
Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 46 (1955)

Heft: 5

Artikel: Betrachtungen über mechanische Stösse in der Beanspruchung und in
der Prüfung von Instrumenten

Autor: Hinermann, Karl

DOI: https://doi.org/10.5169/seals-1058131

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-1058131
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Bull. Ass. suisse électr. t. 46(1955), n° 5 201

Das Instrument ist von H. R. Meier und E. Triimpy
an der ETH mit Hilfe eines besondern Kredites
entwickelt und an anderer Stelle beschrieben worden

[6],

stviztrs

Fig. 15

Boys-Kamera mit grosser Filmgeschwindigkeit (RK)

6. Photoraum Paradiso

Um das Vorwachsen der Blitze in den ersten
Turm photographisch verfolgen zu können, wurde
bereits im Jahre 1947 am Fusse des Monte San Sal-
vatore im Dachstock eines Gebäudes an der Via
Bosia 9 ein Photoraum eingerichtet, wo je eine
Boys-Kamera mit raschem (49 m/s) und langsamem
Filmvorschub (1 m/s) aufgestellt wurden. Der
Abstand dieses Photoraumes von der Spitze des ersten
Turmes beträgt ca. 1400 m in der Horizontalen und
670 m in der Vertikalen.

Die Apparate sind grundsätzlich genau gleich
gebaut wie die bereits beschriebenen des Photoraumes
auf dem Berggipfel. Die Öffnung der Verschlüsse
und die Schaltung der Motoren geschah in den ersten
Jahren von einer Schaltuhr aus, welche nach
Einsetzen der Dunkelheit einschaltete und vor Beginn
der Morgendämmerung wieder ausschaltete. Seit
1953 wird auf telephonischen Anruf hin nur noch
dann geöffnet, wenn Gewittergefahr besteht. Damit
wird die Schleierbildung der Photographien ver¬

mindert, die sonst besonders in mondhellen Nächten
stark störend ist.

7. Photoschrank auf dem zweiten Blitzauffang-Turm

Der Einbau des Blitzstrom-Shuntes auf dem
zweiten Turm zwischen dessen Nadel und der
geerdeten Turmkonstruktion, ca. 55 m über dem
Erdboden, ergab die Möglichkeit, dort auch einen
Schrank mit Boys-Kameras für kleine und grosse
Vorschubgeschwindigkeit der Photoschicht
einzubauen. Diese Apparate registrieren Blitzeinschläge
in den alten Turm aus ca. 400 m Horizontalabstand
bei ca. 50 m Höhendifferenz zur Turmspitze. Diese

Entfernung scheint günstiger als die grössere Distanz
des Photoraums in Paradiso, um auch das erste
Aufleuchten der Blitzbahn photographisch sichtbar
zu machen. Leider gelingt dies nur nachts, so dass

mehr Oszillogramme als Photos der Einschläge in
die Türme aufgenommen werden.

Mit den beschriebenen Einriebtungen können
somit Blitzeinschläge photographisch sowie
oszillographisch festgehalten werden.

Die wesentlichen Resultate der neunjährigen
Beobachtungsperiode 1946...1954 werden in einem
spätem Aufsatz gezeigt.
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Betrachtungen über
in der Beanspruchung und in

Als Gedankenmodell dient ein idealisierter Zungenfrequenzmesser

als gestossenes Objekt. Es wird über den Einfluss von Stoss-

form, Stossdauer, Beschleunigungsmaximum und Fläche der Kurve
der Stossfunktion aufdie Schwingungen, speziell aufdie
Schwingungsenergie der Zungen berichtet. Ferner wird der Zusammenhang

zwischen diesen Grössen und der Art des Stosses und des

gestossenen Objektes für einige Beispiele behandelt.

I. Einleitung
Im Expertenkomitee «Vibration und Stoss»,

das von den Fachkollegien 12 (Radioverbindungen)
und 13 (Messinstrumente) des Comité Electro-
technique Suisse (CES) gebildet wurde, hat sich die
Frage gestellt, wie sich die verschiedenen Grössen
(Beschleunigungsmaximum, Stossdauer, Fläche und

mechanische Stösse

der Prüfung von Instrumenten
620.178.787 : 621.317.7

Les questions envisagées sont discutées en prenant comme
exemple le cas schématique d'un fréquencemètre à lames vibrantes,
soumis à des chocs. On examine l'influence sur les vibrations des

lames, en particulier sur leur énergie de vibration, de la forme
et de la durée du choc, du maximum de l'accélération et de la

surface de la courbe représentant la fonction de choc. La relation
entre ces grandeurs et le genre de choc et d'objet qui le reçoit est
traitée pour quelques exemples.

Form der Kurve der Stossfunktion) in der Stoss-

prüfung von Instrumenten auswirken. Diese Grössen
seien im folgenden kurz « Stossgrössen» genannt, die
letzten beiden kurz « Stossfläche» und « Stossform».
In der vorliegenden Arbeit sollen über diese Grössen
anhand ihrer Entstehung und ihrer Auswirkungen
auf elastische Gebilde Betrachtungen angestellt

Von Karl Hintermann, Bern
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werden. A. von Weiss [l]1) hat bereits im Bulletin
SEV im Zusammenhang mit Instrumentenprüfungen
das Amplitudenspektrum eines Stossbeispiels
angegeben. Es wird im folgenden versucht, dazu
allgemeiner über die Zusammenhänge zwischen Stoss-
grössen und Stoßspektrum zu berichten.

II. Frequenzanalyse
Das Fourierintegral der Beschleunigungsfunktion

des Stosses (im folgenden kurz «Stossfunktion»)
ergibt rein mathematisch den Aufbau der
Stossfunktion aus der Superposition von unendlich langen,
sinusförmigen Wellenzügen. Es ist zu untersuchen,
was dies praktisch am gestossenen Objekt bedeutet.

1. Frequenzanalyse am Modell
Man denke sich als Modell eines gestossenen

Objektes einen Zungenfrequenzmesser, dessen Zungen
die verschiedenen elastischen Teile eines Prüfobjektes
repräsentieren. Um die Stosswirkung, speziell die
aufgenommene Energie nach Ablauf des Stosses
wiedergeben zu können, seién die Zungen als
dämpfungsfrei angenommen. Sie sollen aus massefreien

Fig. 1

Koordinaten-
bezeichnungen

M Masse; x Koordinate
der Masse im System
des gestossenen Objektes;

s Koordinate des
gestossenen Objektes in

einem Inertialsystem

elastischen Stäben verschiedener Elastizität mit den
Massen M an deren Ende bestehen. Die Stossfunktion

wirkt dann auf den eingespannten Teil des
Stabes und es gilt (Fig. 1) :

M (x 's (t)) + k x 0

k Mm2

(1)

(2)
worin :

x Koordinate der Masse im System des gestossenen Ob¬

jektes ;

s(t) Koordinate des gestossenen Objektes in einem Inertial¬
system;

k Federkonstante des elastischen Stabes;
m Eigenkreisfrequenz der Schwingungen von M im «-Koor¬

dinatensystem (eo 2nv, v Eigenfrequenz in Hz).

Die Gleichung (1) kann auch in der Form:

* + m2x — s (t) F (t) (3)

geschrieben werden, wobei F (t) die Beschleunigungsfunktion

des Stosses, die «Stossfunktion» ist.
Die Lösung dieser Differentialgleichung lautet [2]:

I

— / F (t) sin m (t — r) d
ft) J

(4)

Mit Hilfe der Zerlegung von sin m (t — r) ergibt
dies:

<) siehe Literatur am Schluss.

x — [ sin tu t f F (t) cos cot dr —
M \ \J

—OO
t

— cos cü t J F (r) sin cor dr j (5)

—OO

Die beiden Integrale stellen also mit 1/co
multipliziert die jeweiligen Wegamplituden Ax und Bx
dar. Für die Betrachtung der Stosswirkung
interessiert die Schwingung nach Ablauf des Stosses. Da
die Zungen ungedämpft sind, bleibt diese Schwingung

unverändert erhalten. Ist zur Zeit t0 der Stoss
vorüber, so gilt:

F (T > »„) 0 (6)

Es wird daher in den Zeitelementen nach t0 kein
Beitrag mehr an die Integralwerte der Gleichung (5)
geleistet und man kann als obere Integrationsgrenze
statt t auch oo setzen.

2. Vergleich mit Fourieranalyse

Nach Fourier kann die Funktion F (t) folgender-
massen zerlegt werden [da F (t) nicht periodisch ist,
handelt es sich nicht um eine Reihe, sondern um ein
Integral] : -

OO OO

F("=/a (eo) cos cot d eo +J"b (m) sinmt dm (7)

o o

+ 00

a(co) — / F (t) cos co t d tnJ
—00

+ oo

b(co) —JF (t) sin co r d r

(8)

Betrachtet man nur die Komponente der
Eigenkreisfrequenz co, integriert also nicht über co, so
ergibt sich:

+00

d F(t) — ^coscotJ'F(r) coscordr +
—OO

+ 0O

-f- sincot J"F (r) sincordrj dco (9)

Um das Ergebnis mit Gleichung (5) vergleichen
zu können, wird diese mit den oberen Grenzen oo
[Schwingung nach Ablauf des Stosses, Gleichung (6)]
nochmals angeschrieben und nach der Zeit differenziert.

Man erhält:

xt>,0 -^-|sincofJF(t) coscordr +
—00

+ 00

+ cos mty"F(r) sincordrj (10)
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+ 0O

Xt>t„ COSCOt coscordr +

+ oo

-j- sin colfF(t) sisin co t d r (11)

Daraus ersieht man das folgende wichtige Resultat

für das Stossobjekt:
Die mit — multiplizierten Fourieramplituden (8)

der Beschleunigungsfunktion des Stosses, sind die
Geschwindigkeitsamplituden der Zungen nach dem
Stoss. Dasselbe gilt auch für die Geschwindigkeitsfunktion

des Stosses und die Wegamplituden der
Zungen.

Der Zusammenhang zwischen den Amplituden
des Weges, der Geschwindigkeit und der Beschleunigung

ist einfach der folgende:

co2 Ax co A x Ax (12)

wie man leicht durch Differenziation einer Sinusoder

Cosinusbewegung einsieht. Die Indizes x, x und
x weisen auf die Dimension der Amplitude hin.

Fourieranalysen für verschiedene Funktionen
sind in der Literatur zu finden, z. B. bei K. W.
Wagner [3].

III. Einfluss der Form der Stossfunktion, Beispiele

Vorerst sei noch die mathematische Definition
von Stossgrössen angegeben:
die Fläche unter der Kurve der Stossfunktion
(Stossfläche) :

+oo

J= fF (t) dt/FW (13)

ferner das Beschleunigungsmaximum der
Stossfunktion :

a - F (t)max

und die aus diesen beiden Grössen abgeleitete mittlere

Stossdauer :

b — (14)
a

Die Stossfläche J bedeutet nichts anderes, als den

pro Masseneinheit des gestossenen Objektes
umgesetzten Impuls.

1. Erstes Beispiel

Als erstes Beispiel diene der Stoss einer standardisierten

Instrumenten-Stossprüfmaschine amerikanischer

Herkunft [3]. Die Maschine ist in Europa
unter dem Namen «Guillotine» bekannt (nach
ihrem Aufbau). Der Stoss erfolgt durch harte
Abfederung des das Objekt tragenden Tisches, der in
einer Führung aus einer bestimmten Höhe fällt. Die
Stossfunktion ist eine halbe Cosinusperiode (Fig. 2a) :

F(l) 0

+ 1, oo

+ a cos
TZ t

2 tn
(15)+ 0

- <0 + *0

In die Lösung (4) der Differentialgleichung einge¬

setzt und ausgerechnet ergibt sich für die Auslenkungen

der Zungen des Modelles

cos co t0

n co t0co3
sin cot Ax sin cot (16)

4 tn

Es erweist sich als vorteilhaft, statt der
Wegamplitude Ax die Geschwindigkeitsamplitude Ax
coAx zu diskutieren, da sie sich dimensionslos
auftragen lässt und da nur sie für co 0 einen endlichen,
von Null verschiedenen Wert hat. Ferner kommt der

Q b C serum

Fig. 2

Beschleunigungsverlauf (Stossfunktionen) der Stösse nach
den Beispielen 1...3

a Beschleunigungsmaximum der. Stossfunktion; b mittlere
Stossdauer

Geschwindigkeitsamplitude eine praktische Bedeutung

zu, da ja ihr halbes Quadrat A'x2/2 die pro
Masseneinheit aufgenommene Energie (spezifische
Energie) des schwingenden Körpers darstellt.

Mit Hilfe der Gleichungen (13), (14) und (16)
erhält man für das vorliegende Beispiel:

cos cob

Ax=J
co2 b2

J a tn b — tn
71

(17)

(18)

Man sieht nun den Vorteil der Geschwindigkeitsamplitude

als Vergleichswert (Fig. 3, Kurve J) : über
cob aufgetragen und auf J bezogen ergeben sich für
die Koordinaten dimensionslose Grössen, die für
eine bestimmte Stossform, unabhängig von den
Werten der Stossgrössen immer dieselbe Kurve
ergeben.

2. Zweites Beispiel
Als zweites Beispiel ist in Fig. 3 das Spektrum

(Kurve 2) einer rechteckigen Stossfunktion (Fig. 26)
eingetragen :

+ <0

F(t) - 0 + a + 0

— oo — („• + <0

J 2 at0 b — 2 tn

A O J • 0}b
Ax 2 sin

co 6 2

(19)

(20)

(21)

3. Drittes Beispiel
Als drittes Beispiel ist in Fig. 3 das Spektrum

eines exponentiellen Stossverlaufes (Fig. 2c)
eingetragen. Eine nähere Betrachtung über diesen Stoss

folgt weiter unten (Stoss auf zähe Unterlage).
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4. Folgerungen

Wie Fig. 3 zeigt, haben die Umhüllenden der
absoluten Werte der Kurven ähnlichen Verlauf. Im
Spektrum stetiger Stossfunktionen (Beispiel 1) sind
die höheren Kreisfrequenzen schwach vertreten,
während sich Unstetigkeiten in der Stossfunktion

Dimensionslos aufgetragenes Spektrum der Geschwindigkeits¬
amplituden der Beispiele 1...3

Aii Geschwindigkeitsamplitude; J Stossfläche; w Eigenkreisfrequenz

der Schwingungen der Masse M; b mittlere Stossdauer

im Sinne grösserer Amplituden bei diesen Kreisfrequenzen

auswirken (Kurven 2 und 3). Es zeigt sich,
dass die Umhüllenden der dimensionslos
aufgetragenen Spektren stetiger Stossfunktionen alle fast
denselben Verlauf haben wie in Beispiel 1. Der
Abfall aufkleinere Amplituden erfolgt jedoch immer,
auch in den unstetigen Fällen in der Gegend cob zu

27t, oder (Frequenzen in Hz) v —d. h. :

2 7t

Der Hauptanteil der spezifischen Energie wird
durch Schwingungsgebilde aufgenommen, deren

Eigenfrequenzen kleiner sind als die reziproke mittlere
Stossdauer (v 1/b).

IV. Grenzfall b -> 0,
Einfluss der mittleren Stossdauer

Eine Stossfunktion endlicher Fläche mit b -> 0

(a -» oo; Diracsche <5-Funktion) kann aus Beispiel 1

oder 2 durch Grenzfallbetrachtungen abgeleitet
werden: Eliminiert man in den Amplituden (17) oder
(21) a durch Einführen von t0 und macht den
Grenzübergang f0 -> 0, so erhält man eine konstante
Geschwindigkeitsamplitude für alle a>. Dieses Resultat
ist nichts anderes als die etwa in der Hochfrequenztechnik

bekannte Tatsache, dass ein unendlich
schmaler Impuls seine Energie auf sämtliche
Frequenzen gleich verteilt.

Dieses Resultat lässt sich auch aus einer genaueren

Betrachtung der Fig. 3 vermuten:
Das Produkt wb, das als Abszisse aufgetragen

ähnliche Geschwindigkeits-(Energie-) Spektren gibt,
hat zur Folge, dass die Breite des Frequenzspektrums

(nicht dimensionslos, sondern über co

aufgetragen) umgekehrt proportional der mittleren Stossdauer

ist (mathematisch dasselbe wie die Heisen-
bergsche Ungenauigkeitsrelation der Quantenphysik).

Im Grenzfall b -> 0 wird nun der Wert am
Abszissennullpunkt der Fig. 3 für alle Frequenzen
gültig, da ja für jede Frequenz wb gegen Null geht
(siehe auch Ähnlichkeitssatz der Laplacetrans-
formation).

In Fig. 4 sind die verschiedenen Amplituden und
die spezifischen Energien des Beispiels 1 in ihren
Dimensionen über Frequenzen und Kreisfrequenzen
in s"1 aufgetragen. Dabei ist eine mittlere Stossdauer
von 10~3s und ein Beschleunigungsmaximum von
100 m s-2 (^ 10 g) den Spektren zu Grunde gelegt.

Weg-, Geschwindigkeits- und Beschleungungsamplltude, sowie
spezifische Schwingungsenergie in Abhängigkeit von Eigen¬

kreisfrequenz üj und Eigenfrequenz v nach Beispiel 1

Ax Wegamplitude; Ax Geschwindigkeitsamplitude; Am

Beschleunigungsamplitude; E/M spezifische Schwingungsenergie

Es ist zu beachten, dass es sich definitionsgemäss
um die Amplituden der schwingenden Massen im
System des gestossenen Objektes handelt, welches
kein Inertialsystem ist. Die definitionsgemässen
Beschleunigungsamplituden sind daher ungeeignet
für Rückschlüsse auf Kräfte. Für hohe Frequenzen
ist dafür vielmehr das Beschleunigungsmaximum
der Stossfunktion massgebend. Für kleine Frequenzen

kann aus den Wegamplituden auf Kräfte
(Kraft Ax M co2) geschlossen werden (z. B. für
Stossabfederungen).

V. Einfluss von Beschleunigungsmaximum
und Fläche der Stossfunktion

Aus Fig. 3 kann der Einfluss des
Beschleunigungsmaximums und der Fläche der Stossfunktion
abgelesen werden:

Bei konstanter mittlerer Stossdauer verhalten
sich die Geschwindigkeitsamplituden proportional
zur Stossfläche J, die in diesem Fall selbst proportional

zum Beschleunigungsmaximum ist. Bei
gleicher Stossform (gleichem Verhältnis zwischen
mittlerer Stossdauer und Beschleunigungsmaximum)
verhalten sich dieAmplituden auch proportional zum
Beschleunigungsmaximum, treten jedoch bei
Eigenfrequenzen auf, die in Funktion der mittleren Stossdauer

variieren.
Zwei der drei Stossgrössen — mittlere Stossdauer,

Beschleunigungsmaximum und Stossfläche —
charakterisieren also den allgemeinen Verlauf eines
Amplitudenspektrums der Stossfunktion; die Stossform

gibt erst in zweiter Linie über die genauere
Form des Spektrums Auskunft.
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VI. Die Stossgrössen einiger Beispiele

Die Stossgrössen sollen nun bei Aufschlagen von
zwei extremen Arten von Stossobjekten (Körperart)
auf zwei extreme Arten von Unterlagen (elastische
und zähe) diskutiert werden. Für das Aufschlagen
wird immer dieselbe Geschwindigkeit angenommen
(gleiche Fallhöhe unter Vernachlässigung der
Luftwiderstandsunterschiede)

Körperart 1 : Objekte verschiedener Masse M
(inkl. Fuss) sind mit gleichem Fuss (gleiche
Berührungsfläche A mit der Unterlage) versehen.

Körperart 2 : Die Körper samt Fuss sind einander
ähnlich und haben dasselbe spezifische Gewicht. Die
Masse wächst dann mit der 3. Potenz, die
Berührungsfläche A mit der 2. Potenz der linearen
Ausdehnung.

1. Elastischer Stoss

a) Körperart 1

M
k (22)

worin
s maximale Einfederung
v Aufschlaggeschwindigkeit
k Federkonstante zwischen Körper und Unterlage

Für die Beschleunigungsfunktion erhält man:

F (t) 0 + v}/icost ]/lr
X>

«,-f^

+ 0 (23)

+ 'o

M
k

Daraus ergeben sich die Stossgrössen [siehe
Gleichung (18)]:

(24)

Beschleunigungsmaximum a v [/

Mittlere Stossdauer 6 2

Stossfläche
(Geschwindigkeitsänderung) J 2v

Es ist schon durch Anschauung festzustellen, dass
hier eine grössere Masse des gestossenen Objektes
eine weichere Abfederung hat. Der Einfluss geht
also mit der Quadratwurzel aus der Masse.

b) Körperart 2

Die Federkonstante zwischen Körper und Unterlage

ist proportional zur Berührungsfläche A und
damit auch zum Quadrat der linearen Ausdehnung :

worin
.Pi» P2.1 Ps '
d

k pi d2 M p2d3

Proportionalitätsfaktoren
eine lineare Abmessung des Körpers

(25)

Es ergibt sich für die maximale Einfederung:

„1^f P
s

Pl d2

und für die Stossfunktion :

v P3 ]/d (26)

F 0

+ «o 0°

: COS

p3]/d p3]/d

TZ Jfd

+ 0 (27)

fo — P3 2

und für die Stossgrössen:

v v

p3]/d Pi\/M
b -2 P3]ß=P6yw
J=2v

(28)

Hier wirkt sich also die Masse in derselben Richtung

aus wie bei Körperart 1, jedoch um eine dritte
Potenz schwächer. Dieses Resultat kann auch durch
Anschauung aus (24) erhalten werden: über jeder
Flächeneinheit der Berührungsfläche lastet eine
bestimmte Säule, deren Höhe und damit deren Masse

proportional zur linearen Ausdehnung des Körpers
ist. Diese Säulen (deren Anzahl proportional zur
Berührungsfläche A ist) können als getrennte Stoss-
körper nach Körperart 1 (gleicher Fuss mit Flächeneinheit

als Berührungsfläche) betrachtet werden.

2. Stoss auf eine zähe (dickflüssige) Unterlage
Der Bewegungsablauf spielt sich hier nach der

folgenden Gleichung ab:

Mï + r Az 0 (29)

Deren Lösung (Auftreffen zur Zeit t 0) ergibt:

z s (e M — l) (30)
worin :

z momentane Einsinktiefe
r Reibungskoeffizient pro Flächeneinheit

(Flüssigkeitsreibung)
A Berührungsfläche
s maximale Einsinktiefe

a) Körperart 1

Man erhält für die maximale Einsinktiefe (aus
dem Energiesatz):

M
s v

r A

und für die Stossfunktion:

F(f) 0
A rAr A —jcr«+ v e M

M

(31)

(32)

Daraus errechnen sich die Stossgrössen zu:

rA

b

M
M
rA

(33)

J v

b) Körperart 2

Analog den vorhergehenden Beispielen errechnet
man hier die entsprechenden Werte. Man erhält:
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maximale Einsinktiefe s pav d

Stossfunktion F (t) 0

Stossgrössen :

a

h

+ v
r j '

0 P3«

P 3 ^

(34)

(35)

p3d

p3d
(36)

J v

Die Verhältnisse liegen also bei der zähen Unterlage

ähnlich wie beim elastischen Stoss, nur dass
hier die Abhängigkeiten von der Masse M die zweite
Potenz von jenen beim elastischen Stoss haben.

VII. Schlussfolgerungen
1. Die elastischen Teile eines gestossenen Körpers

werden so zum Schwingen angeschlagen, dass ihre
Geschwindigkeitsamplituden proportional zu den
Amplituden der Fourieranalyse des Verlaufes der
Beschleunigung des Stosses sind. Dasselbe gilt auch
für die Wegamplitude des gestossenen Körpers und
den Geschwindigkeitsverlauf des Stosses.

2. Die Frequenzspektren verschiedener Stoss-
formen werden in groben Zügen durch die mittlere
Stossdauer und das Beschleunigungsmaximum
bestimmt und erst in zweiter Linie durch die übrige
Stossform.

3. Der grösste Anteil der spezifischen Energie
wird von Schwingungsgebilden aufgenommen, deren
Eigenfrequenz in Hz kleiner als die reziproke mittlere

Stossdauer ist. Ein Frequenzanalysator für
mechanische Impulse lässt also Rückschlüsse auf
die mittlere Stossdauer ziehen, besonders wenn er
die Geschwindigkeitsamplituden wiedergibt.

4. Die mittlere Stossdauer wirkt sich auf die
Breite des Spektrums aus, jedoch nicht auf die
Höhe. Diese wird durch das Beschleunigungsmaximum

bestimmt.
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Contribution à l'étude du bruit de fond
Extrait d'une conférence présentée à la journée du Comité National Suisse de l'Union Radio-Scientifique Internationale

du 8 décembre 1954 à Zurich, par Jean-Pierre Borel, Lausanne
621.396.822

L'étude du bruit de fond a été introduite au laboratoire
de Physique de l'Ecole Polytechnique de l'Université de
Lausanne (EPUL) sous la forme d'un travail d'équipe pour
deux raisons principales:

1. Pour la réalisation d'appareils électroniques à hautes
performances destinées à des recherches en résonance
nucléaire.

2. Pour l'étude physique de certaines propriétés du corps
solide et plus particulièrement des lames minces métalliques.

On sait que ces dernières constituent une classe à part
de conducteurs [1 et 2] t). En dessous d'une température
critique, elles ont une résistivité très élevée à coefficient de
température négatif et des caractéristiques tension courant
incurvées. On attribue généralement ces «anomalies» à l'existence

d'une structure dite «granulaire» ou «discontinue» ce
qui est d'ailleurs justifié thermodynamiquement et observé
au microscope électronique [2 et 3],

Dans ces conditions, la conduction obéit à des lois assez
particulières, ce qui entraîne une émission de bruit de fond
appelée «effet de scintillation» [1 et 2]. L'étude des fonctions

aléatoires et de l'autocorrélation permet de faire une
distinction entre les bruits à temps de corrélations
microscopiques et les bruits à temps de corrélations mascrosco-
piques.

Dans la première classe il faut ranger l'effet Johnson et
l'effet de grenaille pur par exemple qui ont un spectre
uniforme (tout au moins à des fréquences raisonnables).

Dans la seconde classe, on trouve le «Flicker noise» émis
par les cathodes à oxydes et l'effet de scintillation des
résistances parcourues par un courant continu. Il est difficile,
dans ce cas, de prévoir la forme de la fonction d'autocorrélation

et la densité spectrale (u-) qui en est la transformée
de Fourier. Rappelons que la densité spectrale ainsi définie
est égale à la valeur quadratique moyenne de la tension,
ramenée à un cycle de bande passante.

1 voir la bibliographie à la fin de l'article.

Expérimentalement on trouve les résultats suivants:
1. Dans le cas du «Flicker noise» des cathodes on a [4] :

"s ^
*

Z1'1

entre 10 Hz et 10 kHz (/ étant la fréquence). D'autres auteurs
[8] indiquent:

«»*, J-
f0.9

2. Dans le cas de dépôts de carbone on a [5]:

-2 1

J
entre 600 Hz et 8 Hz.

3. Dans le cas d'une résistance en carbone agglomérée du
commerce nous avons relevé au Laboratoire de Physique
EPUL une loi sensiblement en:

*-7
entre 1 kHz et 100 kHz. Entre 15 Hz et 1 kHz la décroissance
était un peu plus rapide.

4. Dans le cas d'une lame mince d'argent discontinue de
6 nm 2) d'épaisseur nous avons mesuré une loi en:

f0,9

entre 1 kHz et 100 kHz. Comme précédemment la décroissance

était un peu plus rapide à des fréquences plus basses
(entre 100 Hz et 1 kHz).

En résumé on a donc dans tous les phénomènes étudiés

ici une densité spectrale iï- sa a étant indépendant de la

fréquence et assez voisin de 1 lorsque la fréquence est assez
élevée.

-) 1 nm 10-» m 10-» mm (1 millionième de mm).
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