Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 45 (1954)

Heft: 13

Rubrik: Production et distribution d'énergie : les pages de l'UCS

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Production et distribution d'énergie

Les pages de l'UCS

Les perspectives d'intégration de l'énergie nucléaire dans les moyens de production d'énergie électrique

Résumé d'une étude de M. P. Ailleret, Directeur des Etudes et Recherches de l'Electricité de France, dans la Revue Française de l'Energie, Nr. 51, mars 1954, 621.311.25 : 621.3.039.4

«Si quelqu'un avait été invité, au lendemain de la première traversée aérienne de la Manche par Blériot, à écrire une étude sur la concurrence possible entre les paquebots et les quadrimoteurs, l'adage ,scripta manent' lui serait aussitôt venu à l'esprit pour le détourner de cette entreprise. Il est vrai que cet adage a été dévalorisé par l'inflation considérable des écrits qui rend aujourd'hui inutilisable toute documentation complète et qui garantit un oubli très rapide à la presque totalité des textes.

D'autre part, qu'il le veuille ou non, l'homme ne peut agir en fonction des seules choses qui sont sûres et claires; il doit nécessairement supputer l'avenir tant bien que mal pour s'y préparer le mieux possible; toute contribution à percer un peu plus le brouillard qui nous cache les développements futurs peut aussi réduire le risque des fausses manœuvres que peuvent inspirer des visions initiales trop déformées.»

C'est par ces réflexions aussi frappantes que judicieuses que M. Ailleret introduit son étude qui constitue une mise au point extrêmement précieuse des considérations économiques résultant de la documentation actuelle sur la production d'énergie nucléaire. Très aimablement, l'auteur nous a accordé l'autorisation de résumer son article et d'en reproduire intégralement quelques passages, et nous ne doutons pas que ses réflexions trouveront beaucoup d'intérêt dans le cercle de nos lecteurs, incitant peut-être l'un ou l'autre à approfondir ce sujet et, particulièrement, le rôle que l'énergie nucléaire pourrait être amenée à jouer dans l'économie énergétique de notre pays.

Tout d'abord, il y a lieu de rappeler que si la production d'énergie libérée par les fissions nucléaires dans les installations déjà existantes s'exprime par des chiffres déjà notables en chaleur dégagée, elle est encore tout à fait insignifiante en énergie électrique. Actuellement, les recherches dans le domaine de l'énergie atomique consomment plus d'énergie que la France n'en utilise pour l'ensemble de ses besoins domestiques et industriels, tandis que la production de courant des usines nucléaires est pratiquement nulle. Cette constatation s'explique en considérant la qualité de la chaleur produite dans les piles atomiques, qui se juge par

la température du fluide sortant de la pile pour transférer la chaleur aux chaudières d'une centrale.

Cette température est d'abord limitée par le gainage qui doit enfermer les barreaux d'uranium, tant pour protéger ce médiocre métal contre l'action chimique de l'air ou de l'eau ou de tout autre fluide de refroidissement, que pour empêcher la sortie des produits de fission extrêmement radioactifs qui y apparaissent et qu'il est dangereux de lâcher en trop grande quantité dans le circuit du fluide de refroidissement.

Dans une pile à uranium naturel où le bilan neutronique n'est que péniblement en équilibre, ce gainage ne peut pas être fait en métaux absorbant fortement les neutrons: l'acier inoxydable par exemple est exclu. Il est possible d'utiliser de minces gaines d'aluminium ou de magnésium, mais il en résulte alors une limitation de la température afin qu'au point le plus chaud la gaine ne risque pas de fondre, ni de s'enflammer si la pile fonctionne à l'air atmosphérique. Par exemple dans la pile de 40 000 kW-chaleur 1) qui est en construction à Marcoule dans le Gard, et qui sera refroidie à l'air atmosphérique, la température à la sortie de la pile n'atteindra pas tout à fait 200°. Heureusement d'autres métaux permettront de faire des gaines plus résistantes à la chaleur. C'est le cas du berylium et surtout du zirconium.

Par contre une autre limitation de la température apparaît dans l'uranium lui-même: le point le plus chaud au centre du barreau ne doit pas dépasser un point de transformation qui se situe vers 650°— température à laquelle l'uranium change de variété allotropique, ce qui entraîne des déformations importantes des barreaux au point de déchirer les gaines. En utilisant des barreaux gainés au zirconium, la température pourra être poussée à 350° au maximum.

Les remarques précédentes montrent les difficultés technologiques considérables causées par le problème de la température et celui de l'action destructive des radiations. Mais les connaissances dans ce domaine progresseront certainement très vite et,

¹) On exprime en kW-chaleur les puissances dégagées sous forme de chaleur dans les piles, cette unité offrant de grands avantages dans nos réflexions suivantes.

de même que dans les centrales thermiques classiques les températures de vapeur respectivement de gaz ont monté depuis les premières années du siècle à une cadence assez régulière de quelque 7 degrés par an, les températures de sortie des réacteurs monteront aussi grâce aux progrès dans la construction, grâce à la métallurgie qui offrira des métaux avec de meilleures caractéristiques thermiques et nucléaires, enfin grâce à l'enrichissement en isotope 235 ou en plutonium qui donnera plus de liberté au choix des métaux dans la pile, parce qu'on leur interdira moins strictement de gaspiller les neutrons. On peut donc s'attendre à ce que le rapport des kW-électriques aux kW-chaleur se rapprochera dans une dizaine d'années du rapport actuel d'un tiers des centrales à combustibles classiques.

Les piles posent bien entendu d'autres problèmes. Certains sont dès maintenant résolus: la régulation par exemple; il n'y aura pas de difficulté à régler la puissance d'une pile par des servo-mécanismes analogues à ceux dont nous nous servons habituellement. De même la sécurité de marche de la pile s'est révélée facile à assurer; la pile n'a pas une telle propension naturelle à se transformer en bombe qu'il y ait des risques à ce point de vue. Par contre la radioactivité est tellement intense que le personnel d'exploitation doit être protégé par des épaisseurs de béton de l'ordre de 2 mètres et que des précautions particulières et très coûteuses doivent être prévues pour l'épuration de l'uranium des produits de fission dont certains absorbent beaucoup de neutrons et tendent ainsi à «empoisonner» la pile et paralyser les réactions en chaîne.

Il existe déjà une grande variété de types de réacteurs, ce qui rend assez difficile, pour le moment, de voir très clair dans leur économie mais qui, d'autre part, accroît les chances de succès, puisque les voies du progrès sont multiples. Il est en tous cas certain que le progrès a tendance à s'accélérer et, indépendamment des perfectionnements techniques, il serait bien étonnant que de vraies découvertes ne viennent pas soudainement résoudre ou contourner brusquement, par une voie encore insoupçonnée, les difficultés dont on ne se représente actuellement que les solutions par progrès continus.

Mais les possibilités techniques ne sont pas les seules à commander la rapidité des développements de l'énergie atomique. Elles n'en sont que le facteur limitatif et le développement dans les installations fixes ne se poursuivra réellement que s'il y a une perspective sérieuse d'obtenir de l'énergie plus économique que par les centrales actuelles, puisqu'il n'y a pour nous aucun avantage accessoire à l'énergie nucléaire, comme c'est le cas pour les sousmarins et, à un degré moindre, pour les navires de surface.

Pour aborder l'aspect économique il faut d'abord connaître la consommation d'uranium par kWh.

Dans la fission de l'isotope 235, un millième environ de la masse disparaît en se transformant en énergie suivant la relation d'équivalence d'Einstein

$$W = m.c^2$$
.

Cela donne 24 000 kWh-chaleur par gramme d'uranium 235.

Mais notre matière première n'est pas l'isotope 235, c'est l'uranium naturel qui ne contient que 7 ‰ de combustible 235. Les possibilités de cet uranium naturel ne se confinent pas à la combustion de l'isotope 235, puisque la disparition de celui-ci s'accompagne de la transformation d'une quantité du même ordre d'isotope 238 non combustible en plutonium qui est à son tour un combustible nucléaire. Il serait donc théoriquement possible de transformer en énergie plus que ce qui correspond aux 7 ‰ d'isotope 235, mais la nécessité d'épurer la pile par des séparations chimiques très coûteuses semble limiter en pratique, d'après de récentes déclarations américaines, à 1 % la masse d'uranium naturel transformable, le résidu n'ayant plus qu'une valeur assez douteuse.

Dans ce cas 1 g d'uranium naturel donnerait $^{1}/_{100} \times 24\,000 = 240$ kWh-chaleur; 1 g de charbon à 7000 calories par kg donne $^{7}/_{860} = 0{,}008$ kWh-chaleur.

Au point de vue de la production de chaleur l'uranium vaudrait donc à poids égal $\frac{240}{0,008} = 30\,000$ fois le charbon.

Mais la qualité de la chaleur produite n'est pas la même puisque le fluide qui sort des réacteurs est à une température très inférieure aux températures en jeu dans les centrales à vapeur et dans les turbines à gaz. De ce fait le rendement de la transformation est bien moindre. Mais, compte tenu des progrès escomptés au sujet de la température de sortie des réacteurs, il y a des chances sérieuses pour que dans quelques années le rendement arrive à être de l'ordre des ²/₃ du rendement des centrales à vapeur, ce qui porterait l'équivalence entre charbon et uranium, au point de vue non plus des kWh-chaleur mais des kWh électriques à un rapport de poids de 20 000.

Pour en déduire un rapport de prix dans la consommation des combustibles il faudrait estimer le rapport futur des prix du charbon et de l'uranium naturel. On peut admettre que l'évolution des prix du charbon sera relativement faible, tandis que l'évolution du prix de l'uranium est très aléatoire. Il n'existe pas actuellement de cours commercial de l'uranium. D'après les prix de revient français et les prix d'achat américains, il semble que l'uranium métal puisse être estimé actuellement à 4000 fois environ le prix du charbon.

En prenant le rapport actuel de 4000 comme rapport des prix d'uranium et du charbon, le rapport 20 000 comme rapport de leur équivalence en kWh électriques, on obtient un rapport de prix de 5 entre les coûts de combustible par kWh, qui laisse encore une bonne marge pour les variations des coûts d'extraction. Le prix du combustible nucléaire

apparaît ainsi comme très bon marché par rapport à celui des combustibles classiques.

Mais une différence fondamentale apparaît tout de suite entre le combustible nucléaire et le combustible fossile. Ce dernier est mis dans la centrale au fur et à mesure de la consommation tandis que l'uranium doit être introduit dès le début dans la pile. Dans le schéma de tout à l'heure, où l'on utilise 1 % de l'uranium naturel en un temps qui doit être de l'ordre de la dizaine d'années, il faut rassembler ces 10 ans de combustible avant la mise en service de la pile.

Stocker dès le début le combustible nécessaire à 10 ans de marche n'est pas prohibitif quand ce combustible coûte 5 fois moins que le charbon par kWh produit. C'est néanmoins une charge.

Cet aspect de la question renforce encore la comparaison que l'on fait tout naturellement entre la centrale nucléaire et la centrale hydraulique sur rivière à débit permanent. Dans les deux cas les dépenses se présentent comme les investissements initiaux sans qu'il y ait à ajouter par la suite des dépenses annuelles de combustible.

C'est le schéma assez simple suivant lequel on a jusqu'ici considéré les centrales nucléaires. Bien entendu la centrale nucléaire doit être renouvelée dans un délai beaucoup plus court que la centrale hydraulique: 10 ou 20 ans peut-être au lieu d'une cinquantaine d'années.

Pour les conditions valables en France, M. Ailleret poursuit avec le calcul suivant: avec un taux d'intérêt de 4 % par an, une usine hydraulique à puissance permanente amortie en 45 ans serait économiquement équivalente à l'usine nucléaire si cette dernière coûtait les 40 % (pour 10 ans) ou les 65 % (pour 20 ans) de l'usine hydraulique. Comme le prix par kW d'une centrale hydraulique à puissance permanente peut valablement coûter, et coûte en pratique, à peu près 4 fois le prix par kW d'une centrale thermique, cela signifierait que la centrale nucléaire pourrait être viable pour un prix égal à environ une fois et demi (si elle vit 10 ans) ou deux fois et demi (si elle vit 20 ans) l'usine thermique de même puissance.

Ces chiffres sont précisément de l'ordre de ce que l'on peut imaginer comme coût futur des centrales nucléaires. Malgré la double incertitude sur le coût et la durée de la vie, on voit ainsi que les prix de revient possibles dans l'avenir sont bien d'un ordre de grandeur comparable à ceux des centrales classiques.

Le schéma classique ci-dessus de comparaison avec l'hydraulique permanent est probablement trop simpliste; s'il permet à la rigueur de se rendre compte des ordres de grandeur de coût il est par contre tout à fait inadéquat pour se représenter comment les centrales nucléaires pourront s'intégrer dans un ensemble de moyens de production comprenant à la fois du thermique et de l'hydraulique.

Il y a en effet une différence de nature entre la durée d'une centrale hydraulique et celle d'une centrale nucléaire. La durée de vie d'une centrale hydraulique ne dépend pas de ce qu'elle tourne ou non; c'est le temps et non le travail qui l'use. Le coût marginal du kWh produit est donc insignifiant.

Il n'en sera probablement pas de même dans les réacteurs, leur durée de vie étant liée à l'activité de la pile. Comme l'activité nucléaire est proportionnelle à l'énergie produite, on voit que tout kWh produit aura contribué à réduire la vie de la pile. Inversement, si la pile se repose en période de hautes eaux et de fortes disponibilités hydrauliques, elle ne vieillira pas pendant cette période.

Non seulement la destruction des matériaux mais aussi l'apparition des produits de fission obligent au bout d'un certain temps soit à renouveler la pile tout entière, soit à procéder à une séparation chimique en retirant les barreaux. Dans les deux cas les conséquences économiques sont les mêmes. Il y a un coût marginal du kWh supplémentaire pro-

On voit ainsi qu'il est trop sommaire d'assimiler une centrale nucléaire à une centrale hydraulique permanente moyennant de simples écarts quantitatifs entre les prix par kilowatt et les durées de vie. Il est très probable que le maintien illimité d'une certaine puissance de réacteurs exigera à la fois une dépense en capital par kilowatt disponible et une dépense supplémentaire en corrélation directe avec la production d'énergie. Ainsi les prix de revient se traduiront-ils cette fois encore par une charge fixe par kW garanti complétée par un prix proportionnel aux kWh effectivement produits.

Les centrales nucléaires ont des chances de se présenter avec des caractéristiques intermédiaires entre l'hydraulique et le thermique; prix du kW garanti supérieur au thermique mais inférieur à l'hydraulique; prix marginal du kWh inférieur au thermique mais supérieur à l'hydraulique.

Aux niveaux effectifs des prix en cause correspondraient théoriquement des répartitions optima de la production entre les trois types de centrales. Mais il serait tout à fait prématuré d'étudier un régime permanent alors que nous ne sommes de toutes façons que devant une perspective de démar-

Pour terminer, M. Ailleret montre que même dans les hypothèses optimistes quant au rythme de développement des centrales nucléaires, il est peu probable que leur puissance totale en France atteigne en 1975 plus de 5 % de la pointe de consommation. L'effet sur les équipements nouveaux se fait sentir en premier. Mais ces équipements se noient dans la grande masse des équipements anciens de sorte que, par un effet d'intégration, l'importance de l'énergie atomique dans l'exploitation ne joue sérieusement qu'après un assez long retard sur son importance dans l'équipement.

Dans le résultat des actualisations, les années éloignées n'ont qu'un faible poids. C'est pourquoi et c'est une conclusion très importante aussi pour

la Suisse — un calcul précis montre que la rentabilité d'une usine hydraulique construite aujourd'hui n'est guère modifiée par la perspective des centrales nucléaires. Par contre leurs effets peuvent devenir très importants dans l'avenir, sans tenir compte de la probabilité que des idées aujourd'hui insoupçonnées ouvrent des voies économiques toutes nouvelles. L'enjeu final est considérable, puisqu'il faut envisager que dans un avenir relativement proche, la plus grande partie des forces hydrauliques sera équipée et que les ressources de pétrole ne sont pas illimitées. Cet enjeu justifie que tout soit fait pour le développement de la nouvelle technique et que les organismes comme l'Electricité de France, qui aura à l'appliquer progressivement, prennent une part active à l'effort nécessaire.

Il est inutile de souligner combien ces conclusions sont aussi valables pour la Suisse et ses entreprises d'électricité. Elles se résument en ces mots: poursuivre sans désemparer l'équipement de nos forces hydrauliques, tout en étudiant sans retard la technique des centrales nucléaires. (Atel, Olten)

Le niveau d'emploi de l'énergie électrique dans l'industrie

658.26:621.311.003

L'Union pour l'étude du marché de l'électricité (Unimarel) à Paris a entrepris une étude qui a pour but de déceler certaines branches de l'industrie susceptibles d'ouvrir de nouveaux débouchés à la consommation d'énergie électrique. Les premiers résultats acquis peuvent se résumer de la façon suivante:

- 1. Le niveau d'emploi de l'énergie électrique dans les diverses branches de l'industrie caractérisé par des «indices spécifiques», obtenus en rapprochant les consommations d'énergie et la production d'ensemble de chaque branche d'une part, le nombre d'heures ouvrières travaillées d'autre part, est extrêmement variable d'une branche d'industrie à l'autre. Les raisons de ces écarts sont à rechercher probablement dans des «retards» sur la voie de l'électrification que des efforts commerciaux devraient permettre de combler.
- 2. Abstraction faite des fluctuations à court terme (productions anormalement faibles des périodes immédiates de l'après-guerre) l'emploi de l'énergie électrique s'accroît régulièrement à long terme dans toutes les branches. D'une façon générale, la consommation d'énergie augmente plus vite que la production. A ce propos il est intéressant de constater, pour l'ensemble de l'industrie française, que le nombre d'heures de travail ouvrier nécessaire pour «créer» un million de francs de production, a diminué de 12 % entre 1938 et 1952, tandis que la consommation d'énergie électrique correspondante s'est accrue de 40 %.
- 3. L'étude des conditions d'emploi de l'électricité implique une étude parallèle, relative aux autres formes d'énergie. Il semble qu'actuellement la substitution de l'électricité au charbon soit à peu près terminée, sauf en ce qui concerne les usages thermiques. Les progrès dans l'emploi de l'électricité devraient donc provenir avant tout d'une accélération du processus de remplacement de l'énergie humaine par l'energie mécanique, et de la diffusion des emplois thermiques, domaine dans lequel l'électricité est en compétition avec le charbon, le gaz de houille et les produits pétroliers.
- 4. Une comparaison très provisoire du niveau d'emploi de l'énergie électrique dans l'industrie en France et à l'étranger confirme qu'il doit exister, pour la France, des possibilités de développement considérables.

Dans plusieurs pays d'importants travaux ont déjà été effectués, ou sont en cours, en vue de préciser les consommations d'électricité par unité de produits fabriqués, couramment appelées «consommations spécifiques». Mais, pour préciser le niveau d'emploi de l'électricité dans l'industrie ou dans telle de ses branches, il paraît nécessaire d'adjoindre aux données précédentes des «indices spécifiques» calculés en rapportant une grandeur représentative de l'emploi réel, ou de la possibilité d'emploi de

l'énergie électrique (consommations annuelles, puissances installées) à des paramètres globaux caractéristiques de l'activité professionnelle: volume de la production, quantité de main-d'œuvre utilisée (nombre de travailleurs, nombre d'heures ouvrières travaillées).

En comparant les résultats d'une branche d'industrie à l'autre, ou, à l'intérieur de l'une d'elles, d'une entreprise à l'autre, et sur la confrontation internationale qui pourra être établie sur ce sujet, on essaiera de dégager le retard éventuel d'une branche d'industrie (ou d'une entreprise) par rapport aux autres, les causes de ce retard qui peuvent être par exemple: la structure de l'industrie, la politique économique d'un pays à son égard, le niveau technique de l'équipement, le coût des investissements comparé à celui de la main-d'œuvre, etc. ainsi que les conditions et les perspectives du développement de l'électrification dans certaines branches d'industrie.

Enfin, ces recherches ont pour but final d'analyser les débouchés du marché industriel de l'électricité jusqu'ici peu exploités, et d'essayer de guider au mieux la politique de l'industriel vis-à-vis de ses installations, celle du distributeur vis-à-vis de son équipement et de sa tarification, celle du constructeur de matériel électrique vis-à-vis de sa technique et de ses ventes.

Evolution des consommations d'électricité rapportées à la production industrielle

Pour envisager le problème ci-dessus, les consommations globales d'électricité enregistrées dans chaque branche d'industrie ont été rapprochées des productions globales correspondantes. Théoriquement le quotient des consommations d'électricité par les quantités de produits fabriqués constitue un des meilleurs critères d'électrification. Mais la définition de ces «quantités» procure certaines difficultés dès qu'il s'agit d'une production complexe. On peut surmonter ces difficultés, hors du cas de productions homogènes, en recherchant un paramètre commun tel que la quantité de matière pre-

mière mise en œuvre. Cette méthode toutefois interdit non seulement toute comparaison d'une branche d'industrie à l'autre, mais elle se prête mal à l'estimation du niveau d'électrification globale de l'industrie. Il faut donc s'orienter vers un critère homogène d'une branche d'industrie à l'autre, comme le franc, qui représente une seule commune mesure. Cependant il serait illusoire, même avec un franc stable, de retenir les variations des chiffres d'affaires réalisés par chaque branche d'industrie car ils ne reflètent pas la seule activité propre à chacune d'elles (on retrouverait dans le chiffre d'affaires des branches d'industrie de transformation, ceux des branches fournissant les matières premières). Le critère commun exprimé en francs devrait mesurer les variations de l'accroissement de valeur (chiffre d'affaires diminué des achats aux autres branches d'industrie, comprenant essentiellement le coût de la main-d'œuvre et la rémunération du capital) pour chaque groupe industriel, à la valeur des matières premières qu'il traite. Dans cet ordre d'idées il a paru raisonnable d'estimer les variations d'activité par la mesure annuelle du volume de la production de chaque branche d'industrie.

Evolution des consommations rapportées à la main-d'œuvre

Les variations des consommations rapportées à la main-d'œuvre peuvent être étudiées en choisissant plusieurs termes de comparaison: effectifs totaux du personnel de telle ou telle branche d'industrie, nombre des seuls ouvriers ou nombre d'heures ouvrières travaillées dans l'année. Parmi ceux-ci il est préférable d'utiliser le dernier, puisqu'il correspond plus directement à la somme de travail employé. Les résultats montrent que les consommations spécifiques par heure de travail ouvrier, varient de 1 à 100 d'une branche d'industrie à l'autre. Le rapprochement des données précédentes relatives à la main-d'œuvre d'une part, à la production d'autre part (ici il faut toutefois remarquer que le rapprochement des données main-d'œuvre - productions n'est pas rigoureusement correct; en effet la première est théorique, tandis que la deuxième est réelle), fournit des indications intéressantes quant à la productivité d'ensemble de la main-d'œuvre dans les diverses branches d'industrie. De ce point de vue, le critère à retenir serait évidemment un indice en heures de travail par unité de production. La diminution d'heures de travail par unité de production est due pour une grande part aux progrès de l'électrification qui substitue l'énergie électrique à l'énergie humaine. Ceci n'est pas le cas pour les produits «ouvragés» qui exigent évidemment plus de maind'œuvre «directe» et moins de consommation d'électricité. A ce propos il est intéressant de remarquer que la fabrication de fibres artificielles exige, pour produire une même valeur marchande, trois ou quatre fois plus d'électricité que celle des tissus de soie et de rayonne, mais presque moitié moins d'heures de travail ouvrier.

Evoltution de l'emploi des différentes formes d'énergie

Par ailleurs, une analyse approfondie des raisons des évolutions que nous venons d'examiner nécessite de connaître, dans la mesure du possible, pour chaque branche d'industrie étudiée, l'évolution de l'utilisation des autres formes d'énergie. L'emploi du charbon, s'il se développe en général moins vite que celui des autres formes d'énergie, continue cependant de s'accroître régulièrement. On peut dire que la substitution massive de l'électricité au charbon dans le domaine de la force motrice est à peuprès terminée; elle se poursuit en ce qui concerne les usages thermiques. Evidemment, pour élucider cette question, il faudrait connaître beaucoup mieux la séparation des consommations d'énergie selon leur usage final: usages chimiques (propres à chaque forme d'énergie), usages thermiques industriels (pour lesquels toutes les formes d'énergie sont en compétition), et usages mécaniques.

Premiers résultats internationaux

Sur le plan international cette étude se révèle encore beaucoup plus délicate et les résultats obtenus ne constituent que des moyennes dont il est difficile de tirer des conclusions. Si par exemple, dans un pays donné, les industries grosses consommatrices d'énergie électrique prennent de l'extension, la consommation movenne par travailleur augmente beaucoup, sans qu'on puisse conclure à une amélioration du niveau d'emploi de l'électricité dans l'ensemble de l'industrie. Sur l'initiative et selon le programme établi par l'«Unimarel», une étude internationale du niveau d'emploi de l'électricité dans l'industrie vient d'être entreprise par l'«Unipède». Toutefois on se rend compte que les études de ce genre sont longues et qu'il faut descendre suffisamment dans le détail des productions pour déceler en particulier dans quelle mesure les écarts constatés d'une branche à l'autre ou d'un pays à l'autre sont dus, non à un degré différent de modernisation, mais à des différences de structures de production (par exemple nature des produits, concentration verticale des industries, etc.), et de consommation d'énergie (électricité, charbon, etc.) utilisée à des fins thermiques, mécaniques, chimiques, etc.

Conclusions

Il semble bien clair qu'une étude du niveau d'électrification de l'industrie par l'intermédiaire du seul paramètre «consommation d'énergie» ne saurait à elle seule fournir tous les renseignements souhaités, spécialement en ce qui concerne l'analyse des possibilités de développement des divers matériels électriques d'utilisation et la détermination des marchés potentiels qui peuvent s'offrir à eux. Il semble nécessaire pour cela de comparer aux paramètres déjà utilisés (production, main-d'œuvre) les puissances installées (le nombre, le type et la puissance des appareils électriques utilisés) dans chaque

branche d'industrie pour les principaux usages. Ainsi, sous son double aspect de consommation et puissance installée, l'étude devra s'orienter vers une analyse plus détaillée de telle ou telle branche d'industrie, de manière à déceler les raisons de sa position par rapport aux autres industries et par rapport à ses homologues à l'étranger.

(Dr. R.M.)

Comment observer les prescriptions sur la mise au neutre dans les réseaux de distribution

Par W. Frei, Amriswil

621.3.053.24 : 621.316.1

L'auteur expose une méthode de mesure simple et éprouvée permettant de déterminer en chaque point d'un réseau de distribution mis au neutre le courant de défaut à la terre d'une part, et la tension qui s'établit entre les boîtiers d'appareils et la terre en cas de défaut à la terre d'autre part. Un exemple, concernant le réseau de la commune d'Amriswil, illustre l'emploi de cette méthode.

Es wird eine einfache und erprobte Messmethode beschrieben, mit deren Hilfe an jeder Stelle eines genullten Verteilungsnetzes, der Erdschlußstrom, sowie die Berührungsspannung bestimmt werden können. Am Beispiel des Verteilungsnetzes der Gemeinde Amriswil wird die Anwendung dieser Methode praktisch gezeigt.

Il est souvent très difficile d'observer les prescriptions concernant la protection des réseaux de distribution mis au neutre lorsque les lignes sont relativement longues. En règle générale, on calcule le courant qui s'établit quand on relie directement une phase du réseau avec le neutre (courant de défaut à la terre, respectivement courant de défaut à la terre et courant de court-circuit combinés), ce qui permet de choisir les fusibles nécessaires. Lors d'un défaut à la terre sur la ligne aérienne, les fusibles devraient si possible couper le circuit dans un temps très court (5 secondes au maximum). Dans le cas où cette condition n'est pas remplie, la tension dite de contact (tension entre les boîtiers d'appareils et la terre) ne doit pas dépasser 50 V. La tension de contact ne peut pratiquement pas se calculer avec une précision suffisante; il est préférable de procéder à des mesures qui, comme nous allons le voir, renseignent exactement sur les conditions existant dans le réseau.

En pratique, lorsqu'on doit mettre un réseau au neutre, on commence, en se basant sur l'expérience, par disposer les mises à la terre du neutre du réseau et par les mesurer. On calcule ensuite les courants de défaut à la terre (courants de court-circuit) et l'on remplace le neutre par un conducteur de section égale ou même supérieure, suivant les circonstances, à celle des conducteurs de phase.

Puis, le réseau ayant ainsi été préparé pour la mise au neutre, on effectue des mesures. Ces mesures sont à conseiller même sur les réseaux déjà mis au neutre; elles servent alors de contrôle. On a aujourd'hui dans ce but différents modèles d'instruments combinés à disposition; il est cependant possible de s'en passer.

La méthode exposée ici est simple et éprouvée; elle permet de calculer les courants de défaut à la terre et de court-circuit sans connaître la longueur ni la section des conducteurs et de déterminer la résistance de ces derniers; elle permet également de calculer la tension de contact.

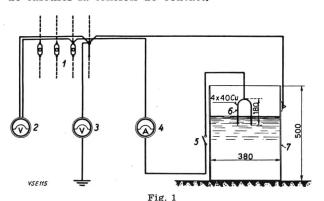


Schéma électrique du dispositif de mesure

1 Coupe-circuit principal d'un immeuble; 2 Mesure de la chute de tension; 3 Mesure de la tension entre le neutre et la terre; 4 Mesure du courant dans la charge; 5 Interrupteur; 6 Electrode: 7 Récipient

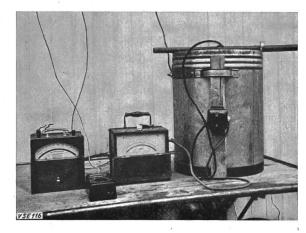


Fig. 2 Vue du dispositif de mesure utilisé

Selon cette méthode, qui n'est d'ailleurs pas nouvelle, on introduit une charge auxiliaire entre la phase et le neutre en un certain point du réseau, on mesure la chute de tension consécutive à l'introduction de cette charge et l'on calcule à l'aide du courant mesuré le courant de défaut à la terre (respectivement le courant de court-circuit) qui apparaîtrait en ce point. La fig. 1 donne le schéma des connexions du dispositif de mesure et la fig. 2 en représente une réalisation pratique.

Dans le dispositif représenté sur la fig. 2 la résistance de charge consiste en un récipient de tôle rempli d'eau où trempe une électrode de cuivre. Le récipient est mis au neutre tandis que l'électrode est reliée à une des phases par l'intermédiaire d'un interrupteur unipolaire et d'un ampèremètre. Les dimensions du récipient ne sont pas déterminantes, de même que celles de l'électrode en forme de U, qui consiste en un simple méplat de cuivre qui peut plonger plus ou moins profondément dans le liquide. Un dispositif de sécurité empêche l'électrode de s'approcher trop près du fond du récipient. Celui-ci est rempli d'eau jusqu'au tiers ou à la moitié, selon les circonstances, et l'on y ajoute du sel jusqu'à ce que la conductibilité soit suffisante. On connecte un voltmètre aux mêmes bornes du coupe-circuit principal et un deuxième entre le neutre et une prise de terre pratiquée à quelque distance du bâtiment considéré et qui consiste en une tige de métal enfoncée dans le sol. Les mesures de tension peuvent être effectuées avec un seul voltmètre si celui-ci est à plusieurs échelles; dans ce dernier cas il est indiqué d'employer un commutateur.

Après avoir fermé l'interrupteur, on charge la ligne en descendant lentement l'électrode, jusqu'à ce que la chute de tension représente environ 5 à $10\,\%$ de la tension du réseau. On lit alors les instruments, on ouvre l'interrupteur et on mesure encore la tension du réseau. La chute de tension correspondant au courant mesuré s'obtient en formant la différence entre la tension du réseau et la tension aux bornes mesurée en charge. La tension mesurée en

charge entre le neutre et la prise de terre permet de calculer la tension de contact.

Si l'on appelle J_b le courant mesuré en charge, U_b la tension aux bornes dans les mêmes conditions, U_e la tension du neutre par rapport à la terre, U_o la tension mesurée après l'ouverture de l'interrupteur et U_n la tension nominale du réseau, on peut déterminer les grandeurs cherchées comme suit:

La chute de tension s'écrit:

$$U_a = U_o - U_b \tag{1}$$

Le courant de défaut à la terre (respectivement le courant de court-circuit) J_k qui apparaîtrait en cas de défaut au point du réseau considéré est donné par:

$$J_k = J_b \cdot \frac{U_n}{U_a} \tag{2}$$

Enfin la tension de contact U_c en cas de défaut à la terre sera:

$$U_c = U_e \cdot \frac{J_k}{J_b} = U_e \cdot \frac{U_n}{U_a} \tag{3}$$

Pour le calcul du courant de court-circuit J_k (formule 2), on a utilisé la tension nominale du réseau U_n , se basant sur les considérations suivantes: La tension U_o à l'extrémité de la ligne est en général plus petite que U_n , puisque différents appareils sont en service le long de la ligne. La valeur du courant de défaut à la terre à l'extrémité de la ligne serait donc en réalité légèrement plus faible que celle donnée par la formule 2. Pour calculer la valeur exacte au moment de la mesure, il faudrait remplacer U_n par U_o dans cette formule.

Mais le courant de défaut à la terre qui traverse le fusible assurant la protection de la ligne considérée à la station transformatrice est plus grand que celui mesuré à l'extrémité de la ligne, la diffé-

Tableau I

				Tension		Cou	rant	Fusibles calibre	Fusibles	Tension	de contact
Station transformatrice Départ	Abonné, Rue, N°	U_{0}	Ub	U_a	J_b	J_k	max. ad- missible	installés	U_e	en cas de défaut à la terre	
		4	v	v	v	A	A	A	A	- V	v
Kirche	St. Gallerstr.	Joh, Laib	204	194	10	40	880	320	250	3,0	66
Kirche	Giezenhaus	Höhener, Giezenhaus	216	197	19	20	231	84	150	2,0	23,1
Sallmann	Quellenstr.	Meili, Räuchlisbergerhalde	216	196	20	20	220	80	400	2,0	22
Sallmann	Quellenstr.	Sauna, Quellenstrasse	217	209	8	40	1100	400	400	2,2	60,5
Sallmann	Quellenstr.	Harmonie, Weinfelderstr.	216	203	13	20	338	123	400	2,8	47,3
Sallmann	Quellenstr.	Bernegger, Grenzstrasse 1	218	207	11	20	400	145	400	0,9	18,0
Sallmann	Weinfelderstr.	Häberli, Untere Grenzstr.17	216	204	12	20	367	133	160	2,0	36,7
Mühlebach	Schrofen	Verteilkabine	213	199	14	20	314	114	160	2,5	39,3
Mühlebach	Schrofen	Geissberger, Schrofen 42	209	185	24	20	183	66	80	5,0	45,8
Mühlebach	Schrofen	Göldi, Eichmühle	216	183	33	20	133	48	80	5,3	35,2
Mühlebach	Obermühle	Ott, Sonnenhügel	222	199	23	20	191	69	160	4,0	38,2
Mühlebach	Obermühle	Thurnheer, Obermühle	220	198	22	20	200	73	160	3,4	34,0
Mühlebach	Obermühle	Meierhans, Weinfelderstr.	220	210	10	20	440	160	160	2,3	50,6
Mühlebach	Köpplishaus	Brugger, Weinfelderstr. 2	220	195	25	20	176	64	160	6,5	57,2
Mühlebach	Köpplishaus	Hugentobler, Tellen 5	220	204	16	20	275	100	160	3,0	41,3
Mühlebach	Köpplishaus	Rüttimann, Breitenaach	217	197	20	20	220	80	160	2,2	24,2
Rüti	Sommeri I	Trippel, Fabrik	214	199	15	40	587	213	150	1,1	16,1
Rüti	Sommeri II	Trippel, Wohnung	217	192	25	40	352	128	150	2,0	17,6
Schulhaus	Freiestrasse	Wehrli, Rütistrasse 26	209	198	11	20	400	145	100	0,25	5,0
Schulhaus	Rennweg	Robiani, Rennweg	211	205	6	20	733	266	200	1,4	51,3
Stähelin-	Romans-		2			,					
Mohn	hornerstr.	Graf, Romanshornerstr.192	212	202	10	20	440	160	150	2,3	50,6

Tableau II

			Tension		Cou	rant	Fusibles		Tension de contact		
Départ Point de mesure	U _o V	U _b	Ua V	J _b	Jk A	calibre max. admissible A	Fusibles installés A	mesurée Ue V	en cas de défaut à la terre U_c V		
I	A	226	192	34	20	129	47	40	4,0	25,8	
I	В	225	188	. 37	20	119	43	40	3,2	19,04	
I	C	227	186	41	20	107	39	40	4,05	21,67	
I	D	228	200	28	20	157	57	60	5,8	45,53	
II	E	223	183	40	20	110	40	40	5,1	28,05	
III	F	218	205	13	30	508	185	100	3,0	50,77	
III	G I	222	208	14	20	314	114	100	2,8	44	

rence étant justement donnée par la somme des courants chez les consommateurs; il semble donc plus juste d'introduire la tension nominale dans les calculs. Le calcul de la résistance en partant des mesures confirme d'ailleurs la justesse de ces vues.

Le tableau I contient les résultats de quelques mesures effectuées dans le réseau de distribution de la commune d'Amriswil. Des essais ont de plus été faits sur le départ Obermühle de la station transformatrice de Mühlebach à l'occasion d'un exercice du groupe d'électriciens du corps de sapeurs-pompiers, qui comprend exclusivement des monteurs de la centrale. On a réalisé des défauts à la terre (courts-circuits) entre phase et neutre en utilisant de vieux sectionneurs pour haute tension; on a pu constater alors que les valeurs déduites des mesures décrites plus haut correspondaient très bien à la réalité. Les courts-circuits étaient interrompus chaque fois au bout de cinq secondes par l'ouverture des sectionneurs.

Le résultat des mesures montre clairement la nécessité de veiller à ce que, dans tout le réseau de distribution, les fusibles installés sur les départs interrompent le circuit sinon en cinq secondes du moins en une minute au maximum; on doit pour cela, si c'est nécessaire, subdiviser les circuits. La protection du circuit Quellenstrasse est assurée par des fusibles de 400 A, car il s'est montré nécessaire de brancher en parallèle deux circuits de la ligne aérienne. On a prévu cependant une cabine de distribution intermédiaire à l'extrémité de ce circuit double, qui pourra plus tard être remplacée par une station transformatrice en cas de besoin.

Il nous a semblé logique de donner ici les valeurs qu'on rencontre en pratique; par suite on n'a retenu pour le tableau I que quelques circuits qui représentent en partie les cas les plus défavorables rencontrés dans le réseau de distribution d'Amriswil. Le neutre du réseau est relié tous les 300 à 500 mètres à la canalisation d'eau sur ces circuits comme d'ailleurs dans tout le réseau de distribution.

Le tableau II donne les résultats de mesures effectuées dans un autre réseau de distribution qui alimente environ cinquante bâtiments dans une région à faible densité de population. Ce réseau comprend des circuits en ligne aérienne de longueur allant jusqu'à 2 km et qui utilisent des conducteurs de 4 à 6 mm de diamètre. En certains endroits peu nombreux, le neutre n'a pu être relié à la canalisation publique d'eau; on avait par contre toujours des conduites d'eau d'une longueur d'au moins 200 mètres à disposition pour servir d'électrodes de terre. Dans les circuits en ligne aérienne les fusibles ont parfois été montés sur les poteaux. Le neutre du réseau possède une section plus forte que les phases dans tous les circuits principaux, afin d'une part de maintenir la tension de contact aussi basse que possible et d'autre part d'augmenter le courant de défaut à la terre. Les fusibles employés ont été choisis sur la base des résultats du calcul de l'installation, tout en tenant compte de la charge pratiquement rencontrée.

Il est souhaitable que dans tous les réseaux qui ne sont pas mis au neutre les fusibles interrompent aussi le circuit en cas de défaut entre une phase et le neutre (défaut à la terre). On connaît des exemples de défauts provenant de l'embrouillage des fils sur des portées très longues et pour lesquels le courant de défaut n'était pas suffisant pour faire fondre les fusibles. De la sorte, le neutre avait pris un potentiel qui atteignait presque celui de la phase malade entre l'endroit du défaut et l'extrémité de la ligne. Les appareils connectés à l'extrémité de la ligne entre une phase saine et le neutre furent alors soumis à une tension assez forte pour les endommager.

On peut aussi utiliser la méthode décrite ici pour calculer la valeur des courants à prévoir en cas de défaut à la terre dans les réseaux non mis au neutre.

Adresse de l'auteur:

W. Frei, chef d'exploitation aux Services techniques de la commune d'Amriswil.

Communications de nature économique

La production et la consommation d'énergie électrique au Portugal en 1953

[Selon: Repartidor nacional de cargas, Relatório e estatística anual 1953] 31:621.311(469)

Il ressort du rapport annuel 1953 du «Repartidor nacional de cargas», dont les centrales affiliées représentent le 93% de la production totale du Portugal, que l'année 1953 peut être classée parmi les années hydrologiquement sèches par opposition aux années de type moyen (1946 et 1952) et aux années très sèches (1944, 1945 et 1949).

C'est ainsi que la production thermique a été importante pendant sept mois consécutifs (de mai à octobre) et qu'elle a

Suite à la page 542

Extrait des rapports de gestion des centrales suisses d'électricité (Ces aperçus sont publiés en groupes de quatre au fur et à mesure de la parution des rapports de gestion et ne sont pas destinés à des comparaisons)

On peut s'abonner à des tirages à part de cette page

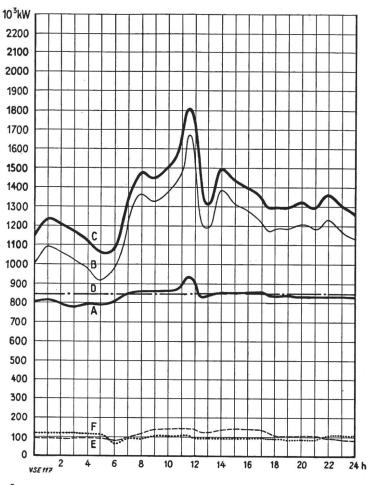
	Elektrizi Aar			tätswerk nur		Baselland stal	und Emn	t des Aare- nenkanals thurn
	1952	1951	1952	1951	1953	1952	1952	1951
1. Production d'énergie . kWh 2. Achat d'énergie kWh 3. Energie distribuée kWh 4. Par rapp. à l'ex. préc % 5. Dont énergie à prix de	105 719 000 3 890 950 109 609 950 — 0,1	2 664 150	2 027 000 81 762 650 115	71 449 000 1 467 000 71 089 720 101	124 437 000 + 10	40 000 117 542 000 112 700 000 — 5	330 752 309 333 481 089 — 2,6	+ 18,6
déchet kWh	17 000	— 16 000		36 420 000 14 800		5 667 000 24 000	48 532 427 63 748	60 953
12. Puissance installée totale kW	146 055 210 410	140 266 204 331	104 913	51 174 102 725		168 700 226 000	210 060 292 400	197 760 281 000
13. Lampes \ kW 14. Cuisinières \ \ kW	9 238 9 952 62 297	8 816 9 447 59 007	1 609	4 350 1 505 10 456	9 519	10 200 8 689 54 400	8 730	10 700 8 000 45 300
15. Chauffe-eau { nombre kW	6 714 17 372	6 403 16 914	4 448	4 236	6 605	5 840 11 900	11 320	10 550 10 840
16. Moteurs industriels $\begin{cases} \text{numbre} \\ \text{kW} \end{cases}$	10 893 20 796	10 706	4 871	4 534	22 132	20 081 40 000	18 070	17 100 27 200
21. Nombre d'abonnements22. Recette moyenne par kWh cts.	27 631 3,92	26 986 3,72	17 392 7,73¹)	16 961 7,65¹)	14 639 —	14 314 —	21 994 —	21 063 —
Du bilan:								
31. Capital social fr. 32. Emprunts à terme	4 063 000 7 564 042 9 091 000 5 862 637	7 032 106 9 091 000	12 689 817 —	13 910 905 12 955 570 173 532	1 690 002 1 973 003	3 904 042 2 150 002 1 973 004 890 000	5 157 597 27 003	2 500 000 — 4 484 09 27 00
Du Compte Profits et Pertes:								
41. Recettes d'exploitation . fr. 42. Revenu du portefeuille et des participations	4 357 388 	70 474 213 307 197 728 637 204 1 217 917 236 915	7 421 680 411 138 392 214 406 728 563 98 492	6 969 683 789 137 924 2 212 958 661 425 71 402	67 450 143 169 49 066 134 360 293 024 232 915	142 149 41 979 124 985 284 123 385 730	114 056 111 617 — — —	89 45 — —
49. Amortissements et réserves > 50. Dividende	1 420 909	1 259 839 — —	——————————————————————————————————————	391 000 — —	1 216 446 — —		150 000 5	
bliques fr. Investissements et amortissements:	515 299	607 745	855 333	846 392			_	
61. Investissements jusqu'à fin de l'exercice fr. 62. Amortissements jusqu'à fin	1		1	18 250 197			1	_
de l'exercice » 63. Valeur comptable » 64. Soit en % des investisse-	7 564 042	7 032 106	12 689 817	5 294 627 12 955 570	1 690 002	2 150 002	5 157 597	4 484 09
ments	28,5	27,8	69,35	70,99	12	16	-	

Statistique de l'énergie électrique

des entreprises livrant de l'énergie à des tiers

Elaborée par l'Office fédéral de l'économie électrique et l'Union des Centrales Suisses d'électricité

Cette statistique comprend la production d'énergie de toutes les entreprises électriques livrant de l'énergie à des tiers et disposant d'installations de production d'une puissance supérieure à 300 kW. On peut pratiquement la considérer comme concernant toutes les entreprises livrant de l'énergie à des tiers, car la production des usines dont il n'est pas tenu compte ne représente que 0,5 % environ de la production totale.


La production des chemins de fer fédéraux pour les besoins de la traction et celle des entreprises industrielles pour

leur consommation propre ne sont pas prises en considération. La statistique de la production et de la distribution de ces entreprises paraît une fois par an dans le Bulletin.

	Production et achat d'énergie									Ac	cumulati	ion d'én	ergie					
Mois	Produ hydra			iction nique	acheté entre	rgie ie aux prises aires et crielles		ergie ortée	four	rgie rnie éseaux	Diffé- rence par rapport à l'année	gasinée bassins mulati	e emma- dans les d'accu- ion à la 1 mois	pen le i	rences tatées dant mois ange aplissage	Expor d'éne	tation ergie	
	1952/53	1953/54	1952/53	1953/54	1952/53	1953/54	1952/53	1953/54	1952/53	1953/54	précé- dente	1952/53	1953/54	1952/53	1953/54	1952/53	1953/54	
				en	million	s de kW	'h				%		er	million	s de kV	Wh		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Octobre	858	897	4	12	39	32	35	26	936	967	+ 3,3	1283	1369	+ 66	- 43	81	100	
Novembre	820	797	1	17	27	19	40	101	888	934	+ 5,2	1244	1183	- 39	-18 6	74	67	
Décembre	857	719	2	34	24	18	57	192	940	963	+ 2,5	1107	872	-137	-311	81	61	
Janvier	835	699	4	27	21	21	93	221	953	968	+ 1,6	772	596	-335	-276	79	51	
Février	723	636	4	33	20	16	98	213	845	898	+ 6,3	447	324	-325	-272	67	51	
Mars	773	701	2	17	23	19	87	166	885	903	+ 2,1	252	187	-195	-137	69	46	
Avril	850	807	1	5	30	24	17	73	898	909	+ 1,2	285	146	+ 33	- 41	111	69	
Mai	954		3		34		17		1008			520		+235		158		
Juin	1028		1		53		20		1102			829		+309		185		
Juillet	1092		1		48		10		1151			1269		+440		223		
Août	1075		- 1		48		5		1129			1391		+122		226		
Septembre	904		. 7		47		7		965			14124)		+ 21		145		
Année	10769		31		414		486		11700							1499		
Octmars	4866	4449	17	140	154	125	410	919	5447	5633	+ 3,4					451	376	
		-																

	Distribution d'énergie dans le pays																	
	Usages domestiques et artisanat		Industrie			etro-	Chau	dières	Т	ction		es et		ommatic	I		avec les	
Mois					métallurgie, thermie		électriques 1)		Traction		énergie de pompage ²)		chaudières et le pompage		rei	ffé- nce %	chaudi	dières et ompage
	1952/53	1953/54	1952/53	1953/54	1952/53	1953/54	1952/53	1953/54	1952/53	1953/54	1952/53	1953/54	1952/53	1953/54	'	3)	1952/53	1953/
							:0	en mi	llions de	kWh								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1	6	17	18
Octobre	370	394	147	162	120	112	35	24	55	43	128	132	810	834	+	3,0	855	867
Novembre	379	411	141	161	99	101	23	10	58	58	114	126	785	851	+	8,4	² 814	86
Décembre	407	435	141	166	104	97	25	4.	64	67	118	133	830	895	+	7,8	859	90
Janvier	417	445	150	164	105	96	14	5	65	71	123	136	857	907	+	5,8	874	91
Février	372	407	138	158	93	91	8	4	61	63	106	124	769	839	+	9,1	778	84
Mars	382	404	145	160	106	106	10	5	64	61	109	121	802	847	+	5,6	816	85
Avril	340	379	131	148	125	125	39	22	45	56	107	110 (5)	740	813	+	9,9	787	840
Mai	339		133		118		97		41		122		741				850	
Juin	330		136		122		151		44.		134		749				917	
Juillet	326		136		126		156		50		134		757				928	
Août	336		133		127		135	ĺ	46		126		756				903	
Septembre	355		147		114		42		41		121		770		1		820	
Année	4353		1678		1359		735		634		1442		9366				10201	
Octmars	2327	2496	862	971	627	603	115	52	367	363	698 (28)	772 (32)	4853	5173	+	6,6	4996	525

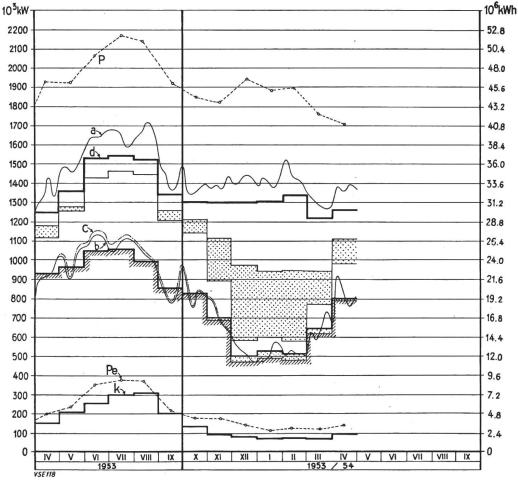

Chaudières à électrodes.
 Les chiffres entre parenthèses représentent l'énergie employée au remplissage des bassins d'accumulation par pompage.
 Colonne 15 par rapport à la colonne 14.
 Energie accumulée à bassins remplis: Sept. 1953 = 1555 Mio kWh.

Diagramme de charge journalier du mercredi

14 avril 1954

Légende:								
1. Puissances disponibles: 103	kW							
Usines au fil de l'eau, disponibilités d'après les apports d'eau (0—D)	845							
maximum)	1342							
Puissance totale des usines hydrauliques	2187							
Réserve dans les usines thermiques	155							
2. Puisances constatées: 0—A Usines au fil de l'eau (y compris usines à bassin d'accumulation journalière et hebdomadaire). A—B Usines à accumulation saisonnière. B—C Usines thermiques + livraisons des usines des CFF, de l'industrie et importation. 0—E Exportation d'énergie.								
The state of the s								
0—E Exportation d'énergie. 0—F Importation d'énergie.	cWh							
0-E Exportation d'énergie.	cWh 20,2							
0—E Exportation d'énergie. 0—F Importation d'énergie. 3. Production d'énergie 10° k								
0—E Exportation d'énergie. 0—F Importation d'énergie. 3. Production d'énergie 10° k Usines au fil de l'eau	20,2							
0—E Exportation d'énergie. 0—F Importation d'énergie. 3. Production d'énergie 10° k Usines au fil de l'eau	20,2 9,1 0,1 0,7							
0—E Exportation d'énergie. 0—F Importation d'énergie. 3. Production d'énergie 10° k Usines au fil de l'eau	20,2 9,1 0,1							
0—E Exportation d'énergie. 0—F Importation d'énergie. 3. Production d'énergie 10° k Usines au fil de l'eau	20,2 9,1 0,1 0,7 2,4 32,5							
0—E Exportation d'énergie. 0—F Importation d'énergie. 3. Production d'énergie 10° k Usines au fil de l'eau	20,2 9,1 0,1 0,7 2,4 32,5 27,3							
0—E Exportation d'énergie. 0—F Importation d'énergie. 3. Production d'énergie 10° k Usines au fil de l'eau	20,2 9,1 0,1 0,7 2,4 32,5							
0—E Exportation d'énergie. 0—F Importation d'énergie. 3. Production d'énergie 10° k Usines au fil de l'eau	20,2 9,1 0,1 0,7 2,4 32,5 27,3							
0—E Exportation d'énergie. 0—F Importation d'énergie. 3. Production d'énergie 10° k Usines au fil de l'eau	20,2 9,1 0,1 0,7 2,4 32,5 27,3							

Production du mercredi et production mensuelle

Légende:

1. Puissances maxima: (chaque mercredi du milieu du mois) P de la production totale; P. de l'exportation.

2. Production du mercredi: (puissance ou quantité d'énergie moyenne)

totale; effective d. usines au fil de l'eau; possible d. usines au fil de l'eau.

3. Production mensuelle:

3.Production mensuelle:
(puissance moyenne
mensuelle ou
quantité journalière
moyenne d'énergie)
d totale;
e des usines au fil
de l'eau par les
apports naturels;
f des usines au fil
de l'eau par les
apports provenant
de bassins d'accumulation;

de bassins d'accumulation; des usines à accumulation par les apports naturels; des usines à accumulation par prélèvement s. les réserves accumul.; des usines thermiques, achats aux entreprises ferrov. et indust. import.: exportation; —k consommation dans le pays.

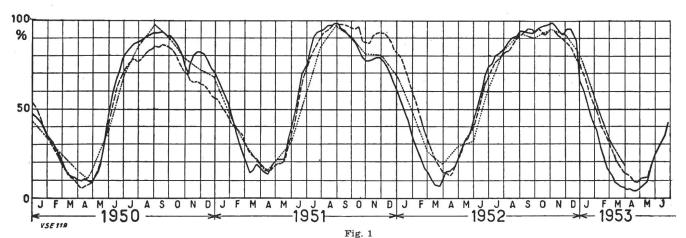
dû couvrir au total 26% des besoins d'énergie du pays (au lieu de 7% seulement en 1952).

Le tableau I donne les chiffres de consommation et de production pour les années 1952 et 1953 ainsi que les changements en pour-cent d'une année à l'autre.

Le tableau II donne la puissance installée et la puissance maximum constatée des centrales hydrauliques et thermiques

Tableau I

	1952 GWh	1953 GWh	Variation 1952/53 %
Production			
Usines hydrauliques	1133,6 90,5	$951,0 \\ 326,6$	$^{+\ \ 16}_{+\ 261}$
Production totale brute Consommation des services	1224,1	1277,6	+ 4
auxiliaires des usines	23,1	39,7	
Production totale nette	1201,0	1237,9	
Energie achetée à d'autres pro-			0.000
ducteurs	16,0	14,3	- 11
Energie fournie aux réseaux	1217,0	1252,2	+ 3
Consommation			
Electro-chimie et Electro-			
métallurgie	206,5	157.8	- 24
Autres consommateurs	858.7	940.5	+ 9
Pertes dans les réseaux de trans-			
port et de distribution	151,8	153,9	+ 1
Total	1217,0	1252,2	+ 3


			Tableau II
	1952 MW	1953 MW	Variation 1952/53 %
Puissance installée au 31 décembre:			70
Usines hydrauliques Usines thermiques	444,2 113,8	$^{490,3}_{112,8}$	$\begin{array}{cccc} + & {\bf 10} \\ - & {\bf 1} \end{array}$
Total Puissance max. constatée:	558,0	603,1	+ 8
Usines hydrauliques	250,0 100,0 261,5	$268,5 \\ 98,5 \\ 276,0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Total des usines	201,0	210,0	, - 0

Le problème de l'exploitation optimum des réservoirs

[Selon: Circulaire périodique de l'UNIPEDE, N° 23 (2° trimestre 1953) p. 18] 061.2(100):621.311.161

Une étude a été entreprise, sur la demande du Comité de Direction de l'UNIPEDE, en vue de rechercher dans quelle mesure l'exploitation des réservoirs des pays voisins dont les réseaux sont interconnectés se trouve coordonnée par le jeu des glissements d'énergie qui résultent des échanges à travers les frontières.

La fig. 1 relative aux réservoirs des Alpes françaises, italiennes et suisses de haute et moyenne altitude, fait ressortir le parallélisme de l'exploitation réalisée dans les différents pays. Bien entendu, il ne faut pas perdre de vue que ces trois pays se trouvent sous des climats qui n'accusent guère de différences appréciables qu'en automne. Sa.

Communications des organes de l'UCS

Visites de centrales électriques

Nous reproduisons ci-après, dans l'espoir qu'elle trouvera un écho favorable, une suggestion qui nous est parvenue à propos de la visite des centrales électriques par le public.

«Ayant passé l'autre jour sur la route devant l'entrée de la centrale de Verbano, j'ai été frappé par l'écriteau rébarbatif «Entrée interdite» que l'on retrouve sous une forme ou sous une autre à l'entrée de la plupart de nos centrales suisses. Je me suis rappelé comment, au contraire, l'homme de la rue est accueilli aux Etats-Unis.

Ne pensez-vous pas qu'il y aurait là quelque chose à faire chez nous pour accueillir plus aimablement le public et gagner ainsi sa sympathie? Un écriteau à l'entrée des usines lui souhaitant la bienvenue et indiquant que les visites peuvent avoir lieu à telle ou telle heure, un employé montrant alors aux intéressés ce que l'on peut voir sans risque et sans déranger l'exploitation, tout cela organisé d'une manière ou d'une autre serait de la bonne propagande.

Je remarque que, personnellement, je n'ai eu aucune difficulté à entrer dans la centrale de Verbano, un employé ayant téléphoné à Locarno pour avoir l'autorisation; mais je me suis mis à la place de l'abonné qui consomme des kWh et se plaint de leur coût.

Il me semble qu'il serait de bonne politique de lui faciliter la visite de nos usines, au lieu de faire des mystères. On y gagnerait des sympathies; c'est pourquoi je me permets de vous soumettre ces réflexions pour que vous puissiez voir ce que l'on pourrait faire dans ce sens pour améliorer la compréhension du public à nos efforts.»

Rédaction des «Pages de l'UCS»: Secrétariat de l'Union des Centrales Suisses d'Electricité, Seefeldstrasse 301, Zürich 8, téléphone (051) 34 12 12; compte de chèques postaux VIII 4355; adresse télégraphique: Electrunion Zürich.

Rédacteur: Ch. Morel, ingénieur.

Des tirés à part de ces pages sont en vente au secrétariat de l'UCS, au numéro ou à l'abonnement.