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Das Instrument ist von H. R. Meier und E. Triimpy
an der ETH mit Hilfe eines besondern Kredites
entwickelt und an anderer Stelle beschrieben wor-

den [6].

SEV22975

Fig. 15
Boys-Kamera mit grosser Filmgeschwindigkeit (RK)

6. Photoraum Paradiso

Um das Vorwachsen der Blitze in den ersten
Turm photographisch verfolgen zu kénnen, wurde
bereits im Jahre 1947 am Fusse des Monte San Sal-
vatore im Dachstock eines Gebiudes an der Via
Bosia 9 ein Photoraum eingerichtet, wo je eine
Boys-Kamera mit raschem (49 m/s) und langsamem
Filmvorschub (1 m/s) aufgestellt wurden. Der Ab-
stand dieses Photoraumes von der Spitze des ersten

Turmes betrigt ca. 1400 m in der Horizontalen und
670 m in der Vertikalen.

Die Apparate sind grundsitzlich genau gleich ge-
baut wie die bereits beschriebenen des Photoraumes
auf dem Berggipfel. Die Offnung der Verschliisse
und die Schaltung der Motoren geschah in den ersten
Jahren von einer Schaltuhr aus, welche nach Ein-
setzen der Dunkelheit einschaltete und vor Beginn
der Morgendimmerung wieder ausschaltete. Seit
1953 wird auf telephonischen Anruf hin nur noch
dann gedffnet, wenn Gewittergefahr besteht. Damit
wird die Schleierbildung der Photographien ver-

mindert, die sonst besonders in mondhellen Nichten
stark storend ist.

7. Photoschrank auf dem zweiten Blitzauffang-Turm

Der Einbau des Blitzstrom-Shuntes auf dem
zweiten Turm zwischen dessen Nadel und der ge-
erdeten Turmkonstruktion, ca. 55 m iiber dem Erd-
boden, ergab die Moglichkeit, dort auch einen
Schrank mit Boys-Kameras fiir kleine und grosse
Vorschubgeschwindigkeit der Photoschicht einzu-
bauen. Diese Apparate registrieren Blitzeinschlige
in den alten Turm aus ca. 400 m Horizontalabstand
bei ca. 50 m Hohendifferenz zur Turmspitze. Diese
Entfernung scheint giinstiger als die grossere Distanz
des Photoraums in Paradiso, um auch das erste
Aufleuchten der Blitzbahn photographisch sichtbar
zu machen. Leider gelingt dies nur nachts, so dass
mehr Oszillogramme als Photos der Einschlige in
die Tiirme aufgenommen werden.

Mit den beschriebenen Einrichtungen kénnen
somit Blitzeinschlige photographisch sowie oszillo-
graphisch festgehalten werden.

Die wesentlichen Resultate der neunjihrigen
Beobachtungsperiode 1946...1954 werden in einem
spitern Aufsatz gezeigt.
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Betrachtungen iiber mechanische Stisse
in der Beanspruchung und in der Priifung von Instrumenten

Von Karl Hintermann, Bern

Als Gedankenmodell dient ein idealisierter Zungenfrequenz-
messer als gestossenes Objekt. Es wird iiber den Einfluss von Stoss-
form, Stossdauer, Beschleunigungsmaximum und Fliche der Kurve
der Stossfunktion auf die Schwingungen, speziell auf die Schwin-
gungsenergie der Zungen berichtet. Ferner wird der Zusammen-
hang zwischen diesen Grossen und der Art des Stosses und des
gestossenen Objektes fiir einige Beispiele behandelt.

I. Einleitung
Im Expertenkomitee «Vibration und Stoss»,
das von den Fachkollegien 12 (Radioverbindungen)
und 13 (Messinstrumente) des Comité Electro-
technique Suisse (CES) gebildet wurde, hat sich die
Frage gestellt, wie sich die verschiedenen Gréssen
(Beschleunigungsmaximum, Stossdauer, Fliche und

620.178.787 : 621.317.7

Les questions envisagées sont discutées en prenant comme
exemple le cas schématique d’un fréquencemétre a lames vibrantes,
soumis a des chocs. On examine l’influence sur les vibrations des
lames, en particulier sur leur énergie de vibration, de la forme
et de la durée du choc, du maximum de l’accélération et de la sur-
face de la courbe représentant la fonction de choc. La relation
enire ces grandeurs et le genre de choc et d’objet qui le regoit est
traitée pour quelques exemples.

Form der Kurve der Stossfunktion) in der Stoss-
priifung von Instrumenten auswirken. Diese Grossen
seien im folgenden kurz « Stossgrossen» genannt, die
letzten beiden kurz « Stossfliche» und «Stossform».
In der vorliegenden Arbeit sollen iiber diese Grissen
anhand ihrer Entstehung und ihrer Auswirkungen
auf elastische Gebilde Betrachtungen angestellt
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werden. A. von Weiss [1]1) hat bereits im Bulletin
SEV im Zusammenhang mit Instrumentenpriifungen
das Amplitudenspektrum eines Stossbeispiels ange-
geben. Es wird im folgenden versucht, dazu allge-
meiner iiber die Zusammenhiinge zwischen Stoss-
grossen und Stofspektrum zu berichten.

II. Frequenzanalyse

Das Fourierintegral der Beschleunigungsfunktion
des Stosses (im folgenden kurz «Stossfunktion»)
ergibt rein mathematisch den Aufbau der Stoss-
funktion aus der Superposition von unendlich langen,
sinusformigen Wellenziigen. Es ist zu untersuchen,
was dies praktisch am gestossenen Objekt bedeutet.

1. Frequenzanalyse am Modell

Man denke sich als Modell eines gestossenen Ob-
jektes einen Zungenfrequenzmesser, dessen Zungen
die verschiedenen elastischen Teile eines Priifobjektes
reprisentieren. Um die Stosswirkung, speziell die
aufgenommene Energie nach Ablauf des Stosses
wiedergeben zu kénnen, seien die Zungen als damp-
fungsfrei angenommen. Sie sollen -aus massefreien

Fig. 1
Koordinaten-
bezeichnungen

M Masse; x Koordinate
der Masse im System
) des gestossenen Objek-
tes; s Koordinate des
gestossenen Objektes in
einem Inertialsystem

SEv 23102

elastischen Stiben verschiedener Elastizitit mit den
Massen M an deren Ende bestehen. Die Stossfunk-
tion wirkt dann auf den eingespannten Teil des
Stabes und es gilt (Fig. 1): ’

M(GE+§@)+kx=0 (1)
' k=M o @)

x  Koordinate der Masse im System des gestossenen Ob-
jektes;

s(t) Koordinate des gestossenen Objektes in einem Inertial-
system;

k  Federkonstante des elastischen Stabes;

o Eigenkreisfrequenz der Schwingungen von M im x-Koor-
dinatensystem (w = 27, » = Eigenfrequenz in Hz).

Die Gleichung (1) kann auch in der Form:
X4+ ow¥ix=—s5()=F() (3)

geschrieben werden, wobei F (t) die Beschleunigungs-
funktion des Stosses, die «Stossfunktion» ist.
Die Losung dieser Differentialgleichung lautet [2]:

x=%fF(r)sinw(z—-r)dr (4)

Mit Hilfe der Zerlegung von sinw (t — 7) ergibt
dies:

1) siehe Literatur am Schluss.

t

’ .
x = i(sinwt/F(t) cos wt dr —
o\

—coswth(t)sinwrdr) (5)

Die beiden Integrale stellen also mit 1/w multi-
pliziert die jeweiligen Wegamplituden 4. und B.
dar. Fiir die Betrachtung der Stosswirkung inter-
essiert die Schwingung nach Ablauf des Stosses. Da
die Zungen ungedimpft sind, bleibt diese Schwin-
gung unverindert erhalten. Ist zur Zeit ¢, der Stoss
voriiber, so gilt:

F(r>1)=10 (6)

Es wird daher in den Zeitelementen nach #; kein
Beitrag mehr an die Integralwerte der Gleichung (5)
geleistet und man kann als obere Integrationsgrenze
statt ¢ auch oo setzen.

2. Vergleich mit Fourieranalyse

Nach Fourier kann die Funktion F (¢) folgender-
massen zerlegt werden [da F () nicht periodisch ist,
handelt es sich nicht um eine Reihe, sondern um ein
Integral]:.

F () =/a (w) coswtdw —|—fb (w)sinwtdw  (7)
+o0

a(w) =%fF (t) coswrdr

+o00 ) (8)
b(w) =—71?fF () sinwrdr

Betrachtet man nur die Komponente der Eigen-
kreisfrequenz w, integriert also nicht iiber w, so
ergibt sich:

+o0

dF@t) = % (coswt/F(r) coswrdr +

—o0
+0o0

- sinwth () sinwrd‘r) do 9)

Um das Ergebnis mit Gleichung (5) vergleichen
zu konnen, wird diese mit den oberen Grenzen co
[Schwingung nach Ablauf des Stosses, Gleichung (6)]
nochmals angeschrieben und nach der Zeit differen-
ziert. Man erhilt:

400
Xysiy, = % (sinwt[F(r) coswrdr +

+00

+ coswth(T) sinw-rdr) (10)
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~+o0
Xisy, = (coswth(r) coswtdt +

—o0

+o0
-+ sinwth(T) sinwrdr) (11)

Daraus ersieht man das folgende wichtige Resul-
tat fiir das Stossobjekt:

Die mit = multiplizierten Fourieramplituden (8)
der Beschleunigungsfunktion des Stosses, sind die
Geschwindigkeitsamplituden der Zungen nach dem
Stoss. Dasselbe gilt auch fiir die Geschwindigkeits-
Junktion des Stosses und die Wegamplituden der
Zungen.

Der Zusammenhang zwischen den Amplituden
des Weges, der Geschwindigkeit und der Beschleuni-
gung ist einfach der folgende:

WA, =wA,=A; (12)

wie man leicht durch Differenziation einer Sinus-
oder Cosinushewegung einsieht. Die Indizes x, x und
x weisen auf die Dimension der Amplitude hin.

Fourieranalysen fiir verschiedene Funktionen
sind in der Literatur zu finden, z. B. bei K. W.
Wagner [3].

III. Einfluss der Form der Stossfunktion, Beispiele

Vorerst sei noch die mathematische Definition
von Stossgrossen angegeben:

die Fliche unter der Kurve der Stossfunktion
(Stossflache):
—+o0
J= f F (1) di

ferner das Besch]eumgungsmammum der Stoss
funktion:
(t)max

und die aus diesen beiden Grissen abgeleitete mitt-
lere Stossdauer:
J

b=L

a

(13)

a=

(14)

Die Stossfliiche .J bedeutet nichts anderes, als den
pro Masseneinheit des gestossenen Objektes umge-
setzten Impuls.

1. Erstes Beispiel

Als erstes Beispiel diene der Stoss einer standardi-
sierten Instrumenten-Stosspriifmaschine amerikani-
scher Herkunft [3]. Die Maschine ist in Europa
unter dem Namen «Guillotine» bekannt (nach
ihrem Aufbau). Der Stoss erfolgt durch harte Ab-
federung des das Objekt tragenden Tisches, der in
einer Fiithrung aus einer bestimmten Héhe fillt. Die
Stossfunktion ist eine halbe Cosinusperiode (Fig.2a):

—ily +¢ oo
—|— a cos —

+0
)

—o0 —#h +i

F(t) = (15)

In die Losung (4) der Differentialgleichung einge-

setzt und ausgerechnet ergibt sich fiir die Auslen-

kungen der Zungen des Modelles

cos w1,
x=a

—————— sinwt = A; sinwt
Tw o

(16)

41, T

Es erweist sich als vorteilhaft, statt der Weg-
amplitude A4, die Geschwindigkeitsamplitude A=
wA, zu diskutieren, da sie sich dimensionslos auf-
tragen lidsst und da nur sie fiir @ = 0 einen endlichen,
von Null verschiedenen Wert hat. Ferner kommt der

9 L~
T TE T
a b ¢ sev23103
Fig. 2

Beschleunigungsverlauf (Stossfunktionen) der Stdsse nach
den Beispielen 1...3

a Beschleunigungsmaximum der. Stossfunktion;
Stossdauer

b mittlere

Geschwindigkeitsamplitude eine praktische Bedeu-
tung zu, da ja ihr halbes Quadrat 4;2%/2 die pro
Masseneinheit aufgenommene Energie (spezifische
Energie) des schwingenden Korpers darstellt.

Mit Hilfe der Gleichungen (13), (14) und (16)
erhilt man fiir das vorliegende Beispiel:

17
coswa
Ai=J (17)
1 w2 b2
4
Jziato b=ito (].8)
] 1]

Man sieht nun den Vorteil der Geschwindigkeits-
amplitude als Vergleichswert (Fig. 3, Kurve 1): iiber
wb aufgetragen und auf J bezogen ergeben sich fiir
die Koordinaten dimensionslose Grossen, die fiir
eine bestimmte Stossform, unabhingig von den
Werten der Stossgrossen immer dieselbe Kurve
ergeben. '

2. Zweites Beispiel

Als zweites Beispiel ist in Fig. 3 das Spektrum
(Kurve 2) einer rechteckigen Stossfunktion (Fig.2b)
eingetragen:

b,
F(e _0‘+a'+0‘ (19)
—"  +i
J=2ay, b=2zq, (20)
A—2—Lsm—w—l—)- (21)

wb 2 ,

3. Drittes Beispiel
Als drittes Beispiel ist in Fig.3 das Spektrum
eines exponentiellen Stossverlaufes (Fig. 2c) einge-
tragen. Eine nihere Betrachtung iiber diesen Stoss
folgt weiter unten (Stoss auf zihe Unterlage).
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4. Folgerungen
Wie Fig.3 zeigt, haben die Umbhiillenden der
absoluten Werte der Kurven dhnlichen Verlauf. Im
Spektrum stetiger Stossfunktionen (Beispiel 1) sind
die hoheren Kreisfrequenzen schwach vertreten,
withrend sich Unstetigkeiten in der Stossfunktion

06 4

A,‘ﬂp

o
~

0 , Y
, T ; p——

0 2 a 6 8 10 12 " 16 1 20 22
SEV23 104
Fig. 3
Dimensionslos aufgetragenes Spektrum der Geschwindigkeits-
amplituden der Beispiele 1...3

As Geschwindigkeitsamplitude; J Stossfliche; «w Eigenkreis-
frequenz der Schwingungen der Masse M; b mittlere Stossdauer

im Sinne griosserer Amplituden bei diesen Kreisfre-
quenzen auswirken (Kurven 2 und 3). Es zeigt sich,
dass die Umbhiillenden der dimensionslos aufge-
tragenen Spektren stetiger Stossfunktionen alle fast
denselben Verlauf haben wie in Beispiel 1. Der
Abfall aufkleinere Amplituden erfolgt jedoch immer,
auch in den unstetigen Fillen in der Gegend wb ~

27, oder (Frequenzen in Hz) v = zl, d. h.:
T

Der Hauptanteil der spezifischen Energie wird
durch Schwingungsgebilde aufgenommen, deren Eigen-
frequenzen kleiner sind als die reziproke mitilere
Stossdauer (v << 1/b).

IV. Grenzfall b — 0,
Einfluss der mittleren Stossdauer

Eine Stossfunktion endlicher Fliche mit b — 0
(¢ — oo; Diracsche §-Funktion) kann aus Beispiel 1
oder 2 durch Grenzfallbetrachtungen abgeleitet
werden: Eliminiert man in den Amplituden (17) oder
(21) a durch Einfithren von ¢, und macht den Grenz-
iibergang t, — 0, so erhilt man eine konstante Ge-
schwindigkeitsamplitude fiir alle w. Dieses Resultat
ist nichts anderes als die etwa in der Hochfrequenz-
technik bekannte Tatsache, dass ein unendlich
schmaler Impuls seine Energie auf simtliche Fre-
quenzen gleich verteilt.

Dieses Resultat lisst sich auch aus einer genaue-
ren Betrachtung der Fig. 3 vermuten:

Das Produkt wb, das als Abszisse aufgetragen
dhnliche Geschwindigkeits-(Energie-) Spektren gibt,
hat zur Folge, dass die Breite des Frequenzspek-
trums (nicht dimensionslos, sondern iiber w aufge-
tragen) umgekehrt proportional der mittleren Stoss-
dauer ist (mathematisch dasselbe wie die Heisen-
bergsche Ungenauigkeitsrelation der Quantenphy-
sik). Im Grenzfall b -~ 0 wird nun der Wert am
Abszissennullpunkt der Fig. 3 fiir alle Frequenzen
giiltig, da ja fiir jede Frequenz wb gegen Null geht
(sieche auch Ahnlichkeitssatz der Laplacetrans-
formation).

In Fig. 4 sind die verschiedenen Amplituden und
die spezifischen Energien des Beispiels 1 in ihren
Dimensionen iiber Frequenzen und Kreisfrequenzen
in 571 aufgetragen. Dabei ist eine mittlere Stossdauer
von 10-3s und ein Beschleunigungsmaximum von
100 m s2 (~~ 10 g) den Spektren zu Grunde gelegt.

7N
S N »
%, ‘-.\ / N\ o7
L Do
O 2000, 4000 6000 8000 10000 §'
0 200 _, sdo 1000 1400 1800 Hz

sevasses
Fig. 4
Weg-, Geschwindigkeits- und Beschleungungsamplitude, sowie
spezifische Schwingungsenergie in Abhingigkeit von Eigen-
kreisfrequenz » und Eigenfrequenz » nach Beispiel 1
Az Geschwindigkeitsamplitude; A: Be-
E/M spezifische Schwingungsenergie

A Wegamplitude;
schleunigungsamplitude;

Es ist zu beachten, dass es sich definitionsgemass
um die Amplituden der schwingenden Massen im
System des gestossenen Objektes handelt, welches
kein Inertialsystem ist. Die definitionsgeméssen
Beschleunigungsamplituden sind daher ungeeignet
fiir Riickschliisse auf Krifte. Fiir hohe Frequenzen
ist dafiir vielmehr das Beschleunigungsmaximum
der Stossfunktion massgebend. Fiir kleine Frequen-
zen kann aus den Wegamplituden auf Krifte
(Kraft = 4. M »?) geschlossen werden (z.B. fiir
Stossabfederungen). .

V. Einfluss von Beschleunigungsmaximum
und Fliche der Stossfunktion

Aus Fig. 3 kann der Einfluss des Beschleuni-
gungsmaximums und der Fliche der Stossfunktion
abgelesen werden:

Bei konstanter mittlerer Stossdauer verhalten
sich die Geschwindigkeitsamplituden proportional
zur Stossfliche J, die in diesem Fall selbst propor-
tional zum Beschleunigungsmaximum ist. Bei
gleicher Stossform (gleichem Verhaltnis zwischen
mittlerer Stossdauer und Beschleunigungsmaximum)
verhalten sich dieAmplituden auch proportional zum
Beschleunigungsmaximum, treten jedoch bei Eigen-
frequenzen auf, die in Funktion der mittleren Stoss-
dauer variieren.

Zwei der drei Stossgréssen — mittlere Stossdauer,
Beschleunigungsmaximum und Stossfliche — cha-
rakterisieren also den allgemeinen Verlauf eines
Amplitudenspektrums der Stossfunktion; die Stoss-
form gibt erst in zweiter Linie iiher die genauere
Form des Spektrums Auskunft.
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VI. Die Stossgrissen einiger Beispiele

Die Stossgréssen sollen nun bei Aufschlagen von
zwei extremen Arten von Stossobjekten (Kérperart)
auf zwei extreme Arten von Unterlagen (elastische
und zihe) diskutiert werden. Fiir das Aufschlagen
wird immer dieselbe Geschwindigkeit angenommen
(gleiche Fallhghe unter Vernachlissigung der Luft-
widerstandsunterschiede).

Kirperart 1: Objekte verschiedener Masse M
(inkl. Fuss) sind mit gleichem Fuss (gleiche Beriih-
rungsfliche 4 mit der Unterlage) versehen.

Korperart 2 : Die Kérper samt Fuss sind einander
dhnlich und haben dasselbe spezifische Gewicht. Die
Masse wichst dann mit der 3. Potenz, die Beriih-
rungsfliche 4 mit der 2. Potenz der linearen Aus-
dehnung.

1. Elastischer Stoss

a) Kérperart 1

_ l/M
S =v A

s maximale Einfederung
v Aufschlaggeschwindigkeit
k Federkonstante zwischen Kérper und Unterlage

(22)

worin

Fir die Beschleunigungsfunktion erhélt man:

F( ’ VMcost
_EVM
2V Kk

Daraus ergeben sich die Stossgréssen [siche Glei-
chung (18)]:

+0

—'n fy

)

k

M

M
. fakinl 24
b=2 |/ T (24)
Stossfliche

(Geschwindigkeitsinderung) J = 2v

Beschleunigungsmaximum e = v

Mittlere Stossdauer

Es ist schon durch Anschauung festzustellen, dass
hier eine grossere Masse des gestossenen Objektes
eine weichere Abfederung hat. Der Einfluss geht

also mit der Quadratwurzel aus der Masse.

b) Kérperart 2

Die Federkonstante zwischen Kérper und Unter-
lage ist proportional zur Beriihrungsfliche 4 und
damit auch zum Quadrat der linearen Ausdehnung:

k=pid  M=p,d (25)
worin
P1» P2 P3- - - Proportionalititsfaktoren
d eine lineare Abmessung des Korpers
Es ergibt sich fiir die maximale Einfederung:
Pad®

und fiir die Stossfunktlon:

Y 25 &
F(1) = 0 +E”V—d_-cos p.:;/ﬁ l 4 0" @7)
Ll 2 #
und fiir die Stossgrossen:
. v o v
YT pld T plyM
b=2p,)d=ps VM (28)

J=2v

Hier wirkt sich also die Masse in derselben Rich-
tung aus wie bei Koérperart 1, jedoch um eine dritte
Potenz schwicher. Dieses Resultat kann auch durch
Anschauung aus (24) erhalten werden: iiber jeder
Fliacheneinheit der Beriihrungsfliche lastet eine be-
stimmte Siule, deren Hohe und damit deren Masse
proportional zur linearen Ausdehnung des Kérpers
ist. Diese Séulen (deren Anzahl proportional zur
Beriihrungsfliche A4 ist) konnen als getrennte Stoss-
korper nach Korperart 1 (gleicher Fuss mit Flichen-
einheit als Berithrungsfliche) betrachtet werden.

2. Stoss auf eine ziihe (dickfliissige) Unterlage
Der Bewegungsablauf spielt sich hier nach der
folgenden Gleichung ab:

Mz4+r1rAz=0" (29)
Deren Losung (Auftreffen zur Zeit ¢t = 0) ergibt:

rA‘
z = s(e M —1)
worin:

z momentane Einsinktiefe

r Reibungskoeffizient pro Flicheneinheit
(Fliissigkeitsreibung)

A Beriihrungsfliche

s maximale Einsinktiefe

(30)

a) Korperart 1
Man erhilt fiir die maximale Einsinktiefe (aus
dem Energiesatz):

M
s=uv 31
.y (31)
und fiir die Stossfunktion:
0
rd =54
F@=0 e M 32
0 & (32)
— 00 0
Daraus errechnen sich die Stossgréssen zu:
rA
a=uv
M
M
b= 33
rA (33)
J=v

b) Korperart 2

Analog den vorhergehenden Beispielen errechnet
man hier die entsprechenden Werte. Man erhiilt:
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maximale Einsinktiefe s = pyvd (34)
0 V o0
Stossfunktion F (1) = 0| + v pr e Pid (35)
3
Stossgrossen: -
__wr
psd
b= 2% d (36)
r
J=w

Die Verhiltnisse liegen also bei der zihen Unter-
lage dhnlich wie beim elastischen Stoss, nur dass
hier die Abhingigkeiten von der Masse M die zweite
Potenz von jenen beim elastischen Stoss haben.

VII. Schlussfolgerungen

1. Die elastischen Teile eines gestossenen Kérpers
werden so zum Schwingen angeschlagen, dass ihre
Geschwindigkeitsamplituden proportional zu den
Amplituden der Fourieranalyse des Verlaufes der
Beschleunigung des Stosses sind. Dasselbe gilt auch
fiir die Wegamplitude des gestossenen Korpers und
den Geschwindigkeitsverlauf des Stosses.

2. Die Frequenzspektren verschiedener Stoss-
formen werden in groben Ziigen durch die mittlere
Stossdauer und das Beschleunigungsmaximum be-
stimmt und erst in zweiter Linie durch die iibrige
Stossform.

3. Der grosste Anteil der spezifischen Energie
wird von Schwingungsgebilden aufgenommen, deren
Eigenfrequenz in Hz kleiner als die reziproke mitt-
lere Stossdauer ist. Ein Frequenzanalysator fiir
mechanische Impulse lisst also Riickschliisse auf
die mittlere Stossdauer ziehen, besonders wenn er
die Geschwindigkeitsamplituden wiedergibt.

4. Die mittlere Stossdauer wirkt sich auf die
Breite des Spektrums aus, jedoch nicht auf die
Héhe. Diese wird durch das Beschleunigungs-
maximum bestimmt.
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Contribution a I’étude du bruit derfo'nd

Extrait d’une conférence présentée a la journée du Comité National Suisse de 1'Union Radio-Scientifique Internationale
du 8 décembre 1954 & Zurich, par Jean-Pierre Borel, Lausanne

L’étude du bruit de fond a été introduite au laboratoire
de Physique de I’Ecole Polytechnique de I’Université de
Lausanne (EPUL) sous la forme d’un travail d’équipe pour
deux raisons principales:

1. Pour la réalisation d’appareils électroniques i hautes
performances destinées a des recherches en résonance
nucléaire. )

2. Pour I’étude physique de certaines propriétés du corps
solide et plus particuliérement des lames minces méialliques.

On sait que ces derniéres constituent une classe i part
de conducteurs [1 et 2]1). En dessous d’une température
critique, elles ont une résistivité trés élevée a coefficient de
température négatif et des caractéristiques tension courant
incurvées. On attribue généralement ces «anomalies» a ’exis-
tence d’une structure dite «granulaire» ou «discontinue» ce
qui est d’ailleurs justifié thermodynamiquement et observé
au microscope électronique [2 et 3].

Dans ces conditions, la conduction obéit a des lois assez
particuliéres, ce qui entraine une émission de bruit de fond
appelée «effet de scintillation» [1 et 2]. L’étude des fonc-
tions aléatoires et de l’autocorrélation permet de faire une
distinction entre les bruits a temps de corrélations miero-
scopiques et. les bruits a temps de corrélations mascrosco-
piques.

Dans la premiére classe il faut ranger 1’effet Johnson et
I'effet de grenaille pur par exemple qui ont un spectre uni-
forme (tout au moins a des fréquences raisonnables).

Dans la seconde classe, on trouve le «Flicker noise» émis
par les cathodes a oxydes et I’effet de scintillation des ré-
sistances parcourues par un courant continu. Il est difficile,
dans ce cas, de prévoir la forme de la fonction d’autocorré-
lation et la densité spectrale (u2) qui en est la transformée
de Fourier. Rappelons que la densité spectrale ainsi définie
est égale i la valeur quadratique moyenne de la tension,
ramenée 4 un cycle de bande passante.

1) voir la bibliographie a la fin de l'article.

621.396.822
Expérimentalement on trouve les résultats suivants:

1. Dans le cas du «Flicker noise» des cathodes on a [4]:
= 1
u f.lT
entre 10 Hz et 10 kHz (f étant la fréquence). D’autres auteurs
[8] indiquent:
— 1
u® ~ f.OT

2. Dans le cas de dépéts de carbone on a [5]:

entre 600 Hz et 8 Hz.

3. Dans le cas d’une résistance en carbone agglomérée du
commerce nous avons relevé au Laboratoire de Physique
EPUL une loi sensiblement en:

— 1

u? A

entre 1 kHz et 100 kHz. Entre 15 Hz et 1 kHz la décroissance
était un peu plus rapide.
4. Dans le cas d’une lame mince d’argent discontinue de
6 nm 2) d’épaisseur nous avons mesuré une loi en:
— 1
2 .
u? Ay 709

entre 1 kHz et 100 kHz. Comme précédemment la décrois-

sance était un peu plus rapide 3 des fréquences plus basses

(entre 100 Hz et 1 kHz).
En résumé on a donc dans tous les phénomeénes étudiés
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ici une densité spectrale u2 ~ —, a étant indépendant de la

fréquence et assez voisin de 1 lorsque la fréquence est assez
élevée.

2) 1 nm = 10" m = 10~®* mm (1 millioniéme de mm).

Fortsetzung des allgemeinen Teils auf Seite 219
Es folgen «Die Seiten des VSE»
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