Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 44 (1953)

Heft: 13

Artikel: Gasgefüllte Elektronenröhren und ihre Anwendungsmöglichkeiten

Autor: Hübner, R.

DOI: https://doi.org/10.5169/seals-1058087

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Gasgefüllte Elektronenröhren und ihre Anwendungsmöglichkeiten

Von R. Hübner, Wettingen

621.385.38

Der Autor gibt einen Überblick über die Anwendungsmöglichkeiten des Thyratrons, der wichtigsten gasgefüllten Elektronenröhre. Er widmet sich vornehmlich den Anwendungen in Geräten kleinerer Leistung, so für verschiedene Motorsteuerungssysteme, Beleuchtungsregelungen und Punktschweissgeräte. L'auteur donne un aperçu sur les possibilités d'application du Thyratron, le plus important des tubes électroniques à remplissage gazeux. Il traite notamment l'application du Thyratron dans des appareils de petite puissance, tels que différents systèmes de commande de moteur, de réglage de lumière et de commande de machines à souder par points.

I. Motorsteuerungen

1. Allgemeines

Die elektronische Motorsteuerung ist zu einem bedeutenden, sich zusehends erweiternden Teilgebiet der industriellen Elektronik geworden. Sie erfolgt mit Hilfe von Thyratrons, deren Leitfähigkeit in bereits beschriebener Weise¹) durch besondere Gitterregelung kontinuierlich geändert werden kann. Im Zusammenhang mit Gleichstrom-Nebenschlussmotoren ergeben sich damit sehr günstige Regelmöglichkeiten.

Die Wirkungsweise wird aus der Motorgleichung

verständlich:

$$n=k\,rac{U_a-I_a\,R_a}{I_f}$$
 $M=k'\,I_a\,I_f$
 $P=M\,n=k''\,(U_a\,I_a-I_a^2\,R)$

wobei

U_a Ankerspannung

 I_a Ankerstrom

n Drehzahl des Ankers pro Minute

k', k'' Konstante I_f Feldstrom M Drehmoment

P Last.

Die Elektronik ist imstande, durch Verwendung geeigneter Regelschaltungen eine dieser Grössen n, M oder P konstant zu halten. So kann z. B. die Drehzahl unabhängig von der Last gemacht werden. Dazu muss die Ankerspannung derart geregelt werden, dass bei grösserer Belastung (Ia) die Zunahme von I_a R_a selbsttätig kompensiert wird. Soll das Drehmoment unabhängig von der Drehzahl immer konstant bleiben, so gilt es, I_a und I_f konstant zu halten, während die Ankerspannung entsprechend gesteuert werden muss. Zur Konstanthaltung der Leistung mit Motoren, die eine hohe Feldschwächung gestatten, wird M durch If entsprechend n geregelt. Ausserdem lassen sich mit elektronischen Steuerungen noch eine Vielzahl von Regelmöglichkeiten und Nebenaufgaben erfüllen, wie z.B. Motorreversieren, Drehzahlverstellung, Steuerung der Drehzahl nach einem bestimmten Gesetz (Programmsteuerung), Begrenzung des Anfahr- und Betriebsdrehmomentes, sowie des zulässigen maximalen Einschaltstromes auf einen vorgegebenen Wert

In Fig. 1 ist eine industriell ausgeführte Motorsteuerungsanlage dargestellt, die eine grosse Zahl dieser Regelaufgaben auszuführen gestattet.

Aus den oben gegebenen Formeln geht hervor, dass durch Verändern der Ankerspannung U_a eine Regelung der Drehzahl möglich ist. Mit zunehmender Drehzahl wächst die Leistung bei konstantem I_f .

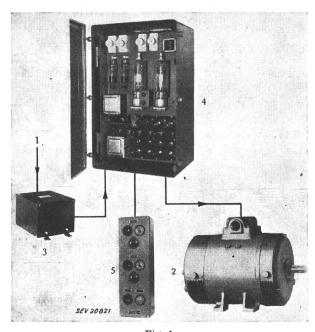
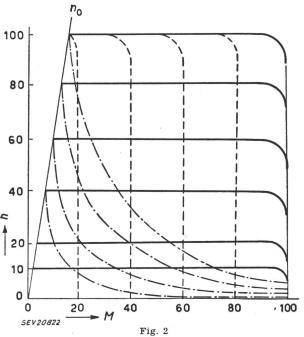


Fig. 1
Thyratronantrieb Brown Boveri, eine elektronische Präzisionssteuerung mit grossem Drehzahlbereich
Drehzahlbereich 1:50, Leistung bis 12,5 kW

1 Wechselstromnetzanschluss; 2 zu steuernder Gleichstromnebenschlussmotor; 3 Netztransformator; 4 Röhrensteuergestell mit den beiden Steuerthyratrons und 2 Dioden für die Feldgleichrichtung; 5 Kommandostation für Druckknopf- und Fernsteuerung


Um die Leistung konstant zu halten, verwendet man meistens Motoren, die eine starke Feldschwächung gestatten. Fig. 2 zeigt die durch gittergesteuerte Gleichrichter gebotenen Möglichkeiten. Bei allen diesen Steuerungen ergibt sich ausserdem der grosse Vorteil, sämtliche Aufgaben mittels einfacher kleiner Potentiometer und Druckknöpfen einstellen und schwachstrommässig fernsteuern zu können.

2. Motorsteuerung zur Drehzahlstabilisierung mittels der Ankerspannung

Fig. 3 zeigt das vereinfachte Schema der Steuerung eines 1,5-kW-Motors auf konstante Drehzahl bei konstantem Feld. Die Gleichrichtung des Feldstromes erfolgt über die beiden Dioden D_1 und D_2 (Typ DQ2), während der Anker über 2 Thyratrons T_1 und T_2 (Typ TQ2/3, für eine Sperrspannung von 2 kV und einen Maximalstrom von 3,2 A) gespeist wird. Die gleichgerichtete Spannung betrage an den Ankerklemmen $U_a = 440$ V. Die Gitter dieser Röhren erhalten über eine Phasenbrücke $R_1R_2C_1C_2$ um

i) siehe Hübner R., Das Thyratron als Schalt- und Regelröhre und seine industriellen Anwendungsmöglichkeiten. Bull. SEV Bd. 43(1952), Nr. 19, S. 760...764.

 90° phasenverschobene Steuerwechselspannungen ($U_g=4...8$ % der Anodenwechselspannung), welche einer positiven Gleichspannung von etwa 20...40 V überlagert sind, die über D_3 an C_3 entsteht. Der Steuerteil St enthält ausserdem noch eine Triode T_3 , welche über das Potentiometer P, das der Feldspannung parallel liegt, eine der Motordrehzahl ent-

Durch gittergesteuerte Gleichrichter gebotene Regelmöglichkeiten

konstante Drehzahl n, unabhängig vom Drehmoment M (Drehzahlregelbereich bis 1:100)

konstantes Drehmoment M, unabhängig von der Drehzahl n (Drehmoment-Regelbereich bis 1:100)

konstante Leistung P, durch Feldstromregelung mit sich anpassender Drehzahl n und hyperbolisch fallender Drehmomentenkurve (Drehzahl- oder Drehmomentregelbereich bis 1:5)

 $0...n_0$ Leerlauflinie

sprechende Vorspannung erhält, welche T_3 so steuert, dass bei wachsender Drehzahl und damit wachsendem U_a das Gitter von T_3 positiver wird. Es fliesst dann mehr Strom durch die Triode T_3 , die bestrebt ist, die Kapazität C_3 umzuladen. Dadurch

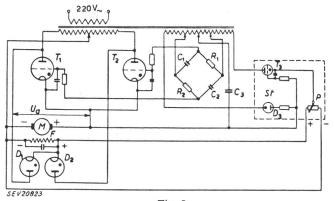
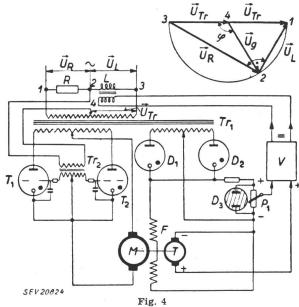


Fig. 3 Prinzipschema einer Motorsteuerungsanlage (1,5 kW) zur Drehzahlstabilisierung


Durch die Ankergleichspannung werden über eine Phasenbrücke zwei Thyratrons gesteuert. Konstanter Feldgleichrichter mit zwei Dioden

ter init zwei Brouen T_1 , T_2 Thyratrons TQ2/3; D_1 , D_2 Dioden DQ2; M Motor; F Feldwicklung; U_a Ankerspannung; R_1 R_2 C_1 C_2 Phasenbrücke; C_3 Kondensator; St Steuerteil mit Triode T_3 , Diode D_3 und Potentiometer P

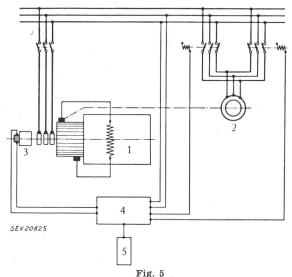
werden die Gitter der Thyratrons negativer und bewirken eine Zündverzögerung, geringeren Stromdurchgang und Sinken der Motordrehzahl. Derartige Anordnungen gestatten Laständerungen mit nur 2...3 % Gleichspannungsänderung fast vollständig auszugleichen. Allerdings bedarf es dabei noch einer Kompensation des durch den Ankerwiderstand verursachten Spannungsabfalles.

3. Lastunabhängige Drehzahlstabilisierung einer zweiphasigen Motorsteuerungsanlage mit Tachodynamo

An die Stelle der Triode T_3 (Fig. 3), welche die der jeweiligen Drehzahl proportionale Gegenspannung liefert, tritt hier eine kleine Tachodynamo, die mit der Motorachse fest gekuppelt ist, wobei grundsätzlich auch ein Wechselspannungserzeuger in Verbindung mit einer zur Gleichrichtung dienenden Diode benützt werden könnte.

Vereinfachtes Prinzipschema einer Motorsteuerungsanlage mit Tachodynamo

Lastunabhängige Drehzahlregelung von 1 % Genauigkeit. Das Feld wird konstant gehalten, der Ankerstrom wird über die beiden Thyratrons entsprechend der sich durch die Laständerungen ergebenden Drehzahländerung geregelt


 T_1 , T_2 Thyratrons; D_1 , D_2 Dioden des Feldgleichrichters; T_{T_1} Brückentransformator; T_{T_2} Gittertransformator; L Brükken-Drosselspule; R Brücken-Widerstand; M Motor; T Tachodynamo; V Verstärker; D_3 Stabilisatorröhre; P_1 Potentiometer; \overrightarrow{U}_L , \overrightarrow{U}_R , \overrightarrow{U}_{T_T} Spannungen an den Brückenelementen; \overrightarrow{U}_g Gitterspannung

In Fig. 4 ist eine Prinzipschaltung einer Steuerung mit Tachodynamo dargestellt, bei der die Gittersteuerung nur mit Wechselspannung erfolgt. Die Regelung auf «konstante Drehzahl» wird hier so vorgenommen, dass über das Potentiometer P_1 ein Teil der vom Feldgleichrichter D_1D_2 gelieferten und durch D_3 stabilisierten Gleichspannung abgenommen wird, der wieder der Gleichspannung der Tachodynamo gegengeschaltet ist. Die resultierende Fehlerspannung wird in einem Verstärker V entsprechend verstärkt und durch die gesättigte Drosselspule L in entsprechende Änderungen des durch sie fliessenden Vormagnetisierungsstromes umgesetzt. Ein mit zunehmender Drehzahl steigender Gleichstrom vermindert die Permeabilität und damit die

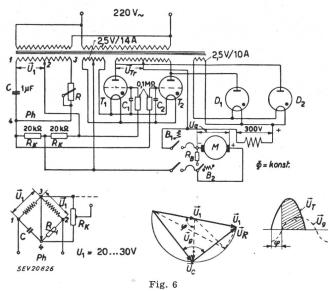
ihr proportionale Induktivität L, womit sich der Vektor \vec{U}_g der Phasenbrücke (L, R, \vec{U}_{Tr}) verkleinert und den Punkt 2 auf dem Halbkreis über der Transformatorspannung \vec{U}_{Tr} , im Uhrzeigersinn, nach rechts verschiebt. Dementsprechend wird der Phasenwinkel φ zwischen Anoden- und Gitterwechselspannung grösser und die Röhre wird dadurch zeitlich später geöffnet, der Stromdurchgang und damit die Drehzahl verringert. Wird der Gittertransformator Tr_2 als Impulstransformator ausgeführt, so lässt sich damit eine noch höhere Regelgenauigkeit erreichen. Für eine Motorleistung von z. B. 6 kW bei einer Ankerspannung von 440 V genügen 2 Thyratrons TQ 2/6 und 2 Dioden DQ2.

4. Steuerung eines Dreiphasen-Nebenschluss-Kommutatormotors mit elektronischem Impulsregler

Der bei diesen Motoren unerwünschte Drehzahlabfall zwischen Leerlauf und Vollast, insbesondere bei niederen Drehzahlen, kann durch einen elektronischen Impulsregler in einfacher Weise praktischvollkommen kompensiert werden. Das Prinzip ist in Fig. 5 dargestellt. Der Impulsregler 4 vergleicht da-

Prinzipschema eines Antriebes mit Dreiphasen-Nebenschluss-Kommutatormotor

(System Brown Boveri)


Die eingestellte Drehzahl wird durch einen elektronischen Impulsregler mit grosser Genauigkeit konstant gehalten

1 Nebenschluss-Kommutatormotor; 2 Bürstenverstellmotor; 3 Tachodynamo; 4 Elektronischer Impulsregler; 5 Kommandostation

bei die durch eine Tachodynamo 3 gemessene Drehzahl mit dem durch ein Potentiometer in der Kommandostation 5 eingestellten Sollwert der Drehzahl. Entsprechend der entstehenden Differenzspannung wird der Bürstenverstellmotor 2 für Vor- oder Rückwärtslauf impulsweise betätigt. Er verstellt die Bürsten des Kommutatormotors 1 so weit, bis die Solldrehzahl wieder erreicht ist.

5. Steuerungen für kleinere Gleichstrom-Motoren (bis 3 kW)

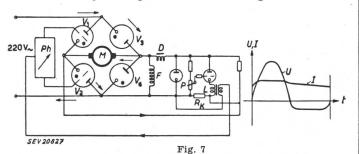
Fig. 6 zeigt eine für die Steuerung kleinerer Gleichstrom-Motoren geeignete Schaltung. Die Steuerung der in Vollweggleichrichtung geschalteten Röhren und damit der Drehzahl des 0,75-kW-Motors mit 300 V Anker- und Feldspannung geschieht mittels reiner Wechselspannung über eine Phasenbrücke. Die Wirkungsweise ist aus dem Vorhergegangenen

Steuerung der Drehzahl kleiner Gleichstrommotoren bis 3 kW

Steuerung durch Ankerstromregelung über Thyratronröhren, deren Stromdurchgang durch phasenverschobene Wechselspannung mit Hilfe einer Phasenbrücke in einfacher Weise verändert werden kann (Drehzahl-Regelmöglichkeit bis 1:50) U_a Ankerspannung (300 V); T_1 , T_2 Thyratrons in Vollweggleichrichter-Schaltung; D_1 , D_2 Dioden; B_1 Betriebsschütz; B_2 Bremsschütz; Ph Phasenbrücke; M Motor; C_1 , C_2 Kapazitäten von 500 pF

und der Figur mit den Brückenschaltbildern leicht verständlich. Der Effektivwert der nötigen Transformatorspannung U_{Tr} errechnet sich aus:

$$U_{Tr} = \frac{(U_a + 16)}{0.9} = 350 \text{ V}$$

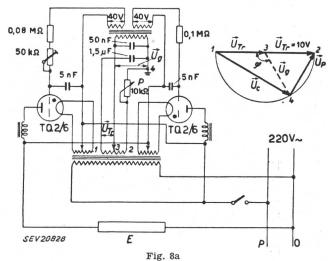

Die erforderlichen Thyratrons (Typ TQ1/2) müssen mindestens für eine maximale Sperrspannung von $\frac{U_a}{0,318}=950~\mathrm{V}$ bemessen sein. Die TQ 1/2 besitzt eine Sperrspannung von 1250 V. Der mittlere Ankerstrom beträgt etwa 2,5 A. Da beiden Röhren ein mittlerer Strom von $2\times1,5=3~\mathrm{A}$ entnommen werden darf, ist die TQ1/2 somit sowohl hinsichtlich Sperrspannung als auch strommässig geeignet. Der maximale momentane Spitzenstrom beträgt für beide Röhren 12 A. Die relativ geringe Anheizzeit von 30 s und die weitgehende Temperaturunabhängigkeit (durch kombinierte Gas-Hg-Füllung) lässt die Röhre besonders bei niederen Umgebungstemperaturen als besonders geeignet erscheinen.

Bei Betrieb mit Motoren mit unter 100 V Ankerspannung müsste zum sicheren Zünden der Röhre mit einem positiven Gitterspannungsimpuls gearbeitet werden.

6. Steuerungen kleinerer Motoren (bis 3 kW) Johne Netztransformator

In Fig. 7 wird eine von der Reliance Electric & Engineering Company propagierte, interessante Schaltung ohne Netztransformatorangegeben. Durch

den Wegfall des Transformators lassen sich rund 25~% der Kosten einsparen. Eine Drehzahlregelung ist bis etwa 1:7 möglich. Der Anker befindet sich hier im Zweig einer aus 2 Dioden und 2 Trioden (Thyratrons) bestehenden Brückenschaltung. Die Dioden V_3 und V_4 dienen als Rückweg für den durch


Prinzip einer Motorsteuerung ohne Netztransformator
Diese Steuerung gestattet eine Drehzahlregelung im Verhältnis von maximal 1:7. Der Motor liegt hierbei in einer durch
Dioden und Thyratrons gebildeten Phasenbrücke
V1, V2 Thyratrons; V3, V4 Dioden; M Motor; Ph Phasenbrücke; U Feldspannung; I Feldstrom

Pfeile angedeuteten Ankerstrom in jeder Halbwelle und zugleich als Halbwellengleichrichter für den Feldstrom. Die an der Feldwicklung liegende Gleichspannung wird nach Siebung durch die Drosselspule D als «Vergleichsspannung» verwendet und an einem Potentiometer P abgegriffen, mit dem die Drehzahl fest eingestellt oder geregelt werden kann. Dies geschieht so, dass damit zunächst der Kathodenstrom einer Kathodenfolgestufe geregelt wird. Dieser erzeugt an R_K eine Spannung, die der vom Anker abgenommenen Teil-Spannung entgegenwirkt. L ist eine Gleichstromwicklung auf einem gesättigten Transformator, dessen Sekundärwicklung einen Teil einer Phasenbrücke Ph darstellt, mit der die an den Gittern der beiden Thyratrons V_1 und V2 liegende Wechselspannung in ihrer Phase gegenüber der Anodenspannung beeinflusst werden kann. Normalerweise genügt eine Verschiebung bis zu 140° .

Obwohl nur eine Halbwelle, nämlich über V_3 für die Feldspeisung ausgenützt werden kann (V_4 stellt dabei einen unendlich grossen Widerstand dar), ergibt sich doch über beide Halbperioden ein fast gleichmässiger Strom I. Das rührt daher, dass in der zweiten Halbperiode, in der V_4 zündet, der in der hochinduktiven Feldwicklung F gespeicherte Ausschaltstrom über V_4 fliessen kann, also in der gleichen Richtung wie der Feldstrom in der ersten Halbperiode. Während in der ersten Halbperiode die volle positive Wechselspannung an der Feldwicklung liegt, stellt sich in der zweiten Halbperiode eine entgegengesetzt gerichtete, ca. -16 V betragende, nahezu konstante Spannung ein. Diese Art Gleichrichter wird auch als «freischwingender (free-wheeling) Gleichrichter» bezeichnet.

II. Beleuchtungsregelung

Gasgefüllte Hoch- und Niederspannungs-Entladungslampen, sowohl mit Warm- als auch mit Kaltkathoden lassen sich durch Änderung der Amplitude der Speisespannung nicht einwandfrei regeln. Eine kontinuierliche, allmähliche Änderung ihrer Leuchtstärke von Null bis zum Maximum wird bei konstanter Speisespannung durch entsprechende Änderung des sie durchfliessenden Stromes erreicht. Die Steuerung des Stromes kann mit Thyratrons fast leistungslos vorgenommen werden. Ein Beispiel einer verhältnismässig einfachen Lösung zeigt das

Gegen-Parallelschaltung zweier Thyratrons zur stufenlosen Beleuchtungsregelung von Leuchtstofflampen

Durch Verlegen des Potentiometers P ausserhalb des Gerätes oder durch Steuerung desselben mit einem kleinen, durch Relais zu betätigenden Servomotor, lässt sich eine sehr einfache Fernsteuerung erreichen, die aus nur drei Druckknöpfen für «hell», «dunkel» und «stop» besteht und die nur 4 Schwachstromleitungen benötigt

E Entladungslampen; P Potentiometer; TQ2/6 Thyratrons

Prinzipschema des von Brown, Boveri & Cie. entwickelten «Thyralux»-Lichtsteuergerätes (Fig. 8a und b).

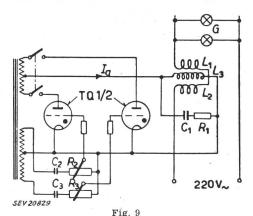



Fig. 8b
Thyralux-Gerät mit abgenommenem Vorderdeckel,
bestückt mit 2 Thyratrons Typ TQ 2/6

Wie aus der Schaltung ersichtlich ist, sind die beiden Thyratrons in «Gegen-Parallelschaltung» und in Serie mit der Belastung geschaltet. Die Phasenverschiebung der Steuergitter-Wechselspannung und

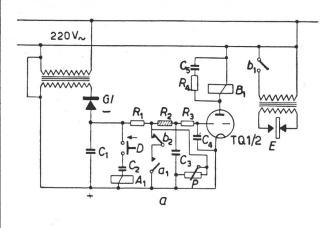
damit die Leuchtstärke der Leuchtröhren wird durch Veränderung des Potentiometers P in einer Phasenbrücke vorgenommen. Wird dieses wie im Thyraluxgerät mit einem kleinen Servomotor über ein Intervall von ca. 10 s allmählich gedreht, so bedarf es nur dreier Druckknöpfe zur gesamten Steuerung. Das mit 2 Röhren TQ2/6 bestückte Thyraluxgerät gestattet den Anschluss von maximal 40 Fluoreszenzlampen Typ TL 220 V/40 W.

Sollen nur Glühlampen (keine Entladungslampen) geregelt werden, so kann dies ebenfalls mit einer Thyraluxschaltung oder mittels gesättigter Drosselspulen geschehen. Ein Schaltungsbeispiel hiefür zeigt Fig. 9. Die beiden in Serie geschalteten

Lichtstärkeregelung von Glühlampen mittels gesättigter Drosselspulen

Die Regelung erfolgt durch Veränderung der Induktivität der Drosselspulen. Die kontinuierliche Regelung geschieht wiederum mittels gittergesteuerter Thyratrons (z.B. Typ TQ1/2), über die Potentiometer R_2 und R_3 G Glühlampen

Wicklungen L_1 und L_2 sind auf einem hochgesättigten Kern einer Eisendrosselspule aufgebracht, die noch eine dritte gleichstromdurchflossene Wicklung L_3 mit vielen Windungen dünnen Drahtes trägt, wodurch nur ein relativ geringer Steuerstrom (etwa 5% des Laststromes) benötigt wird. Fliesst durch L3 kein Strom (Thyratrons gesperrt), so ist der Spannungsabfall an L_1 und L_2 so gross, dass die Glühlampen Gnicht aufleuchten. Je grösser I_a , um so mehr wird die Drosselspule gesättigt und desto geringer ist der Spannungsabfall an $R_L = \omega$ $(L_1 + L_2)$. Bei voller Beleuchtung beträgt dieser nur ca. 5 % der Speisespannung, wobei der Ohmsche Widerstand der Wicklungen $L_1 + L_2$ sehr klein sein soll. R_1C_1 kompensiert die induktive Belastung der Steuerröhren. R_2C_2 und R_3C_3 besorgen die Phasenverschiebung für die Gittersteuerung.


III. Elektrische Schweissung

Für kleine Schweissleistungen lassen sich mit Thyratrons (auch *ohne* Ignitron) geeignete billige Steuerungen aufbauen, wie die folgenden Schaltungshinweise zeigen:

1. Einfaches Ein-Röhren-Punktschweissgerät mit geringer Schweissfrequenz

Die für dieses Gerät geeignete Schaltung ist in Fig. 10 wiedergegeben. Das Thyratron arbeitet hier sowohl als Gleichrichter für den Relaisgleichstrom (Relais B_1), als auch als Zeitgeber, wobei das zeitbestimmende Glied R_2C_3 ist. Durch das C_3 parallel geschaltete Potentiometer P kann eine Feinregulierung der Zeitintervalle erfolgen.

Die Apparatur arbeitet folgendermassen: Beim Drücken des Schaltknopfes D lädt sich C_2 auf; dadurch wird das Relais A_1 erregt, das seinen Kontakt a_1 schliesst. Damit kann sich die Kapazität C_3 über a_1 entladen. Nach t_1 s (Punkt a in Fig. 10b) zündet die Röhre. B_1 schliesst b_1 (Schweissperiode) und öffnet gleichzeitig b_2 . Die Kapazität C_3 kann sich wieder über R_2 und R_1 negativ aufladen, so dass die

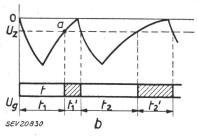


Fig. 10
Einröhren-Punktschweissgerät für geringe Schweissfrequenzen
Thyratron-Relais-Steuerung

- a) Schaltschema E Schweisselektroden; Gl Gleichrichter; A_1 , B_1 Relais; a_1 , b_1 , b_2 Relaiskontakte
 - b) Schema der durch C_3 , R_2 und P bestimmten Zeitintervall-Regelung
 - U_z Zündspannung; $t_1, t_2 \dots$ Kontakt b offen; $t'_1, t'_2 \dots$ Kontakt b geschlossen

Röhre zum Beginn einer der folgenden negativen Halbperioden des Anodenwechselstromes schliesslich sperrt. Die Schweissperiode ist damit beendet; B_1 wird stromlos, b_1 öffnet wieder.

Die Schweissintervalle und Schweisszeiten sind durch die Gitterkreisglieder bestimmt und hängen nicht von der Dauer des Drückens des Knopfes D ab. Der maximale Schweißstrom wird durch die Güte des Kontaktes b_1 , die maximale Schweissfrequenz durch die Kreisglieder RC und durch die Relais mit maximalem Schaltstrom von 1...2 A begrenzt. Der Schweißstrom wird maximal einige 100 A betragen, er lässt sich nicht regulieren. C_5 und R_4 dienen zur Glättung und zum Halten des Relais. R_3 wird zur Gitterstrombegrenzung und C_4 zur «Stromspitzen»-Unterdrückung eingeschaltet. Als Thyratron genügt die Brown-Boveri-Röhre TQ1/2. Als Anwendungsgebiet kommt z. B. Punktschweissen in der Uhrmacher-Branche in Frage.

2. Punktschweissmaschine mit Stromspitzen bis zu 3000 A

Die Inbetriebnahme und Arbeitsweise dieser für kleine Punktschweissungen sehr zweckmässigen Anlage, deren Schema durch Fig. 11 gezeigt wird, ist folgende: Durch Einschalten des Schalters S_1 auf Stufe I wird die Vorheizung in Betrieb gesetzt. Nach

 R_{21} wird zweckmässig so eingestellt, dass der maximal zulässige Anodenstrom nicht überschritten wird. Für die V_4 wird zweckmässigerweise ein Thyratron vom Typ TQ2/6 mit 40 A Spitzenstrom verwendet. Mit Rücksicht auf die kurzen Arbeitszeiten, kann bis zur maximalen Stromspitze eingestellt werden. Für V_2 und V_3 können Kleinthyratrons,

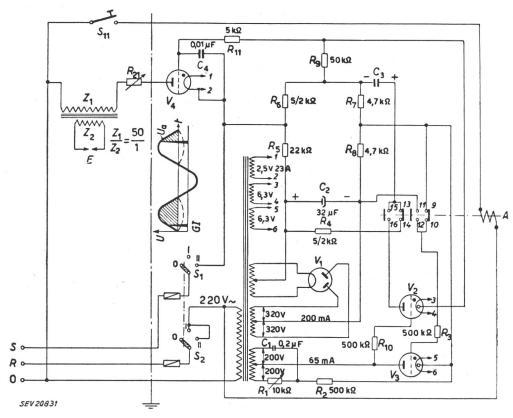


Fig. 11

Kleinpunktschweissmaschine mit einem
Thyratron TQ 2/6
(ohne Ignitron)

Diese Anlage gestattet Punktschweissungen bis 3000 A und 1/100 s Schweissdauer

V₄ Thyratron TQ2/6; A Schweiss-Relais; E Schweisselektroden; GI Gitterimpuls

(Weitere Angaben siehe im Text)

2 min darf auf Stufe II weitergeschaltet werden, wodurch die Anlage betriebsbereit ist. Durch Drükken des Fuss-Schalters S_{11} fliesst durch das Relais AStrom, die Kontakte 13, 14 und 9 und 10 werden geöffnet, 15, 16, 11 und 12 geschlossen. Damit wird die Anode der Röhre V₂ über den in der Ruhezeit aufgeladenen Kondensator C_3 an ein positives Potential gelegt. Das Gitter der bisher geöffneten V_3 wird gegenüber ihrer Kathode an eine negative Spannung umgeschaltet, die Röhre sperrt und stellt praktisch einen unendlich hohen Widerstand dar, wodurch die Überbrückung der Phasenglieder R_1 und C_1 aufgehoben wird. An das Gitter von V_2 gelangt jetzt eine in ihrer Phase verschiebbare Gitterwechselspannung, so dass die Röhre in deren positiver Halbwelle zündet. Der Kondensator C_3 en lädt sich kurzzeitig über die praktisch einen Kurzschluss darstellende Röhre V_2 , so dass an deren Kathodenwiderstand R_9 ein starker positiver Impuls auftritt, der das an Netzwechselspannung liegende Thyratron V_4 öffnet und bis zum Nulldurchgang der positiven Halbwelle des Netzwechselstromes geöffnet hält. Die Schweisszeit kann sich daher nur auf maximal 1/2-Periode, also $^{1}/_{100}$ s erstrecken. Sie lässt sich mit Hilfe des Phasenschiebers R_1 bis auf nahezu Null verringern. Dabei wird natürlich auch der durch V_4 fliessende Strom verringert. Mit der Regelung durch R_1 erfolgt also gleichzeitig auch eine Stromregelung.

z. B. des Typs EC50, mit je ca. 10 mA gewählt werden. Für V_1 eignet sich jede beliebige direkt geheizte Gleichrichterröhre mit 200 mA, z. B. der Typ 5U4G.

Jeder Schweisspunkt erfordert ein Niederdrücken des Fußschalters S_{11} , wobei durch die entsprechend gewählte Übersetzung des Schweisstransformators ein Schweißstrom von etwa 3000 A erzielbar ist, womit sich Schweisskörper bis zu einigen Zehntelmillimeter Dicke gut verbinden lassen. Im Röhrenbau

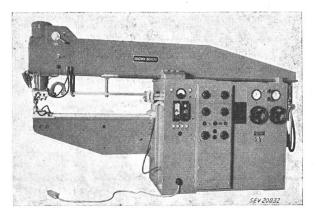


Fig. 12

Grösste bisher gebaute Punkt- und Nahtschweissmaschine

Maximale Schweissleistung 1000 kVA, grösste Armausladung
1500 mm, höchste Elektrodendruckkraft 3000 kg. Diese Maschine
steht in der Schweisshalle der Flug- und Fahrzeugwerke A.-G.,
Altenrhein (Schweiz), in Betrieb

z. B. für Gitterschweissungen usw. kann dieses Gerät gute Dienste leisten.

Werden grössere Schweissleistungen und Apparate vielseitiger Verwendungsmöglichkeiten gewünscht, so müssen die elektronischen Steuerungen mit Thyratrons und Ignitrons aufgebaut werden. Hiefür stehen ausgereifte Konstruktionen zur Verfügung. Eine maximale Schweissleistung von 1000 kVA lässt sich z. B. mit der kombinierten, druckluftbetätigten Punkt- und Nahtschweissmaschine mit rein elektronischer Steuerung (Fig. 12) erzielen. Die Maschine gestattet das Punktschweissen von Leichtmetallblech bis zu 14 mm Gesamtblechdicke, sowie von Stahlblech bis zu 50 mm Blechstärke mehrschnittiger Verbindungen, ferner Nahtschweissen von 2 + 2

mm Leichtmetall und 3 + 3 mm Stahlblech. Überdies wird beim Punktschweissen die Wahl von 15 verschiedenen Schweissprogrammen mit Vorwärmen, Schweissen, Nachglühen, Vorpressen und Nachpressen mit gleichem oder erhöhtem Druck möglich.

Mit diesen Hinweisen über industrielle Verwendungsmöglichkeiten von Thyratrons ist deren Anwendungsmöglichkeit keinesfalls erschöpft. Diese ist so gross und vielseitig, dass eine auch nur teilweise Wiedergabe den Rahmen dieser Arbeit überschreiten würde.

Adresse des Autors:

Roland Hübner, dipl. Ing., Nägelistrasse 14, Wettingen (AG).

Das Albula-Jubiläum der Rhätischen Bahn (1903...1953) im Lichte der technischen Entwicklung des Traktionsdienstes

Von A. Bächtiger, Landquart

061.75:625.1(494.262.2)

Bei der im Jahre 1889 erfolgten Eröffnung der ersten Teilstrecke der damaligen Bahngesellschaft Landquart-Davos war es offensichtlich, dass damit nur ein erster Anfang einer grosszügigen Verkehrsentwicklung im Kanton Graubünden eingeleitet sei. Wenig später dehnte sich der Schienenstrang schon von Landquart über Chur nach Thusis aus und es konnte lediglich noch eine Frage der Zeit sein, durch das Albulamassiv ins Engadin, die Sonnenstube des grössten Schweizer Kantons, vorzustossen. Dies durfte um so eher gewagt werden, als die rund 50 km lange Strecke Landquart-Davos bereits in Höhen von mehr als 1600 m ü. M. führte und Steilrampen von rd. 45 ‰ überwand. Es war aber ge-

Mit den auf der Davoser Linie in grösserer Zahl vorhandenen 2/2 + 2/3-Mallet-Dampflokomotiven mit rd. 80 m² Heizfläche konnten beachtliche Transportleistungen vollbracht werden. Der ständig zunehmende Verkehr zeigte aber bald, dass für die Albulastrecke noch stärkere Einheiten notwendig waren, und schon 1904 konnten die ersten 4 Dampflokomotiven, 4/5 gekuppelt, mit Schlepptender und rd. 120 m² Heizfläche in Betrieb genommen werden (Fig. 1). Innert nur 4 Jahren erhöhte sich die Zahl dieser Maschinen auf insgesamt 14, später 29 Stück, deren letzte mit dem Schmidtschen Dampfüberhitzer ausgerüstet waren. Dank der entwickelten Leistung von rd. 800 PS und ca. 65 t Dienst-

gewicht konnten in 35 ‰ Steigung Anhängelasten von 90... 100 t bei etwa 30 km/h bergwärts geführt und auf der Ebene Höchstgeschwindigkeiten 45 km/h erreicht werden. Die Fahrzeit eines Schnellzuges Chur-St. Moritz betrug mals ca. 3 h. Abgesehen von der trotz Spezialeinrichtungen unangenehmen Rauchplage infolge der zahlreichen Tunnel ergeben sich mit dieser Traktionsart, die mit den 2 Lokomotiven Nrn. 107 und 108 in Notfällen jetzt noch durchgeführt wird, beträchtliche Betriebskosten. Schon die Anheizzeit von 5...6 h bringt in einzelnen Fällen zahlreiche Umtriebe;

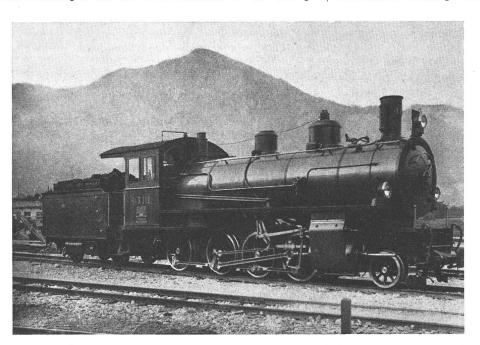


Fig. 1
4/5 gekoppelte Heissdampflokomotive Rh.B. Serie 101-129,
mit Schlepptender; 800 PS;
Gewicht total 65 t

radezu der Beginn eines neuen Zeitabschnittes, als im Jahre 1903 die Albulabahn, das Glanzstück des zu diesem Zeitpunkt schon mit «Rhätische Bahn» bezeichneten Verkehrsunternehmens, eingeweiht wurde. Mit ihren 90 km Streckenlänge Chur-St. Moritz und Höhen der Endpunkte von 600 m ü. M. bzw. 1800 m ü. M. durfte diese neue Alpenlinie ohne Überheblichkeit sich an die Seite einer Gotthardbahn stellen und sich sehen lassen. Entsprechend grosse Anforderungen wurden damit, besonders im Hinblick auf den damaligen Stand der Technik, an den Traktionsdienst gestellt.

die Führung ist nur zweimännig möglich und es müssen pro Tag bei 60 000 Bruttotonnenkilometern in den mittleren Betriebsverhältnissen und 32 km/h Reisegeschwindigkeit rd. 5 t Kohlen pro Lokomotive aufgewendet werden, was nach den gegenwärtigen Lohn- und Preisansätzen allein Fr. 200.—für Lokomotivpersonal und Fr. 675.— für Kohlen ausmacht; pro Bruttotonnenkilometer müssen also 1,46 Rp. aufgewendet werden. Schon um das Jahr 1903 fanden sowohl im In- wie im Ausland entscheidende Versuche mit dem elektrischen Betrieb auf längeren Eisenbahnstrecken statt, die der verant-