die Zeit zu einer gründlichen Überprüfung des Vorgehens und der Zielsetzung gekommen. Vor allem sollten jene Kräfte gestärkt werden, die für eine bessere und demokratischere Willensbildung in der Bundesleitung selbst eintreten und für die Zukunft das Fassen wichtiger Entschlüsse durch allzu kleine Vorstandszirkel zu verhindern mithelfen.

Den vielen Mitgliedern des Schweizerischen Naturschutzbundes, die aus technischen Berufen stammen, bietet sich hier Gelegenheit zu einer notwendigen und durchaus möglichen Kursänderung, wie sie vor allem durch eine Statutenänderung zu erreichen wäre, Wesentliches beizutragen. Je besser die 50 000 Mitglieder des Bundes durch Diskussionen in kantonalen und regionalen Versammlungen die Meinungsbildung über wichtige Fragen, wie sie z. B. das Nationalparkproblem darstellt, abklären, um so eher wird das heute zweifellos bestehende Malaise verschwinden, und um so rascher wird der Naturschutzbund auch sein früheres Ansehen in der Öffentlichkeit zurückgewinnen. Es geht mit unserem Appell für ein aktiveres Mitmachen der sich aus technischen Berufen rekrutierenden Mitglieder des Bundes keineswegs darum, die Handlungsfähigkeit des Naturschutzbundes lähmen zu wollen, sondern darum, ihn weniger zu einem Werkzeug einiger ehrgeiziger Exponenten einer extremen Naturschutzidee werden zu lassen. Die Aufgaben, die sich heute bei einer weiteren Technisierung unseres Landes, beim Bau von Autobahnen, von Überlandstrassen, von Sesselbahnen, von Kraftwerken und Überlandleitungen, beim Wachstum unserer Städte und Dörfer, bei der Schaffung neuer Industriezonen, stellen, sind derart gross, dass sie nur durch eine vernünftige Zusammenarbeit und ein Abwägen der wirtschaftlichen, rechtlichen, verkehrstechnischen und Heimatschutzstandpunkte gelöst werden können. Wollen wir die richtigen und auf das Allgemeininteresse abgestimmten Maßstäbe für einen in unserem Land nicht nur bei Kraftwerkbauten anzuwendenden Landschaftsschutz finden, so kann das nur durch ein Gespräch aller dafür Zuständigen und nicht durch das Durchpeitschen eines einzigen Standpunktes in einer die Gemüter erhitzenden Volksabstimmung geschehen.

Es ist deshalb zu wünschen, dass man sich nach dem 13. Mai bald einmal daran erinnert, dass Naturschutz und Technik einander nötig haben, und dass es für ein fruchtbares Gespräch wohl auch heute noch nicht zu spät ist. Mit einer einsichtslosen Fortsetzung der Kampfstimmung und der Androhung einer dritten Volksinitiative, ohne den vorherigen ernsthaften Versuch, in der Nationalparkfrage zu einer Verständigung der Parteien zu gelangen, würden die Kreise um den Naturschutzbund viel von ihrem Ansehen verlieren.

Vor allem sollte deshalb vor einem übereilten Beschluss auf Lancierung einer dritten Initiative abgewartet werden, ob nicht die angebotene Erweiterung des Nationalparkes zu einem tragbaren Kompromiss führen kann. Den in Aussicht stehenden Verhandlungen zwischen der Gemeinde Zernez und den Sachwaltern des Nationalparkes unter Führung des eidgenössischen Departementes des Innern kommt deshalb eine grosse Bedeutung zu.

Nicht darauf kommt es an, dass wir heute unser Gewissen allein durch die Schaffung einiger Natur-Reservate entlasten, sondern, dass wir in allem Tun und Lassen, in der Art unserer Wohnkultur wie in der Befriedung unserer Verkehrsund Ferienbedürfnisse, nie vergessen, dass der Technisierung des Lebens ganz allgemein bestimmte Grenzen gesetzt sind. F. Wanner

Données économiques suisses

(Extraits de «La Vie économique» et du «Bulletin mensuel Banque Nationale Suisse»)

		Mars		
N°	· · · · · · · · · · · · · · · · · · ·	1955	1956	
1.	Importations)	562,1	627,3	
	(janvier-mars) en 10° fr.	(1494,4)	(1666,2)	
	Exportations	474,2	534,9	
	(janvier-mars))	(1288,1)	(1425,8)	
2.	Marché du travail: demandes	(1200,1)	(1120,0)	
	de places	3 587	2 406	
3.	Index du acôt de le vie *)) (172	174	
"	Index du coût de la vie*) août { Index du commerce de } 1939	112	114	
	gros*)= 100	215	217	
	Prix courant de détail *):	213	21.	
	(moyenne du pays) (août 1939 = 100)		9	
	Eclairage électrique ct./kWh	34 (92)	34 (92)	
	Cuisine électrique ct./kWh	6,6 (102)	6,6 (102)	
	Gaz ct./m ³	29 (121)	29 (121)	
	Coke d'usine à gaz fr./100 kg	16 46/215)	16,51(215)	
4.		10,40(213)	10,51(215)	
4.	Permis délivrés pour logements	1.746	0.000	
1 1	à construire dans 42 villes .	1 746	2 082	
5.	(janvier-mars)	(5 068)	(4 296)	
6.	Taux d'escompte officiel º/o	1,50	1,50	
0.	Banque Nationale (p. ultimo)	5 105	F 969	
	Billets en circulation 10° fr.	5 105	5 263	
	Autres engagements à vue 10° fr.	1 727 6 820	$\begin{array}{c c} 2 \ 067 \\ 7 \ 321 \end{array}$	
	Encaisse or et devises or 10° fr.	0 820	1 321	
	Couverture en or des billets en circulation et des au-			
	tres engagements à vue $0/0$	91,62	91,83	
7.	Indices des bourses suisses (le	91,02	91,03	
**	25 du mois)			
	Obligations	103	100	
	Actions	433	443	
	Actions industrielles	527	567	
8.	Faillites	36	36	
J	(janvier-mars)	(101)	(115)	
	Concordats	18	12	
	(janvier-mars)	(50)	(45)	
		(00)	(49)	
9.	Statistique du tourisme	Févi		
1	Occupation moyenne des lits	1955	1956	
	existants, en $0/0$	28,3	26,8	
10.	Recettes d'exploitation des	Fév	rier	
10.	CFF seuls	120	1956	
		1000	1000	
	Recettes de transport			
	Voyageurs et mar-	55,6	52,4	
	chandises	(109,6)	(108,3)	
	(janvier-février) \\ \frac{100 fr.}{\text{fr.}}	(103,0)	(100,3)	
		60,7	. 57,5	
	tion	(119,9)	(118,4)	
	(Janvier-leviler)	(112,7)	(1,10,4)	

^{*)} Conformément au nouveau mode de calcul appliqué par le Département fédéral de l'économie publique pour déterminer l'index général, la base juin 1914 = 100 a été abandonnée et remplacée par la base août 1939 = 100.

Miscellanea

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

Elektrizitätswerk Basel. Zu Ersten Ingenieuren wurden durch den Regierungsrat von Basel-Stadt gewählt P. Troller, dipl. El-Ing. ETH, Mitglied des SEV seit 1938, und G. Gass, dipl. El-Ing. ETH, Mitglied des SEV seit 1943.

Kleine Mitteilungen

75° Anniversaire du Congrès International des Electriciens et de l'Exposition Internationale d'Electricité de 1881. A l'occasion du soixante-quinzième anniversaire du premier Congrès International des Electriciens et de la première Exposition Internationale d'Electricité, tenus à Paris en 1881, la Société Française des Electriciens, le Comité Electrotechnique Français, et l'Union Technique de l'Electricité, organisent, avec le concours de la Commission Electrotechnique Internationale (CEI), la Conférence Internationale des Grands Réseaux Electriques (CIGRE), et la Société Française de Physique, une Réunion Commémorative Solennelle, qui se tiendra le Mercredi 30 Mai 1956, à partir de 10 heures, dans la grande salle des Congrès du Centre Marcelin-Berthelot (Maison de la Chimie), 28bis, Rue Saint-Dominique, à Paris (1°).

Au cours de cette séance, plusieurs orateurs mandatés par les diverses Organisations intéressées rappelleront le rôle fondamental que ce Congrès a tenu, à l'origine du développement industriel de l'Electricité, et évoqueront successivement les résultats essentiels de l'Œuvre dont il a marqué le point de départ, dans les domaines des Mesures Electriques, de la Normalisation Internationale du Matériel Electrique, et des diverses Applications Scientifiques et Industrielles à courants forts et à courants faibles. Le programme peut être obtenu auprès des organisateurs à l'adresse susmentionnée.

Congrès International de Cybernétique. La Province de Namur organise, sous le patronage du Ministère de l'Instruction Publique et de l'UNESCO, et sous la présidence d'honneur du Gouverneur de la Province de Namur, un Congrès International de Cybernétique qui se tiendra à Namur, Belgique, du 26 au 29 juin 1956. Les promoteurs de cette manifestation ont pour objectif de provoquer une large confrontation des mouvements de pensée qui se développent autour du terme «Cybernétique» et de faire le point des réalisations que compte à son actif cette Science nouvelle. Les travaux seront répartis en quatre sections, qui couvriront tous les aspects scientifiques et techniques du développement de la cybernétique.

Section I: Principes et méthodes de la cybernétique. Présidence: Pierre Auger, professeur à la Sorbonne, directeur du Département des sciences exactes et naturelle de l'UNESCO. Section II: Les machines sémantiques (ou informationelles). Présidence: Louis Couffignal, inspecteur général de l'Instruction Publique, directeur du Laboratoire de Calcul de l'Institut Blaise Pascal, Paris. Section III: L'automation (usines automatiques). Présidence: Georges R. Boulanger, professeur à la Faculté Polytechnique de Mons et à l'Université Libre de Bruxelles, président du Congrès. Section IV: La cybernétique et la vie. Présidence: W. Grey Walter, directeur du Département de physiologie du Burden Neurological Institute, Bristol.

Les personnes qui auraient l'intention de participer au congrès au titre d'auditeur, d'auteur de communication ou d'exposant de matériel, sont priées de se faire connaître en écrivant au Secrétariat du Congrès International de Cybernétique, 13, rue Basse-Marcelle, Namur, Belgique. Des informations détaillées leur seront envoyées.

110 Jahre Akademischer Verein Hütte

Der vor allem durch die «Hütte, Des Ingenieurs Taschenbuch» in den Kreisen der Technik bekannte Akademische Verein Hütte e.V., Berlin, blickt im Mai dieses Jahres auf ein hundertzehnjähriges Bestehen zurück. Gegründet am 16. Mai 1846 von Studierenden des damaligen Königlichen Gewerbe-Instituts, der jetzigen Technischen Universität Berlin-Charlottenburg, nahm die «Hütte» bereits im ersten Jahrzehnt drei grosse Aufgaben in Angriff, die ihren Ruf begründet haben.

Als erstes wurden von bewährten technischen Anlagen brauchbare Zeichnungen herausgegeben.

Als zweites ist die Gründung des Vereins deutscher Ingenieure durch die «Hütte» auf ihrem zehnten Stiftungsfest zu nennen.

Die dritte Tat bestand dann in der 1856 erfolgten Schaffung der «Hütte, Des Ingenieurs Taschenbuch», die heute in 28. Auflage seit ihrer Gründung ohne Unterbrechung erscheint.

Mit der Feier ihres 110jährigen Bestehens verbindet die Hütte die Einweihung eines neu in Berlin erbauten «Hüttenhauses». Dieses tritt an die Stelle des ersten, 1894 erbauten Hauses der Hütte, das mit der wertvollen Hüttenbibliothek dem letzten Weltkrieg zum Opfer fiel.

Kolloquium an der ETH über moderne Probleme der theoretischen und angewandten Elektrotechnik für Ingenieure. In diesem Kolloquium werden folgende Vorträge gehalten:

Dipl. Math. W. Frey (A.-G. Brown, Boveri & Cie., Baden): Frequenz-Leistungs-Regulierung (28. Mai 1956).
Dipl. Ing. B. Delaloye (Generaldirektion der PTT, Bern): La mesure de la largeur de bande occupée du spectre des émissions radioélectriques des signaux périodiques et des signaux aléatoires (11. Juni 1956).

Die Vorträge finden punkt 17.00 Uhr im Hörsaal 15c des Physikgebäudes der ETH, Gloriastrasse 35, Zürich 7/6, statt.

Freifachvorlesungen an der Eidgenössischen Technischen Hochschule. An der Allgemeinen Abteilung für Freifächer der ETH in Zürich werden während des Sommersemesters u.a. folgende öffentliche Vorlesungen gehalten, auf die wir die Leser besonders aufmerksam machen:

Sprachen und Philosophie

- Prof. Dr. G. Calgari: Corso inferiore annuale, 2ª parte: Introduzione alla lingua e alla cultura italiana (Mo. 17-18 Uhr und Do. 17-18 Uhr, 26d).
- Prof. Dr. E. Dickenmann: Russisch für Anfänger (Mi. 18-19 Uhr, 40c).
- Prof. Dr. J. A. Doerig: Einführung in die spanische Sprache und Kultur II (Mo. 18-19 Uhr und Fr. 18-19 Uhr, II).
- Dr. F. Kröner: Einführung in die Philosophie der Wissenschaften: Die erkenntnistheoretischen Grundlagen der physikalischen Kosmologie und der Atomphysik (Do. 17-19 Uhr,
- Pereira Loureiro: Einführung ins Neuportugiesische, 2, Teil 1) (Di 17-18 Uhr und Do 18-19 Uhr, Universität Zürich).
- Prof. Dr. K. Schmid: Deutsch für Fremdsprachige (Mo. 18-19 Uhr und Do. 18-19 Uhr, 24c).
- Prof. Dr. E. H. von Tscharner: Chinesisch II (Mo. 17-19 Uhr,
- Prof. Dr. J. H. Wild: The English Scientific and Technical Vocabulary II (Di. 17-19 Uhr, 3c).

Politische Wissenschaften

- Prof. Dr. G. Guggenbühl: Besprechung aktueller Fragen schweizerischer und allgemeiner Politik und Kultur (Do. 17-19 Uhr, 18d).
- Prof. Dr. J. R. de Salis: Questions actuelles (Di. 17-18 Uhr, 24c).

Wirtschaft und Recht

- Prof. Dr. B. Bauer: Ausgewählte Kapitel der Energiewirtschaft (Do. 17-18 Uhr, ML III).
- Prof. Dr. H. Biäsch: Sozialpsychologie (Fr. 17-19 Uhr, 16c).
- Prof. Dr. E. Böhler: Finanzierung industrieller Unternehmungen (Mi. 17-19 Uhr, 3d).
- Prof. Dr. E. Böhler: Struktur und Entwicklungstendenz der schweizerischen Volkswirtschaft (Fr. 17-18 Uhr, 3d).
- Prof. Dr. E. Böhler: Sozialpolitik: Geschichte und aktuelle Probleme (Mo. 18-19 Uhr, 3d).
- Prof. Dr. W. Hug: Sachenrecht (Mo. 10-12 Uhr und Di. 17-18 Uhr, III).
- Prof. Dr. W. Hug: Patentrecht (Di. 18-19 Uhr, 40c).
- Prof. Dr. P. R. Rosset: Le financement de l'entreprise (Sa. 10-12 Uhr, 40c).
- P.-D. Dr. J. F. W. Trechsel: Betriebswirtschaftliche Führung der Unternehmung I (Verkaufsorganisation, Kostenrechnung), mit Übungen (Mo. 8—10 Uhr, 40c).

Naturwissenschaften

- Dr. F. Alder: Sicherheitsprobleme beim Kernreaktor (Do. 10-11 Uhr, ML IV).
- 1) Kurs an der Universität Zürich; ist an der Universitäts-

- Prof. Dr. F. Bäbler: Tensorrechnung (Fr. 10-12 Uhr. 16c).
- P.-D. Dr. A. Bieler: Grundlagen der Hochdrucktechnik II (Di. 11-12 Uhr, Ch. 28d).
- Dr. W. Dubs: Bauarten von Kernreaktoren zur Energieerzeugung (Do. 11-12 Uhr, ML IV).
- Prof. Dr. F. Gassmann: Geophysik I (Seismik, Geoelektrik), (Do. 7-9 Uhr, 30b).
- Prof. Dr. O. Gübeli: Wasseranalyse (Mi. 17-18 Uhr, Ch. 2d).
- Prof. Dr. H. Gutersohn: Geographie der Schweiz (Mi. 8-10 Uhr, NO 2g).
- Prof. Dr. H. Gutersohn: Hydrographie (Mo. 9-11 Uhr, NO 2g). Dr. W. Hälg: Reaktortheorie (Do. 17-19 Uhr, alle 14 Tage, ML IV).
- P.-D. Dr. E. Heilbronner: Elektronentheorie organischer Verbindungen II, gratis (Do. 17-18 Uhr, Ch. 18d).
- Prof. Dr. O. Huber: Physik der Elektronenhülle (Sa. 9-10 Uhr, Ph. 17c).
- P.-D. Dr. N. Ibl: Elektrochemische Methoden II, gratis (Mo. 17-18 Uhr, kann aber verlegt werden, Ch. 28d).
- Prof. Dr. A. Linder: Korrelationsrechnung (Di. 17—19 Uhr, 23d).
- P.-D. Dr. P. E. Marmier: Einführung in die Kernphysik II (Do. 10-12 Uhr, Ph. 6c).
- P.-D. Dr. K. Mühlethaler: Einführung in die Elektronenmikroskopie (LF 19d, während einer Woche am Semesteranfang).
 Prof. Dr. G. Polya: Wie sucht man die Lösung mathematischer
- Aufgaben?
- Prof. Dr. H. Rutishauser: Programmgesteuertes Rechnen II (nach Vereinbarung).
- Prof. Dr. P. Scherrer, P.-D. Dr. D. Maeder, P.-D. Dr. P. E. Marmier und P.-D. Dr. P. Stoll: Seminar über Kernphysik (Fr. 17-19 Uhr, Ph. 6c).
- -D. Dr. P. Stoll: Einführung in die experimentellen Methoden der Kernphysik (Di. 17-19 Uhr, Ph. 6c).
- Prof. Dr. E. Völlm: Nomographie (Mo. 17-19 Uhr, ML III).
- Prof. Dr. M. Waldmeier: Radio-Astronomie (Fr. 14-15 Uhr, Stw.).
- P.-D. Dr. R. Wideröe: Technik und Anwendung der modernen Teilchenbeschleuniger II (Mo. 18-19 Uhr, Ph. 6c).
- Prof. Dr. E. Winkler: Spezialfragen der Landesplanung (Di. 16-17 Uhr, die Stunde kann verlegt werden, NO 2g).

Technik

- Prof. E. Baumann: Fernsehtechnik (Di. 9-11 Uhr, Ph. 6c).
- P.-D. Dr. M. Brunner: Schmierung und Schmiermittel (Di. 17-19 Uhr, ML V).
- Dr. H. Deringer: Vergasung und Generatoren (Fr. 16-17 Uhr, Tag und Stunde nach Vereinbarung, Ch. 28d).
- Prof. W. Furrer: Elektroakustische Wandler (Do. 10-12 Uhr, Ph. 17c).
- Prof. E. Gerecke: Elektro-Servo-Technik (Di. 15-17 Uhr und Fr. 15-17 Uhr, alle 14 Tage, Ph. 15c).
- P.-D. Dr. A. Goldstein: Rundsteueranlagen in Starkstromnetzen (Di. 17-18 Uhr, Ph. 17c).
- P.-D. Dr. F. Held: Allgemeine Werkstoffkunde (Mi. 8-9 Uhr und Fr. 8-9 Uhr, Ch. 28d). P.-D. Dr. C. G. Keel: Schweisstechnik II, mit Übungen in Grup-
- pen (Mo. 16-17 Uhr, 17-18 Uhr und 18-19 Uhr, II, 49a). P.-D. Dr. W. Lotmar: Grundzüge der optischen Instrumente,
- gratis (Mi. 16-17 Uhr, Ph. 17c). Dr. O. H. C. Messner: Spanlose Formgebung der Metalle (Fr.
- 8-10 Uhr, ML V). P.-D. Dr. K. Oehler: Eisenbahnsicherungseinrichtungen II. gra-
- tis (Mo. 17-19 Uhr, 30b). P.-D. Dr. P. Profos: Schaltung, Regelung und Ausgleich in
- Dampfanlagen (Fr. 10-12 Uhr, ML V).
- P.-D. H. W. Schuler: Elektrische Anlagen beim Verbraucher und Grundsätzliches über Beleuchtungstechnik (Di. 10-12 Uhr, alle 14 Tage, ML II).
- Prof. Dr. M. Strutt: Transistoren (Fr. 9-12 Uhr, Ph. 17c).
- Prof. Dr. M. Strutt: Kolloquium über moderne Probleme der theoretischen und angewandten Elektrotechnik, gratis (Mo. 17—18 Uhr, alle 14 Tage, Ph. 15c).
- P.-D. Dr. E. I. Walter: Geschichte der Technik im Überblick (Di. 17-18 Uhr, 3d).

Der Besuch der Vorlesungen der Allgemeinen Abteilung für Freifächer der ETH ist jedermann, der das 18. Altersjahr zurückgelegt hat, gestattet.

Die Vorlesungen haben am 23. April 1956 begonnen, doch kann die Einschreibung von Freifachhörern gegen eine Gebühr von Fr. 1.— bei der Kasse der ETH (Hauptgebäude, Zimmer 37c) auch heute noch erfolgen. Eine Einschreibung ist auch nötig für Fächer, die als gratis angekündigt sind. Die Hörergebühr beträgt Fr. 8 .- für die Wochenstunde im Semester.

Literatur — Bibliographie

03:625.1/.6+526

«Hütte». Des Ingenieurs Taschenbuch. Verkehrstechnik,
Teil B: Vermessungstechnik. Hg. vom Akademischen
Verein Hütte, e. V. in Berlin. Berlin, Ernst, 28. neubearb.
Aufl. 1954; 8°, XVI, 588 S., 634 Fig., Tab. — Preis: geb.

Die Neueinteilung und -ordnung des gesamten Stoffes der «Hütte», 28. Auflage, hat es in erfreulicher Weise mit sich gebracht, dass die Verkehrstechnik, Teil B, in einem besondern Band V B Aufnahme gefunden hat. Erfreulich deshalb, dass es nach einem längern Unterbruch (in der 27. Auflage war das Eisenbahnwesen aus Raummangel nicht behandelt) wieder möglich geworden war, den Stoff der Eisenbahntechnik vollständig neu bearbeitet und erheblich erweitert herauszugeben.

Die Unterteilung des Stoffes ist straff nach den üblichen Gesichtspunkten gegliedert. Nachdem in den beiden ersten Kapiteln die Begriffe und die Einteilung über die Grundzüge des Eisenbahnbetriebs kurz behandelt sind, wird im Kapitel 3 der Eisenbahnbau mit seinen Abschnitten Linienführung, Bahnhofanlagen, Unterbau, Oberbau, Sicherungsanlagen, Fernmeldeanlagen, elektrische Bahnanlagen und maschinelle Anlagen eingehend behandelt. Für die Wahl der Linienführung werden die betriebswirtschaftlichen, geographisch/geologischen wie die verkehrspolitischen Probleme erörtert. Die bautechnischen Grundlagen sind sehr eingehend besprochen und geben, wie auch die zahlreichen Beispiele der Bahnhofanlagen, Abstellbahnhöfe, mit vielen Tafeln und Skizzen, zahlreiche Anregungen für den projektierenden Ingenieur.

Die Fahrzeugbehandlungsanlagen — in der Schweiz gemeinhin als Werkstätten bezeichnet — sind allerdings in überwiegendem Mass für den Unterhalt der Dampflokomotiven zugeschnitten; der Unterhalt der elektrischen Lokomotiven und die entsprechenden Werkstätteeinrichtungen sind leider nur kurz erwähnt.

Der Unterbau und die Schutzanlagen sind, wie in der 26. Auflage, ausführlich dargelegt.

Der Oberbau — heute insbesondere durch die Erhöhung der Geschwindigkeiten und Zuglasten ein aktuelles Kapitel — musste ganz neu überarbeitet werden und weist hinsichtlich neuesten Vorschriften, Tafeln über Belastung der Schienen, die Form der Schwellen usw. ein umfangreich dotiertes Material auf. Ebenso sind jeweils über die Herstellungsverfahren der einzelnen Bauelemente kurze Hinweise gegeben, die einen wertvollen Überblick über die Gestehungskosten und die Möglichkeit der Änderung und Anpassung der einzelnen Elemente vermitteln. Hinsichtlich der Wechselbeziehungen zwischen den Radreifen- und Schienenprofilen vermisst man die bis anhin gemachten Erfahrungen bezüglich des Verschleisses bei der Verwendung der verschiedenen Profilformen der Radreifen und Schienen.

Bei den Sicherungsanlagen ist hauptsächlich die Behandlung der Gleisbild-Stellwerke, die in neuester Zeit auch in der Schweiz Verwendung finden, hervorzuheben, nachdem auch die üblichen «klassischen» elektrischen und mechanischen Stellwerke ihre Berücksichtigung finden. Auch in diesem Kapitel ist für den Entwurf solcher Anlagen Raum gefunden worden; die Aufstellung der sog. Verschlusstafel ist anhand eines Beispiels gezeigt.

Im Kapitel Eisenbahnfahrzeuge sind sämtliche Schienenfahrzeuge (Triebfahrzeuge und Anhängewagen) sowie Trolleybusse thematisch nach ihren Bauelementen behandelt. Nachdem einleitend die Querschnitt-Begrenzungslinien für die verschiedenen Arten der Fahrzeuge gezeigt werden, sind es die Radsätze, Achslager und Tragfedern, deren Berechnungsverfahren ausführlich und mit vielen Zahlenwerten und Tafeln aufgeführt sind. Dabei haben die heutigen modernen Konstruktionsprinzipien, wie z. B. Übergangsbogen vom Nabensitz zum Achsschaft bei Radsätzen Beachtung gefunden. Bei den Achslagern, die ebenfalls mit vielen Ausführungsbeispielen aufgeführt sind, bemerkt man die heutige Entwicklung in Richtung des Rollenlagers. Immerhin sind die Gleitlager ebenfalls erwähnt. Man vermisst in diesem Abschnitt die etwas eingehendere Behandlung der Dichtungsund Entwässerungsfrage, die bei allen Lagern der Eisenbahn-

fahrzeuge eine wesentliche Rolle bezüglich ihrer Lebensdauer spielt.

Auch die Berechnung der Tragfedern wird mit vielen Beispielen, Zahlentafeln und Erfahrungswerten gründlich gezeigt.

Die Zug- und Stossvorrichtungen — die eigentlichen «Berührungspunkte» im internationalen Verkehr — sind gemäss den international geltenden Vorschriften behandelt, und zwar diejenigen europäischer wie amerikanischer Bauart. Die Mittelpufferkupplungen, und die Scharfenberg-Kupplung im speziellen, sind ebenfalls erwähnt.

Auch der Abschnitt «Bremsen» ist im Hinblick auf die bestehenden internationalen Vorschriften und Vereinbarungen einschliesslich der Funktionsmerkmale der Druckluftbremse sehr eingehend aufgeführt und gegenüber der 26. Auflage neu bearbeitet und bedeutend erweitert. Berechnungsgrundlagen für die Bremsberechnung sowie Angaben über die Konstruktion einzelner Elemente der Bremsausrüstung sind ausgiebig aufgeführt.

Die Mechanik der Zugförderung bildet ein selbständiges Kapitel und ist auf neuer Basis aufgebaut. Die Berechnung der Zugkraft als Summe der verschiedenartigen Widerstände bildet einen Hauptbestandteil dieses Abschnitts für die Leistungsberechnung und Projektierung des Triebfahrzeugs. Dabei ist erwähnenswert, dass die beschleunigende Zugkraft als Trägheitskraft nach d'Alembert definiert wird, wie man in der Praxis allgemein, bewusst oder unbewusst, rechnet. Die Anfahrkurve (Geschwindigkeits-Zeitdiagramm während der Anfahrt) wird nach Strahl ausgeführt; wünschenswert wäre die Angabe der Berechnung dieses Diagramms aus der sog. Fahrzeugkurve (Geschwindigkeit in Funktion der Zugkraft bei verschiedenen Spannungsstufen als Parameter).

Gemäss der Bedeutung der Dampflokomotive im Ausland ist dieses Kapitel sehr umfangreich, so dass für unsere Bedürfnisse, d. h. für die elektrischen Triebfahrzeuge, relativ wenig Platz übrig bleibt. Immerhin sind bei den elektrischen Lokomotiven die bestimmenden Faktoren für den Entwurf gründlich auseinander gelegt, die Charakteristiken von Gleich- und Wechselstromlokomotiven angegeben sowie die grundsätzlichen Schaltbilder und Kennlinien der verschiedenen elektrischen Bremsen aufgeführt. Nicht unerwähnt sei, dass als Beispiel einer elektrischen Lokomotive hoher Leistung die Ae6/6 der SBB aufgeführt ist. Ebenfalls werden die Antriebsarten von Tatzenlagermotoren, Einzelachsantrieben mit Gelenkmechanismus oder Federtopfkupplungen bis zu den heutigen modernen Kardanantrieben in ihrer prinzipiellen Wirkungsweise erklärt.

Den Triebwagen für Fern- und Nahverkehr ist ein besonderer Abschnitt gewidmet. Wie bei den elektrischen Lokomotiven, so sind auch bei den elektrischen Triebwagen einige typische Vertreter verschiedener Bahnverwaltungen tabellarisch festgehalten. Die Strassenbahntriebwagen und Trolleybusse sind ebenfalls in kurzen Abschnitten erwähnt.

Ein selbständiges Kapitel bilden die Schienenfahrzeuge mit Antrieb durch thermische Maschinen. Es ist dem heutigen Stand der Technik und seiner Bedeutung — hauptsächlich im Ausland — entsprechend behandelt. Dabei finden die heute viel zur Diskussion beitragenden Systeme der Kraftübertragung — hydraulisch oder elektrisch — eine sehr objektive Behandlung.

In einem weitern Kapitel ist der neueste Stand der Reisezugwagen, insbesondere bezüglich Leichtbau, dargelegt. Das Gebiet der Eibenbahngüterwagen wurde wesentlich erweitert durch praktisch vollständige Unterlagen für die Berechnung und Konstruktion. Neueste Erkenntnisse über den Wagenlauf sowie die Anwendung der verschiedenen Werkstoffe werden behandelt und durch viele Beispiele ergänzt, so dass damit dem Konstrukteur umfassende Unterlagen und Vorschriften im Wagenbau in die Hand gegeben werden. Diesen ausführlichen Berechnungsgang hätte man eigentlich auch für die Personenwagen gewünscht.

Das Gebiet der Nahverkehrsmittel (Strassenbahn, Städteschnellbahn und strassenbahnartige Überlandbahnen) ist neu bearbeitet und entsprechend der neuesten Entwicklung ergänzt. Die Zahnradbahnen, soweit sie unter den Begriff Bergbahn fallen, sind ebenfalls neu bearbeitet und erweitert. Die

Frage der Abgrenzung zwischen Adhäsionsbetrieb und Zahnradbetrieb wird eingehend erläutert.

In einem zweiten Hauptabschnitt ist die Vermessungstechnik mit der Angabe der instrumentellen Hilfsmittel und den einzelnen Ingenieur-Vermessungsverfahren aufgeführt.

Die Darstellung der einzelnen Figuren, Kurven usw. ist bei diesem Werk sehr übersichtlich gehandhabt. Die Verwendung des schrägen Bruchstrichs (nach DIN 1338) stört jedoch die Übersichtlichkeit der mathematischen Formeln und Gleichungen in erheblichem Masse.

Das Handbuch reiht sich würdig an die bewährten Vorgängerinnen an und kann dem Eisenbahnfachmann bestens als aufschlussgebendes Nachschlagwerk empfohlen werden.

H.H.Weber

Handbuch der Industriellen Elektronik. Von Reinhard Kretzmann. Berlin, Verlag f. Radio-Foto-Kinotechnik, 1954; 8°, 336 S., Fig., Tab. — Preis: geb. Fr. 20.30.

Unter «Industrielle Elektronik» wird hier, unter Ausschluss der Nachrichtentechnik im engeren Sinne, das Gebiet der Schaltungen verstanden, die evakuierte oder gasgefüllte Entladungsgefässe enthalten.

Im ersten Teil werden die Röhren und deren Grundschaltungen behandelt. Neben den Hochvakuum-Gleichrichter- und Verstärkerröhren sind alle Arten von gasgefüllten Röhren, wie Thyratrons, Senditrons, Ignitrons, Glimmstabilisatoren usw. aber auch Photozellen und Kathodenstrahlröhren mit ihren Charakteristiken und spezifischen Eigenschaften besprochen. Funktion und Einsatzweise dieser Elemente werden durch die Beschreibung der Steuerstromkreise und durch Anwendungsbeispiele verdeutlicht.

Im zweiten Teil ist eine Vielzahl verschiedenster elektronischer Geräte für industrielle Zwecke, in welchen die im ersten Teil behandelten Elemente verwendet werden, beschrieben. Es seien daraus erwähnt: Photoelektrische Relais, Zählschaltungen und Rechenmaschinen, Zeitgeberanordnungen für Punktschweissanlagen usw.

Bei der Vielfalt des Stoffes ist dessen Einteilung schwierig und nicht immer glücklich geraten. So befindet sich z.B. ein Abschnitt «Berechnung von Einphasen-Halbweggleichrichtern» im I. Teil unter «Gasgefüllte Gleichrichterröhren», ein ganz analoges Kapitel über «Zweiphasen-Halbweggleichrichter» (wir würden sagen: «Gegentaktgleichrichter») dagegen im II. Teil.

Leider beschränken sich die Ausführungen im wesentlichen auf die Produkte einer einzigen Firma. So bleiben z.B. bekannte Vielelektrodenröhren mit kalten Kathoden für Ringzähleranordnungen unberücksichtigt.

Das Buch vermittelt dem Nicht-Elektroniker eine gute Einführung und eine Übersicht über die vielgestaltigen Anwendungsgebiete heutiger Elektronenröhren in der Industrie. Ausführliche Schaltungsbeispiele können auch dem Fach-D. Zschokke mann Anregungen geben.

Nr. 11 264 Kunststoffe. Ihre Verwendung in Industrie und Technik. Von Erich Wandeberg. Berlin, Springer, 1955; 8°, VII, 283 S., 128 Fig., 67 Tab., 2 Taf. — Preis: geb. DM 25.50.

Die mannigfache Entwicklung der Kunststoffe bedingt naturgemäss auch eine entsprechende Ausweitung der einschlägigen Literatur. Es ist daher nicht zu verwundern, wenn heute dem Interessenten eine vielseitige Auswahl von Kunststoffbüchern zur Verfügung steht.

Das vorliegende Werk wendet sich zur Hauptsache an den Konstrukteur, d. h. an diejenigen Verbraucher, welche, ohne selbst tiefere chemische oder physikalische Kenntnisse zu besitzen, über die Eigenschaften der Kunststoffe möglichst weitgehend orientiert sein sollten. Es gelingt dem Autor vortrefflich, ohne Voraussetzung von Spezialkenntnissen, das Interesse für die verschiedenen der einzelnen Kunststoffklassen zu wecken. Sehr viele Angaben von Einzelheiten, Tabellen und graphische Darstellungen sowohl über die Eigenschaften des verarbeiteten Kunststoffes, wie auch über seine Herstellung und Technologie, vermitteln dem Leser ein Bild, welches ihn bei der praktischen Konstruktion wirksam unterstützt. Besonders wertvoll für den Praktiker ist das Buch auch darum, weil auf nachteilige Eigenschaften, welche zu Fehlanwendungen führen können, gebührend und objektiv hingewiesen wird. Das Werk behandelt umfassend sämtliche heute praktisch angewendeten Kunststoffklassen und bietet, obwohl es die elektrischen Eigenschaften nicht besonders betont, dem Konstrukteur von elektrischen Apparaten wertvolle Anregungen. Besonders erwähnt seien die dem Buche beigegebenen tabellarischen Zusammenstellungen der Eigenschaftswerte, die dank ihrer sorgfältigen und vollständigen Bearbeitung für den Konstrukteur ein wertvolles Hilfsmittel bilden. Ein ausführliches Sachverzeichnis, ein Verzeichnis der Handelsnamen sowie ausgedehnte Literaturhinweise vervollständigen das Werk, welches jedem Kunststoffinteressenten warm empfohlen werden kann.

M. Zürcher

621.314.7 Nr. 11 269 Principe des circuits à transistors. Par Richard F. Shea. Paris, Dunod, 1956; 8°, XXIX, 578 p., fig., 1 pl. — Prix: rel. Fr. 73.—

Mit der französischen Übersetzung des im Original betitelten Buches «Principles of Transistor Circuits» ist dem Bedürfnis weitester Kreise entsprochen worden. Sowohl Stoff als auch Darstellung finden eine getreue Wiedergabe. Es sei hiezu vermerkt, dass die Übersetzung der Fachausdrücke in grossem Mass den Publikationen des Januar-Heftes der L'Onde Electrique 1953 entnommen wurden. Möglicherweise dürfte der eine oder andere Ausdruck im Zuge der Normung eine andere Benennung erfahren haben.

Wie dem Original ist auch dieser Übersetzung ein reichhaltiger Literaturnachweis beigefügt, der in einigen Kapiteln durch Hinzunahme französischer Artikel erweitert wurde.

F. Furrer

621.371.374

Nr. 11 272 Impulstechnik. Vortragsreihe des Ausseninstituts der Technischen Universität Berlin-Charlottenburg in Verbindung mit dem Elektrotechnischen Verein Berlin e. V. Berlin, Springer, 1956; 8°, VIII, 346 S., Fig., Tab. — Preis: geb. DM. 37.50.

Da sich unter diesem Titel alles mögliche erwarten lässt, sei eine Inhaltsangabe vorausgeschickt. Es handelt sich um elf Vorträge verschiedener, bekannter Referenten mit folgenden Titeln und Inhalt:

1. Impulsanalyse. Es werden die grundlegenden Begriffe, der Zusammenhang zwischen zeitlicher und spektraler Darstellung, verschiedene Sätze und die Beeinflussung bei der Übertragung durch lineare Systeme dargestellt.

2. Anwendung der Informationstheorie auf Impulsprobleme. Der Hauptakzent liegt hier auf der Trennung des Nutzimpulses vom Geräusch, wobei das optimale Filter und Korrelationsmethoden Anwendung finden.

3. Die Impulstechnik als Messverfahren in der Physik. Speziell wichtig ist sie in der Kernphysik und der Erforschung der Höhenstrahlung. Entsprechend werden nichtlineare Schaltelemente, Impulsgeneratoren, Verzögerungsleitungen, Impulsverstärker, Koinzidenzschaltungen, Zählschaltungen und prinzipielle Messverfahren behandelt.

4. Probleme der Mehrfachausnützung von Nachrichtenwegen mit Impulsmodulation. Eine Übersicht der wichtigsten Modulationsverfahren sowie ihre Übertragungsgüte kommen zur Sprache.

5. Die Impulstechnik des Fernsehens. Insbesondere spielen Differentiation und Integration für Impulsabtrennung im Empfänger eine grosse Rolle.

6. Die Anwendung der Impulstechnik in der Funknavigation. Als Beispiele werden das DME-Entfernungsmessverfahren und «Loran» behandelt.

7. Impulsverfahren in der Ionosphärenforschung. Sender und Empfänger stellen besondere Probleme, wie auch die Registrierung und die eigentlichen Verfahren.

8. Impulsprobleme der elektronischen Rechenmaschinen. Impulserzeuger, Impulstore, Speicherung, sowie Impulsschaltungen mit Transistoren werden geschildert.

9. Optische Impulstechnik. Ein Vergleich mit der Funk-Impulstechnik wird durchgeführt, und eine Übersicht über den Empfänger, Lichtimpulslampen, Verschlusstechnik und Röntgenblitztechnik wird gegeben.

10. Die Impulsübertragung im Nervensystem. Das passive und aktive Verhalten von Nervenfasern wird beschrieben und für diese das Verhalten eines Modells gezeigt.

11. Informationstheoretische Behandlung des Gehörs. Besondere Beachtung wird der Informationskapazität des Ohres geschenkt auf Grund der Übertragungskapazität und der Zahl der Nervenfasern.

Die Lektüre dieses Buches ist ausserordentlich anregend, doch kommt es als Lehrbuch kaum in Frage. Es demonstriert auf eindrückliche Weise, wie vielseitig die Impulstechnik verwendet werden kann, wenn gewisse Grundlagen vorhanden sind.

H. Weber

628.92/97 Nr. 11 275
Leitfaden der Lichttechnik. Von H. Zijl. Eindhoven, Philips, 1955; 8°, VIII, 263 S., 128 Fig., Tab. — Philips Technische Bibliothek — Preis: geb. Fr. 15.70.

Es sei vorweggenommen, dass der Autor dieses vorzüglichen Werkes neue und eigene Wege gegangen ist, so dass sich das Buch wesentlich von andern Arbeiten über die Lichtteehnik unterscheidet. Der Verfasser verstand es trefflich, komplizierte Dinge einfach auszudrücken und die Lichteechnik nicht als abstrakte Wissenschaft zu behandeln; er geht bei der Bearbeitung der ganzen Materie auf den Menschen und seine Empfindungen ein. Den vereinfachten, aber nicht oberflächlichen Erklärungen sind jeweils die wissenschaftlich genauen Beziehungen beigegeben. Kurz und übersichtlich, aber ohne sich darin zu verlieren, wird bei den einzelnen Gebieten auf die Ursprungsgeschichte zurückgegriffen.

Der behandelte Stoff umfasst im wesentlichen die Strahlung und das Licht, die lichttechnischen Einheiten und Grundgesetze, Mess- und Berechnungsmethoden, Grundlagen zur Projektierung von Beleuchtungsanlagen, Angaben über Lichtquellen, Gesichtssinn und Sehen, sowie Leuchten und Beleuchtungsarten. Als Abschluss des Buches wurde ein Kapitel in «Fragen und Antworten»-Form angefügt, das den ganzen Stoff nochmals repetiert. Manchem Leser wird gerade dieses Kapitel, trotzdem es eigentlich für Lehrzwecke bestimmt ist, sehr wertvoll sein.

Viele Kapitel zeigen, dass nicht nur die allgemein bekannten Tatsachen neu zusammengetragen worden sind, sondern dass eigenes Suchen und eigenes Erarbeiten die Grundlagen zu diesem Buche gegeben haben. So wurde z.B. die Arbeitsweise, wie auch die Verteilung der Stäbchen und Zapfen in der Netzhaut umfassend und neu beschrieben. Auch der Seherfahrung ist vermehrt Rechnung getragen worden. Viele Leser werden es zu schätzen wissen, klare Regeln über die Erfordernisse bei Lichtmessungen in die Hand zu bekommen. Auch Hinweise darüber fehlen nicht, mit welchen Messgenauigkeiten normalerweise gerechnet werden kann; so weist der Autor beispielsweise darauf hin, dass bei Beleuchtungsstärkemessungen eine Ungenauigkeit von 10 % sicher noch kein schlechtes Resultat darstellt; eine Tatsache, die oft vergessen wird.

Naturgemäss müssen auch immer wieder behandelte Kapitel der Vollständigkeit halber aufgenommen werden. So z.B. das Kapitel «Beleuchtungsstärke und Arbeitsaufgabe», das kaum Neues bieten kann. Beim Kapitel «Die Farbe des Kunstlichtes», in welchem das Verhältnis der Beleuchtungsstärke zur weisseren oder rötlicheren Lichtfarbe behandelt wird (Behaglichkeit), wäre der Praktiker vielleicht für zahlenmässig genauer erfasste Werte dankbar gewesen.

Fachleute und alle diejenigen, welche sich mit der Lösung von Beleuchtungsproblemen beschäftigen, finden neue und gute Gedanken in diesem Buche.

Nic Dalang

628.972:625.2 Nr. 11 278
Die elektrische Beleuchtung von Eisenbahnfahrzeugen.
Von Eugen Aumüller. Berlin, Springer, 1955; 8°, XI,
183 S., 122 Fig., Tab. — Preis: geb. DM 21.—.

Das vorliegende Buch enthält wertvolle Angaben für die jenigen, die sich mit Projektierung und Einbau der Zugbeleuchtung befassen oder sich in dieses Gebiet vertiefen wollen. Es gibt einen klaren Überblick über den gegenwärtigen Stand der elektrischen Beleuchtung von Eisenbahnfahrzeugen. Auch die Speisung von Luftheizungen und Klimaanlagen aus der Beleuchtungsanlage ist behandelt.

Nach kurzer Einführung sind im Abschnitt I Wirkungsweise, Aufbau und Verwendung der Blei- und Stahlbatterien beschrieben. Die Antriebe mittels Flach- und Keilriemen, der seitliche Kardanantrieb sowie die für grössere Generatorleistungen verwendeten Mittelkardan- und Stirnrad-Antriebe sind ausführlich erläutert. Neben den Genera-

toren mit elektromechanischer Regelung sind auch die selbstregelnden Maschinen angegeben. Kohleregler, Stufenkontaktregler und Schwingkontaktregler verschiedener Bauarten sind ausführlich behandelt. Interessante Daten über Messungen an Zugbeleuchtungsanlagen auf dem Prüfstand und während der Fahrt sowie die Beschreibung der magnetischen Regelung der Zugbeleuchtung ergänzen diesen Abschnitt.

Abschnitt II ist der Fluoreszenzbeleuchtung gewidmet. Fluoreszenzlampen für Gleich- und Wechselstrom sowie rotierende Umformer und Wechselrichter werden beschrieben. Dazu ist zu bemerken, dass Tabelle 2 mit der Gegenüberstellung von Lichtströmen und Lichtausbeuten für Glüh- und Fluoreszenzlampen nur für neue Lampen gültig ist. Die Nebeneinanderstellung dieser Werte im Dauerzustand (ca. 10 % niedriger für Glühlampen und ca. 25 % niedriger für Fluoreszenzlampen) wäre interessant gewesen.

Die Abschnitte III und IV beziehen sich auf die Beleuchtung der Dampf- und elektrischen Lokomotiven sowie der Triebwagen.

Im Abschnitt V werden Luftheizung und Klimaanlage beschrieben; ferner wird auf die vermehrte Stromentnahme aus der Beleuchtungsanlage für diese Einrichtungen hingewiesen. Mehrere interessante Zusammenstellungen über den Leistungsbedarf geben nützliche Anhaltspunkte für die Projektierung solcher Anlagen.

Der Anhang enthält Grundformeln der Elektro- und Lichttechnik. Die technischen Angaben über Maschinen und Apparate für Zugbeleuchtung beziehen sich fast ausschliesslich auf deutsches Material.

Die vielen Bilder, Schaltbilder und Diagramme wurden sorgfältig ausgewählt; der Druck und die Ausstattung sind vorbildlich.

P. Diefenhardt

Das vorliegende Buch enthält eine lückenlose Zusammenfassung der Probleme und des bisher Erreichten im Gebiete der Erzeugung elektrischer Energie aus Windkraft. Die in der bewegten Luft aufgespeicherte Energie wird zu 13·10¹² kWh im Jahr geschätzt; jeder Prozent dieser Riesenenergie, in elektrische Energie übergeführt, würde daher einen sehr bedeutenden Zuwachs der uns zur Verfügung stehenden Arbeit bedeuten. Es ist daher verständlich, dass sowohl nationale wie internationale Organisationen sich mit diesem Problem befassen. Der Verfasser des Buches hat als technischer Sekretär des englischen Windkraftkomitees bei den diesbezüglichen Untersuchungen mitgearbeitet; er hatte auch die Möglichkeit, in die Rapporte der andern in- und ausländischen Institutionen Einsicht zu nehmen und sie für sein Buch zu verwerten.

Der umfangreiche Stoff ist in 18 Kapitel aufgeteilt, deren jedem ein reichhaltiges Verzeichnis der einschlägigen Literatur beigegeben ist, was dem Buch gleichzeitig den Charakter eines Literaturnachweises gibt.

Nach einem kurzen Überblick über die Windmühlen alter und neuester Ausführung sind im 3. Kapitel die Wege zur Einschätzung der im Winde verfügbaren und daraus gewinnbaren Energie besprochen. Weitere 4 Kapitel behandeln die charakteristischen Merkmale des Windes, wozu in erster Linie die Windgeschwindigkeit gehört, die, mit dritter Potenz wirksam, entscheidenden Einfluss auf den Energieinhalt des Windes ausübt. Untersucht werden ferner die örtlichen Einflüsse, wobei der Strömung über Hügel besonderes Interesse zukommt. Kapitel 8 bis 10 befassen sich mit den Methoden der Bestimmung der Windgeschwindigkeit und der darauf einspielenden Einflüsse. In den folgenden 3 Kapiteln werden die verschiedenen Bauarten der Propeller und der windangetriebenen Generatoren diskutiert. Kapitel 14 bis 17 sind dem wichtigen Problem der Ökonomie der elektrischen Windkraftausnützung gewidmet. Es zeigt sich dabei, dass heute für die wirtschaftliche Ausnützung der Windkraft nur in bezug auf Windgeschwindigkeit und Stetigkeit der Luftströmung bevorzugte Gegenden in Frage kommen, wie sie am ehesten an Küsten anzutreffen sind. Der theoretisch erreichbare Wirkungsgrad der Windausnützung wird zu knapp 60 % angegeben; bis zu den Klemmen des Generators sinkt er bei günstigen Verhältnissen auf ca. die Hälfte. Für kleine Anlagen und mässige Windgeschwindigkeiten werden 10...15 %

als totaler Wirkungsgrad ausgerechnet, eine nicht gerade ermutigende Zahl. Muss, wie üblich, eine Akkumulatorenbatterie zum Ausgleich parallel zum Windgenerator beigefügt werden, so steigen die Kosten für Anschaffung und Unterhalt beinahe untragbar an. Es wird so verständlich, dass die technische Ausnützung der Windkraft zur Gewinnung elektrischer Energie sich immer noch im Versuchsstadium vereinzelter Ausführungen befindet.

Trotzdem die Aussichten für diese Art Gewinnung elektrischer Energie heute im Zeitalter der Ausbeutung nuclearer Kräfte ausgesprochen schlecht sind, hat das vorliegende Buch dank seiner Vollständigkeit und Sachlichkeit doch seinen grossen Wert. Es sei jedermann, der sich mit Fragen des Windes beschäftigt, zum Studium bestens empfohlen.

E. Dünner

Neuer Katalog der Elektro-Material A.-G. Die Elektro-Material A.-G. hat dieser Tage ihren neuen Haupt-Katalog herausgegeben. Das handliche Werk enthält auf über 700 Seiten, aufgeteilt in 16 Teillisten, eine übersichtliche Zusammenstellung sämtlicher Installationsmaterialien, die für die Elektrobranche von Bedeutung sind. Ein praktisches Hauptregister und die reich illustrierten Teillisten-Leitblätter ermöglichen ein rasches Auffinden der gesuchten Artikel.

«Warum Schmierfette?» Die Firma Adolf Schmids Erben A.-G. (ASEOL), Bern, hat eine 24seitige Broschüre mit dem Titel «Warum Schmierfette?» herausgegeben, welche in leicht fasslicher Weise über Fabrikation, Eigenschaften und Anwendungen fester Schmierstoffe berichtet und namentlich für den Nichtfachmann viel Wissenswertes enthält. Interessenten können die Schrift bei der Firma kostenlos beziehen.

Estampilles d'essai et procès-verbaux d'essai de l'ASE

IV. Procès-verbaux d'essai

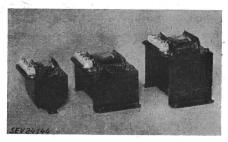
P. Nº 3009.

Objets:

Trois appareils auxiliaires pour lampes à décharge

Procès-verbal d'essai ASE: O. Nº 31527, du 1er mars 1956.

Commettant: Usines Philips Radio S. A., La Chaux-de-Fonds.


Inscriptions:

Description:

Appareils auxiliaires, selon figure, pour lampes à décharge «Philips». Enroulement en fil de cuivre émaillé.

Bornes de connexion sur socle en matière céramique. Appareils sans boîtier, pour montage dans des luminaires.

Ces appareils auxiliaires ont subi avec succès des essais analogues à ceux prévus dans les «Prescriptions pour transformateurs de faible puissance» (Publ. n° 149 f). Utilisation: dans des locaux humides.

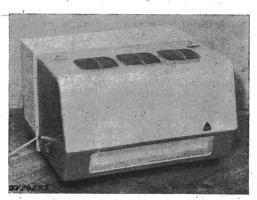
Les appareils de cette exécution portent la marque de qualité de l'ASE; ils sont soumis à des épreuves périodiques.

Valable jusqu'à fin février 1959.

P. N° 3010.

Objet:

Conditionneur d'air


Procès verbal d'essai ASE: O. N° 31302a, du 23 février 1956. Commettant: Condair S. A., 37, Utoquai, Zurich 8. Inscriptions:

Lahmeyer — Etna G.m.b.H. Frankfurt am Main Germany Modell FK 4 Nr. 509221 Nennstrom 6 A 220 V~ 1300 W 50 Hz Kältemaschine 3/4 PS. 0,6 kg F12 Prüfdruck 15 atü Gewicht 80 kg

Description:

Conditionneur d'air, selon figure, pour montage dans des fenêtres. Groupe réfrigérant à compresseur à refroidissement par air, ventilateur et corps de chauffe, logés dans un boîtier en tôle. Compresseur à piston formant un seul bloc avec son moteur d'entraînement monophasé à induit en court-cir-

cuit, avec enroulement auxiliaire et condensateur de démarrage. Relais déclenchant l'enroulement auxiliaire et le condensateur à la fin du démarrage. Contacteur-disjoncteur séparé. Ventilateur entraîné par moteur monophasé à induit en court-circuit, avec enroulement auxiliaire et condensateur qui demeurent constamment enclenchés. Commutateur rotatif, thermostat et clapet d'air permettant les modes de fonctionnement suivants: refroidissement avec apport d'air frais, déshumidification, ventilation, aération et chauffage. Amenée de courant à trois conducteurs, fixée à l'appareil, avec fiche 2 P + T. Encombrement: Hauteur 400 mm, largeur 670 mm, profondeur 650 mm.

Ce conditionneur d'air a subi avec succès les essais relatifs à la sécurité.

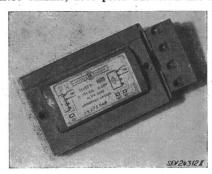
P. Nº 3011.

Objet:

Appareil auxiliaire pour lampes à fluorescence

Procès-verbal d'essai ASE: O. Nº 31560/II, du 21 mars 1956.

Commettant: Fabrique d'appareils électriques F. Knobel & Cie, Ennenda (GL).

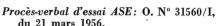

Inscriptions:

EEc/E2 Ec 8010 1: 200 V 50 Hz I2: 0,17 A Leuchtstofflampe 8 $W/2 \times 8$ W U1: 200 V

Description:

Appareil auxiliaire, selon figure, pour une ou deux lampes à fluorescence de 8 W, sans starter. Enroulement en fil de cuivre émaillé, avec prise additionnelle. Fixation et

distancement de l'appareil par deux boulons. Bornes disposées à l'une des extrémités. Appareil prévu pour montage dans des luminaires en tôle.


Cet appareil auxiliaire a subi avec succès des essais analogues à ceux prévus dans les «Prescriptions pour transformateurs de faible puissance» (Publ. nº 140 f). Utilisation: dans des locaux secs ou temporairement humides.

Les appareils de cette exécution portent la marque de qualité de l'ASE; ils sont soumis à des épreuves périodiques.

P. Nr. 3012.

Objet:

Appareil auxiliaire pour lampe à fluorescence

Commettant: Fabrique d'appareils électriques F. Knobel & Cie, Ennenda (GL).

Inscriptions:

Typ 110 EEc U1: 110 Volt 50 Hz I2: 0,17 Fluoreszenzlampe 8 Watt A $\cos \varphi \sim 0.5$ F. Nr. 273553

Description:

Appareil auxiliaire, selon figure, pour une lampe à fluorescence de 8 W, sans starter. Enroulement en fil de cuivre émaillé. Fixation et distancement de l'appareil par deux boulons. Bornes disposées à l'une des extrémités. Appareil prévu pour montage dans des luminaires en tôle.

Cet appareil auxiliaire a subi avec succès des essais analogues à ceux prévus dans les «Prescriptions pour transfor-

mateurs de faible puissance» (Publ. nº 140 f). Utilisation: dans des locaux secs ou temporairement humides.

Les appareils de cette exécution portent la marque de qualité de l'ASE; ils sont soumis à des épreuves périodiques.

Valable jusqu'à fin mars 1959.

P. Nº 3013.

Objet:

Evier

Procès-verbal d'essai ASE: O. Nº 31553, du 23 mars 1956.

Commettant: Cuisinières et boilers S. A.,

Heerbrugg (SG).

Inscriptions:

Kochherd & Boiler AG. Heerbrugg

Fabr. Nr. 271 Liter 100 Volt

Fühlrohr min. 270 mm

Watt 1600

Stromart ~ Prüfdruck 12 kg/cm² Betriebsdruck 6 kg/cm²

Kesselmaterial: Eisen verzinkt

Description:

Evier en métal, selon chauffe-eau figure, avec à accumulation incorporé, équipé d'un corps chauffe et d'un thermostat avec dispositif de sécurité. Réservoir à eau en fer. Calorifugeage en liège granulé. Bassin et égouttoir en tôle d'acier inoxydable. Thermomètre à cadran encastré. Longueur 1110 mm. largeur 850 mm, hauteur 600 mm.

Au point de vue de la sécurité, cet évier est conforme aux «Prescriptions et règles pour chauffe-eau électriques à accumulation» (Publ. nº 145 f).

Communications des organes des Associations

Les articles paraissant sous cette rubrique sont, sauf indication contraire, des communiqués officiels de l'ASE et des organes communs de l'ASE et de l'UCS

Monsieur Paul Nissen a 80 ans

Monsieur Paul Nissen, ancien ingénieur en chef de l'Inspectorat des installations à courant fort, qui avait pris sa retraite en 1941 1), après avoir fait partie de l'Inspectorat durant 40 ans, dont plus de 30 ans en qualité d'ingénieur en chef, fêtera son 80° anniversaire le 31 mai 1956. Nous lui adressons nos meilleurs vœux à cette occasion.

1) Voir Bull. ASE t. 32(1941), nº 15, p. 367.

Station d'essai des matériaux et Station d'étalonnage de l'ASE

La Commission d'administration de l'ASE et de l'UCS a nommé Monsieur

Andreas Gantenbein

ingénieur-électricien diplômé EPF, vice-directeur des Ateliers de Construction Oerlikon, ingénieur en chef de la Station d'essai des matériaux et de la Station d'étalonnage de l'ASE.

Monsieur Gantenbein succède à Monsieur Albert Troendle, qui a pris sa retraite pour le $1^{\rm er}$ mars.

Monsieur Andreas Gantenbein, membre de l'ASE depuis 1922, possède une vaste expérience, acquise au cours de sa longue activité dans l'industrie électrique. Il assumera sa nouvelle fonction à partir du 1° août 1956.

Demandes d'admission comme membre de l'ASE

Selon décision du Comité, les membres suivants ont été admis à l'ASE depuis le 1er mars 1956:

a) comme membre individuel:

Berker Robert, techn. Kaufmann, Rothenmühle (Kreis Olpe,

Westf., Deutschland).
Frey Fritz, Industrieller, Hirschmattstrasse 32, Luzern.
Ganz Arnim, Elektroingenieur ETH, Langackerstrasse 60,
Zürich 6/57.

Zürich 6/57.

Georgii Eugen, Elektroingenieur, Erlenstrasse 21, Zürich 8.

Poltier Léo, ingénieur-civil EPUL, 29, chemin de Boisy, Lausanne (VD).

Willi J.-J., Generaldirektion der PTT, Bibliothek, Speichergasse 6, Bern.

Wolf Max, Dr.-Ing., Dr. iur., technischer Direktor der Wirtschaftsberatung A.-G., Achenbacherstrasse 43, Düsseldorf (Deutschland).

b) comme membre étudiant:

Desmarmels Pietro, stud. el. ing. ETH, Clausiusstr. 66, Zürich 6. Fassli Heinz, stud. el. techn. TBu, Riedbrunnenstrasse 17,

Fassi Heinz, stud. et. techn. TBu, Riedorumenstrasse 11, Schönenwerd (SO). Feitknecht Kurt, stud. el. ing. ETH, BBC-Str. 11, Baden (AG). Gredig Urs, cand. el. techn. Rotbuchstrasse 11, Zürich 6. Hagenbuchli Albert, stud. el. techn. TBu, Florastr. 6, Olten (SO). König Ferdinand, cand. el. ing. ETH, Steinwiesstrasse 31, Zürich 7/32.

Krieg Peter, stud. el. techn. TBu, Erlenweg 491, Zuchwil (SO). Peter Julius, cand. el. ing. ETH, Untere Plessurstrasse 92, Chur. Rummeli Hermann, stud. el. techn. TBu, Neuheim, Vitznau

Schwab Fred, stud. el. ing. ETH, Plattenstrasse 88, Meilen (ZH). Stauffer Hanspeter, stud. el. techn. TBu, Feldstr., Huttwil (BE).

c) comme membre collectif:

W. Staub-Saner, Metallwaren, Kleinlützel (SO).

Normalisation des dimensions extérieures de transformateurs de mesure

Une entreprise électrique a proposé que l'on normalise les dimensions extérieures de transformateurs de mesure, afin de faciliter le montage et le remplacement de ces appareils. Cette entreprise estime que cela est maintenant d'autant plus justifié que l'emploi de transformateurs de mesure est de plus en plus fréquent, en raison de l'accroissement de la consommation d'énergie électrique et des puissances installées dans l'industrie et les métiers. La normalisation de transformateurs de mesure permettrait en outre une certaine liberté dans le choix des différentes fabrications.

Nous invitons les entreprises électriques et l'industrie à prendre position à ce sujet. Il sera utile de connaître non seulement l'opinion des fabricants de transformateurs de mesure, mais aussi celle des industries qui utilisent de tels appareils, soit dans leurs propres entreprises, soit dans les dispositifs et installations qu'elles fabriquent. Nous prions en conséquence les membres de l'ASE, en particulier les entreprises électriques et industrielles, de faire savoir au Secrétariat de l'ASE, 301, Seefeldstrasse, Zurich 8, par écrit, jusqu'au samedi 16 juin 1956, s'ils approuvent une normalisation des dimensions extérieures de transformateurs de mesure et s'ils désireraient éventuellement collaborer au sein de la Commission du VSM et de l'ASE, qui serait chargée de ce travail de normalisation.

Troisième édition des Règles et recommandations pour les symboles littéraux et les signes

(Publication 0192.1956 de l'ASE)

La troisième édition des Règles et recommandations pour les symboles littéraux et les signes vient de paraître. Cette troisième édition a été complétée par la Section 4 «Symboles littéraux d'unités» et par la Sous-Section e) «Erreurs de mesure» de la Section 8 «Listes spéciales de symboles littéraux». La liste des lettres et l'index alphabétique ont été complétés en conséquence. En outre, quelques rectifications de peu d'importance y ont été apportées.

Conformément à une décision de la Neuvième Conférence Générale des Poids et Mesures, «degré centésimal» a été remplacé par «degré Celsius» à la rubrique N° 2-601. En ce qui concerne la densité de courant (rubrique Nº 2-708), les discussions de la CEI n'ont pas encore abouti à une décision, de sorte que l'on ne peut malheureusement pas recommander un symbole définitif.

Dans la présente édition, il a été tenu compte de certaines observations formulées par des usagers des Règles et Recommandations pour les symboles littéraux et les signes. Il sera tenu compte ultérieurement, dans la mesure du possible, des autres observations, pour autant qu'elles ne soient pas contraires aux décisions internationales. Des suggestions et propositions en vue d'améliorer et de complèter ces Règles et recommandations sont d'ailleurs toujours volontiers examinées.

La publication peut être obtenue au prix de Fr. 6.— pour les non-membres et de Fr. 4.— pour les membres de l'ASE auprès du Bureau commun d'administration de l'ASE et de l'UCS, Seefeldstrasse 301, Zurich 8.

Nouvelles publications de la CEE

La CEE a approuvé les traductions allemandes des publications suivantes de la CEE:

Publ. Nº 11: Spécification pour les appareils électriques de cuisson et de chauffage pour usages domestiques et analogues;

Publ. Nº 12: Spécification pour les accessoires de lampes à fluorescence.

Ces publications peuvent être obtenues au prix de Fr. 14.l'exemplaire (Fr. 12.— pour les membres de l'ASE) auprès du Bureau commun d'administration de l'ASE et de l'ÚCS, Seefeldstrasse 301, Zurich 8.

Bulletin de l'Association Suisse des Electriciens, édité par l'Association Suisse des Electriciens comme organe commun de l'Association Suisse des Electriciens et de l'Union des Centrales Suisses d'électricité. — Rédaction: Secrétariat de l'Association Suisse des Electriciens, 301, Seefeldstrasse, Zurich 8, téléphone (051) 34 12 12, compte de chèques postaux VIII 6133, adresse télégraphique Elektroverein Zurich. — La reproduction du texte ou des figures n'est autorisée que d'entente avec la Rédaction et avec l'indication de la source. — Le Bulletin de l'ASE paraît toutes les 2 semaines en allemand et en français; en outre, un «annuaire» paraît au début de chaque année. — Les communications concernant le texte sont à adresser à la Rédaction, celles concernant les annonces à l'Administration. — Administration: case postale Hauptpost, Zurich 1 (Adresse: S. A. Fachschriften-Verlag & Buchdruckerei, Stauffacherquai 36/40, Zurich 4), téléphone (051) 23 77 44, compte de chèques postaux VIII 8481. - Abonnement: Tous les membres reçoivent gratuitement un exemplaire du Bulletin de l'ASE (renseignements auprès du Secrétariat de l'ASE). Prix de l'abonnement pour non-membres en Suisse fr. 45.— par an, fr. 28.— pour six mois, à l'étranger fr. 55.— par an, fr. 33.— pour six mois. Adresser les commandes d'abonnements à l'Administration.

Prix de numéros isolés en Suisse fr. 3.—, à l'étranger fr. 3.50.