Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 45 (1954)

Heft: 13

Artikel: Allgemeine Formeln für die Berechnung von einfachen Filtern

Autor: Schmutz, K.

DOI: https://doi.org/10.5169/seals-1058815

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN

DE L'ASSOCIATION SUISSE DES ELECTRICIENS

ORGANE COMMUN

DE L'ASSOCIATION SUISSE DES ELECTRICIENS (ASE) ET DE L'UNION DES CENTRALES SUISSES D'ELECTRICITE (UCS)

Allgemeine Formeln für die Berechnung von einfachen Filtern

Von K. Schmutz, Zürich

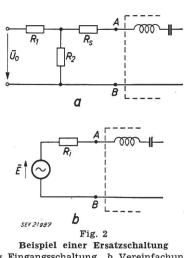
621.372.54

Für die im Anhang tabellierten Filterschaltungen werden die Übertragungseigenschaften (Verhältnis von Ausgangsspannung zu Eingangsspannung, bzw. Ausgangsspannung zu Eingangsstrom) und die Eingangsimpedanz als Funktionen einer normierten Frequenz angegeben. Die Berechnungen werden durchgeführt für beliebiges Verhältnis von Quellenwiderstand zu Abschlusswiderstand und mit Berücksichtigung der Kreisverluste. Die Formeln werden ausgewertet und in Kurvenblättern graphisch dargestellt. Der Rechnungsgang ist für alle Filterschaltungen ähnlich und wird vollständig durchgeführt für eine vierkreisige Bandfilterschaltung. Zum Schluss wird eine tabellarische Zusammenstellung der wichtigsten Filterschaltungen und der zugehörigen Formeln und Definitionen gegeben, die gestatten, Filter unter Berücksichtigung der Verluste so zu dimensionieren, dass sich gute Übertragungseigenschaften ergeben.

En annexe sont indiquées les propriétés de transfert (rapport entre la tension de sortie et la tension ou le courant d'entrée) et l'impédance d'entrée des filtres électromagnétiques comprenant jusqu'à quatre circuits résonants. Les calculs sont exécutés pour un rapport quelconque entre la résistance de sortie et la résistance d'entrée et tiennent compte des pertes. Les équations sont calculées numériquement et les résultats sont représentés graphiquement. La méthode de calcul est indiquée complètement pour le filtre à quatre circuits résonants. Pour les filtres plus simples, le principe est le même. Un annexe contient, sous forme de tables et de diagrammes graphiques, toutes les indications nécessaires au dimensionnement des filtres en tenant compte des pertes. On peut ainsi obtenir des filtres ayant des propriétés de transmission satisfaisantes.


1. Allgemeines

In vielen Gebieten der Hochfrequenztechnik werden Filter zur Aussiebung eines gewünschten Frequenzbandes benötigt. Die meisten Filtertheorien vernachlässigen die Verluste der Filterelemente und setzen ausserdem noch voraus, dass der Abschlusswiderstand gleich dem Quellenwiderstand sei. Die Vernachlässigung der Kreisverluste ist bei Siebschaltungen mit mehr als fünf Kreisen kaum mehr zu umgehen, wenn nicht besondere Hilfsmittel für die Berechnung zur Verfügung stehen (spezielle Rechnungsmaschinen). Für einfache Filterschaltungen aber ist es ohne weiteres möglich, die Berechnung durchzuführen bei beliebigem Verhältnis von Quellenwiderstand zu Abschlusswiderstand und unter Berücksichtigung der Kreisverluste. Letzteres ermöglicht, Filter mit guten Übertragungseigenschaften zu bauen auch mit Filterelementen geringerer Güte.


Im folgenden wird gezeigt, dass sich die Übertragungseigenschaften vieler einfacher Filterschaltungen mit wenigen einfachen Formeln beschreiben lassen. Die Herleitung der Formeln wird nach dem gleichen Prinzip durchgeführt, wie es R. Feldtkeller in seiner «Theorie der Rundfunksiebschaltungen» anwendet [1]¹).

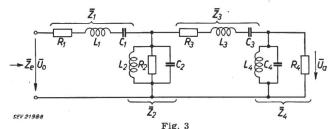
2. Grundlagen

Ein aktiver Zweipol, bestehend aus einer elektromotorischen Kraft und einer beliebigen Kombination von linearen Widerständen, kann ersetzt werden durch eine Ersatzspannungsquelle oder eine Ersatzstromquelle. Dabei ist die in Fig. 1b eingetragene E.M.K. \bar{E} gleich der in der Schaltung nach Fig. 1a auftretenden Leerlaufspannung zwischen den Klem-

Ersatz eines Zweipols mit eingeprägter E.M.K. a Zweipol mit eingeprägter E.M.K.; b Ersatz durch eine Ersatzspannungsquelle; c Ersatz durch eine Ersatzstromquelle

Beispiel einer Ersatzschaltung a Eingangsschaltung b Vereinfachung R_1 , R_2 , R_3 Ohmsche Widerstände $\overline{E} = \frac{R_2}{R_1 + R_2} \cdot \overline{U}_0$ $R_i = R_s + \frac{R_1 R_2}{R_1 + R_2}$

¹⁾ siehe Literaturverzeichnis am Schluss.


men A und B. Der in Fig. 1c angegebene eingeprägte Strom \bar{I}_i ist gleich dem in der Schaltung nach Fig. 1a auftretenden Kurzschlußstrom zwischen den Klemmen A und B. Der innere Widerstand \bar{R}_i ergibt sich als $\bar{R}_i = \bar{E}/\bar{I}_i$.

Unter Verwertung dieser Tatsachen kann z. B. die Eingangsschaltung nach Fig. 2a stark vereinfacht werden (Fig. 2b).

Für alle im Anhang tabellierten Filterschaltungen wird die Vereinfachung der Eingangsschaltung als durchgeführt betrachtet.

3. Ableitungen

Der Rechnungsgang ist für alle Filterschaltungen ähnlich und wird hier für eine vierkreisige Bandfilterschaltung durchgeführt, deren Ersatzschema in Fig. 3 gegeben ist.

Ersatzschema einer vierkreisigen Filterschaltung

Die Berechnung folgt unter folgenden Voraussetzungen:

- 1. Alle Schwingungskreise haben die gleiche Resonanzfrequenz.
- 2. Die Verlustwiderstände der Schwingungskreise werden im betrachteten Frequenzbereich als konstant angesehen.
- 3. Der Verlustwiderstand des ersten Kreises ist in R_1 , jener des letzten Kreises in R_4 enthalten.

Mit den in Fig. 3 gewählten Bezeichnungen wird das Verhältnis von Ausgangsspannung zu Eingangsspannung:

$$rac{ar{U}_a}{ar{U}_0} = rac{1}{\left(1 + rac{ar{Z}_1}{ar{Z}_2} + rac{ar{Z}_1}{ar{Z}_4} + rac{ar{Z}_3}{ar{Z}_4} + rac{ar{Z}_1}{ar{Z}_2} \cdot rac{ar{Z}_3}{ar{Z}_4}
ight)} \quad (1)$$

und die Eingangsimpedanz \bar{Z}_e :

$$ar{Z}_e = ar{Z}_1 + rac{ar{Z}_2 \cdot (ar{Z}_3 + ar{Z}_4)}{ar{Z}_2 + ar{Z}_3 + ar{Z}_4} =$$

$$=\frac{1+\frac{\bar{Z}_{1}}{\bar{Z}_{2}}+\frac{\bar{Z}_{1}}{\bar{Z}_{4}}+\frac{\bar{Z}_{3}}{\bar{Z}_{4}}+\frac{\bar{Z}_{1}}{\bar{Z}_{2}}\cdot\frac{\bar{Z}_{3}}{\bar{Z}_{4}}}{\frac{1}{\bar{Z}_{2}}+\frac{1}{\bar{Z}_{4}}+\frac{\bar{Z}_{3}}{\bar{Z}_{2}\cdot\bar{Z}_{4}}}$$

$$\bar{Z}_{e}=\frac{\bar{U}_{0}}{\bar{U}_{a}}\cdot\frac{1}{\left(\frac{1}{\bar{Z}_{2}}+\frac{1}{\bar{Z}_{4}}+\frac{\bar{Z}_{3}}{\bar{Z}_{2}\cdot\bar{Z}_{4}}\right)} \tag{2}$$

wobei:

$$egin{align} ar{Z}_1 &= R_1 + \mathrm{j}\,\omega\,L_1 + rac{1}{\mathrm{j}\,\omega\,C_1} \ ar{Z}_3 &= R_3 + \mathrm{j}\,\omega\,L_3 + rac{1}{\mathrm{j}\,\omega\,C_3} \ rac{1}{ar{Z}_2} &= rac{1}{R_2} + rac{1}{\mathrm{j}\,\omega\,L_2} + \mathrm{j}\,\omega\,C_2 \ rac{1}{ar{Z}_4} &= rac{1}{R_4} + rac{1}{\mathrm{j}\,\omega\,L_4} + \mathrm{j}\,\omega\,C_4 \ \end{pmatrix} \ (3)$$

Mit Hilfe der Definitionen

$$\begin{split} a &= \frac{R_1}{R_4}; \ b &= \frac{R_4}{R_2}; \ c &= \frac{R_3}{R_4}; \ \omega_0 = \frac{1}{\sqrt{L_1 C_1}} = \\ &= \frac{1}{\sqrt{L_2 C_2}} = \frac{1}{\sqrt{L_3 C_3}} = \frac{1}{\sqrt{L_4 C_4}} \\ m &= \frac{L_4}{L_2}; \ \lambda = \frac{L_3}{L_1}; \ \mu = \frac{\omega_0^2 L_1 L_4}{R_4^2}; \\ \mathcal{Q}' &= \frac{R_4}{\omega_0 L_4} \cdot \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right) \end{split} \tag{4}$$

können die Ausdrücke für

$$ar{Z}_1$$
, $rac{1}{ar{Z}_2}$, $ar{Z}_3$ und $rac{1}{ar{Z}_4}$

in folgender Form geschrieben werden:

Setzt man die Gleichungen (5) in Gleichung (1) ein und ordnet im Nenner nach Real- und Imaginärteil, so erhält man für das Verhältnis $\frac{\bar{U}_a}{\bar{U}_a}$:

$$\frac{\bar{U}_{a}}{\bar{U}_{0}} = \frac{1}{ \begin{bmatrix} (1+a+ab+abc+c) - \Omega'^{2} \left\{ \mu \left(1+m+\lambda+am\lambda+ab\lambda+bc+b\lambda\mu+cm\right)+acm\right\} + \\ + \Omega'^{4} \cdot m\lambda\mu^{2} + \\ + \mathrm{j} \ \Omega' \ \left\{ \mu \left(1+\lambda+ab\lambda+b+bc\right)+a+abc+am+acm+c\right\} - \\ - \mathrm{j}\Omega'^{3} \ \mu \left(m\lambda\mu+am\lambda+b\lambda\mu+cm\right) \end{bmatrix} }$$
 (6)

Klammert man im Nenner den Ausdruck (1+a+ab+abc+c) aus und definiert als normierte Frequenz Ω ,

$$\Omega = \Omega' \frac{\mu \left(1 + \lambda + ab\lambda + b + bc\right) + a + abc + am + acm + c}{1 + a + ab + abc + c} \tag{7}$$

so erhält man für $\frac{U_a}{\bar{U}_a}$:

$$\frac{\bar{U}_{a}}{\bar{U}_{0}} = \frac{\frac{1}{(1+a+ab+abc+c)}}{\frac{[(1+a+ab+abc+c)[\mu(1+m+\lambda+am\lambda+ab\lambda+bc+b\lambda\mu+cm)+acm]}{[\mu(1+\lambda+ab\lambda+b+bc)+a+abc+am+acm+c]^{2}} + \frac{(1+a+ab+abc+c)^{3} m\lambda\mu^{2}}{[\mu(1+\lambda+ab\lambda+b+bc)+a+abc+am+acm+c]^{4}} + \frac{i[\mu(1+\lambda+ab\lambda+b+bc)+a+abc+am+acm+c]^{4}}{[\mu(1+\lambda+ab\lambda+b+bc)+a+abc+am+acm+c]^{3}} + \frac{i[\mu(1+\lambda+ab\lambda+b+bc)+a+abc+am+acm+c]^{3}}{[\mu(1+\lambda+ab\lambda+b+bc)+a+abc+am+acm+c]^{3}} \right]$$

Setzt man für die Koeffizienten von Ω^2 , Ω^3 und Ω^4 , die ja Konstanten sind, die Abkürzungen

$$A = \frac{(1+a+ab+abc+c) \cdot \left[\mu \left(1+m+\lambda+am\lambda+ab\lambda+bc+b\lambda\mu+cm\right)+acm\right]}{\left[\mu \left(1+\lambda+ab\lambda+b+bc\right)+a+abc+am+acm+c\right]^2} \tag{9}$$

$$A = \frac{(1 + a + ab + abc + c) \cdot [\mu (1 + m + \lambda + am\lambda + ab\lambda + bc + b\lambda\mu + cm) + acm]}{[\mu (1 + \lambda + ab\lambda + b + bc) + a + abc + am + acm + c]^{2}}$$

$$B = \frac{(1 + a + ab + abc + c)^{2} \cdot \mu (m\lambda\mu + am\lambda + b\lambda\mu + cm)}{[\mu (1 + \lambda + ab\lambda + b + bc) + a + abc + am + acm + c]^{3}}$$
(10)

$$C = \frac{(1 + a + ab + abc + c)^{3} \cdot m\lambda\mu^{2}}{[\mu (1 + \lambda + ab\lambda + b + bc) + a + abc + am + acm + c]^{4}}$$
(11)

so erhält man schliesslich für die Spannungsübersetzung $\frac{\bar{U}_a}{\bar{U}_0}$

$$\frac{\bar{U}_a}{\bar{U}_0} = \frac{1}{1+a+ab+abc+c} \cdot \frac{1}{\left[(1-A\Omega^2+C\Omega^4)+j(\Omega-B\Omega^3)\right]}$$
(12)

Für die Eingangsimpedanz \bar{Z}_e erhält man durch Einsetzen der Formeln (5) in Gleichung (2) und mit Hilfe der Definition (7) den Ausdruck

$$\underline{Z_e = \frac{1 + a + ab + abc + c}{1 + b + bc} \cdot \frac{\left[(1 - A\Omega^2 + C\Omega^4) + j(\Omega - B\Omega^3) \right]}{\left[(1 - E\Omega^2) + j(D\Omega - F\Omega^3) \right]}}$$
(13)

wobei:

$$D = \frac{(1 + a + ab + abc + c) \cdot (1 + m + bc + b\lambda\mu + cm)}{(1 + b + bc) \cdot [\mu (1 + \lambda + ab\lambda + b + bc) + a + abc + am + acm + c]}$$

$$E = \frac{(1 + a + ab + abc + c)^2 \cdot (m\lambda\mu + b\lambda\mu + cm)}{(1 + b + bc) \cdot [\mu (1 + \lambda + ab\lambda + b + bc) + a + abc + am + acm + c]^2}$$
(15)

$$E = \frac{(1+a+ab+abc+c)^2 \cdot (m\lambda\mu + b\lambda\mu + cm)}{(1+b+bc) \cdot [\mu (1+\lambda + ab\lambda + b + bc) + a + abc + am + acm + c]^2}$$
(15)

$$F = \frac{(1 + a + ab + abc + c)^3 \cdot m\lambda\mu}{(1 + b + bc) \cdot [\mu (1 + \lambda + ab\lambda + b + bc) + a + abc + am + acm + c]^3}$$
(16)

Gleichung (12) zeigt eindrücklich, wie die Übertragungseigenschaften eines vierkreisigen Filters mit einer einfachen Formel ausgedrückt werden können.

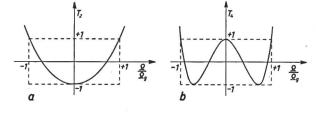
4. Bestimmung der Parameter A, B, C

Die den Frequenzgang des Verhältnisses von Eingangsspannung zu Ausgangsspannung bestimmende Funktion \bar{S} für das im vorigen Abschnitt berechnete Filter ist durch die Parameter A, B, C bestimmt und lautet:

$$ar{S} = (1 - A~ arOmega^2 + C~ arOmega^4) + \mathrm{j}~(arOmega - B~ arOmega^3)$$

$$|\bar{S}|^2 = S^2 = 1 + (1 - 2A)\Omega^2 + (A^2 - 2B + 2C)\Omega^4 - (2AC - B^2)\Omega^6 + C^2\Omega^8$$
 (17)

Die Aufgabe besteht nun darin, Koeffizienten A, B und C zu finden, die eine günstige Filterkurve ergeben. Aus den vielen möglichen Kurvenformen werden jene ausgewählt, die im Durchlassbereich gleich hohe Maxima und Minima aufweisen (Tschebyscheff-Funktionen).


Tschebyscheff hat gefunden, dass die Funktionen

$$T_k = \cos\left(k \cdot \arccos\frac{\Omega}{\Omega_g}\right) \tag{18}$$

für gerade Werte von k im Bereich von $\frac{\Omega}{\Omega_g} = -1$ bis $\frac{\Omega}{\Omega_g} = +1$ gerade k mal von der Grenze $T_k = +1$ zur Grenze $T_k = -1$ oder umgekehrt, übergehen. Für Werte von $\frac{\Omega}{\Omega_g}$ grösser als Eins ist auch T_k immer grösser als Eins. Die Funktionen (18) können auch als Potenzreihen geschrieben werden [1].

Für die Werte k = 2, 4, 6 und k = 8 sind die Funktionen in Fig. 4 dargestellt. Sie lauten:

$$\begin{split} k &= 2 \, ; \ T_2 = -1 + 2 \left(\frac{\Omega}{\varOmega_g}\right)^2 \qquad (19) \\ k &= 4 \, ; \ T_4 = 1 - 8 \left(\frac{\varOmega}{\varOmega_g}\right)^2 + 8 \left(\frac{\varOmega}{\varOmega_g}\right)^4 \quad (20) \\ k &= 6 \, ; \ T_6 = -1 + 18 \left(\frac{\varOmega}{\varOmega_g}\right)^2 - 48 \left(\frac{\varOmega}{\varOmega_g}\right)^4 + 32 \left(\frac{\varOmega}{\varOmega_g}\right)^6 \\ k &= 8 \, ; \ T_8 = 1 - 32 \left(\frac{\varOmega}{\varOmega_g}\right)^2 + 160 \left(\frac{\varOmega}{\varOmega_g}\right)^4 - \\ &\qquad - 256 \left(\frac{\varOmega}{\varOmega_g}\right)^6 + 128 \left(\frac{\varOmega}{\varOmega_g}\right)^8 \quad (22) \end{split}$$

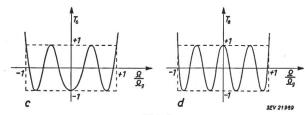
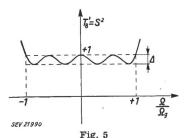


Fig. 4 Charakteristische Funktionen von Filterschaltungen (Tschebyscheff-Funktionen)

a einkreisige Filterschaltungen, k=2 b zweikreisige Filterschaltungen, k=4 c dreikreisige Filterschaltungen, k=6 d vierkreisige Filterschaltungen, k=8


Die Funktionen T_2 , T_4 , T_6 und T_8 geeignet transformiert, ergeben mögliche Übertragungsfunktionen für ein-, zwei-, drei- und vierkreisige Filter. Multipliziert man Gleichung $T_8=f\left(\frac{\Omega}{\varOmega_g}\right)$ mit dem Faktor $\left(\frac{\Delta}{2}\right)$ und addiert auf beiden Seiten den Summanden $\left(1-\frac{\Delta}{2}\right)$, so erhält man einen Ausdruck, der für beliebige Ω immer positiv ist, sofern $\Delta<1$ gewählt wird, und der für $\frac{\Omega}{\varOmega_g}=0$, $\frac{\Omega}{\varOmega_g}=-1$ und $\frac{\Omega}{\varOmega_g}=+1$ den Wert Eins ergibt (siehe Fig. 5): $T_8'=\left(1-\frac{\Delta}{2}\right)+\frac{\Delta}{2}\cdot T_8=1-\Delta\,16\left(\frac{\Omega}{\varOmega_g}\right)^2+$

$$+ \Delta 80 \left(\frac{\Omega}{\Omega_g}\right)^4 - \Delta 128 \left(\frac{\Omega}{\Omega_g}\right)^6 + \Delta 64 \left(\frac{\Omega}{\Omega_g}\right)^8$$

$$(23)$$

 T_8 ' hat einen Verlauf wie er für unsere Filterkurve erwünscht ist. Die maximale Abweichung vom

Werte Eins im Durchlassbereich ist Δ (als Durchlassbereich sei definiert: $\left|\frac{\Omega}{Q_{\sigma}}\right| \leq 1$).

Verlauf der Spannungsübersetzung eines vierkreisigen Filters $T_8{}'=S^2=\mathbf{f}\left(rac{\Omega}{\Omega_g}
ight)$

Beim Vergleich von Gleichung (23) mit Gleichung (17) sieht man, dass beide Funktionen die gleiche Konstante Eins und gleiche Potenzen von Ω aufweisen; gefordert ist, dass sie einander exakt entsprechen sollen, also:

$$T_8'' = [S^2]$$

Durch Koeffizientenvergleich der beiden Potenzreihen erhält man folgendes Gleichungssystem:

$$(1-2A) = -rac{arDelta\,16}{\Omega_g^2} \ (A^2-2\ B+2\ C) = rac{arDelta\,80}{\Omega_g^4} \ (-2\ A\ C+B^2) = rac{-arDelta\,128}{\Omega_g^6} \ C^2 = rac{arDelta\,64}{\Omega_g^8}$$

Der Frequenzgang des Verhältnisses von Ausgangsspannung zu Eingangsspannung wird bestimmt durch die Funktion:

$$\left|\frac{1}{\bar{S}}\right| = \frac{1}{\bar{S}} = \frac{1}{\sqrt{T_8}} = f(\Omega)$$

Die maximale Abweichung vom Werte Eins sei δ (siehe Fig. 6). Der Minimalwert der Funktion $T_{8}'=\mathrm{f}\left(\Omega\right)$ im Durchlassbereich ist $T_{8}'_{min}$:

$$T_{8'min} = 1 - \Delta$$

Der Maximalwert der Funktion $\frac{1}{S} = f(\Omega)$ im Durchlassbereich wird:

/1\ 1 1 1

$$\left(\frac{1}{S}\right)_{\max} = \frac{1}{\sqrt{T_{8'\min}}} = \frac{1}{\sqrt{1-\varDelta}} = 1 + \delta$$

und damit ergibt sich

$$\Delta = 1 - \frac{1}{(1+\delta)^2} \tag{25}$$

Durch Einsetzen der Beziehung (25) in das Gleichungssystem (24) erhält man folgende Gleichungen:

$$(1-2\ A)\ \varOmega_g{}^2 = -16\ \left[1-rac{1}{(1+\delta)^2}
ight] \ (A^2-2\ B+2\ C)\ \varOmega_g{}^4 = 80\ \left[1-rac{1}{(1+\delta)^2}
ight] \ (2\ AC-B^2)\ \varOmega_g{}^6 = 128\ \left[1-rac{1}{(1+\delta)^2}
ight] \ C^2\ \varOmega_g{}^8 = 64\ \left[1-rac{1}{(1+\delta)^2}
ight]$$

Für vorgegebene Werte von δ können nun A, B, C, sowie Ω_g^2) berechnet werden. Im allgemeinen ergeben sich zwei Lösungen für A, B und C, jedoch ist nur eine davon brauchbar, da die andere negative

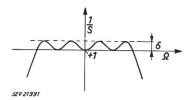


Fig. 6
Verlauf der Spannungsübersetzung eines vierkreisigen Filters $\frac{1}{1/m_{ef}} = \frac{1}{c_{e}} = f(\Omega)$

Werte für Spulen und Kondensatoren ergibt. Blatt 9 zeigt die Abhängigkeit der Grössen A, B, C und Ω_g in Funktion der Schwankung δ , und auf Blatt 8 ist die Funktion $\frac{1}{S} = f(\Omega)$ mit δ als Parameter aufgetragen.

5. Berechnungsbeispiel

Die oben abgeleitete Filterschaltung soll dimensioniert werden und folgende Eigenschaften aufweisen:

Bandmittelfrequenz
$$f_0$$
 $f_0 = 300 \text{ kHz}$
Bandbreite Δf $\Delta f = 40 \text{ kHz}$;
 $f_g = 320 \text{ kHz} \triangleq + \Omega_g$
Güte Q der Schwingungskreise $Q = 100$
Abschlusswiderstand R_a $R_a = 70 \Omega$
Schwankung δ $\delta = 0.0153$ $(\triangleq \Delta = 0.03)$

Das Filter werde gespiesen von einem stark spannungsgegengekoppelten Verstärker, dessen Innenwiderstand vernachlässigt werden kann. Fig. 7 zeigt das wirkliche Schaltbild und das Ersatzschaltbild. R_1 , R_2 , R_3 und R_{P4} sind die Verlustwiderstände der Kreise. Bei bekannter Güte Q haben sie folgende Grösse:

$$R_{1} = \frac{\omega_{0} L_{1}}{Q}; \quad R_{2} = Q \cdot \omega_{0} L_{2}; \quad R_{3} = \frac{\omega_{0} L_{3}}{Q};$$

$$R_{p4} = Q \cdot \omega_{0} L_{4} \quad (27)$$

Früher wurde berechnet:

$$\frac{\bar{U}_a}{\bar{U}_0} = \frac{1}{(1+a+ab+abc+c)} \cdot \frac{1}{[1-A\Omega^2+C\Omega^4]+j[\Omega-B\Omega^3]}$$

Fig. 7
Schaltschema einer vierkreisigen Filterschaltung
a wirkliches Schaltschema b Ersatzschema

b

(Definitionen von A, B, C, Ω , a, b, c siehe in der Berechnung, oder in Tabelle III, Schaltung 1.)

Aus Blatt 9 entnimmt man folgende Werte von A, B, C und Ω_g für eine Schwankung δ von 0,0153 $\Omega_g = 2,503$ [A = 0,5383 B = 0,1496 C = 0,03528 A, B, C und Ω sind Funktionen von a, b, c, m, λ , und μ . a, b und c können mit Hilfe der Beziehungen (27) und der Definitionen zu Schaltung 1 in Tabelle III wie folgt ausgedrückt werden:

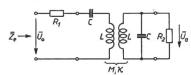
$$\begin{split} a &= \frac{\mu}{Q} \cdot \frac{R_4}{\omega_0 L_4} \quad b = \frac{m}{Q} \cdot \frac{R_4}{\omega_0 L_4} \quad c = \frac{\lambda \mu}{Q} \cdot \frac{R_4}{\omega_0 L_4} \end{split}$$
 Mit $\frac{R_4}{\omega_0 L_4 Q} = \alpha$ ergibt sich:

$$a = \mu \alpha$$
 $b = m \alpha$ $c = \lambda \mu \alpha$ (28)

Ersetzt man a, b und c in den Definitionen für A, B C und Ω durch obige Werte, so erhält man nach einigen Umformungen die folgenden vier Gleichungen:

$$\left(\frac{\Omega'}{\Omega}\right)_{\omega_{g}} = \frac{\alpha Q}{\Omega_{g}} \left(\frac{\omega_{g}}{\omega_{0}} - \frac{\omega_{0}}{\omega_{g}}\right) = \frac{(1 + \mu\alpha + m\mu\alpha^{2} + m\lambda\mu^{2}\alpha^{3} + \lambda\mu\alpha)}{[\mu(1 + \alpha)(1 + \lambda) + m\lambda\mu^{2}(3\alpha^{2} + \alpha^{3}) + 2m\mu\alpha]} (29).$$

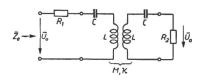
$$A = \frac{[\mu(1 + m + \lambda) + 3m\lambda\mu^{2}(\alpha + \alpha^{2})]}{(1 + \mu\alpha + m\mu\alpha^{2} + m\lambda\mu^{2}\alpha^{3} + \lambda\mu\alpha)} \cdot \left(\frac{\alpha Q}{\Omega_{g}}\right)^{2} \cdot \left(\frac{\omega_{g}}{\omega_{0}} - \frac{\omega_{0}}{\omega_{g}}\right)^{2} \quad (30)$$


$$B = \frac{m\lambda\mu^{2}(1 + 3\alpha)}{(1 + \mu\alpha + m\mu\alpha^{2} + m\lambda\mu^{2}\alpha^{3} + \lambda\mu\alpha)} \cdot \left(\frac{\alpha Q}{\Omega_{g}}\right)^{3} \left(\frac{\omega_{g}}{\omega_{0}} - \frac{\omega_{0}}{\omega_{g}}\right)^{3} \quad (31)$$

²) Die Bedeutung von Ω_g für die Filterformeln für vierkreisige Filter ergibt sich aus den Kurvenblättern 8 und 9 und die Bemerkungen zu Tabelle III.

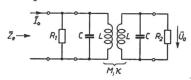
Tabelle I

	Schaltung	Spannungsübersetzung und Eingangsimpedanz	Definitionen		
1	Tiefpass $\bar{Z}_e \longrightarrow ar{U}_0$ \bar{U}_0 \bar{U}_2 \bar{U}_0 \bar{U}_0 \bar{U}_0	$egin{split} rac{ar{U}_a}{ar{U}_o} &= rac{1}{1+a} \cdot rac{1}{(1-A\Omega^2)+\mathrm{j}\Omega} \ ar{Z}_e &= (R_1+R_2) rac{(1-A\Omega^2)+\mathrm{j}\Omega}{1+\mathrm{j}B\Omega} \end{split}$	$\Omega' = \omega \ R_2 \ C_2$ $a = rac{R_1}{R_2}$ $\mu = rac{1}{R_2^2} \cdot rac{L_1}{C_2}$		
2	Tiefpass $\bar{Z}_{o} \longrightarrow R_{1} \qquad C_{1} \longrightarrow R_{2} \qquad \bar{U}_{g}$	$egin{aligned} rac{ar{U}_a}{ar{I}_0R_2} &= rac{1}{1+a} \cdot rac{1}{(1-A\Omega^2)+\mathrm{j}\Omega} \ & ar{Z}_e &= rac{R_1R_2}{R_1+R_2} \cdot rac{1+\mathrm{j}B\Omega}{(1-A\Omega^2)+\mathrm{j}\Omega} \end{aligned}$	$\Omega'=rac{\omegaL_2}{R_2}$ $a=rac{R_2}{R_1}$, $\mu=R_2{}^2\cdotrac{C_1}{L_2}$		
3	Hochpass $\bar{Z}_{\delta} \longrightarrow \begin{bmatrix} \overline{Q}_{\delta} & \overline{Q}_{\delta} & \overline{Q}_{\delta} \\ \overline{Q}_{\delta} & \overline{Q}_{\delta} & \overline{Q}_{\delta} \end{bmatrix} \bar{Q}_{\delta}$	$egin{split} rac{ar{U}_a}{ar{U}_0} &= rac{1}{1+a} \cdot rac{1}{(1-A\Omega^2) - \mathrm{j}\Omega} \ & Z_e &= (R_1 + R_2) \cdot rac{(1-A\Omega^2) - \mathrm{j}\Omega}{1-\mathrm{j}B\Omega} \end{split}$	$\Omega'=rac{R_2}{\omegaL_2} \ a=rac{R_1}{R_2} \ \mu=rac{1}{R_2^2}\cdotrac{L_2}{C_2}$		
4	Hochpass $Z_{\bar{e}} \longrightarrow R_1 \qquad L_1 \otimes R_2 \qquad \bar{U}_q$	$egin{aligned} rac{ar{U}_a}{ar{I}_0 \ R_2} &= rac{1}{1+a} \cdot rac{1}{(1-A \Omega^2) - \mathrm{j} \Omega} \ & \ Z_e &= rac{R_1 R_2}{R_1 + R_2} \cdot rac{1-\mathrm{j} B \Omega}{(1-A \Omega^2) - \mathrm{j} \Omega} \end{aligned}$	$A = rac{\mu (a+1)}{(a+\mu)^2}$ $A = rac{\mu (a+1)}{(a+\mu)^2}$ $A = rac{R_2}{\omega R_2 C_2}$ $A = rac{R_2}{R_1}$ $A = rac{R_2}{L_1}$		
5	Bandpass $\bar{Z}_e \longrightarrow \overline{\bar{U}_o}$ \bar{U}_o \bar{U}_o \bar{U}_a	$egin{split} rac{ar{U}_a}{ar{U}_0} &= rac{1}{1+a} \; rac{1}{(1-A\Omega^2)+\mathrm{j}\Omega} \ & Z_e &= (R_1+R_2) \cdot rac{(1-A\Omega^2)+\mathrm{j}\Omega}{1+\mathrm{j}B\Omega} \end{split}$	$egin{aligned} \omega_0 &= rac{1}{\sqrt{L_1C_1}} = rac{1}{\sqrt{L_2C_2}} \ \Omega' &= rac{R_2}{\omega_0L_2} \left(rac{\omega}{\omega_0} - rac{\omega_0}{\omega} ight) \ a &= rac{R_1}{R_2} \ \mu &= rac{\omega_0^2L_1L_2}{R_2^2} \end{aligned}$		
6	Bandpass $\bar{Z}_{\theta} \longrightarrow \bar{I}_{0} \longrightarrow $	$egin{split} rac{ar{U}_a}{ar{I}_0 R_2} &= rac{1}{1+a} rac{1}{(1-A \Omega^2) + \mathrm{j} \Omega} \ ar{Z}_e &= rac{R_1 R_2}{R_1 + R_2} \cdot rac{1+\mathrm{j} B \Omega}{(1-A \Omega^2) + \mathrm{j} \Omega} \end{split}$	$egin{align} \omega_0 &= rac{1}{\sqrt{L_1C_1}} = rac{1}{\sqrt{L_2C_2}} \ \Omega' &= rac{\omega_0L_2}{R_2}\left(rac{\omega}{\omega_0} - rac{\omega_0}{\omega} ight) \ a &= rac{R_2}{R_1} \ \mu &= R_2^2rac{1}{\omega_0^2L_1L_2} \ \end{pmatrix}$		


7	Bandpass
---	----------

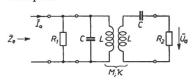
$$rac{ar{U}_a}{ar{U}_0} = Q \, rac{eta}{a + eta^2} \cdot rac{1}{(1 - A \, \Omega^2) + \mathrm{j} \, \Omega} \; .$$

$$ar{Z}_e = rac{R_2}{Q^2} \left(a + eta^2
ight) rac{\left(1 - A \, arOmega^2
ight) + \mathrm{j} \, arOmega}{1 + \mathrm{j} \, B \, arOmega}$$


8 Bandpass

$$rac{ar{U}_a}{ar{U}_0} = rac{eta}{a+eta^2} \cdot rac{\mathrm{j}}{(1-A\,\Omega^2)+\mathrm{j}\,\Omega}$$

$$ar{Z}_e = R_{f 2} \left(a + eta^2
ight) rac{\left(1 - A \, arOmega^2
ight) + \mathrm{j} \, arOmega}{1 + \mathrm{j} \, B \, arOmega}$$


9 Bandpass

$$\frac{\bar{U}_a}{\bar{I}_0 R_2} = \frac{\beta}{a + \beta^2} \cdot \frac{-\mathrm{j}}{(1 - A \Omega^2) + \mathrm{j} \Omega}$$

$$ar{Z}_e = R_2 \, rac{1}{a + eta^2} \cdot rac{1 + \mathrm{j} \, B \, arOmega}{(1 - A \, arOmega^2) + \mathrm{j} \, arOmega}$$

10 Bandpass

$$rac{ar{U}_a}{ar{I}_0 R_2} = Q \, rac{eta}{a + eta^2} \, rac{1}{(1 - A \, \Omega^2) + \mathrm{j} \, \Omega}$$

$$ar{Z}_e = R_2 rac{Q^2}{a + eta^2} \; rac{1 + \mathrm{j} \; B \, \Omega}{(1 - A \, \Omega^2) + \mathrm{j} \; \Omega}$$

$$\omega_{0} = \frac{1}{\sqrt{L C}}$$

$$\Omega' = Q \left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)$$

$$Q = \frac{R_{2}}{\omega_{0} L} \quad \beta = \kappa Q$$

$$a = \frac{R_{1}}{R_{2}} \cdot Q^{2}$$

$$\omega_{0} = \frac{1}{\sqrt{L C}}$$

$$egin{align} \Omega &= \Omega' rac{a+1}{a+eta^2} \ A &= rac{a+eta^2}{(a+1)^2} \ B &= rac{a+eta^2}{a+1} \ \end{array}$$

$$\begin{split} \omega_0 &= \frac{1}{\sqrt{L \, C}} \\ \Omega' &= Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \\ Q &= \frac{1}{\omega_0 \, R_2 \, C} \quad \beta = \kappa \, Q \\ a &= \frac{R_1}{R_2} \\ \hline \omega_0 &= \frac{1}{\sqrt{L \, C}} \\ \Omega' &= Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \end{split}$$

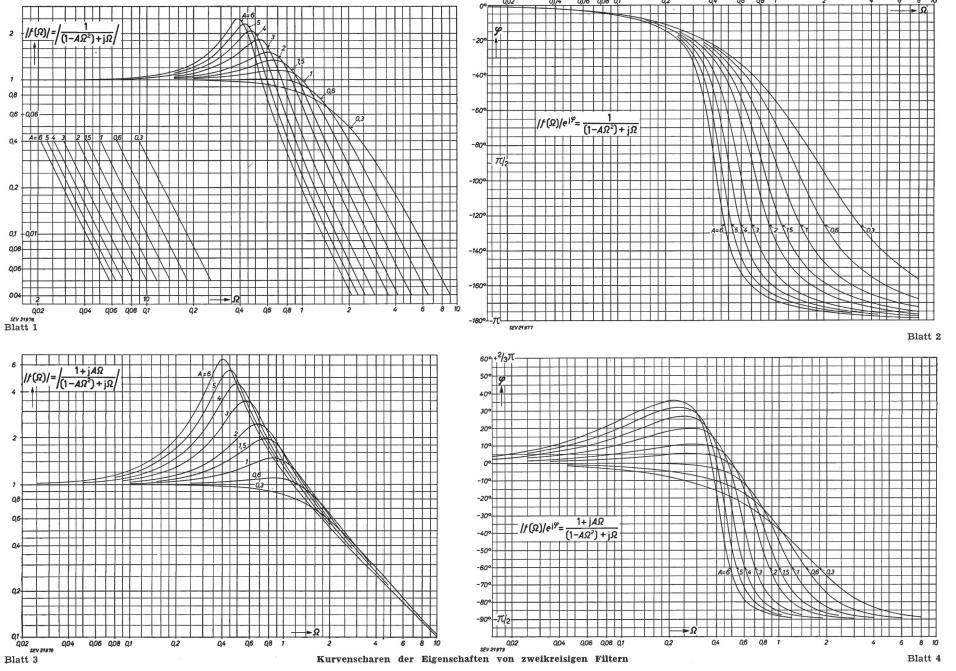
$$a = \frac{R_2}{R_1}$$

$$\omega_0 = \frac{1}{\sqrt{L C}}$$

$$\Omega' = Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)$$

$$Q = \frac{1}{\omega_0 R_2 C} \quad \beta = \kappa Q$$

$$a = \frac{R_2}{R_1} \cdot Q^2$$


 $Q = \frac{R_2}{\omega_0 L} \quad \beta = \kappa Q$

Bemerkungen:

zu den Schaltungen 1...10: Für sämtliche Schaltungen gilt für die Frequenzabhängigkeit der Spannungsübersetzung die Funktion $\frac{1}{(1-A\,\Omega^2)\pm \mathrm{j}\,\Omega}$, die in den Kurvenblättern 1 und 2 dargestellt ist.

Für a=0 wird A=B und die Funktion f (Ω) für \bar{Z}_e wird $\frac{1\pm \mathrm{j}\,A\,\Omega}{(1-A\,\Omega^2)\pm\mathrm{j}\,\Omega}$ oder $\frac{(1-A\Omega^2)\pm\mathrm{j}\,\Omega}{1\pm\mathrm{j}\,A\,\Omega}$. Absolutbetrag und Phasenwinkel dieser Funktionen lässt sich für verschiedene Parameter A aus den Kurvenblättern 3 und 4 ermitteln.

zu den Schaltungen 7...10: Es wird vorausgesetzt, dass $\frac{\omega}{\omega_0} \approx 1$ und $\kappa \ll 1$.

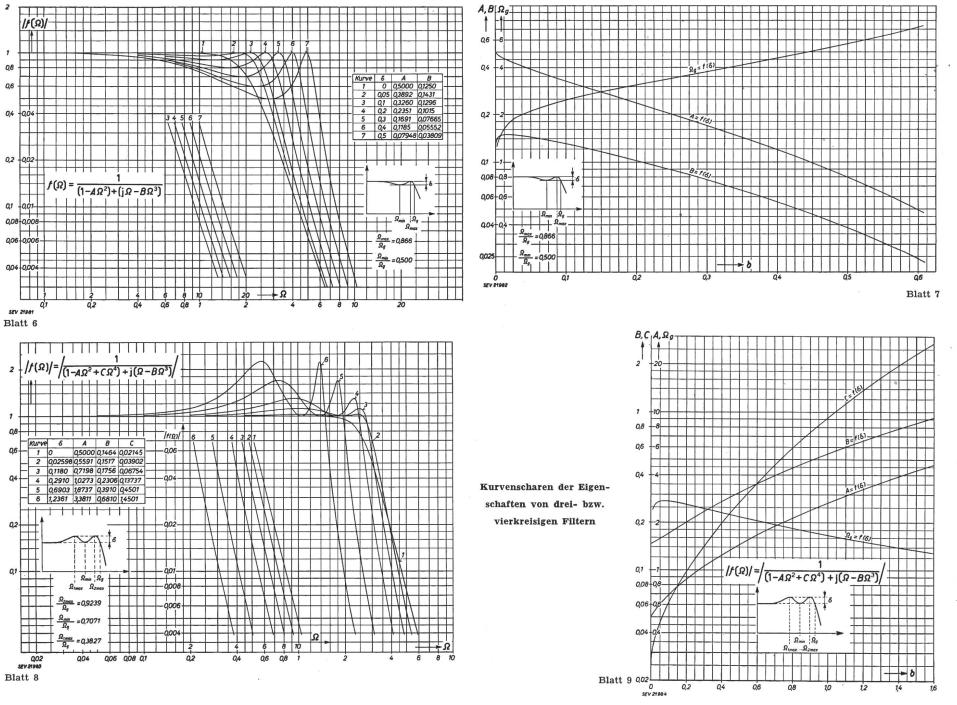
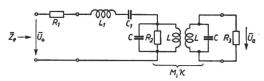
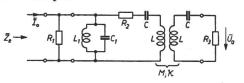



Tabelle II

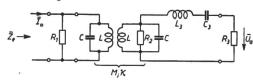
Schaltung	Spannungsübersetzung und Eingangsimpedanz	Definitionen
1 Tiefpass $\bar{Z}_e \longrightarrow \bar{U}_0$ \bar{U}_0 \bar{U}_0 \bar{U}_0 \bar{U}_0	$egin{aligned} rac{ar{U}_a}{ar{U}_0} &= rac{1}{1+a+ab} \cdot rac{1}{(1-A\Omega^2)+\mathrm{j}(\Omega-B\Omega^3)} \ ar{Z}_e &= R_3 rac{1+a+ab}{1+b} \cdot rac{(1-A\Omega^2)+\mathrm{j}(\Omega-B\Omega^3)}{(1-D\Omega^2)+\mathrm{j}C\Omega} \end{aligned}$	$\Omega' = rac{\omega L_3}{R_3}$ $a = rac{R_1}{R_3} b = rac{R_3}{R_2}$ $\lambda = rac{L_1}{L_3} \mu = R_3^2 rac{C_2}{L_3}$
2 Tiefpass $\overline{Z}_{e} \longrightarrow R_{1} \longrightarrow C_{1} \longrightarrow C_{2} \longrightarrow C_{3} \longrightarrow R_{3} \longrightarrow \overline{Z}_{e} \longrightarrow R_{1} \longrightarrow C_{1} \longrightarrow C_{2} \longrightarrow C_{3} \longrightarrow C_{3} \longrightarrow C_{4} \longrightarrow C_{5} \longrightarrow C_{$	$egin{aligned} egin{aligned} ar{U_a} &= rac{1}{1+a+ab} \cdot rac{1}{(1-A\Omega^2)+\mathrm{j}(\Omega-B\Omega^3)} \ ar{Z_e} &= R_3 rac{1+b}{1+a+ab} \cdot rac{ (1-D\Omega^2)+\mathrm{j}C\Omega}{(1-A\Omega^2)+\mathrm{j}(\Omega-B\Omega^3)} \end{aligned}$	$arOmega' = \omega \; R_3 \; C_3$ $a = rac{R_3}{R_1} b = rac{R_2}{R_3}$ $\lambda = rac{C_1}{C_3} \mu = rac{1}{R_3^2} \; rac{L_2}{C_3}$
3 Hochpass $\bar{Z}_{e} \longrightarrow \begin{array}{ccccccccccccccccccccccccccccccccccc$	$egin{aligned} rac{ar{U}_a}{I_0R_3} &= rac{1}{1+a+ab} \cdot rac{1}{(1-A\Omega^2)-\mathrm{j}(\Omega-B\Omega^3)} \ ar{Z}_e &= R_3rac{1+b}{1+a+ab} \cdot rac{(1-D\Omega^2)-\mathrm{j}C\Omega}{(1-A\Omega^2)-\mathrm{j}(\Omega-B\Omega^3)} \end{aligned}$	$\Omega'=rac{R_3}{\omegaL_3}$ $\Omega=\Omega'rac{(1+\lambda+ab+a\mu+b\lambda)}{(1+a+ab)}$ $a=rac{R_3}{R_1}$ $b=rac{R_2}{R_3}$ $\lambda=rac{(1+a+ab)(\lambda\mu+a\mu+b\lambda)}{(1+\lambda+ab+a\mu+b\lambda)^2}$ $\lambda=rac{L_3}{L_1}$ $\mu=rac{1}{R_3^2}\cdotrac{L_3}{C_2}$ $\alpha'=rac{1}{R_3}$
4 Hochpass $\bar{Z}_{0} \longrightarrow \bar{Q}_{0} \qquad \qquad \bar{Q}_{1} \longrightarrow \bar{Q}_{2} \qquad \qquad \bar{Q}_{2} \longrightarrow \bar{Q}_{1} \longrightarrow \bar{Q}_{2} \longrightarrow \bar{Q}_{2} \longrightarrow \bar{Q}_{3} \longrightarrow \bar{Q}_{4} \longrightarrow \bar{Q}_{5} \longrightarrow \bar{Q}_$	$egin{aligned} rac{ar{U}_a}{ar{U}_0} &= rac{1}{1+a+ab} \cdot rac{1}{(1-A\Omega^2)-\mathrm{j}(\Omega-B\Omega^3)} \ ar{Z}_e &= R_3 rac{1+a+ab}{1+b} \cdot rac{(1-A\Omega^2)-\mathrm{j}(\Omega-B\Omega^3)}{(1-D\Omega^2)-\mathrm{j}C\Omega} \end{aligned}$	$\left\{ egin{array}{ll} B = rac{(1+a+ab)^2 + ab}{(1+\lambda+ab+a\mu+b\lambda)^3} & a = rac{R_1}{R_2} & b = rac{R_3}{R_2} \end{array} ight.$
5 Bandpass $\bar{Z}_e \longrightarrow \sqrt{\bar{Q}_0} \qquad \qquad \bar{Q}_0 \qquad$	$egin{aligned} rac{ar{U}_a}{ar{U}_0} &= rac{1}{1+a+ab} \cdot rac{1}{(1-A\Omega^2)+\mathrm{j}(\Omega-B\Omega^3)} \ ar{Z}_e &= R_3 rac{1+a+ab}{1+b} \cdot rac{(1-A\Omega^2)+\mathrm{j}(\Omega-B\Omega^3)}{(1-D\Omega^2)+\mathrm{j}C\Omega} \end{aligned}$	$\omega_0 = rac{1}{\sqrt{L_1} \ C_1} = rac{1}{\sqrt{L_2} \ C_2} \cdot rac{1}{\sqrt{L_3} \ C_3}$ $\Omega' = rac{\omega_0 \ L_3}{R_3} \left(rac{\omega}{\omega_0} - rac{\omega_0}{\omega} ight)$ $a = rac{R_1}{R_3} b = rac{R_3}{R_2}$ $\lambda = rac{L_1}{L_3} \mu = rac{R_3^2}{\omega_0^2 \ L_2 \ L_3}$
6 Bandpass $\bar{Z}_e \longrightarrow R_1 L_1 \otimes C_1 L_2 \otimes C_2 L_3 \otimes C_3 R_3 \otimes \bar{Q}_0$	$egin{aligned} rac{ar{U}_a}{ar{I}_0R_3} &= rac{1}{1+a+ab} \cdot rac{1}{(1-A\Omega^2)+\mathrm{j}(\Omega-B\Omega^3)} \ & Z_e &= R_3rac{1+b}{1+a+ab} \cdot rac{(1-D\Omega^2)+\mathrm{j}C\Omega}{(1-A\Omega^2)+\mathrm{j}(\Omega-B\Omega^3)} \end{aligned}$	$egin{aligned} \omega_0 &= rac{1}{\sqrt{L_1C_1}} = rac{1}{\sqrt{L_2C_2}} \cdot rac{1}{\sqrt{L_3C_3}} \ arOmega' &= rac{R_3}{\omega_0L_3} \left(rac{\omega}{\omega_0} - rac{\omega_0}{\omega} ight) \ a &= rac{R_3}{R_1} & b &= rac{R_2}{R_3} \ \lambda &= rac{L_3}{L_1} & \mu &= rac{\omega_0^2L_2L_3}{R_3^2} \end{aligned}$



$$\frac{\bar{U}_a}{\bar{U}_0} = \frac{\beta}{1 + ab + a\beta^2} \cdot \frac{-\mathrm{j}}{(1 - A\Omega^2) + \mathrm{j}(\Omega - B\Omega^3)}$$

$$ar{Z}_e = R_3 \, rac{1 + ab + aeta^2}{b + eta^2} \cdot rac{(1 - A\, arOmega^2) + \mathrm{j}\, (arOmega - B\, arOmega^3)}{(1 - D\, arOmega^2) + \mathrm{j}\, C\, arOmega}$$

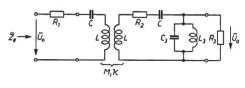
Bandpass



$$rac{ar{U}_2}{ar{I}_0 \cdot R_3} = rac{eta}{1+ab+aeta^2} \cdot rac{\mathrm{j}}{(1-A\,\Omega^2)+\mathrm{j}\,(\Omega-B\,\Omega^3)}$$

$$ar{Z}_e = R_3 rac{b + eta^2}{1 + ab + aeta^2} \cdot rac{(1 - D \, arOmega^2) + \mathrm{j} \cdot C \, arOmega}{(1 - A \, arOmega^2) + \mathrm{j} \, (arOmega - B \, arOmega^2)}$$

$$\begin{split} \frac{\overline{U}_a}{\overline{U}_0} &= \frac{\beta}{1+ab+a\beta^2} \cdot \frac{-\mathrm{j}}{(1-A\Omega^2)+\mathrm{j}\,(\Omega-B\Omega^3)} \\ Z_e &= R_3 \frac{1+ab+a\beta^2}{b+\beta^2} \cdot \frac{(1-A\Omega^2)+\mathrm{j}\,(\Omega-B\Omega^3)}{(1-D\Omega^2)+\mathrm{j}\,C\Omega} \\ \\ \frac{\overline{U}_2}{\overline{I}_0 \cdot R_3} &= \frac{\beta}{1+ab+a\beta^2} \cdot \frac{\mathrm{j}}{(1-A\Omega^2)+\mathrm{j}\,(\Omega-B\Omega^3)} \\ Z_e &= R_3 \frac{b+\beta^2}{1+ab+a\beta^2} \cdot \frac{(1-D\Omega^2)+\mathrm{j}\,C\Omega}{(1-A\Omega^2)+\mathrm{j}\,(\Omega-B\Omega^3)} \end{split}$$


Bandpass

$$\frac{\vec{U}_a}{\vec{I}_0 R_3} = \frac{\beta}{a + ab + \beta^2} \cdot \frac{-j}{(1 - A\Omega^2) + j(\Omega - B\Omega^2)}$$

$$ar{Z}_e = R_3 \, rac{1+b}{a+ab+eta^2} \cdot rac{(1-D\, arOmega^2) + \mathrm{j} \, C\, arOmega}{(1-A\, arOmega^2) + \mathrm{j} \, (arOmega-B\, arOmega}$$

10 Bandpass

$$rac{ar{U}_a}{ar{U}_0} = rac{eta}{a+ab+eta^2} \cdot rac{\mathrm{j}}{(1-A\,\Omega^2)+\mathrm{j}\,(\Omega-B\,\Omega^3)}$$

$$oldsymbol{Z_e} = R_3 \, rac{a + ab + eta^2}{1 + b} \cdot rac{(1 - A\,\Omega^{\,2}) + \mathrm{j}\,(\Omega - B\,\Omega^3)}{(1 - D\,\Omega^2) + \mathrm{j}\,\,C\,\Omega}$$

 $\beta = \kappa Q$ $\mu = R_3^2 \frac{1}{\omega_0^2 L_1 L}$

Bemerkungen:

Für sämtliche Schaltungen gilt für die Frequenzabhängigkeit der Spannungsübersetzung die Funktion $\frac{1}{(1-A\Omega^2)\pm \mathrm{j}\,(\Omega-B\Omega^3)}$ zu den Schaltungen 1...10 die in den Kurvenblättern 5 und 6 dargestellt ist.

> Die Abhängigkeit der Grössen A, B und Ω_g von der Schwankung δ ist durch Kurvenblatt 7 gegeben. Ω_g ist dabei jener Wert von Ω , bei dem die Funktion zum letzten Mal den Wert $1-\delta$ annimmt (siehe Kurvenblatt 6).

zu den Schaltungen 7...10 Es wird vorausgesetzt, dass $\frac{\omega}{\omega_0} \approx 1$ und $\kappa \ll 1$.

Tabelle III

	Tabelle III
Schaltung	Spannungsübersetzung und Eingangsimpedanz
1 Bandpass $Z_{e} \longrightarrow \bigcup_{\overline{U}_{o}}^{\overline{U}_{o}} \bigcup_{L_{2}}^{\overline{U}_{o}} \bigcup_{L_{3}}^{\overline{U}_{o}} \bigcup_{L_{4}}^{\overline{U}_{o}} \bigcup_{L_{$	$egin{split} rac{ar{U}_a}{ar{U}_0} &= rac{1}{1+a+ab+abc+c} \cdot rac{1}{(1-AarOmega^2+CarOmega^4)+\mathrm{j}(arOmega-BarOmega^3)} \ ar{Z}_e &= R_4 rac{1+a+ab+abc+c}{1+b+bc} \cdot rac{(1-AarOmega^2+CarOmega^4)+\mathrm{j}(arOmega-BarOmega^3)}{(1-EarOmega^2)+\mathrm{j}(DarOmega-FarOmega^3)} \end{split}$
2 Bandpass $\bar{z}_{e} \longrightarrow \begin{array}{c} \bar{z}_{e} \\ \bar{z}_{e} \end{array} \longrightarrow \begin{array}{c} \bar{z}_{e} \\ \bar{z}_$	$egin{split} rac{ar{U}_a}{ar{I}_0R_4} &= rac{1}{1+a+ab+abc+c} \cdot rac{1}{(1-A\Omega^2+C\Omega^4)+\mathrm{j}(\Omega-B\Omega^3)} \ ar{Z}_e &= R_4 \cdot rac{1+b+bc}{1+a+ab+abc+c} \cdot rac{(1-E\Omega^2)+\mathrm{j}(D\Omega-F\Omega^3)}{(1-A\Omega^2+C\Omega^4)+\mathrm{j}(\Omega-B\Omega^3)} \end{split}$
$\overline{Z_e} \longrightarrow \overline{R_1} \longrightarrow \overline{C_1} \longrightarrow \overline{C_2} \longrightarrow \overline{C_3} \longrightarrow \overline{C_4} \longrightarrow \overline{C_6} \longrightarrow \overline$	$egin{aligned} rac{ar{U}_a}{ar{I}_0R_4} &= rac{1}{1+a+ab+abc+c} \cdot rac{1}{(1-AarOmega^2+CarOmega^4)+\mathrm{j}(arOmega-BarOmega^3)} \ ar{Z}_e &= R_4 \cdot rac{1+b+bc}{1+a+ab+abc+c} \cdot rac{(1-EarOmega^2)+\mathrm{j}(DarOmega-FarOmega^3)}{(1-AarOmega^2+CarOmega^4)+\mathrm{j}(arOmega-BarOmega^3)} \end{aligned}$
4 Tiefpass $\bar{Z}_{e} \rightarrow \bar{U}_{0}$ $R_{2} \rightarrow C_{2}$ $C_{4} \rightarrow R_{4} \downarrow \bar{U}_{0}$	$egin{split} rac{ar{U}_a}{ar{U}_0} = rac{1}{1+a+ab+abc+c} \cdot rac{1}{(1-A\Omega^2+C\Omega^4)+\mathrm{j}(\Omega-B\Omega^3)} \ ar{Z}_e = R_4 rac{1+a+ab+abc+c}{1+b+bc} \cdot rac{(1-A\Omega^2+C\Omega^4)+\mathrm{j}(\Omega-B\Omega^3)}{(1-E\Omega^2)+\mathrm{j}(D\Omega-F\Omega^3)} \end{split}$
5 Hochpass $\bar{Z}_{e} \longrightarrow \begin{bmatrix} \bar{U}_{o} & R_{2} & \bar{U}_{o} \\ \bar{V}_{o} & R_{2} & \bar{U}_{c} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & \bar{U}_{o} \end{bmatrix} = \begin{bmatrix} \bar{U}_{o} & \bar{U}_{o} \\ \bar{U}_{o} & U$	$egin{aligned} rac{ar{U}_a}{ar{U}_0} &= rac{1}{1+a+ab+abc+c} \cdot rac{1}{(1-A\Omega^2+C\Omega^4)-\mathrm{j}(\Omega-B\Omega^3)} \ ar{Z}_c &= rac{1+a+ab+abc+c}{1+b+bc} \cdot rac{(1-A\Omega^2+C\Omega^4)-\mathrm{j}(\Omega-B\Omega^3)}{(1-E\Omega^2)-\mathrm{j}(D\Omega-F\Omega^3)} \end{aligned}$
6 Hochpass $\bar{Z}_{e} \longrightarrow R_{1} \qquad L_{1} \otimes R_{2} \qquad C_{2} \qquad C_{4} \qquad C_{4} \qquad \bar{U}_{0}$	$egin{split} rac{ar{U}_a}{ar{I}_0R_4} &= rac{1}{1+a+ab+abc+c} \cdot rac{1}{(1-A\Omega^2+C\Omega^4)-\mathrm{j}(\Omega-B\Omega^3)} \ ar{Z}_e &= rac{1+b+bc}{1+a+ab+abc+c} \cdot rac{(1-E\Omega^2)-\mathrm{j}(D\Omega-F\Omega^3)}{(1-A\Omega^2+C\Omega^4)-\mathrm{j}(\Omega-B\Omega^3)} \end{split}$

$$C = \frac{m\lambda\mu^2}{(1 + \mu\alpha + m\mu\alpha^2 + m\lambda\mu^2\alpha^3 + \lambda\mu\alpha)} \cdot \left(\frac{\alpha Q}{\Omega_g}\right)^4 \left(\frac{\omega_g}{\omega_0} - \frac{\omega_0}{\omega_g}\right)^4 \quad (32)$$

die gestatten, die Unbekannten m, λ , μ und α zu berechnen.

Aus Gleichung (31) und (32) erhält man:

$$\alpha = \frac{1}{\left[\frac{B}{C} \cdot \frac{Q}{\Omega_{g}} \left(\frac{\omega_{g}}{\omega_{0}} - \frac{\omega_{0}}{\omega_{g}}\right) - 3\right]}$$
(33)

Ist α bekannt, ergibt sich sofort

$$\frac{\Omega_{g}'}{\Omega_{g}} = \left(\frac{\Omega'}{\Omega}\right)_{\omega_{g}}$$

$$\frac{\Omega_{g}'}{\Omega_{g}} = \alpha \frac{Q}{\Omega_{g}} \left(\frac{\omega_{g}}{\omega_{0}} - \frac{\omega_{0}}{\omega_{g}}\right)$$
(34)

Aus den Gleichungen (32), (30) und (29) errechnet man:

$$\lambda \mu = \frac{1 - \alpha}{A'(1 + \alpha) - C'} \tag{35}$$

wobei:

$$A' = \frac{A}{C} \cdot \left(\frac{\Omega_g'}{\Omega_g}\right)^2 - 3 \left(\alpha + \alpha^2\right) \tag{36}$$

$$C' = \frac{1}{C} \cdot \left(\frac{\Omega_{g'}}{\Omega_{g}}\right)^{3} - (3\alpha^{2} + \alpha^{3}) \tag{37}$$

$$\frac{\lambda}{1+\lambda} = \frac{C'' \lambda \mu - \alpha^2}{A' - \frac{1}{\lambda \mu}} - \alpha \lambda \mu \tag{38}$$

wobei:

$$C'' = \frac{1}{C} \cdot \left(\frac{\Omega_{g'}}{\Omega_{g}}\right)^{4} - \alpha^{3} \tag{39}$$

Tabelle III
Definitionen

	$\omega_0 = \frac{1}{\sqrt{L_1 C}}$	$=\frac{1}{\sqrt{L_2 C_2}}$
	$arOmega' = rac{R_4}{\omega_0L_4}$	$\left(\frac{\omega}{\omega_0} - \frac{u}{\omega} \frac{\omega_0}{\omega}\right)$
	$a=\frac{R_1}{R_4}$	$b=rac{R_4}{R_2}$
	$m=rac{L_4}{L_2}$	$\lambda=rac{L_3}{L_1}$
	$\omega_0 = \frac{1}{\sqrt{L_1 C}}$	$=\frac{1}{1/L \cdot C}$
$arOmega = arOmega' rac{\mu \left(1 + \lambda + ab\lambda + b + bc ight) + a + abc + am + acm + c}{1 + a + ab + abc + c}$	$a = \frac{R_4}{R_1}$	1 / 2 2
$A = rac{(1+a+ab+abc+c)\left[\mu\left(1+m+\lambda+am\lambda+ab\lambda+bc+b\lambda\mu+cm ight)+acm ight]}{\left[\mu\left(1+\lambda+ab\lambda+b+bc ight)+a+abc+am+acm+c ight]^2}$	$m=rac{L_2}{L_4}$	$\lambda = rac{L_1}{L_3}$
$B=rac{(1+a+ab+abc+c)^2\mu\left(m\lambda\mu+am\lambda+b\lambda\mu+cm ight)}{[\mu\left(1+\lambda+ab\lambda+b+bc ight)+a+abc+am+acm+c]^3}$	$arOmega' = rac{\omega_0 L_4}{R_4}$	$\frac{1}{2}\left(\frac{\omega}{\omega_0}-\frac{\omega}{\omega}\right)$
$C=rac{(1+a+ab+abc+c)^3m\lambda\mu^2}{[\mu(1+\lambda+ab\lambda+b+bc)+a+abc+am+acm+c]^4}$	$\Omega' = rac{\omega L_4}{R_4}$	8 9
$D = rac{[\mu (1 + \lambda + ab\lambda + b + bc) + a + abc + am + acm + c]^4}{(1 + a + ab + abc + c) (1 + m + bc + b\lambda\mu + cm)} $	$a = \frac{R_4}{R_1}$	$b=\frac{R_2}{R_4}$
	$m=rac{L_2}{L_4}$	$\lambda = rac{C_3}{C_1}$
$E=rac{(1+a+ab+abc+c)^2\left(m\lambda\mu+b\lambda\mu+cm ight)}{(1+b+bc)\left[\mu\left(1+\lambda+ab\lambda+b+bc ight)+a+abc+am+acm+c ight]^2}$	$\Omega' = \omega R_4$	C_4
$F=rac{(1+a+ab+abc+c)^3m\cdot\lambda\cdot\mu}{(1+b+bc)[\mu(1+\lambda+ab\lambda+b+bc)+a+abc+am+acm+c]^3}$	$a=\frac{R_1}{R_4}$	$b = \frac{R_4}{R_2}$
	$m = \frac{C_2}{C_4}$	$\lambda=rac{L_3}{L_1}$
	$\Omega' = \frac{R_4}{\omega L_4}$	
	w 24	R_4

Bemerkungen zu den Schaltungen 1...6:

Für sämtliche Schaltungen gilt für die Frequenzabhängigkeit der Spannungsübersetzung die Funktion $\frac{1}{(1-A\,\Omega^2+C\,\Omega^4)\pm\,\mathrm{j}\,(\Omega-B\,\Omega^3)},\ \mathrm{die\ in}$ den Kurvenblättern 8 und 10 dargestellt ist.

Die Abhängigkeit der Grössen A, B, C und Ω_g von der Schwankung δ ist durch Kurvenblatt 9 gegeben. Ω_g ist dabei jener Wert von Ω , bei dem die Funktion zum letzten Mal den Wert 1 annimmt (siehe Kurvenblatt 8).

$$m = \frac{1+\lambda}{(A'\,\lambda\mu - 1)}\tag{40}$$

Die numerische Auswertung der Gleichungen (33)... (40) ergibt:

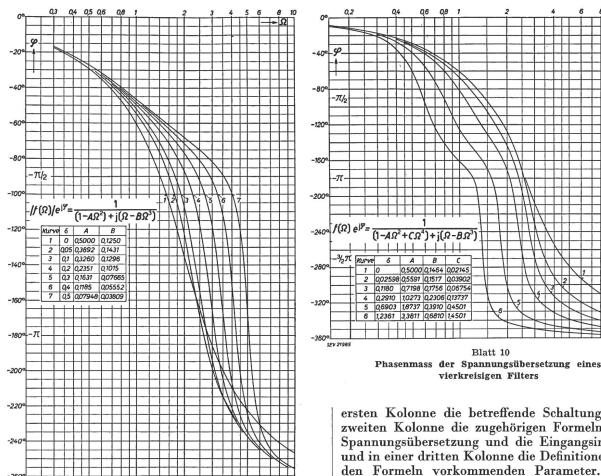
$$\alpha = \frac{R_4}{\omega_0 \, L_4 \, Q} = 0.0529$$

$$\frac{R_4}{\omega_0 L_4} = \frac{R_{p4} \mid\mid R_a}{\omega_0 L_4} = \frac{R_a (1 - \alpha)}{\omega_0 L_4} = 5,29$$

$$\lambda = \frac{L_3}{L_1} = 1,23 \qquad m = \frac{L_4}{L_2} = 2,17$$

$$\mu = \frac{\omega_0^2 L_1 L_4}{R_4^2} = 1,69$$
(41)

Mit den Beziehungen (41) können nun die Elemente selbst bestimmt werden. Als Resultat ergibt sich:


$$egin{array}{lll} L_1 = 0.315 \ \mathrm{mH} & C_1 = 895 \ \mathrm{pF} \\ L_2 = 3.06 \ \mathrm{\mu H} & C_2 = 92000 \ \mathrm{pF} \\ L_3 = 0.388 \ \mathrm{mH} & C_3 = 726 \ \mathrm{pF} \\ L_4 = 6.65 \ \mathrm{\mu H} & C_4 = 42400 \ \mathrm{pF} \end{array}$$

 $a = rac{R_4}{R_1}$ $b = rac{R_2}{R_4}$ $c = rac{R_4}{R_3}$ $m = rac{C_4}{C_2}$ $\lambda = rac{L_1}{L_2}$ $\mu = R_4^2 rac{C_4}{L_1}$

 $\varOmega' = \frac{1}{\omega \; R_4 \; C_4}$

Schliesslich erhält man noch für die Spannungsübersetzung und die Eingangsimpedanz in der Bandmitte:

Set 2 ting that the Eingang simple data 2 in the Fall distributes
$$\left|\frac{ar{U}_a}{ar{U}_0}\right|_{\Omega=0} = \frac{1}{1+a+ab+abc+c} = \frac{1}{1+\mu\alpha+m\mu\alpha^2+m\lambda\mu^2\alpha^3+\lambda\mu\alpha} = \frac{0,825}{1+a+ab+abc+c} = \frac{1}{1+b+bc} = R_a\left(1-\alpha\right)\frac{(1+\mu\alpha+m\mu\alpha^2+m\lambda\mu^2\alpha^3+\lambda\mu\alpha)}{1+m\alpha+m\lambda\mu\alpha^2} = 71,3 \ \Omega$$

Blatt 5 Phasenmass der Spannungsübersetzung eines dreikreisigen Filters

6. Zusammenstellung der Ergebnisse

Die in Abschnitt 3 für ein vierkreisiges Filter durchgeführte Ermittlung der Spannungsübersetzung und der Eingangsimpedanz wurde für die wichtigsten einfachen Filterschaltungen durchgeführt. Die Ergebnisse sind in den Tabellen I...III und den zugehörigen Kurvenblättern 1...10 zusammengestellt. Die Tabellen enthalten in der ersten Kolonne die betreffende Schaltung, in der zweiten Kolonne die zugehörigen Formeln für die Spannungsübersetzung und die Eingangsimpedanz und in einer dritten Kolonne die Definitionen der in den Formeln vorkommenden Parameter. Zudem werden Hinweise auf die bei der Berechnung zu verwendenden Kurvenblätter gegeben.

Durch Verwendung dieser Hilfsmittel ist es jedem Fachmann möglich, die angegebenen Filter unter Berücksichtigung der Verluste mit relativ geringem Aufwand zu dimensionieren.

Literatur

Feldtkeller, R.: Einführung in die Siebschaltungstheorie der elek-trischen Nachrichtentechnik. 3. Aufl. Zürich: Hirzel 1950.

Adresse des Autors:

Karl Schmutz, Dipl. El.-Techn., Albiswerk Zürich A.-G., Albisriederstrasse 245, Zürich 47.

Les conditions rencontrées dans les réseaux suisses à 50 kV relatives aux puissances de court-circuit et aux fréquences propres

Rapport d'une enquête entreprise pour le Comité des interrupteurs de la CIGRE auprès des centrales suisses d'électricité, par H. Schiller et H. Meyer, Baden 621.311.1.027.7(494) : 621.3.014.3 : 621.3.018.41

I. Introduction

Le problème du choix de la fréquence propre à utiliser comme base pour le dimensionnement des disjoncteurs, est encore à l'ordre du jour des discussions internationales. Si l'on considère les propositions établies dans les différents pays, on constate une nette différence entre les propositions continentales (France, Suède, Suisse) d'une part, et les propositions anglaises d'autre part, comme il en ressort clairement de la fig. 1. Il fallait savoir si vraiment ces différences étaient bien fondées et dans l'affirmative déterminer leurs causes. Aussi l'on proposa, lors de la session de la CIGRE 1952 et en particulier au sein du comité des interrupteurs, d'étudier, pour les différents pays, les conditions déterminant la sollicitation des disjoncteurs existant dans les différents réseaux. Cette étude devait établir si ces conditions sont tellement différentes qu'il faille, pour en tenir compte, envisager la standardisation de deux séries de valeurs normales ou bien si l'on peut aboutir à un accord sur une série unique.

Dans ce but, il fut décidé de commencer d'abord ces recherches sur les réseaux à moyenne tension.