
Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 43 (1952)

Heft: 21

Artikel: Impédances négatives stabilisées

Autor: Knechtli, Ronald

DOI: https://doi.org/10.5169/seals-1057905

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-1057905
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


862 Bull. Schweiz, elektrotechn. Ver. Bd. 43(1952), Nr. 21

Impédances négatives stabilisées
Par Ronald Knechtli, Lausanne 537.311.6

Cet article, après définition du concept d'impédance négative,
(R, L, C, négatifs) expose les principales méthodes de réalisation
de tels éléments. La possibilité de créer des impédances négatives
stables se trouve en particulier décrite et discutée. Un examen des

propriétés essentielles des impédances négatives obtenues par les

moyens indiqués, ainsi qu'un aperçu de quelques applications
possibles complètent cette étude.

I. Définitions et généralités

Nous définissons les résistances, capacités et in-
ductivités négatives par les relations suivantes,
semblables au signe près à celles valables pour des
éléments positifs:

Résistance négative: Rn <0 (1)
di

Capacité négative: Cn

Inductivité négative: Ln

du/dt
M

di/di

< 0

< 0

(2)

(3)

Dans le cas de courants et tensions périodiques
sinusoïdaux l'application de la notation complexe
conduit à partir de (1), (2) et (3) aux impédances
négatives suivantes :

Résistance négative: Z„ Rn — \Rn\ (4)

Capacité négative : Z„
1

+j
1

(5)
J m Cn —* L CO | Cn

Inductivité négative : Zn ja>L„ —jeo| Ln\ (6)

Par l'introduction de ces grandeurs nous disposons

maintenant de 6 éléments fondamentaux au
lieu de 3 puisque R, L et C peuvent être positifs
et négatifs1).

II. Réalisation d'impédances négatives à l'aide de
tubes-réactance

1. Principe. Equations fondamentales

Il existe divers circuits fondés sur le même principe,

permettant la réalisation d'impédances
négatives à l'aide d'un seul tube électronique. Nous
bornerons notre analyse à un seul circuit, quitte à

n'indiquer que les schémas et propriétés essentielles
des autres variantes. Leur analyse détaillée,
semblable à celle du cas que nous étudierons, ne nous
apporterait en effet point d'éléments nouveaux
intéressants.

Dans le schéma de fig. 1, que nous voulons
examiner de plus près, nous avons supprimé les
éléments relatifs aux courants continus (nous ferons
en général tacitement ainsi dans la suite de cet
article).

') L'objet de cet article, qui résume les grandes lignes du
travail de diplôme que l'auteur a présenté en décembre 1950 à
l'Institut de la haute fréquence de l'Ecole Polytechnique Fédérale

(Prof. Dr F. Tank), sera d'exposer l'essentiel des
méthodes de réalisation de ces nouveaux éléments, d'étudier
leurs propriétés fondamentales, et d'esquisser quelques-uns de
leurs domaines d'application.

Der Autor definiert den Begriff der megativen Impedanz»

(R, L, C negativ) und erläutert die wichtigsten
Methoden zur Verwirklichung solcher Elemente. Besondere
Berücksichtigung finden dabei die Möglichkeiten zur Erzeugung

negativer stabiler Impedanzen. Die wesentlichen
Eigenschaften der nach den angegebenen Methoden erhältlichen
negativen Impedanzen werden untersucht. Ein Überblick über
einige Anwendungsmöglichkeiten beschliesst die Arbeit.

De plus nous désignerons les grandeurs
complexes par des majuscules surlignées2), et les valeurs
instantanées réelles par des minuscules.

A partir du schéma de fig. 1 nous obtenons, par
les lois de Kirchhoff et les relations

Fig. 1

Tube à réactance

P réactance positive ou
R résistance ohmique
A, B bornes auxquelles apparaît

l'impédance négative désirée
Z„

(Explications supplémentaires
cf. texte)

I2 S Ug -)—r ; m S Ri où p, S, Ri cœffi-
J\i

cient d'amplification, pente et résistance intérieure
du tube employé:

U
Z X jY

Ri [R (R + Ri) + P2 (1 + p)]

(R + Ri)2 + P2 (1 + I1)2

+ j P
Ri2 (1 - SR)

(R + RiY + P2 (1 + pf
(V

L'équation (7), valable sans restrictions tant que
le tube travaille linéairement, constitue la base de

notre discussion.

Cas particulier : R; -> OO

(P S)2 < 1

SR >1
(8)

En remplaçant p par S Ri, passant à la limite
pour Ri —> oo et tenant compte des 2 autres
hypothèses ci-dessus nous tombons sur ces relations-ci,
de forme particulièrement simple :

Z=(R + P2S) - j P- SR (9)

En général, on vérifiera de plus que R Y P2S,
ce qui donne finalement:

Z r* R- j P • S R (10)

2) Là où il n'y a point de risque de confusion on a toutefois
omis de surligner les grandeurs complexes pour alléger

l'écriture.
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Nous voyons que, P étant une réactance
normale Z aura une composante réactive de signe opposé
à celui de P. En remplaçant P par cj L ou — 1 /eu C

on obtient les valeurs des impédances négatives
correspondantes.

2. Limites et restrictions

La condition Ri—^oo, admise ci-dessus par soucis
de simplicité, n'est pas nécessaire; et l'équation (7)
considérée directement nous indiquera les conditions
les plus générales liées à l'obtention d'une réactance
négative entre A et B (fig. 1) ; à partir de (7), en
effet:

R*(1-SR) (n)Y P
(R + Ri)2 + -F*2 (1 n)2

Puisque P est une réactance normale la condition

pour que Y ait le signe opposé de P et représente

une inductivité ou capacité négative indépendante

de la fréquence sera :

a) S R> 1 (12a)

b) \P\ < 3±^L (12b)
1 + p,

c.-à-d. (R + Ri)2 > P2{ 1 + p)2

Dans ces conditions, en effet, ainsi qu'on le
désire:

Y — K P où K constant, > 0

La condition (12 a) se remplit sans difficulté. La
condition (12 b) représente en revanche une limite de

fréquence à laquelle il convient de prêter quelque
attention car P P (/). Pour cela, il convient de

distinguer entre inductivité et capacité négative.
Nous créons une inductivité négative si nous

prenons pour P une inductance positive

P mL

Dans ce cas l'équation (11) donne en considération

de la condition (12) l'inductivité négative L„

Ln
R Ri

i p
(R + Ri)2

pour S R 1 (13)

La condition (12 b) indique la limite supérieure
de fréquence/+i correspondant à

P0

f*
2tIL

R + Ri
1 + P

R + Ri
(p > 1) (14)

De (13) et (14) on tire encore la relation entre
Ln et f+1 :

/+1
RRi

(15)
2 n \Ln\ R + Ri

La signification de /+1 appert dans la représentation

graphique de (11) qui est donnée par la fig. 2.

On se convainc aisément que P0 correspond à la
limite adoptée précédemment avec

P0
R -f- Ri
1 + P

(16)

Et l'on voit que la transformation de P en une
réactance négative Y n'est linéaire que pour

l-P| < \Po\ (17)

Pour P — co L, on aura donc bien ici la condition :

f<fi i (18)

^ o

Fig. 2

Représentation graphique de la valeur absolue | Y j de la
réactance négative Y d'un tube-réactance, et de son coefficient de
qualité Q en fonction de la valeur absolue | P | de la réactance

transformée P

Dans le cas d'une capacité négative nous aurons

P -—; Y -f — ;
COC Oj\Cn\

le calcul de Cn et de la fréquence limite f-i
correspondant ici à P0 se mène de façon analogue à ci-
dessus, et nous avons alors la restriction :

(19)/>/l
Des applications numériques montrent cependant

que les restrictions (18) et (19) ne sont en général

guère gênantes.

3. Coefficient de qualité Q

De même que pour les capacités et inductivités
positives, nous définissons Q par:

\Y\fX si Z=X + jY
représente une impédance négative. Cette définition
n'a de sens que si X ^ 0 ; si X < 0, Z désamortit le
circuit dans lequel elle est comprise, et peut même
amener l'auto-excitation.

Dans le circuit étudié présentement (cf. fig. 1)

l'équation (7) donne pour p 1 :

Q pPR
R{R + Ri) + p P2

(20)

Cette fonction, représentée en fig. 2 a un maximum
pour P Pç, avec Pq [R (R -Ri) jpf1'. Pour
obtenir une idée de l'ordre de grandeur de Q nous
considérons le cas particulièrement favorable pour Q,
où R Ri. Il résulte alors de (20) :

lim Qmax pour P Pq «a
R- (21)

j?-»oo 2 yp

Admettons, pour une penthode, par exemple
p 2500; cela conduit à:

0 25
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Cet ordre de grandeur s'avérera souvent trop
petit, ce qui constitue l'un des défauts majeurs de
cette méthode de réalisation d'impédances négatives

et nous amènera à rechercher des procédés
peut-être moins simples mais meilleurs.

4. Stabilité
Nous appelons stabilité d'une impédance la

constance de sa valeur. (A ne pas confondre avec sa
tendance plus ou moins grande à l'auto-excitation, que
nous ne caractériserons pas par le concept de
«stabilité» mais par celui de «tendance à l'auto-excitation».

Remarquons en passant que, dans le circuit
de fig. 1, cette tendance n'existera en général pas.)

Nous obtenons la stabilité d'inductivités négatives

dans le cas du circuit de fig. 1 à partir de (13),
par différentiation de L„ par rapport à /r et Ri. Pour
les capacités négatives le calcul s'effectue de
manière semblable, et le résultat est :

è-Ln — S Cin

Ln [l
(22)

Ce résultat, optimum, s'obtient pour R Ri,
car l'expression complète est:

JL„/L„ - èC„/C„ ifi/fi +
R

—
Ri —R + Ri Ri

Par un choix correct du tube et de son point de
travail on obtiendra donc une stabilité relative
(c.-à-d. limitée à une période assez courte pour
négliger le vieillissement du tube et n'avoir pas à le
changer) satisfaisante; on trouve en effet des pen-
thodes pour lesquelles dans certains domaines, fj, ne
dépend que peu des tensions appliquées. La
stabilité absolue (c.-à-d. considérée sur une période
indéterminée) reste cependant aléatoire, car elle
dépend du vieillissement du tube et de son
interchangeabilité. Cette restriction à la stabilité constitue

le second désavantage majeur des impédances
négatives produites à l'aide d'un tube-réactance.

5. Variantes au circuit de fig. 1

Une première variante consiste à interchanger R
et j P; l'impédance négative résultante présente des
caractères analogues à ceux du circuit de fig. 1.

D'autres variantes sont représentées par les
circuits de fig. 3 et 4.

SEVZOO*!
Fig. 3

Tube à réactance

P réactance positive (wL ou —«-)

A, B bornes auxquelles apparaît l'impédance négative désirée
Z„

(Explications supplémentaires cf. texte)

Elles se caractérisent par la disparition des
restrictions imposées aux fréquences d'utilisation de
l'impédance résultante. Comme cet avantage ne
s'acquiert cependant qu'au prix d'un transformateur

changeur de phase (déphase de 180°) ce circuit
ne présentera guère d'intérêt général.

Fig. 4

Tube à réactance
Mêmes notations que pour

fig. 3

Mentionnons enfin la possibilité d'améliorer le
Q par une réaction supplémentaire normale. Cette
amélioration ne pourra cependant s'étendre qu'à
une bande de fréquences limitée et amènera de plus
une tendance à l'auto-excitation; ce pourquoi nous
ne nous attarderons pas non plus à cette variante.

III. Réalisation d'impédances négatives à partir de

résistances négatives

Nous n'indiquons cette méthode qu'à titre de
curiosité ; sa valeur dépend en effet essentiellement des
résistances négatives disponibles, ce pourquoi nous
renonçons à une discussion générale.

Fig. 5

Transformation d'une impédance

Z en une impédance
négative Zn par une résis¬

tance négative R,.
Zn apparaît entre les bornes

A et B

L'équation fondamentale (23) s'obtient directement

à partir du schéma de fig. 5 :

2
R2 + 2 R R„ -j- Z (R -f- Rn)^

R Rn -|- Z

Posons R„ — R; dans ce cas, cette équation se

réduit à
R2

Z„ - (23a)
Z_

Pour ce cas particulier on obtient:

1
Z joj L: Zn

j CO Cn

Z
jcoC

Cn Capacité négative

Zn JfbLn

Ln — R2C Inductivité négative

L'étude de la stabilité et des phénomènes transitoires

dans le cas de ce circuit ne présente pas de

difficulté; le résultat est naturellement essentiellement

fonction de R„.
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IV. Réalisation d'impédances négatives stabilisées

1. Principe
L'idée fondamentale réside dans l'utilisation d'un

couplage par réaction dans un amplificateur
supposé d'abord idéal, pour obtenir l'impédance négative

désirée. Par amplificateur idéal nous entendons
un amplificateur d'amplification constante,
indépendante de la fréquence, et sans déphasage.
L'extension au cas d'un amplificateur réel posera les
problèmes de la stabilité, de la tendance à l'auto-
excitation, des limites de fréquence et des limites
de charge des impédances négatives ainsi obtenues;
nous reviendrons sur ces problèmes après le présent
exposé de principe.

L'idée esquissée ci-dessus trouve sa réalisation
dans 2 types d'impédances négatives, que nous
désignerons par les noms d'impédance négative-série
et dimpêdance négative-parallèle. Cette terminologie
se justifiera dans la suite.

a) Impédances négatives-parallèle

Soit A le coefficient d'amplification de tension de

l'amplificateur représenté en fig. 6 et Za l'impédance
de sortie, c.-à-d. l'impédance mesurée aux bornes
de sortie C et D en l'absence de signal U pour Z2—>oo

(l'impédance d'entrée en l'absence de Z2 est
supposée infinie).

Z2

Fig. 6

Impédance négative-parallèle

Ri

Z„

coefficient d'amplification

résistance_compensa-
trice de Z.
impédance de sortie de
l'amplificateur

Z2 impédance positive
A, B bornes d'entrée de

l'amplificateur
C, D bornes de sortie de

l'amplificateur

Dans ces conditions, et par application du théorème

de Thevenin, le montage de fig. 6 admet le
schéma de fig. 7 comme schéma équivalent; de

fig. 7 on obtient les équations suivantes

U=I(R1+Z2+Z„)+A(U-RJ)

~=r Zn= [Ri
Za

A - 1
(24)

Fig. 7

Schéma équivalent d'une
impédance

négative-parallèle
Mêmes notations que pour
_ fig. 6

U' tension entre les bornes
A et B de fig. 6

Dans le cas d'un amplificateur idéal, A A, et
Za Za, constants et réels. Pour A > 1 et un choix
de Rj tel que

R, - Z— 0

on obtient une impédance négative:

Z0
(25)

A - 1

Cela suppose aussi, naturellement, que Z„ soit
réel (amplificateur idéal). Dans ce cas, Zn est
entièrement déterminé par Z2, le coefficient de
transformation — 1/(A — 1) étant constant et réel.

Remarquons maintenant que, si Z2 comporte une
composante active R2:

%2 R2 + j-^2

Z„ aura une composante active négative R„
— R2I(A — 1); cela pourra provoquer l'auto-excitation

du circuit dans lequel Z„ est inclus. Nous
voyons de plus que la résistance négative Rn est
contrôlée par la tension. Nous entendons par là que
la tension U appliquée aux bornes de Z„ commande
le courant I, dans ce sens qu'une variation de U
n'entraîne par suite du temps de réaction fini de

l'amplificateur une variation correspondante de I
qu'après un délai généralement très court mais non
nul.

Or les résistances négatives contrôlées par la tension

à leurs bornes possèdent la propriété générale
de ne pouvoir exciter qu'un circuit oscillant parallèle3)

; et les oscillations ne prennent ainsi naissance
que si |R„| <1 R,

En d'autres termes, c'est la résultante Rp de la
mise en parallèle de R et de R„ qui détermine l'auto-
excitation de la façon suivante :

Rr > 0 Rn > R : point d'oscillation

jRP^ 0 |R„| <[ R : auto-excitation

Ce comportement de Rn justifie l'appellation d'«im-
pédance négative-parallèle» pour Z„ dans ce cas.

b) Impédances négatives-série

ki L'impédance négative Zn, dans le circuit de

fig. 8, s'obtient entre les bornes A et C.

A
_

'(

*30«

Lôl P_J
SEP 20050

Fig. 8

Impédance négative-série
R. résistance compensatrice de Za
Z« impédance de sortie de l'amplificateur
A coefficient d'amplification
Z.i impédance positive
A, C bornes auxquelles apparaît l'impédance négative désirée

Zn
A, B bornes d'entrée de l'amplificateur
C, D bornes de sortie de l'amplificateur

s) voir la bibliographie à la fin du travail: [4], 2e édition,
p. 3...4, 5...10, 33...37,
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Les équations fondamentales sont:

Ü =Üe-Ü«
Ue I JRgp -f- Z3)

Üa= ADe-J Za
D'où

Ü
Zn=-Z3(A-l) + [-R30(A-l) + Za] (26)

i
Dans le cas d'un amplificateur idéal et par un choix
de Rao tels que — Rs0 (A — 1) -f- Z„ 0 il reste :

Zn= ~ Z3 (A - 1) (27)

Remarquons en passant, par comparaison de
(27) et de (25), que les impédances négatives-série et
négatives-parallèle sont duales, dans le cas idéal.
De plus, les impédances négatives-série sont, ainsi
que fig. 8 permet de le voir, contrôlées par l'intensité

I du courant qui les traverse. Par des considérations

analogues à celles développées pour les
impédances négatives-parallèle on voit que la connection

d'une résistance négative-série avec une
résistance positive donnera un système stable tant
que \Rn\ < R; c.-à-d. que le signe Rs de la combinaison

en série de R et R„ déterminera l'auto-excitation:

Rs > 0 ; |jR„| < R : point d'oscillation

Rs<L0 ; |R„| R : auto-excitation

Ce comportement également est dual de celui des

impédances négatives-parallèle, est justifie le nom
d'impédances négatives-série.

2. Tendance à l'auto-excitation
Nous avons déjà mis en évidence cette tendance

dans le chapitre 1. Pour une analyse exacte des
conditions d'auto-excitation, nous considérons le montage

dans son ensemble (y compris l'impédance du

système auquel est connecté Z„) comme un ampli-
_ ficateur à réaction. Les
Z2 conditions de stabilité

sont alors celles de Ny-
quist; et le diagramme de

Nyquist donnera une
image exacte des condi-
tions d'oscillation du
système.

«1 r-

i
30*

«-0

l

strzoosi

Fig. 9

Impédances négatives
connectées à un circuit

d'impédance Z0

Impédance négative-parallèle
Impédance négative-série
Mêmes notations que dans

fig. 6 à 8

Soit donc A' l'amplification résultante de l'am-
plificateur, avec la réaction productrice de l'impédance

négative. Soit ôt le coefficient de réaction

(oc fraction de la tension de sortie réappliquée à
l'entrée) ; d'un calcul connu il résulte alors

A'
1 — cc A

Et la condition de non-oscillation du système
est que la courbe lieu de ocA dans le plan complexe
n'entoure pas le point (-j- 1; Oj) (Condition de

Nyquist).
Soit Z0 l'impédance de fermeture de Z„; les

figures 9 a et b donnent alors :

Type parallèle: a.p

Type série: Ois

^1 + Zp

Ri T~ Z0 -j- Z2

-^30 + Z3

-K30 + Z.j + Z0

Ces considérations valent dans le cas d'un
amplificateur réel aussi bien que dans le cas idéal.

3. Cas d'un amplificateur réel. Stabilité.
A uto-excitation

L'un des caractères qui distinguent l'amplificateur
réel de l'amplificateur idéal est l'instabilité de

son coefficient d'amplification A. A dépend en effet
des tensions d'alimentations, des tubes employés
(vieillissement, échange des tubes) et de la charge.
Par différentiation de (25) et (27) par rapport à A
et Z2 ou Z3 respectivement, on obtient la variation
de Z„:

Type parallèle:

Type série:

3Z„ bZ2 bA

z„ A- 1

i>Z„ àZ3 DA

z„ Z3 A- 1

Dans les 2 cas, nous avons donc à peu près pro-
portionalité entre Ï)Z„ / Z„ et DA/A. Or comme dans

un amplificateur normal DA/A n'est nullement
négligeable et peut monter jusqu'à 10 %, il importe
de trouver un moyen de stabiliser les impédances
négatives produites par cette méthode. Un de ces

moyens, et le plus efficace, consiste à stabiliser
l'amplificateur employé, à l'aide d'une contre-réaction.

a) Stabilisation d'impédances négatives-parallèle

Soit G le gain résultant de l'amplificateur
stabilisé par contre-réaction, ß le coefficient de contre-
réaction (ß < 0 dans la bande de fréquence utile) ;
on obtient alors:

G A—= (28)
1 — ß A

Zn s'exprimera encore à l'aide de (24), si l'on
remplace dans cette équation A par G:

Zn i?x Jz2 -j- Za

G - 1
(29)
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Introduisons (28) dans (29) :

1-ßAZn Rl ~ A (1 + ß) — 1
(Z2 -|- Za)

Supposons encore (ainsi qu'il en sera pratiquement
touj ours) :

1 - Aß
Ri < (Z2 + Za)

A+Aß-1
La differentiation logarithmique par rapport à A et
Za donne alors :

ï>Zn (>A dZa
iv, — -j- An

Z„ A Za
(30)

avec:

R-l ~F=.

A

(A ß-1) (A + Aß-1)

k2
Za (30a)

Z2 -f" Za

Il est aisé de voir en faisant ~öK1/l)ß 0, que pour
\A\ grand, K1 devient minimum pour:

avec \Klm

ß - 0,5

-4 (31)

Ml

Comme la variation de K4 en fonction de ß n'est pas
critique, pour A 1, on choisira en général
ß — (0,1...0,2), ce qui présente moins de difficultés

de réalisation que ß — 0,5.

Nous voyons dans (31) que, par le moyen d'une
amplification assez élevée, on pourra réduire dans

une proportion quasi illimitée l'influence de 7>A/A;
le calcul de Zn nous montrera que la contre-réaction
fait tendre Za vers 0 pour A^oo, cependant que

'iZajZa «S — ~dA/A

ainsi le facteur K2 devient :

— Z —lim K„ «s -=- avec Z„ -> 0

et l'on peut également réduire Z„ resp. K2 à des
valeurs aussi faibles que l'on veut, par l'emploi d'une
amplification assez élevée.

b) Stabilisation d'impédances négatives-série

A partir de (26) et par des calculs analogues à

ceux qui précèdent on obtient dans le cas d'impédances

négatives-série :

~àZn àA ~bZa

-**-3 H- A. —
Zn A Za

K3

(l-Aß)(l + f7)-A(1 - Aß)

Ki
(32)

1 + ^(1 -G)
Zjo

OU z3' — Z3 + R,30

Pour \ßA\ 1 :

Ks

K4

Aß l + ßll

1Za
(32 a)

où Z,' — Z3 + R30

On voit aussi ici l'avantage de choisir \A\ auss

grand que possible ; en effet, K3 >—' 1/A ß ; et K4

~ Za •—'1/A comme nous l'établirons.

c) Tendance à l'auto-excitation

Nous pouvons appliquer dans le cas présent d'un
amplificateur stabilisé par contre-réaction exactement

le raisonnement du chapitre 2 : il suffira d'y
remplacer A par G ; le problème de l'auto-excitation
du système dans lequel s'insert Z„ est ainsi clairement

séparé du problème de l'auto-excitation
possible par suite de la contre-réaction stabilisatrice.
En d'autres termes, pour une étude complète des
conditions d'auto-excitation on considère d'abord
d'après les méthodes classiques l'amplificateur à
contre-réaction indépendamment de la réaction
supplémentaire nécessitée pour l'obtention de Z„;
puis on tiendra compte de cette dernière réaction
par la méthode décrite au chapitre 2. On voit donc
qu'on applique ainsi au même amplificateur 2
circuits réactifs: une réaction négative et stabilisatrice,

l'autre positive et nécessaire pour obtenir Z„.
Dans ce qui suit nous considérerons l'amplificateur
stabilisé comme un tout caractérisé par son
amplification en général complexe G:

G G0 eh (33)

Les grandeurs G0 et y sont déterminées par
l'amplification A sans contre-réaction et le coefficient de
contre-réaction ß, par la relation (28). Ainsi,
connaissant G0 et y et étant assurés que la contre-
réaction seule n'excite pas l'amplificateur, nous
n'aurons par la suite plus à nous soucier de
l'influence de ß sur les conditions d'auto-excitation
de Z„.
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4. Influence du déphasage y et de l'amplification
G0 sur Z„4)

a) Impédances négatives-parallèle

Considérons (29) et définissons:

Zn' Zn — R4 et Z2' Z2 -(- Za (34)

La notation correspond à la fig. 6.
(29) devient alors:

Zn'
^2

avec G G0 e'1' (35)

Pour y 0 et G0 constant, nous retrouvons le
cas idéal ; pour mieux analyser le cas général posons :

G G0eh

De là :

Gr + jGi
Gr G0 cos y ; Gi G0 sin y

(36)

Zn'

1

X7

z,'
1 - Gr - jG,

1

+
1

Z2'/(1-Gr) jZ2'/Gi
Définissons encore des fonctions F4 et F2 telles que

1

-=7
l— +

Zn Fj Z2 jF2 Z2

La relation précédente amène alors:

1 1

(37)

Fi

f2

1 — Gr

1

~Gi

1 — G0 cosy
1

(38)

G0 sin y

L'équation (37) nous permet d'indiquer pour une
impédance négative-parallèle, le schéma équivalent
de fig. 10. Les éléments de ce schéma sont entièrement

déterminés par (34) et (38) dès que l'on con-

«1

r,fi[II
SBV20052

Fig. 10
Schéma équivalent d'une

impédance négative-
parallèle

Ri résistance compensatrice
j F ZI de Za (cf. fig. 6 et 7)

F: et Fj fonctions caractéris¬
tiques de l'amplificateur,

définies par
équation (38)

Z\ -Z- + Za (cf. fig. 6 et 7)

naît G0 et y; et cette représentation, valable
rigoureusement, donnera une notion claire de l'influence
de G0 et surtout de y sur Z„; nous analyserons
encore plus en détail ces influences aux chapitres 4c et 5.

b) Impédances négatives-série

Prenons (26) où nous remplaçons A par G et
définissons :

Zn Zn — Za

Z3 -(- R:m
(39)

*) Nous adoptons dans ce chapitre la présentation donnée
par E. L. Ginzton [1].

Il reste alors:
Zn' Z's (1 - G)

Définissons F„ et F. tels que :

Zn — Fg Zg' -f j F4 Zg'

Il vient alors :

F3= 1

F, — G,

Gr 1 — G0 cos y

sin y

(40)

(41)

De là le schéma équivalent de fig. 11:

F3*3

iF4Z3

Fig.11
Schéma équivalent d'une impédance

négative-série

Za impédance de sortie de l'ampli¬
ficateur

Fa et Fi fonctions caractéristiques de

l'amplificateur, définies par
équation (41)

Z's — Za + Rao (cf. fig. 8)

c) Comportement des fonctions Fx à F4 avec un amplificateur
normal

De façon générale (à l'exception d'un amplifica-
teur à couplage direct), G0 et y auront l'allure de
fig. 12 ; tenant compte de (38) et (41) nous trouvons
alors :

|y| < 90° : Fx et F3 < 0

Domaine des fréquences inférieur:

y>0; F2>0; F4<0
Domaine des fréquences supérieur:

y<0; F2<0; F4>0

+180°—
O

O
(v

"V
v„

A

-180°-.

S£V20054t

Fig. 12

Gain G — Go d'un amplificateur à deux étages
G,, valeur absolue du gain
y déphasage de la tension de sortie par rapport à la tension

d'entrée

D'après les schémas équivalents, les fréquences
critiques se situeront dans la région où F2 devient
minimum, resp. F4 maximum; les équations (38)
et (41) montrent que cela se produira dans le
domaine où |y| s« 90°. Remarquons encore que pour
[yI 90°, F, F, -)- 1 ; F, et F„ ne deviennent
< 0 que pour |y| < 90°.

Ces remarques et le tableau des signes de F4 à

F4 en fonction de la fréquence s'avéreront utiles dans

la discussion générale des caractères de Z„, au
chapitre 5.
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5. Discussion du comportement de Z„ en fonction
de la fréquence

a) Résistances négatives

A partir de (38) et (41) et des schémas équivalents

de fig. 10 et 11, il appert que lorsque y =j= 0,
les résistances négatives ne seront pas purement
réelles mais comporteront une composante réactive
(c.-à-d. imaginaire). Le caractère de celle-ci se
déduit du chapitre 4c et se résume par le tableau I.

Caractère de la composante réactive en fonction du type de
résistance négative et de la fréquence

Tableau I
Type de résistance Caractère1) de la composante réactive

négative Fréquences inférieures Fréquences supérieures

Parallèle inductif capacitif
Série capacitif inductif

Par caractère inductif nous entendons ici une
composante imaginaire > 0; par caractère capacitif, < 0.

b) Impédances négatives (Capacités et inductivités)

Ici y 4= 0 occasionne une composante active X„
dont nous indiquons le signe dans le tableau II; la
notation correspond aux fig. 6 et 8 et à la relation
Z„ — X„ -j- j Y„.

Signe de la composante active Xn
Tableau II

Z, z, Type de l'impédance négative
Domaine de

fréquence
Signe de

)">L2 — Inductivité-parallèle inférieur < 0

supérieur > 0

— Inductivité-série inférieur > 0

supérieur < 0

1/j<uC, — Capacité-parallèle inférieur > 0

supérieur < 0

— l/joC3 Capacité-série inférieur < 0

supérieur > 0

c) Tendance à l'auto-excitation

Une analyse rigoureuse des conditions d'auto-
excitation d'une impédance négative connectée à

d'autres éléments nécessite l'application des
méthodes décrites aux chapitres 3c et 2 ; compte tenu
cependant du mode d'excitation de Z„ (excitation
du type «série» ou du type «parallèle», dans le sens
des chapitres 1 a et 1 b) et du signe de X„ indiqué
dans le tableau II, on établira les règles empiriques
suivantes :

Il est avantageux de connecter:
1. Une inductivité négative-parallèle à une

impédance (positive) de valeur faible aux fréquences
inférieures.

2. Une inductivité négative-série, à une
impédance de valeur élevée aux fréquences supérieures.

3. Une capacité négative-parallèle à une
impédance de valeur faible aux fréquences supérieures.

4. Une capacité négative-série, à une impédance
de valeur élevée aux fréquences inférieures.

Ces règles, nous le répétons, ne sont pas absolues
et ne dispensent pas de l'établissement du
diagramme de Nyquist. Elles donnent cependant une
vue générale utile des possibilités de connexion
d'impédances négatives et peuvent orienter le choix
du tvpe approprié à tel ou tel cas.

d) Avantage d'un amplificateur à couplage direct

Un tel amplificateur (amplificateur de tensions
continues) se caractérise, s'il est bien conçu, par le
fait que y « 0 et G0 constant jusqu'à f 0.

Il s'en suit que dans ce cas F2 F4 0 aux
fréquences inférieures jusqu'à f 0. Il résulte alors
du tableau II, que les capacités négatives-série et les
inductivités-parallèle produites à l'aide d'un tel
amplificateur ne présenteront de composante active
Xn < 0 à aucune fréquence. Elles ne pourront donc
pas occasionner d'auto-excitation, et se laisseront
ainsi connecter à n'importe quel autre élément; par
ce procédé nous voilà donc à même de résoudre en
principe tous les problèmes relatifs à des circuits
comportant des impédances négatives. Dans la
mesure du possible, on tendra cependant à parvenir
au but à l'aide d'un amplificateur normal, par égard
à la complication inhérente à tout amplificateur
stable à couplage direct.

6. Calcul et propriétés de Vimpédance de sortie Z„

L'importance de l'impédance de sortie Za apparaît
dans (34), (35) et (39) ; nous avons également vu

l'influence de Z„ sur la stabilité de Z„ dans (30) et
(32). C'est pourquoi il importe de calculer Z„.

Pour cela, prenons le cas (le plus fréquent) d'un
amplificateur de 2 étages, à contre-réaction sur les
2 étages. Distinguons par les indices 1 et 2 les
grandeurs relatives au 1er et au 2e étage respectivement.

_ Fig. 13

- L Impédance de sortie d'un
amplificateur à deux étages

z Ri-
Zc + Ri-2

Zc impédance de charge (ano-
dique) de l'étage final

Ri > résistance intérieure du
tube du 2e étage

SEV200S5 1 générateur de courant haute
fréquence

Nous établissons alors, en représentant le 2e

étage par le schéma équivalent de fig. 13:

Z" ; I —
y

— Iq » Iq ~ $2 Ügi

Dg2 A ß u
où S2 pente du 2e tube

Ug2 tension d'attaque du 2e tube
Ax amplification du 1er étage
ß U fraction de U retransmise de la sortie à l'en¬

trée par la contre-réaction.

De ces relations résulte :

Z„
1 + ZßA,S2

Dans le cas fréquent où (Z S2ß Axj 1 :

1
Z„

pAxSt

(42)

(42a)

Cette dernière relation établit les propriétés
fondamentales de Za :
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a) Za '

1

J1
b) èZ„/Z„ «s — 7>A/A

(43)

Ces 2 propriétés déjà indiquées aux chapitres
3 a et 3 b, proviennent de ce que l'amplification
totale A est proportionnelle au produit A1 S2.

Remarquons en particulier que dans le domaine

d'utilisation, A constante, réel; cela permet la
compensation de Z0 par Rt ou R30 respectivement,
ainsi que nous l'avons admis dans l'établissement
des formules simplifiées (25) et (27).

Notons enfin que

— tandis queG -1 — ßA

7
1

Z, ~ - r
A

Comme les valeurs Z„' Z„ — Z„ ou Z2' Z2-\- Za

[formules (34) et (39)] dépendent de G, et que G

d'après les équations ci-dessus, dépend beaucoup
plus faiblement de A que Z„, il s'en suit que la variation

de Za pourra influencer Z„ beaucoup plus vite

que celle de G. Les facteurs K2 et Ki (chapitre 3)
tiennent compte de ce fait dans l'étude de la stabilité

de Z„.

7. Limites de charge des impédances négatives

La limite de charge d'une impédance négative
est déterminée par la limite U0 de la tension
d'attaque de l'amplificateur (f/0 tension d'attaque
au-dessus de laquelle les distorsions non-linéaires
deviennent importantes.) En effet, pour U > [/„,
G devient plus petit et fonction de [/; en

conséquence, d'après (35) et (39), Z„ ne représente plus
un élément linéaire pour U > U0. Notons enfin que
Za, qui est >—< 1/A, sera encore beaucoup plus
sensible que G à une surcharge et influencera de son
côté également Z„.

Soit Ugl la tension d'attaque maximale tolérable
à la grille du 1er tube, on a alors :

U0=Ugl-ßU=Ugl(1-ßÄ) (44)

si U représente la tension de sortie de l'amplificateur.
Il importe naturellement aussi de veiller à ce que

le 2e étage ne soit pas surchargé pour U, U0, où
Ue Représente la tension d'entrée de l'amplificateur.

8. Impédances négatives et phénomènes
non-stationnaires 5)

L'application de la transformation de Laplace
permet une étude aisée des phénomènes transitoires
relatifs à des impédances négatives réalisées par le
procédé décrit dans la section IV. Si nous désignons
par Zn(p) l'impédance négative considérée nous
aurons :

U(p)=Zn(p)-I(p)
5) Les fonctions de p considérées ici sont toutes

complexes; aussi, on omettra dans ce chapitre de surligner, afin
d'alléger l'écriture.

i(p)
Zn (P)

U(p)

où U représente la tension aux bornes de Z„ pour un
courant d'intensité I.

Les valeurs instantanées u(t) L~1U(p) et i(t)
L~1I(p) seront alors liées par les équations:

ou:

»(t) {L-1[Z.(p)]}» i(t)

i(t) {L-1 [1/Z„(p)]} » u(t)
(45)

Les valeurs de Z„(p) étant connues à partir de (35)
ou de (39), on pourra en principe effectuer
l'opération L-1 (inverse de la transformation de Laplace)
et trouver la relation entre u(t) et i(t) d'après (45).
Il importe évidemment encore pour cela de
connaître la forme analytique de G{p), gain de
l'amplificateur.

Etudions les phénomènes transitoires d'une
impédance négative-série réalisée à l'aide d'un
amplificateur à réponse optimum. Dans ce cas, G(p) aura
la forme8) :

(46)
(p + oc)2

G(p)

A partir de (39) :

Zn(jo) [Z3(p) + R30\ [1 - O(p)] + Za(p)

Simplifions les données par l'hypothèse généralement

légitime:

\R30(1- G) + Za(p)\< |Z, (1 — G)|

Cette hypothèse ne sera cependant pas justifiée
si Za varie d'une valeur importante déjà pour m <7 oc.

Il reste alors:

Zn{p) Z3(p) (1 — G„
(.p+ocy

(47)

Il apparaît déjà ici que les phénomènes transitoires

tendront à présenter un caractère idéal (dans
le sens des définitions (1) à (3)] lorsque

« —> oo, ou

pratiquement : M > \p\

Nous aurons donc un comportement idéal au
point de vue des phénomènes transitoires pour:

a> 2 Tzf -4 oc

Définissons /+1 oc/2 tc 1 / T+i, où /+1 caractérise

aussi la limite supérieure des fréquences
amplifiées, en vertu de (46) ; la condition ci-dessus
s'énonce alors:

\Jt mt > T+1

si f représente la fréquence de la tension appliquée
ou du courant imposé à l'impédance négative
considérée, ou t la durée du phénomène transitoire
considéré (T+1 1/f+i).

Comme exemple considérons la réponse de Z„,
type série, à une impulsion de courant unité; soit
donc :

i(t) l(t); I (p) —;

8) voir la bibliographie [5] à la fin du travail.
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(45) devient alors:

u (t) L 1 Z3(p)

Soit:
*,(!) L-iZ(p)

Alors :

u (t) z3(t) * [i _ ç L i
L lp(]3 + «)2JJ

U (t) z3(t) (1 — G0) + [G0z3(f)] * [e-^M1 +««)] (49)

Le cas idéal correspond à:

u (t) z3(t) (1 G0)

Nous voyons que (49), c.-à-d. le cas réel, tend
vers le cas idéal si le 2e terme du second membre
est négligeable; et la condition, pour cela, apparaît
de nouveau sous la forme:

oc t 1

Ti

ce qui est identique à (48).
Le calcul de cet exemple a la valeur d'une

démonstration générale que la condition (48) est
suffisante pour que la réponse aux phénomènes
transitoires soit idéale ; on s'en convainc dans le cas
d'une fonction i (t) quelconque par les relations
connues suivantes :

Ä(t) L-1soit

on a alors:

u (t) A (t 0) i (t) -f-
dA
ht~ i(t)

Et A(t) est précisément donné par (49).
L'étude des phénomènes transitoires d'impédances

négatives-parallèle se mène de façon
analogue, ce pourquoi nous renonçons à la reproduire.

La conséquence essentielle de l'étude de ce
chapitre est que: dans son domaine d'utilisation, une
impédance negative réalisée d'après les méthodes
décrites dans cette section se comporte de façon quasi
idéale non seulement dans le cas de phénomènes
périodiques mais aussi pour des phénomènes transitoires,

supposé que l'amplificateur ait la réponse
optimum de (46).

Cela résulte de ce que la condition de comportement
idéal pour des phénomènes périodiques

{G — réel, constant) et pour des phénomènes
transitoires est la même et s'exprime par (48).

9. Résultats expérimentaux
Nous avons vérifié expérimentalement, par la

réalisation de diverses impédances négatives à

l'aide d'un amplificateur à contre-réaction (ß -0,1)
la théorie exposée dans les chapitres précédants ; les
résultats s'avérèrent satisfaisants et nous en
reproduisons quelques uns à titre documentaire; nous
avons effectué les mesures reproduites à l'aide de la
méthode de résonance (connexion de l'impédance
inconnue en série avec un circuit oscillant-étalon).

a) Linéarité
A l'aide de résistances négatives du type-série

nous avons vérifié la linéarité de la fonction Zn
donnée par (26) ; la mesure fut effectuée avec un gain
et une fréquence constante (/ 50 kHz, et R.j0 0,
Za — Ra 50 Q (notation d'après fig. 8). La fig. 14

en montre les résultats.

0 - 200 - 400 - 600 -800 -1000 ft
SEV200S6 " Rfl

Fig. 14

Vérification de la linéarité de la transformation de la
résistance positive R3 en une résistance négative Zn

b) Influence de la fréquence et du déphasage

Une capacité négative du type série fut calculée
(partie réelle et imaginaire), en connaissance de G0

et y, à partir des relations (39)-à (41), puis réalisée et
mesurée. Les mesures s'effectuèrent également pour
R30 0 et sont reproduites en fig. 15; la valeur
élevée de Rn provient de ce que y n'était pas exactement

nul; il fut cependant possible de compenser
Rn sur tout le domaine des fréquences considérées,
et même d'obtenir Rn < 0, de manière à désamor-
tir le circuit oscillant de mesure

pF
+400 -(--1000

-800300-

+200

|+100

Z'n 3 zn -Z„ - Ri +
j û)Ci

-800

-400
tf

--200 |
_1_

° *\
C'„ < 0

flc„-c;i «c<;
i i

40 60 100 120 140 kHz20
sEvzoes? '

Fig. 15
Dépendance de la fréquence d'une capacité négative-série

C'n et de sa résistance de perte R'n
Zn et Z,i: même signification que sur fig. 8

aCT ;Im (Zn)

c) Stabilité

La stabilité d'une résistance négative, calculée
d'après (32), fut mesurée et donna les résultats de

I2
o
10 20

jpy20os» '

« rv Kt)
z-n M

40 60 eo 100 120 kHz

Fig. 16

Stabilité d'une résistance négative Zn
valeurs théoriques

° valeurs mesurées
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fig. 16. Cette mesure met en particulier l'importance
de Za en évidence (comparer valeurs théoriques de
K3 et de K3 -f- Kfj.

d) Limites de charge
La limite de charge d'une résistance négative-

définie
d'après (44).

pour èZ„/Z„ 5 %, fut calculée

10 20 * 40 60 80 100 120 KHI
Sev20es9

* '
Fig. 17

Limite de charge d'une résistance négative Zn
valeurs théoriques

° valeurs mesurées
Uo tension à l'entrée de l'amplificateur pour |dZ«/Zn| 5%

Les valeurs théoriques et expérimentales sont
reproduites en fig. 17.

V. Applications d'impédances négatives

Les possibilités d'application d'impédances
négatives sont aussi nombreuses que diverses. De
façon générale, nous distinguerons 2 groupes
d'applications :

a) Compensation d'impédances positives
gênantes: par ex. compensation d'une capacité
indésirable par une capacité négative correspondante.

b) Solution de problèmes de haute fréquence
(év. aussi de basse fréquence) par des procédés
nouveaux, grâce aux caractères particuliers des réac-
tances ou des quadrupôles réalisables à l'aide
d'impédances négatives. Exemple: déphasage constant
sur une large bande de fréquences.

Faute de place, nous ne nous étendrons pas
longtemps sur telle ou telle application; nous voulons
cependant en citer quelques-unes pour illustrer
l'intérêt de la technique des impédances négatives.

1. Combinaisons de reactances;
déphasages indépendants de la fréquence

Par la combinaison d'impédances, positives et
négatives on obtient une série de réactances
nouvelles dont celles données par les fig. 18 à 20 offrent,
entre autres, un intérêt certain.

Fig.18
Positance-série

Connection-série d'une
inductivité positive L et

d'une capacité négative Cn
1

0)Cn

1

Y - wL

— coL
0)|Cn|

SEV2O060

Nous appelons positance une réactance toujours
positive et présentant un maximum ou un mini¬

mum; la positance-série résulte de la connexion en
série d'une inductivité positive et d'une capacité
négative, la positance-parallèle, de la mise en
parallèle de ces 2 éléments.

Fig. 19

Positance-parallèle
Connection-parallèle d'une
inductivité positive L et

d'une capacité négative Cn
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Par l'emploi d'une inductivité négative et d'une
capacité positive nous obtiendrons des négatances,
réactances toujours négatives et possédant un ex-
tremum. Leur allure est semblable, au signe près, à

celle des positances.
Par des combinaisons de positances ou

négatances on conçoit la possibilité d'obtenir des
réactances de la forme reproduite en fig. 20.

Flg. 20
Réactance constante

Y réactance
/ fréquence

A l'aide de tels éléments on imaginera dès lors
aisément des filtres d'amortissement constant et
de déphasage constant également sur une bande de

fréquence étendue.

2. Applications diverses

Une application immédiate de la haute stabilité
réalisable sur des impédances négatives (dont les
résistances négatives) sera l'emploi de résistances
négatives stabilisées pour l'amélioration du Q d'un
circuit oscillant ou plus généralement d'une impédance

positive. Cela présentera entre autres un inté-
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Fig. 21

Amplificateur à haute sélectivité
résistance transformée en résistance négative entre A
et B (réaction positive)

Ru diviseur de tension pour la contre-réaction stabilisatrice

rêt dans le cas de filtres. Dans ce sens, nous men-
tionnerons Vamélioration de la sélectivité d'un

amplificateur à haute fréquence à l'aide d'une réaction
stabilisée (c.-à-d. d'une résistance négative stabilisée.)
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Le schéma fig. 21 montre une réalisation où pour
une complication minime, on obtient l'avantage
cité. Il demeure clair cependant que, à stabilité
totale égale, le gain résultant de l'amplificateur ne
change pas: seule la sélectivité croît par suite du
désamortissement du 1er circuit oscillant.

Les impédances négatives réalisées par cette
méthode trouveront également une application
intéressante dans la modulation de fréquence : les tubes-
réactance normalement utilisés produisent en
effet un Q très bas, tandis que les impédances
négatives, contrôlables électriquement (puisque linéairement

dépendantes du gain) auront un Q aussi élevé

que l'on voudra, ou même un terme réel négatif.
Un voltmètre à lampe, verra sa capacité d'entrée

réduite par l'emploi d'une capacité négative
compensatrice.

VI. Conclusion

Par ces quelques exemples, nous n'avons de loin
pas, nous le répétons, épuisé les possibilités d'application

d'impédances négatives. Tel n'était pas non
plus notre but car cela constituerait en soi déjà
l'objet d'une étude étendue. Tout au plus espérons-

nous avoir montré, par cet aperçu de la technique
des impédances négatives, les principaux problèmes
que pose leur réalisation, ainsi que la diversité des
possibilités qu'elles ouvrent.

Nous voudrions enfin encore remercier Monsieur
le Professeur Tank des conseils qu'il nous a
donnés tout au cours du travail dont nous avons
résumé ici les grandes lignes, ainsi que pour la
bienveillance dont il n'a cessé de nous témoigner en ces
circonstances.
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Technische Mitteilungen — Communications de nature technique
Höchstspannungsisolatoren aus Porzellan

mit halbleitender Glasur
621.315.62

[Nach J. S. Forrest: Isolateurs pour très haute-tension en
porcelaine enduite de vernis semi-conducteur. Bull. Soc. belge
Electr". Bd. 66(1950), Nr. 3, S. 129...138.]

Viele Probleme, die bei der Anwendung von
Hochspannungsisolatoren auftauchen, sind auf die Störung der idealen
Spannungsverteilung zurückzuführen. Eine gleichmässige
Spannungsverteilung ergibt zudem die wirtschaftlichste
Ausnützung des Isoliermaterials. In Gegenden mit
Verschmutzungsgefahr kann bei hoher Luftfeuchtigkeit oder auch an
der Meeresküste auf der Isolatoroberfläche eine leitende
Schicht entstehen, welche Ursache von Störungen ist.
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Fig. 1

Potentialverteilung über eine Hängekette
a bei schönem Wetter (relative Feuchtigkeit 42%)
b bei feuchtem Wetter (relative Feuchtigkeit 95%)
U Spannung; k Nummer der Isolator-Einheit

Im Freiluftlaboratorium der British Electricity Authority,
das 1934 in einer stark mit Industriestaub befallenen Gegend
errichtet wurde, konnten Messungen an Isolatoren im
Betrieb vorgenommen werden. Der Ableitstrom, längs einer

132-kV-Isolatorenkette, stieg bei hoher Feuchtigkeit stark an
und führte zeitweise zu kurzzeitigen Überschlägen
(Wischern). Die Spannungsverteilung einer Kette (Fig. 1) war
zeitweise sehr ungleichmässig. Die Spannungsverteilung wird
in diesem Falle durch Ableitströme bestimmt und kann
durch Steuerelektroden (Ringe) nicht beeinflusst werden.
Versuche haben gezeigt, dass ein Steuerstrom von 1 mA
über die 132-kV-Kette (76 W Verlust) die Spannungsvertei-
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Fig. 2

Potentialverteilung über eine Hängekette
a mit normalen, b mit stabilisierten Isolatoren

Relative Feuchtigkeit 90 %; Temperatur 8 °C
« Weitere Bezeichnungen siehe Fig. 1

lung genügend stabilisieren kann (Fig. 2). Diese Steuerung
kann erreicht werden durch eine halbleitende Glasur (ca.
10 MQ) auf den Isolatoren. Die hohe Isolation der Glasur
(ca. 100 000 MQ) kann auf die gewünschten Werte (10 MQ)
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