Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 43 (1952)

Heft: 20: Centenaire des télécommunications en Suisse

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

relais, während 8, 9, 10, 11 Kontakte sind, die durch die Kipprelais betätigt werden. R_1 und R_2 sind die Wicklungen von zwei Relais, 12 und 13 die dazugehörenden Kontakte. Das Relais R2 weist eine Vergrösserungseinrichtung auf. 14 und 15 sind die Wicklungen eines Regulierorganes, z. B. von Motoren für Vorwärts- und Rückwärtsgang; 16 ist ein Kontakt, der sich schliesst und wieder öffnet, wenn die Reguliereinrichtung in Gang kommt. Die Wirkungsweise ist folgende: Angenommen, die Spannung steige so, dass der Kontakt 3 sich auf der Seite «maximal» schliesse, so wird die Spule 4 des obern Kipprelais erregt, der Kontakt 8 schaltet um und der Kontakt 9 wird geschlossen; die Spule 14 des Regulierorgans wird erregt, und die Regulierung setzt ein. Jetzt wird auch der Kontakt 16 vom Regulierorgan geschlossen, und die beiden Relais R_1 und R_2 werden erregt. Kontakt 12 öffnet sich sofort, und Kontakt 13 schaltet etwas verzögert um. Nach einer geraumen Zeit wird der Kontakt 16 durch das Regulierorgan wieder geöffnet. Kontakt 12 schliesst sich sofort, der Umschaltkontakt 13 schaltet etwas verzögert um. Deshalb bildet sich kurzzeitig eine Strombahn über die Spule 5 des oberen Kipprelais. Der Umschaltkontakt 8 schaltet sich wieder auf die obere Spule 4 und der Kontakt 9 wird geöffnet. Sofern sich die Kontaktzunge 3 in einer Mittelstellung befindet, so ist die Spannung auf die vorgeschriebene Grösse einreguliert worden, und die Einrichtung steht für einen neuen Reguliervorgang bereit.

Sofern die Reguliereinrichtung entsprechend gebaut wird, ist es möglich, die Spannungen sehr genau konstant zu halten. Die Schaltgenauigkeit des Spannungsrelais für sich allein beträgt etwa \pm 0,2 %. Diese Genauigkeit kann in Verbindung mit einer Regulieranlage nicht eingehalten werden. Es sollte aber möglich sein, die Spannung auf \pm 0,5 % halten zu können. Die Leistungsaufnahme des Spannungsrelais beträgt bis 50 V rund 1 W.

Für die Verstärkerstationen bei langen Kabelleitungen sind diese Spannungsrelais von einer Telephonverwaltung in grösserer Zahl verwendet worden. Ein Spannungsrelais hat die Spannung für die Heizung der Verstärkerröhren auf 18,8 ± 0,2 V einzuregulieren. Ein zweites Spannungrelais hat die Spannung für die verschiedenen Telephonrelais auf 48 ± 4 V einzuhalten, und ein drittes Relais hat schliesslich dafür zu sorgen, dass die Anodenspannung der Verstärkerröhren innerhalb der Grenzen 220 ± 2,2 V bleibt. Es besteht wohl kein Zweifel, dass die Zuverlässigkeit und die Güte der übermittelten Gespräche auf diesen langen Kabelleitungen mit der Konstanz der Spannungen in gleichem Masse zunimmt. Auf diese Weise leistet daher der längst bekannte Gleichstrom-Ampèrestundenzähler, in geeigneter Weise für diese Regulieraufgaben umgebaut und sinnvoll der Nachrichtentechnik wertvolle angewendet, Dienste.

Adresse des Autors: W. Beusch, Guggiweg 7, Zug.

Technische Mitteilungen — Communications de nature technique

Die Kraftwerke Center Hill und Wolf Creek am Cumberland River

[Nach F. H. Wolf und R. B. Willi: Record 94 % Hydroturbine Efficiency attained at Center Hill Project. Electr. Wld. Bd. 137(1952), Nr. 13, S. 32...34.]

Höchster Turbinenwirkungsgrad und die Verwendung ölgefüllter, in Röhren verlegter 15-kV-Kabel zwischen Generatoren und Verteilanlage sind die Hauptmerkmale der beiden neuen Kraftwerke Center Hill und Wolf Creek in den USA, welche kürzlich in Kentucky und Tennessee errichtet wurden.

Diese beiden Anlagen wurden zum Zwecke der Flussregulierung und der Energieerzeugung im Rahmen des Ausbauplanes des Cumberland Rivers erstellt. Das Kraftwerk Wolf Creek liegt ca. 16 km nördlich von Albany Ky entfernt. Es ist mit einem Stausee von rd. 7,5 · 10⁶ m³ Inhalt verbunden, welcher einer der grössten künstlichen Seen der USA ist. Der obere Teil des Beckens wird für die Aufnahme von Hochwasser bis zu einer Niveaudifferenz von 11,3 m und mit einem Inhalt von rd. 2,4 · 10⁶ m³ frei gelassen. Eine weitere Absenkung von 15 m dient zur Erzeugung von Spitzenenergie in wasserarmen Zeiten.

Center Hill liegt in Tennessee am Caney Fork, einem der wichtigsten Zuflüsse des Cumberland Rivers. Der Hochwasserschutzraum beträgt hier, bei ebenfalls 11,3 m Niveaudifferenz, rd. 0,9·10⁶ m³, wobei eine weitere Absenkung von 9 m für die Energieerzeugung vorgesehen ist.

Das Flusstal wird bei beiden Anlagen von einem kombinierten, aus geschüttetem Erddamm mit anschliessender Schwergewichtsmauer bestehenden Bauwerk abgesperrt. Der betonierte Einlauf enthält bei Wolf Creek 6, bei Center Hill 3 gepanzerte Druckschächte von je 6 m Durchmesser. Diese führen zu dem am Mauerfusse angeordneten Maschinenhaus.

Bei beiden Anlagen beträgt die grösste Mauerhöhe etwa 76 m und das normale Gefälle etwa 48,8 m. Infolge der Ähnlichkeit dieser Angaben konnten bedeutende Ersparnisse in der Projektierung und im Bau erreicht werden, da gleiche

Maschinengruppen eingebaut werden konnten. Die installierte Leistung des Wolf Creek Werkes beträgt 270 MW. Die Generatoren sind dauernd mit 15% überlastbar. Center Hill leistet die Hälfte, die Jahresarbeit beträgt aber infolge anderer Abflussverhältnisse nur etwa 40% derjenigen von Wolf Creek.

Tabelle I vermittelt die wichtigsten technischen Daten der beiden Anlagen.

Technische Angaben

Tabelle I

	Einheit	Center Hill	Wolf Creek
Maximale Staukote	m	224	249
Normale Staukote	m	212,7	237,7
Minimale Staukote	m	203,7	222,7
Kote des Unterwassers	m	160	184
Maximales Gefälle	m	68	70,3
Mittleres Gefälle	m	52,4	52,4
Minimales Gefälle	m	42,8	36,4
Staubeckeninhalt	m^3	2 488 000	7 464 000
Hochwasserschutzraum	m^3	940 000	2 380 000
Turbinen	kW	3×46000	6×46 000
Drehzahl	U./min	105,9	105,9
Durchgangsdrehzahl bei			
52,4 m	U./min	177,5	194
68,0 m	'U./min	202	224
Generatoren	kVA	$3 \times 36 800$	$6 \times 36\ 800$
	kV	13,8	13,8
	Hz	60	60

Infolge des sehr gross bemessenen Hochwasserschutzraumes sind beide Anlagen von grosser Wichtigkeit für den Ausgleich des Zuflusses der unterliegenden Kraftwerke. Gleichzeitig dienen sie aber auch als wichtige Stützpunkte für den westlichen Teil des ausgedehnten Netzes der Tennessee Valley Authority.

Leitungen die prozentuale Anzahl der Einschläge ohne Über-

schläge zu. Freileitungen mit Betriebsspannungen über

110 kV sollten praktisch gewitterfest gebaut werden können.

Spannfeldern und nach Anzahl der Erdseile gibt folgendes

Eine Unterteilung der Einschlagsorte nach Masten oder

Es wurden vertikale Francis-Turbinen mit Stahlguss-Rädern eingebaut. Die normale Leistung beträgt 46 MW, welche aber auf 58 MW erhöht werden kann. Die Kanten der Leitschaufeln und deren beide Enden sind mit Chrom-Nickel-Überzügen versehen, um die Abnützung zu vermindern. Alle Schmierstellen besitzen ein automatisches Fettrelais, das bei jeder Regulierbewegung für ausreichende Schmierung sorgt.

Bei motorischem Betrieb als Phasenschieber kann in die aus rostfreiem Stahl bestehenden Dichtungen Kühlwasser eingeleitet werden. Ein automatisches Ventil reguliert dabei den Luftzutritt zum Saugrohr.

Der garantierte Wirkungsgrad von 90 % wurde anlässlich der Abnahmeversuche an einer der Center Hill Turbinen um 4 % überschritten und erreichte den Wert von 94 %.

Die Regulatoren arbeiten normal mit 17,5...21 kg/cm² Öldruck. Sie öffnen oder schliessen den Leitkranz in 5 s, wobei diese Zeit bis auf 12 s verlängert werden

Fig. 1 Ansicht des Kraftwerkes Wolf Creek

Anschliessend an die Schwergewichtsmauer ist der Staudamm sichtbar

SEY 13775

kann. Unterhalb der Leerlauföffnung wird die Schliessbewegung verlangsamt. Die Empfindlichkeit des Pendels beträgt 0,1 % Drehzahländerung und kann zwischen 85 % der Drehzahl bei Leerlauf bis zu 105 % der Drehzahl bei Überlast innegehalten werden. Die kraftschlüssige Verbindung zwischen Regulator und Steuerorgan des Leitrades wird durch flexible Stahlkabel, wie sie im Flugzeugbau verwendet werden, hergestellt.

Die erzeugte Energie wird von den Generatoren in 4 × 3 ölgefüllten 15-kV-Einleiterkabeln nach der Freiluft-Transformatorenstation übertragen. Dabei sind je 2 Stränge in einer Rohrleitung von 6 5/8'' (16,5 cm) Durchmesser verlegt, welche ebenfalls mit Öl gefüllt ist.

In Wolf Creek arbeiten je 2 Generatoren auf eine gemeinsame Transformatorengruppe von 154 kV Oberspannung. In Center Hill besitzt dagegen jeder Generator seine eigene Transformatorgruppe, wobei eine weitere Gruppe von 40 MVA auch die Abgabe in das 46-kV-Zwischenspannungsnetz erlaubt. Fig. 1 zeigt die Ansicht des Kraftwerkes Wolf Creek. Diese ist für die gegenwärtige Bauweise solcher Kraftwerke in den USA charakteristisch. W. Howald

Blitzeinschlag-Messungen in Freileitungen

551.594.2:6°1.315.1 [Nach H. Baatz: Blitzeinschlag-Messungen in Freileitungen. Elektrotechn. Z. Bd. 72(1951), Nr. 7, S. 191...198.]

Freileitungsnetzen mit Betriebsspannungen 15...220 kV und total ca. 2000 km Leitungslänge sind in den Jahren 1933...1940 mit Hilfe von rund 115 000 Stahlstäbchen und 19 Klydonographen-Meßstellen die Ströme bei Blitzeinschlägen untersucht worden. Dabei wurden 1434 Blitzeinschläge erfasst, deren Untersuchung Anhaltspunkte über möglichst gewittersichere Bauart der Freileitungen liefern. Es handelt sich um Leitungen ohne und mit 1, 2 und 3 Erd-

Auf Leitungen ohne Erdseil bei 15...110 kV Betriebsspannung führten bei total 247 registrierten Blitzeinschlägen praktisch unabhängig von der Betriebsspannung annähernd die Hälfte der Einschläge zu Überschlägen auf den Leitungen. Im Gegensatz hiezu nimmt mit steigender Betriebsspannung (höhere Isolationsfestigkeit) auf durch Erdseil geschützten Anzahl Erdseile Anzahl Einschläge in % in Masten in Spannfe in Spannfelder 53 34 21 79

Auf Leitungen ohne Erdseil trifft rund die Hälfte der Blitzschläge die geerdeten Maste, wobei diese gegenüber den grossen Längen der ungeschützten Spannfelder doch nur einen kleinen Ausschnitt einnehmen. Die Feldausbildung über dem geerdeten Mast hat somit einen Einfluss auf das Vorwachsen des Blitzes in Bodennähe. Einschläge in Leiterseile nehmen mit steigender Anzahl der Erdseile sehr rasch ab; auf Leitungen mit einem Erdseil treffen nur noch 5 % der Einschläge die Leiterseile, bei Leitungen mit 2 oder 3 Erdseilen sind überhaupt keine Einschläge mehr auf Leiterseile eingetreten. Dieser Vergleich zeigt den hohen Schutzwert der Erdseile. Leiterseil-Einschläge führen im allgemeinen zu Überschlägen an den nächsten Masten, während Rück-Überschläge von der Höhe der Stossüberschlagsspannung der Leitungsisolation abhängig sind und mit steigender Betriebsspannung sich verringern.

Einen Überblick über die Häufigkeit der Stromstärken im Blitzkanal und die Polarität der Wolkenentladungen zeigen folgende Prozentzahlen. Von der Gesamtzahl der Blitze sind 87 % aus negativ und 13 % aus positiv geladenen Wolkenteilen erfolgt. Bei positiven Wolkenentladungen ergibt sich auch eine verhältnismässig höhere Zahl von Einschlägen in die Masten. Im Blitzkanal sind Stromstärken bis 50 kA in 86,5 %, 50...100 kA in 11 %, 100...150 kA in 2 % und 150... 400 kA in 0,5 % der Gesamtzahl der Blitzschläge aufgetreten. Die Stromstärke in den Masten scheint grundlätzlich nicht davon abzuhängen, ob der Einschlag in den Mast selbst oder in ein Erdseil erfolgt Rund 80 % der Mastströme liegen unter 20 kA, 99 % unter 60 kA. Mit diesem Wert muss jedoch für die Dimensionierung der Erdelektroden der Masten gerechnet werden. Bei Überschlägen in Leiterseile wurden Ströme bis 6 kA, bei Rücküberschlägen bis 10 kA gemessen.

Die Blitzeinschlagstellen sind bei nicht zu verschiedenen geographischen Bedingungen nahezu gleichmässig über die ganze Leitungsstrecke ohne Bevorzugung einzelner Abschnitte oder Maste verteilt. Somit müssen sich die Massnahmen zur Erhöhung der Gewittersicherheit von Leitungen über die ganze Leitungslänge erstrecken.

Für die Beurteilung der zweckmässigsten Anordnung der Erd- und Leiterseile wird das Verhältnis s/w, des senkrechten Höhenunterschiedes s zum wagrechten Abstand w von Erdund oberstem oder äusserstem Leiterseil eingeführt. Leiterseileinschläge sind nur festgestellt worden, wenn das Verhältnis s/w kleiner als 1,3 war. Abgesehen von Doppelleitungen mit Anordnung der 6 Leiter in einer horizontalen Ebene sollte es möglich sein, mit 2 Erdseilen einen ausreichenden Schutz zu gewährleisten. Als Ergebnis der Untersuchungen über das Mastbild wird empfohlen, das Verhältnis s/w nicht kleiner als 1.5 zu wählen.

Während Leiterseileinschläge durch Erdseile vermieden werden können, lassen sich Rücküberschläge bei gegebener Stossfestigkeit der Leiterisolation nur durch genügend niedrigen Widerstand der Masterdung vermeiden. Als günstigste Erdelektroden werden tiefe Rohrleitungen unmittelbar am Mast in Verbindung mit nicht zu langen Strahlen-Elektroden empfohlen. Mit Mastströmen bis 60 kA sollte gerechnet werden. Da die Masterdungen erhebliche Kosten verursachen, wird man sich mit einer gewissen Sicherheit gegen Rücküberschläge begnügen müssen.

Korrosionsbeständigkeit von Aluminium- und Aldreyleitern

[Nach G. Dassetto: Korrosionsbeständigkeit von Aluminium- und Aldreyleitern. Aluminium Suisse Bd. 2(1952), Nr. 3, S. 96...99.]

Die grosse Korrosionsbeständigkeit von Reinaluminium (99,5 %) und Aldrey gegen die Meeres- und die Industrieatmosphäre hängt von der Eigenschaft dieser Metalle ab, sich bei Berührung mit Luft oder Wasser mit einer sehd dünnen, aber dichten und zähen Oxydschicht zu schützen, die sich unmittelbar nach einer Verletzung neu bildet. Dank einer vollständigen Lösung der Verbindung Mg2Si in den Aluminiumkristallen, hat der vollkommen homogene Aufbau des Aldreys einen besonderen Einfluss auf dessen Korrosionsbeständigkeit, die sowohl in mit Salzdämpfen gesättigter Luft, als auch bei Koronaentladungen nicht vermindert wird.

Bei einem Dauerversuch auf der Insel Pellestrina (Venedig) von 1927–47 wurden Aldrey-Seilmuster den sehr stark salz- und jodhaltigen Meereswinden der Adria ausgesetzt und sogar mit durch die Stürme versprühtem Meerwasser oft benetzt, mit der Absicht, die Versuche bis zu einer evenuell vollständigen Zerstörung der Prüflinge fortzusetzen, was jedoch nicht zustande kam. Die Seile wurden keiner mechanischen Spannung unterworfen, so dass die Drahtlagen nicht vollständig geschlossen blieben. Salznieder-

schläge konnten somit ins Innere der Seile eindringen, aber durch Regen nicht mehr ausgewaschen werden. Dadurch sind nach etwa 20 Versuchsjahren in der zweiten Drahtlage etwelche Korrosionen entstanden. Aus periodisch ausgeführten Prüfungen sind die Vergleichswerte in Tabelle I wiedergegeben.

Versuchsergebnisse von Aldreyseilen

Tabelle I

	Zerreissfestigkeit kg/mm²	Leitfähigkeit $m/\Omega mm^2$
Garantiewerte	30,0	30,0
Mittelwerte: nach 61/2 Jahren	31,0	_
nach 11 Jahren	31,3	-
nach 20 Jahren	26,6 *)	28,5 *)

*) Infolge des schlechten Zustandes der Drähte der zweiten Lage wegen unentfernbaren Salzniederschlages.

Unter Berücksichtigung der ganz aussergewöhnlich strengen Prüfbedingungen und der Dauer der Versuche, sind diese Ergebnisse als gut zu bezeichnen.

Untersuchungsberichte von einigen in Italien in Betrieb stehenden Aldreyleitern lauten einstimmig zu Gunsten dieser Leiter, die trotz der Meereswinde und der stark unreinen Luft der Industriezonen ihre mechanischen und elektrischen Eigenschaften beibehalten haben. Auch hat sich Aldrey in tropischen Gegenden gut bewährt. Man darf also sagen, dass Aldrey dem Reinaluminium in Bezug auf Korrosionsbeständigkeit ebenbürtig ist.

Seit dem Jahre 1931 sind auch Bimetalleiter aus Stahl-Aldrey mit grossem Erfolg angewandt worden. Neuerdings sind derartige Leiter für die Ausrüstung der wichtigsten 220-kV-Leitungen Italiens in grossen Mengen montiert worden. Das gute Verhalten dieser Legierung geht deutlich aus deren Entwicklung hervor. Seit dem Jahre 1924 wurden bis Ende 1951 56 500 km Leiter (= 13 000 t) für Energieübertragung und 65 500 km (= 2250 t) für Fernmeldeleitungen installiert.

Einige wenige Korrosionsfälle wurden hin und wieder festgestellt. Es handelt sich jedoch immer um Leiter, die entweder aus unreinem Metall hergestellt wurden (hauptsächlich in der Nachkriegszeit), um Leiter, die Kupfersplitter enthalten (eingeschlossen während des Drahtzuges), um unsachgemässe Verlegung (Verunreinigung durch Dünger) oder um Verwendung ungeeigneter Armaturen (aus kupferhaltigen Legierungen oder aus Guss, Eisen und Stahl, nicht oder schlecht verzinkt).

Wirtschaftliche Mitteilungen — Communications de nature économique

Gesuche um Energieausfuhrbewilligungen

382.6:621.311 (494)

1. Die S. A. l'Energie de l'Ouest-Suisse in Lausanne, die schon früher nach Frankreich exportierte, stellt das Gesuch um Erteilung einer Bewilligung für die Ausfuhr von jährlich 35 GWh 1) elektrischer Energie mit einer Leistung bis maximal 35 MW an die Electricité de France, Service National, mit Sitz in Paris. Im Vertragsjahr 1952/1953 bleiben Energiemenge und Leistung auf 25 GWh, bzw. 25 MW und in den Vertragsjahren 1953/1954 und 1954/1955 auf 30 GWh, bzw. 30 MW beschränkt.

Um die Bewilligung wird für die Zeit bis 31. März 1960, das heisst für eine Dauer von zirka 7½ Jahren nachgesucht.

2. Die Aare-Tessin A.-G. für Elektrizität in Olten, die schon früher nach Frankreich exportierte, stellt das Gesuch um Erteilung einer Bewilligung für die Ausfuhr von jährlich 140 GWh elektrischer Energie mit einer Leistung bis maximal 30 MW an die Electricité de France, Service National, mit Sitz in Paris. Im ersten Vertragsjahr 1952/1953 bleibt die Lieferung auf 60 GWh und im Vertragsjahr 1953/1954 auf 80 GWh beschränkt.

Um die Bewilligung wird für die Zeit bis 31. August 1963, das ist für eine Dauer von 11 Jahren nachgesucht.

3. Die Kraftwerke Mauvoisin A.-G. in Sitten, die gegenwärtig die Speicherkraftwerke Fionnay und Riddes erbaut,

1) 1 GWh = 1 Gigawattstunde = 106 (1 Million) kWh.

stellt das Gesuch um Erteilung der Bewilligung für die Ausfuhr von jährlich 80 GWh elektrischer Energie mit einer Leistung bis maximal 27 MW an die Electricité de France, Service National, mit Sitz in Paris. Die vorgesehene Ausfuhr entspricht 10 % der erzeugbaren Energiemenge und Leistung.

Um die Bewilligung wird für die Dauer von 20 Jahren, von der gemäss Bauprogramm im Jahre 1955 erfolgenden Inbetriebnahme der Kraftwerke an gerechnet, das heisst bis 1975 nachgesucht.

Gemäss Art. 6 der Verordnung über die Ausfuhr elektrischer Energie, vom 4. September 1924, werden diese Begehren hiermit veröffentlicht. Einsprachen, Strombedarfsanmeldungen und andere Vernehmlassungen irgendwelcher Art betreffend das eine oder andere dieser Gesuche sind bei der unterzeichneten Amtsstelle bis spätestens 18. Oktober 1952 einzureichen.

Bern, den 18. September 1952.

Eidgenössisches Amt für Elektrizitätswirtschaft

Le Zinc — Sa provenance et son emploi

[D'après C. A. Scarlott: Sources and uses of zinc. Westing-house Eng., vol. 11(1951), n° 6, p. 186...189.]

Le zinc n'est pas un métal dont on parle beaucoup. Ses propriétés ne sont pas «spectaculaires» comme celles du cuivre ou de l'aluminium, et sa répartition dans les cinq continents l'a empêché d'être l'enjeu de luttes internationales.

Il n'en reste pas moins l'un des métaux les plus indispensables à la technique moderne, et, si l'on mesure son importance par le tonnage consommé annuellement, il n'est dépassé que par le fer, le cuivre et le plomb.

La production mondiale de zinc en 1950 a été de deux millions de tonnes 1) environ. Il faudrait toutefois ajouter à ce chiffre la production de l'URSS et de ses alliés qu'on

estime à quelques 210 000 tonnes.

Les principaux producteurs sont les Etats-Unis (33 %), le Canada (15 %), le Mexique (10 %), l'Australie (10 %), etc. Notons que, tout en étant les plus gros producteurs de zinc du monde, les Etats Unis n'arrivent pas à couvrir les besoins de leur propre industrie. L'importation, surtout sous forme de concentrés, doit pourvoir au 38 % environ de leur consommation.

Qu'en est-il des réserves de minerais? La pénurie de zinc constatée en 1951 est-elle due à un épuisement graduel des gisements? Les statistiques (Tableau I) montrent que ces réserves sont considérables, mais que, si l'on prend les Etats Unis comme exemple, elles ne suffiraient guère qu'à une dizaine d'années au taux de consommation actuel. Ces statistiques ne font toutefois état que des gisements parfaitement prospectés et exploitables dans des conditions conformes à la pratique normale actuelle. Comme la prospection des gisements de minerais de zinc est particulièrement coûteuse en raison de nombreuses discontinuités des filons, l'on ne procède à leur exploration que pour les besoins d'un avenir prochain. De nombreux gisements connus n'ont pas été prospectés, d'autres filons seront certainement découverts et les méthodes d'extraction seront perfectionnées de façon à pouvoir exploiter des gisements considérés actuellement comme trop pauvres. Aussi peut-on affirmer, sans crainte de dementi, que les réserves de zinc suffirent pour de nombreuses décades.

Les utilisations principales du zinc sont:

- 1) La galvanisation à chaud,
- 2) La fonte injectée,
- 3) Les laitons.

La galvanisation à chaud, méthode de protection extrèmement efficace des armatures de fer et d'acier, a de tous temps été le consommateur principal du zinc. 350 à 400 mille tonnes de zinc par an, soit le 45 % de la consommation totale, sont utilisés pour cet emploi.

Réserves mondiales de zinc exploitables dans des conditions normales pour 1949

Tableau	T

Pays	106 t (Short Tons	
Etats Unis	8,5	
Autres Etats de l'Amérique du Nord	8,0	
Amérique du Sud	12,0	
Europe occidentale	8,5	
Europe orientale 1)	11,0	
Afrique	4,0	
Asie	4,0	
Australie	14,0	
Total	70,0	

1) Dont la moitié pour L'URSS.

La fonte injectée, par contre, est un emploi relativement nouveau qui prend une extension toujours plus grande. Ce n'est que depuis une vingtaine d'années, depuis que la production de zinc à 99,99 % est devenue possible, que la fonte injectée s'est développée. En effet seuls les alliages de très grande pureté possèdent des propriétés de stabilité de dimensions et de résistance à la corrosion intercristalline suffisantes. Ce sont en moyenne 200 000 tonnes de zinc par an qui ont été employés ces dernières années par cet industrie.

Les laitonneries ont été de très gros consommateurs de zinc, mais la production du laiton est nettement tombée depuis la guerre. 85 000 tonnes de zinc ont été utilisées par l'industrie du laiton en 1949. En temps de guerre ou de réarmement, la consommation de laiton pour les munitions est naturellement extrèmement élevée.

Le zinc non-allié trouve une utilisation relativement faible, moins de 10 % de la consommation totale, dans le bâtiment, pour des douilles de piles sèches et pour la photogravure par exemple.

Enfin il y a une forte demande pour les composés de zinc. L'oxyde, par exemple, est utilisé en grandes quantités dans la production du caoutchouc, de la peinture, de produits pharmaceutiques et cosmétiques, etc. Ce sont des centaines de milliers de tonnes de concentrés qui sont ainsi transformés chaque année.

Contrairement au cuivre, la récupération de déchets de zinc est une source peu importante d'approvisionnement. Tout le zinc utilisé pour la galvanisation et les produits chimiques est définitivement perdu. Seul la fonte injectée et le laiton ont une certaine importance pour la récupération.

On ne peut guère parler de produits de remplacement du zinc. En effet les autres métaux sont pour la plupart aussi rares que le zinc. Celui-ci est donc indispensable au monde industriel moderne - et les ressources ne sont malheureusement pas inépuisables. H. Bovet

Prix moyens (sans garantie)

le 20 du mois

Métaux

		Septembre	Mois précédent	Année précédente
Cuivre (fils, barres) 1).	fr.s./100 kg	360.—	360.—	430/5204)
Etain (Banka, Billiton)2)	fr.s./100 kg	1175.—	1164.—	1163.—
Plomb ¹)	fr.s./100 kg	145.—	145.—	220.—
Zinc1)	fr.s./100 kg	125.—	132.50	310.—
Fer (barres, profilés) 3)	fr.s./100 kg	66.—	66.—	67.—
Tôles de 5 mm ³)	fr.s./100 kg	85.50	85.50	80.—

1) Prix franco Bâle, marchandise dédouanée, chargée sur wagon, par quantité d'au moins 50 t
2) Prix franco Bâle, marchandise dédouanée, chargée sur wagon, par quantité d'au moins 5 t
3) Prix franco frontière, marchandise dédouanée, par quantité d'au moins 20 t
4) Prix du «marché gris» (Valeurs limites correspondant à divers termes de vente).

Combustibles et carburants liquides

		Septembre	Mois précédent	Année précédente
Benzine pure / Benzine				
éthylée	fr.s./100 kg	69.10 ¹)	72.951)	70.14^{3})
Carburant Diesel pour				
véhicules à moteur .	fr.s./100 kg	47.551)	49.05 ¹)	51.75³)
Huile combustible spé-		0.7 (1)		21 000
	fr.s./100 kg	21.—²)	21.552)	21.904)
Huile combustible lé-	4 1100 be	10.15%	10 709)	00 104
gère	fr.s./100 kg	19.15")	19.70 ²)	20.104)
dustrielle (III)	fr a /100 kg	16 202\	16.202)	16.204)
Huile combustible in-	11.a./100 kg	10.20-)	10.20-)	10.20-)
dustrielle (IV)	fr.s./100 kg	15.40 ²)	15.40 ²)	15.404)

- ¹) Prix-citerne pour consommateurs, franco fron-tière suisse, dédouané, ICHA y compris, par commande d'au moins 1 wagon-citerne d'environ 15 t.
- 2) Prix-citerne pour consommateurs, franco frontière suisse Bâle, Chiasso, Iselle et Pino, dédouané, ICHA et taxe de compensation du crédit charbon (fr.s. —.65/100 kg) y compris, par commande d'au moins 1 wagon-citerne d'environ 15 t. Pour livraisons à Genève et à St-Margrethen les prix doivent être majorés de fr.s. 1.—/100 kg resp. fr.s. —.60/100 kg.
- 3) Prix-citerne pour consommateurs, franco frontière suisse, dédouané, ICHA non compris, par commande d'au moins 1 wagon-citerne d'environ 15 .t
- mande d'au moins 1 wagon-citerne d'environ 15 .t ¹) Prix-citerne pour consommateurs, franco frontière suisse Bâle, Chiasso, Iselle et Pino, dédouané, ICHA et taxe de compensation du crédit charbon (fr.s. —.65/100 kg) non compris, par commande d'au moins 1 wagon-citerne d'environ 15 t. Pour livraisons à Genève et à St-Margrethen les prix doivent être majorés de fr.s. 1.—/100 kg resp. fr.s. —.60/100 kg.

 L'huile combustible spéciale et l'huile combustible légère ne sont pas seulement utilisées pour le chauffage, mais aussi pour les moteurs Diesel de groupes électrogènes stationnaires; dans chaque cas, il y a lieu de tenir compte du tarif douanier correspondant.

¹⁾ Cette indication et les suivantes sont données en Short Tons (1 Short Ton = 907 kg). Etant donné qu'il ne s'agit que d'indications approximatives on a renoncé à les réduire en tonnes européennes.

Charbons

		Septembre	Mois précédent	Année précédente
Coke de la Ruhr				
I/II	fr.s./t	121.—	121.—	121.—
Charbons gras belges				
pour l'industrie				X
Noix II	fr.s./t	105.50	105.50	120.50
Noix III	fr.s./t	100.50	100.50	116
Noix IV	fr.s./t	100.—	100.—	111.50
Fines flambantes de la			2000 Marin	
Sarre	fr.s./t	90.—	90.—	90.—
Coke de la Sarre	fr.s./t	139.—	139.—	120.50
Coke métallurgique				
français, nord	fr.s./t	139.30	139.30	122.50
Coke fonderie français	fr.s./t	140.50	140.50	124.30
Charbons flambants po-				
lonais				
Noix I/II	fr.s./t	110.50	110.50	123.50
Noix III	fr.s./t	105.50	105.50	120.50
Noix IV	fr.s./t	103.75	103.75	119.50
Houille flambante				
criblée USA	fr.s./t	105.—	105.—	130.—

Tous les prix s'entendent franco Bâle, marchandise dédouanée, pour livraison par wagons entiers à l'industrie, par quantité d'au moins 15 t.

Kommende Verbundwirtschaft des englischen und französischen Höchstspannungsnetzes?

[Nach: J. H. M. Sykes: Will Britain and France Interconnect? Electr. Wld. Bd. 137(1952), Nr. 15, S. 32...34.]

Die Besprechungen betreffend die geplante Verlegung eines Unterwasserkabels im Ärmelkanal zur Verbindung der Höchstspannungsnetze Englands und Frankreichs und der damit verbundenen, technischen Probleme zwischen Organen der British Electricity Authority (BEA) und der Electricité de France (EdF), befinden sich in einem vorgerückten Stadium. Von beiden Ländern wird der Zusammenschluss der Netze aus folgenden Gründen befürwortet:

- Der Zusammenschluss ermöglicht die Verminderung der zur Verfügung zu haltenden Reserveleistung;
- 2. Zur Deckung der Spitzenlast würde weniger Kraftwerkleistung benötigt;
- Wirtschaftlichere Lastverteilung würde Verminderung der Gesamterzeugungskosten herbeiführen;
- 4. Bessere Ausnützung der hydroelektrischen und der thermischen Kraftwerke.

Die BEA, die über grosse thermische Anlagen verfügt, könnte der EdF, die überwiegend hydroelektrische Werke besitzt, im Sommer, wenn der Energiebedarf in England und die Wasserdarbietung in Frankreich sinken, thermisch erzeugte Energie anbieten, während im Winter die EdF zur Deckung des stark ansteigenden Bedarfs Englands an elektrischer Heizung im Haushalt und in der Industrie, beitragen könnte. Durch die Verbindung der beiden Landesnetze würde sich die Errichtung je eines Kraftwerks von 200 MW Leistung im Erstellungswert von 28 Millionen Dollar in jedem der beiden Länder erübrigen. Für die Wirtschaft Englands, dessen Kohlenreserven kostbar und begrenzt sind, würde die Verbindung einen wertvollen Beitrag leisten. Während des grössten Teils des Jahres differieren die Zeiten des Spitzenbedarfs in den 2 Ländern um eine Stunde, was den Wert des Zusammenschlusses noch wesentlich erhöht.

Während der Wert und die Notwendigkeit einer Verbindung beider Netze nicht bezweifelt werden, sind die technischen Einzelheiten wie das zu wählende Stromsystem, die Spannung usw. noch nicht endgültig festgelegt. Die minimale Austauschleistung wird zu 400 MW angenommen und die Verbindungs-Kabellänge würde rd. 40 km betragen.

Das englische 132-kV-Netz soll durch ein 275-kV-Netz ergänzt werden. Die Spannung des französischen Netzes ist für 220 kV geplant, doch soll sie für besondere Verhältnisse auf 380 kV erhöht werden. Der südliche Teil des britischen «Super Grid» wird ebenfalls für 380 kV geplant. Die Span-

nung des Kanalkabels könnte auf Grund der derzeitigen Kabeltechnik zu 132 kV angenommen werden, doch wäre 300 kV Drehstrom interessanter. Für 220 kV sind bereits Kabel gebaut worden, doch fehlen noch Erfahrungen mit Unterwasserkabeln für diese Spannung. Für Drehstromkabel stellt der Ladestrom ein Problem dar. Bei 220 kV Spannung würde ein Drehstromkabel (bei 50 Hz) pro Meile (1,6 km) 5000 kVA Blindleistung und bei 400 kV eine solche von 15 000 kVA erfordern. Der Betrieb dürfte aus diesem Grunde auf Schwierigkeiten stossen, so dass an jedem Kabelende Kompensationsanlagen erstellt werden müssten. Hinsichtlich der Kabelart scheint ein Druckkabel bevorzugt zu werden. Die Energieübertragung mit hochgespanntem Gleichstrom wird ebenfalls diskutiert, besonders im Hinblick auf die 100 km lange 100-kV-Gleichstromübertragung zwischen der Insel Gotland und Schweden.

Ausführbar wäre eine Gleichstromübertragung mit 200 kV zwischen Leiter und Erde, gleich 400 kV zwischen Polen. 4 Einleiterkabel könnten als Drehstromleitung mit einem Reserveleiter und später als 2 Gleichstromleiter benützt werden.

Zugunsten der Gleichstrom-Übertragung werden folgende Argumente angeführt: Es sind nur 2 Leiter statt 3 für Drehstromübertragung nötig, niedrigere Isolation, Belastbarkeit bis zur thermisch zulässigen Grenze, Wegfall der Blindleistungsprobleme. Als Nachteile der Gleichstromübertragung werden genannt: Das Fehlen eines Gleichstromhöchstspannungsschalters, die verhältnismässig hohen Kosten der Umformungseinrichtungen und der Mangel an Betriebserfahrungen mit Höchstspannungs- und Höchststromröhren.

Ein unter Diskussión stehendes Projekt sieht eine 80 km lange, 2strängige Gleichstrom-Freileitung von der 132/275-kV-Unterstation in Northfleet, Kent, an die Kanalküste vor. Dort würde der Gleichstrom in Drehstrom umgeformt und mit 2 Kabeln nach Frankreich übertragen, wo er wieder in Gleichstrom umgeformt nach einer Unterstation in der Pariser Region übertragen würde.

Die vorhandene Kabelbauart würde für Gleichstrom eine höhere Spannungsbeanspruchung gestatten als für Wechselstrom, so dass für die gleiche Belastung ein Gleichstromkabel mit kleinerem Durchmesser als für Drehstrom verwendet werden könnte.

Für das Unterwasserkabel zwischen Dänemark und Schweden wurde von dänischen Ingenieuren ein flaches 132-kV-Ölkabel mit besonderer Selbstkompensation entwickelt, das für Gleichstrom geeignet wäre. Die Kabelverlegung im Kanal selbst dürfte, da Kabelschiffe mit geeigneten Ausrüstungen zur Verfügung stehen, keine Schwierigkeiten bieten. Die Kanalsohle kann zum voraus mit Echolotung oder mit dem kürzlich entwickelten Unterwasser-Fernsehverfahren untersucht werden.

Eine der schwierigsten Aufgaben stellt die Verspleissung der Kabel dar. Eine Herstellung der Kabel in Längen über 400 m dürfte zur Zeit unmöglich sein. Die Spleißstelle eines 220-kV-Wechselstromkabels aber ist über 3 m lang, ausserdem unförmig und starr. Eine Vorverspleissung der Kabel vor deren Aufrollen auf Schwimmtrommeln von 12 m Durchmesser, wie sie für die «Pluto»-Ölleitung während des letzten Krieges benützt wurden, dürfte möglich sein, sofern eine genügend flexible Verbindung hergestellt werden kann. Lange Kabelstücke müssten auf See verspleisst werden, wobei dänische Erfahrungen benützt werden könnten. Die stürmische See im Kanal, die plötzlich einsetzenden Windstösse und der Nebel dürften, nach Ansicht von Kabelschiff-Kapitänen, keine unüberwindbaren Hindernisse bilden.

Bis heute ist jedoch keine der beiden Parteien in der Lage gewesen, die wichtige Frage zu beantworten: Werden auch die Politiker in London und Paris das Projekt gutheissen?

Bemerkung des Referenten

Nach Meldungen in der Tages- und der englischen Fachpresse hat die BEA Mitte Juli dieses Jahres dem von einem aus Vertretern der BEA und der EdF gebildeten Ausschuss vorgelegten Bericht grundsätzlich zugestimmt und für die Ausarbeitung eines Entwicklungsprogramms für den geplanten Netzzusammenschluss den Betrag von 125 000 Pfund Sterling bewilligt.

Misslin

Das Energielieferungsübereinkommen Österreich—Italien

621.311 (436:45) Die Bestrebungen um eine Lösung der europäischen Energiefrage durch zwischenstaatliche Zusammenarbeit fanden durch den kürzlich zwischen Österreich und Italien abgeschlossenen Stromlieferungsvertrag eine teilweise Verwirklichung. Es wurde bereits im Bulletin des SEV 1) berichtet, dass Österreich, Italien und Deutschland in der Regionalgruppe dieser drei Staaten, die im Rahmen der Union pour la Coordination de la Production et du Transport de l'Electricité (UCPTE) gegründet wurde, zusammenarbeiten. Gelegentlich der vorletzten Sitzung dieser Gruppe wurde mehrfach Klage geführt, dass die Zusammenarbeit Österreich-Italien durch Mangel an Verbindungsleitungen stark gehemmt ist. Das am 19. Mai 1952 abgeschlossene Übereinkommen

1) s. Bull. SEV Bd. 43(1952), Nr. 2, S. 38.

zwischen der Österreichischen Verbundgesellschaft in Wien und der Società Adriatica di Elettricità (SADE) in Venedig trägt dazu bei, diesen Zustand zu lindern, indem sich beide Partner verpflichten, raschestens eine österreichisch-italienische Kuppelleitung zu errichten, die im Herbst 1953 in Betrieb genommen werden soll. Die vertragschliessenden Parteien setzten grosse Hoffnungen auf einen Energieaustausch, dessen Ausmass beträchtlich über die vertraglich vereinbarte Energielieferung hinaus gehen dürfte. Die von jedem Partner auf seinem Staatsgebiet zu errichtende und zu betreibende Drehstrom-Leitung wird für 220 kV isoliert, anfangs jedoch mit 130 kV betrieben. Die Österreichische Verbundgesellschaft übernahm die Verpflichtung, eine Transformatorenleistung von 50 MVA bei 130 kV Übertragungsspannung bereitzustellen. Sie wird die für die Lieferung erforderliche installierte Leistung vorbehalten und mit dem Netz der SADE parallel betreiben. E. Königshofer

Miscellanea

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

Paul Schröder, Ingenieur, Mitglied des SEV seit 1912 (Freimitglied), feiert in diesem Jahr das 50jährige Bestehen der von ihm gegründeten Firma Schröder-Apparate K.-G. in Stuttgart-Feuerbach.

Schindler & Cie. A.-G., Luzern. E. Hüssy und O. L. Theiler wurden zu Prokuristen ernannt.

Kleine Mitteilungen

Freifachvorlesungen an der Eidgenössischen Technischen Hochschule. An der Allgemeinen Abteilung für Freifächer an der ETH in Zürich werden während des kommenden Wintersemesters u. a. folgende öffentliche Vorlesungen gehalten, auf die wir die Leser besonders aufmerksam machen:

Sprachen und Philosophie

Prof. Dr. G. Calgari: Corso inferiore (a—b): Introduzione alla lingua e alla cultura italiana (Mo. 17—18, Mi. 17—18 Uhr,

26d).
Prof. Dr. F. Gonseth: Philosophie und heutige Wissenschaft (Ort und Zeit werden noch festgelegt).
Prof. Dr. F. Kröner: Einführung in die Philosophie der Wissenschaften (Ort und Zeit werden noch festgelegt).
Prof. Dr. J. H. Wild: The English Scientific and Technical Vocabulary I (Di. 17—19 Uhr, 3c).

Politische Wissenschaften

16c).

Betriebswissenschaft und Recht

Prof. Dr. B. Bauer: Grundzüge der Elektrizitätswirtschaft (Do. 17—19 Uhr, ML III).
Dr. H. Biäsch: Arbeits- und Betriebspsychologie (Fr. 17—19

Uhr, 18d).

Prof. Dr. E. Böhler: Grundlehren der Nationalökonomie (Mi. 17—19 Uhr und Fr. 17—18 Uhr, III).

Prof. Dr. E. Böhler: Repetitorium und Kolloquium (Fr. 18—19 Uhr, 3d).

Prof. Dr. E. Böhler: Einführung in das Verständnis des schwize.

Finanzwesens und der Finanzwissenschaft (Mo. 17-18 Uhr,

Finanzwesens und der Finanzwissenschaft (Mo. 17—18 Uhr, 3d).

P.-D. P. F. Fornallaz: Aktuelle Probleme der Leistungssteigerung (Mo. 17—19 Uhr, alle 14 Tage, ML II).

Dr. O. Frank: Technik und Hilfsmittel der wissenschaftlichen Arbeit (Di. 17—18 Uhr, 35d).

Prof. Dr. E. Gerwig: Betriebswirtschaftliche Führung der Unternehmung (mit Übungen) (Sa. 8—10 Uhr, 40c).

Prof. Dr. E. Gerwig: Einführung in betriebssoziologische Fragen und Massnahmen sozialpolitischer Art der Unternehmungen (Mi. 18—19 Uhr, ML V).

Prof. Dr. W. Hug: Rechtslehre (allg. Einführung), mit Kolloquium (Di. 17—19 Uhr und Do. 16—17 Uhr, III).

Prof. Dr. W. Hug: Sozialversicherungsrecht (Do. 10—11 Uhr, 40c).

Prof. Dr. W. Hug: Sozialversicherungsrecht (Do. 10—11 Uhr, 40c).

Prof. Dr. P. R. Rosset: Principes d'économie politique (Fr. 17—19 Uhr und Sa. 10—11 Uhr, 40c).

Prof. Dr. P. R. Rosset: Colloquium d'économie politique (Sa. 11—12 Uhr, 40c).

Naturwissenschaften

P.-D. Dr. A. Bieler: Grundlagen der Hochdrucktechnik I (Di. 11—12 Uhr, Ch. 28d).

Prof. Dr. G. Busch: Physik tiefer Temperaturen (Mi. 10—12 Uhr, Ph. 6c).

Prof. Dr. G. Busch: Grundlagen der Metallphysik (Mo. 17—19 Uhr, Ph. 6c).

P.-D. Dr. W. Epprecht: Struktur und Eigenschaften der Kristalle (Mi. 17—18 Uhr, NO. 18f).

Prof. Dr. O. Huber: Physik der Elementarteilchen (Mo. 11—12 Uhr, Ph. 6c).

P.-D. Dr. H. Labhart: Physik der Röntgenstrahlen (Fr. 17—18 Uhr, Ph. 6c).

Prof. Dr. Preiswerk: Einführung in die Kernphysik (Do. 10—12 Uhr, Ph. 6c).

Prof. Dr. R. Sänger: Physik der Atmosphäre (Sa. 8—10 Uhr, Ph. 6c).

Prof. Dr. R. Sänger: Physik der Annosphare (2017)
Ph. 6c).
Prof. Dr. R. Sänger: Raketenballistik (Mo. 17—19 Uhr, Ph. 17c).
Prof. Dr. P. Scherrer: Atombau (Do. 17—19 Uhr, Ph. 6c).
P.-D. Dr. E. Winkler: Einführung in die Landesplanung (nach Vereinbarung, NO. 2g).
Prof. Dr. H. Gutersohn und P.-D. Dr. E. Winkler: Übungen zur Landesplanung (Di. 17—19 Uhr, NO. 3g).

Technik

P.-D. Dr. H. Ammann: Herstellung, Prüfung und Verarbeitung photographischer Schichten (kleines Praktikum) (Do. 16—17.30 Uhr, alle 14 Tage, NW. 22f).
P.-D. Dr. R. Bertschinger: Grundlagen der Giessereikunde (Di. 17—19 Uhr, ML. IV).
P.-D. Dr. R. Bertschinger: Zustandsdiagramme und ihre Anwendungen (Mi. 17—19 Uhr, ML. IV).
Prof. W. Furrer: Raum- und Bauakustik (Fr. 10—12 Uhr, 4b).
Prof. Ed. Gerecke: Starkstromelektronik (Fr. 10—12 Uhr, Ph. 15c).

Prof. Ed. (Ph. 15c).

P.-D. Dr. F. Held: Werkstoffkunde der elektrotechnischen Baustoffe (Fr. 8-9 Uhr, Ph. 15c).
P.-D. Dr. C. G. Keel: Schweisstechnik I (Mo. 17-18 Uhr, I).
P.-D. Dr. C. G. Keel: Ubungen (in Gruppen) (Mo. 16-17 und 17-18 Uhr, 49a). P.-D. Dr. F. Lüdi: Elektronik der Mikrowellen (Mi. 18—19 Uhr, Ph. 17c).

Dr. B. Marincek: Spezielle Metallurgie (Di. 16-17 Uhr,

3d).
P.-D. Dr. K. Oehler: Eisenbahnsicherungseinrichtungen (Mo. 17—19 Uhr, 3c).
P.-D. Dr. E. Offermann: Ausgewählte Kapitel der elektrischen Messtechnik (Do. 10—12 Uhr, Ph. 15c).
P.-D. H. W. Schuler: Elektrische Installationen (Do. 10—12 Uhr, alle 14 Tage, 30b).
P.-D. Dr. W. Siegfried: Die Anwendung der metallischen Werkstoffe im Maschinenbau I (Mi. 17—18 Uhr, ML. V).
P.-D. Dr. H. Stäger: Über die Zerstörung von Werkstoffen im Betrieb (Überblick über die neueren Korrosionstheorien, praktische Beispiele über Zerstörungen im allgemeinen und Elektromaschinenbau) (Mo. 17—19 Uhr, ML. V).
Prof. Dr. M. Strutt: Transistorenelektronik (Mo. 10—11 und Mi. 17—18 Uhr, Ph. 15c).
Prof. Dr. A. von Zeerleder: Elektrometallurgie I (Fr. 17—18 Uhr, ML. III).

Der Besuch der Vorlesungen der Allgemeinen Abteilung für Freifächer der ETH ist jedermann, der das 18. Altersjahr zurückgelegt hat, gestattet.

Die Vorlesungen beginnen am 21. Oktober 1952 und schliessen am 28. Februar 1953 (Ausnahmen siehe Anschläge der Dozenten am schwarzen Brett). Die Einschreibung der Freifachhörer hat bis zum 18. November 1952 bei der Kasse der ETH (Hauptgebäude, Zimmer 37c) zu erfolgen. Es gilt dies auch für Vorlesungen, die als gratis angekündigt sind. Die Hörergebühr beträgt Fr. 8 .- für die Wochenstunde im Semester.

Genossenschaft «Elektrowirtschaft», Zürich. Am 9. September fand in Freiburg die jährliche Mitgliederversammlung der «Elektrowirtschaft», Schweizerische Gesellschaft für Elektrizitäts-Verwertung, unter dem Vorsitz des Präsidenten der Verwaltung, Vizedirektor G. Hürlimann, Olten, statt. In der Verwaltung der Genossenschaft ergab sich keine Veränderung. Vizedirektor G. Hürlimann und Vizedirektor L. Piller, Freiburg, wurden für weitere drei Jahre als Mitglieder der Verwaltung bestätigt.

Die «Elektrowirtschaft», Schweizerische Gesellschaft für Elektrizitäts-Verwertung mit Sitz in Zürich, ist ein genossenschaftlicher Zusammenschluss in der Elektrizitätswirtschaft mit dem Ziel, gemeinschaftlich für Aufklärung, Werbung und Beschaffung der Grundlagen für neue Anwendungen der Elektrizität zu arbeiten. Die Genossenschaft umfasst heute als Mitglieder 25 Elektrizitätswerke und 16 Fabrikanten von Elektromaterial und -geräten, während 16 weitere Elektrizitätswerke, vier Fabrikanten und drei Verbände, ihre Arbeit als Subvenienten unterstützen.

Schweizerischer Verein von Gas- und Wasserfachmännern. Dieser Verein hielt vom 13. bis 15. September 1952 seine 79. Jahresversammlung in Luzern ab. Der Nachmittag des 13. Septembers war einer Diskussionsversammlung gewidmet und der 15. September einen Ausflug auf den Pilatus-Kulm reserviert. In der am 14. September abgehaltenen Jahresversammlung wurden die zurücktretenden Mitglieder des Vorstandes, Dir. E. Hofmann (St. Gallen) und Dir. P. Pazziani (Genf) ersetzt durch Dir. E. Bosshard (Zürich) und Dir. G. Perret (Lausanne). Nach langjähriger Tätigkeit für den SVGW wird Generalsekretär H. Zollikofer auf Ende 1952

von seinem Posten zurücktreten. Die Versammlung ernannte ihn zum Ehrenmitglied des SVGW. Die nächste Jahresversammlung wird 1953 in Thun stattfinden.

Verband Schweizerischer Transportanstalten. Dieser Verband hielt am 11. und 12. September 1952 auf dem Bürgenstock seine 140. Verbandskonferenz ab. Der SEV war durch sein Vorstandsmitglied Dir. H. Jäcklin, Bern, vertreten.

Jahrestagung der Lichttechnischen Gesellschaft in Hannover. Die Lichttechnische Gesellschaft veranstaltet am 9. und 10. Oktober 1952 in Hannover ihre Jahrestagung 1952. Die Referate sind in der Hauptsache den Leuchtstofflampen und der Werbung mit Licht gewidmet. Nähere Auskunft erteilt der Vorsitzende der Lichttechnischen Gesellschaft e. V. Prof. L. Schneider, Heidenheim/Brenz, Bahnhofstrasse 2.

Kurs am Betriebswissenschaftlichen Institut der ETH über «Ausdrucks- und Verhandlungstechnik als Mittel zur Förderung der Produktivität». Um die mit diesem Thema zusammenhängenden grundsätzlichen Fragen einerseits im innerbetrieblichen Verkehr und anderseits in den Beziehungen der Unternehmung zur Aussenwelt zu behandeln, veranstaltet das Betriebswissenschaftliche Institut an der ETH einen Kurs vom 30. Oktober bis 27. November 1952. Das Kursgeld beträgt für Mitglieder der Förderungsgesellschaft des Betriebswissenschaftlichen Institutes Fr. 65.—, für übrige Teilnehmer Fr. 75.—. Anmeldungen nimmt das genannte Institut bis 25. Oktober 1952 entgegen.

Literatur — Bibliographie

621.396.64: 621.396.62

Verstärker und Empfänger. Bearb. von M. J. O. Strutt.

Berlin, Springer, 2. verb. Aufl. 1951; 8°, XV, 422 S.,

425 Fig., Tab. — Lehrbuch der drahtlosen Nachrichtentechnik, 4. Bd. — Preis: geb. DM 46.50.

Die zweite Auflage des 4. Bandes des Lehrbuches für drahtlose Nachrichtentechnik, das vom Verlag die gewohnt gute Ausstattung erhalten hat, stimmt im inhaltlichen Aufbau weitgehend mit der ersten Auflage überein. Durch manche Verbesserungen und einige neue, zum Teil bisher unveröffentlichte Abschnitte ist das Werk aber ergänzt und bereichert worden. Es vermittelt dem Leser eine gründliche Einführung in das Gebiet der Verstärker und Empfänger, wobei sowohl die praktische wie die theoretische Seite zu ihrem Recht kommen. In den theoretischen Grundlagen wendet sich der Autor hauptsächlich an den anspruchsvollen Ingenieur. Die Behandlung der Probleme geschieht in knapper und eleganter Form, wozu die Benutzung von Ersatzschaltungen wesentlich beiträgt. Viele Resultate der Theorie sind aber auch auf eine für den Praktiker unmittelbar verwertbare Weise dargestellt. Das ganze, ausserordentlich vielseitige Gebiet wird vollständig behandelt, wenn auch einige heute besonders aktuelle Gegenstände nur kurz gestreift werden, vielleicht mit Rücksicht auf die Beschränkung des Buchumfanges. Ich denke z. B. an die Breitbandverstärkung oder ein Spezialgebiet, wie die magnetischen Verstärker. Dafür ist aber überall durch ein umfangreiches Verzeichnis der Weg zur Literatur gewiesen.

Ein ganz neu durchgearbeitetes Kapitel des Buches ist dasjenige über die Verringerung der Wirkung spontaner Schwankungen in Verstärkerstufen und in Empfangsgeräten. Es werden interessante Möglichkeiten gezeigt, die in den Schaltelementen selbst, insbesondere den Röhren ihren Ursprung besitzenden Störsignale, deren Ursache die Diskontinuität der Ladung ist, nach aussen nicht oder doch nur abgeschwächt wirksam werden zu lassen. Die theoretischen Betrachtungen basieren zum Teil natürlich auf vereinfachenden Annahmen, und man würde es schätzen, wenn einige Messresultate über die praktisch erzielbare Störungsverminderung mitgeteilt worden wären.

621.397

Nr. 10 895

Fernsehen. Einführung in die physikalischen und technischen Grundlagen der Fernsehtechnik unter weitgehender Berücksichtigung der Schaltungen. Von F. Kerkhof u. Ir. W. Werner. Eindhoven, Philips, 1951; 8°, XIV, 466 S., Fig., Tab., Taf. — Philips Technische Bibliothek — Preis: geb. Fr. 31.20.

Ein Buch, welches ein technisch hochstehendes Niveau aufweisen soll, einfach mit «Fernsehen» zu überschreiben, stellt sicher ein reichlich gewagtes Unterfangen dar. Daher ist die als nähere Präzisierung des Titels beigegebene Umschreibung sicher angebracht. Man ist von den bis heute erschienenen Ausgaben der «Philips technischen Bücherei» in dieser Hinsicht sehr verwöhnt worden, so dass man mit einem Gefühl der Erwartung auch an das vorliegende Werk geht. Es sei gleich vorweggenommen, dass den Autoren ihre Aufgabe vorzüglich gelungen ist. Ein so umfassendes Gebiet ist noch nicht oft in derart erschöpfender Weise behandelt worden.

Es sei gestattet, der Fülle des Materials wegen, in chronologischer Folge kurz auf den Inhalt einzugehen:

Nach einer kurzen Übersicht über die Bildübertragung vom Studio zum Empfänger folgt eine Einführung in die allgemeine Elektronenoptik, dem der Abschnitt über die Bildaufnahme und Wiedergaberöhren folgen. Das verbundene Fernsehsignal, dessen Analyse, Übertragung und Trennung, ist Gegenstand des nächsten Kapitels, dem die Behandlung der Erzeugung und der Anwendung von Kippschwingungen folgt. Eine ganz ausgezeichnete Zusammenfassung der Theorie der VF- und ZF-Verstärker stellt das mit «Breitbandverstärker» überschriebene Kapitel dar.

Interessanteres für den Praktiker bietet die genaue Besprechung der Schemata zweier moderner Empfängerschaltbilder. Im Anhang findet man eine Übersicht der gebräuchlichsten Fachausdrücke, sowie eine sehr klar gehaltene Einheiten-Umrechnungstabelle (im Buche wird durchwegs das Giorgi-System angewandt).

Das Werk wird mit Recht bald bei allen mit der Fernsehtechnik in Berührung stehenden Kreisen Eingang finden.

H. Laett

W. Druev

Briefe an die Redaktion — Lettres à la rédaction

«Über das Durchgehen von Wasserturbinen»

Von H. Gerber, Zürich

[Bull. SEV Bd. 43(1952), Nr. 11, S. 453...459.]

Zuschrift:

621.24.0046

In seinem interessanten Artikel kommt der Verfasser zu der Schlussfolgerung, dass die Rotoren der mit Wasserturbinen gekuppelten Generatoren für die vom Turbinenlieferanten angegebene höchste Durchgangsdrehzahl zu konstruieren und unter allen Umständen einer Schleuderprobe mit dieser Drehzahl zu unterwerfen seien. Dabei ist jedoch nicht präzisiert, ob diese Schleuderprobe im Werk des Lieferanten oder an Ort und Stelle, d. h. im Kraftwerk, mit der Turbine zusammen vorgenommen werden soll. Der letzte Satz des Artikels über die Abschiebung der Verantwortung von Lieferanten und Besteller auf die Betriebsführung lässt jedoch darauf schliessen, dass nur an eine Schleuderprobe im Werk des Lieferanten gedacht ist.

Im Gegensatz zur Praxis bei Dampfturbinenaggregaten, bei welcher die Rotoren lediglich für eine 1,25fache Nenndrehzahl gebaut werden, d. h. auf die Sicherheit der Schnellschlussorgane völlig abgestellt wird, rechnet man bei den Sicherheitsorganen der Wasserturbinen, zufolge der Verschiedenheit der Triebmittel (Wasser statt Dampf) und der dadurch bedingten Verschiedenheit der Konstruktion der Regel- und Sicherheitsorgane, sowie der grösseren Gefahr von Störungen durch Fremdkörper mit einer grösseren Möglichkeit des Versagens. Es ist daher notwendig, die Rotoren der durch Wasserturbinen angetriebenen Generatoren für die maximale Durchgangsdrehzahl der Turbine zu konstruieren.

Im folgenden müssen wir zwei Gattungen Polräder unterscheiden, nämlich solche, deren Radkränze im Umfang einteilig ausgeführt und solche, die aus Transportgründen im Umfang unterteilt werden. Bei jenen handelt es sich um Polräder, welche, eventuell nach Abnahme der Pole, ohne weiteres bahntransportfähig sind. Solche Rotoren mit massiven Kränzen aus Stahlguss oder geschmiedetem Stahl, die trotz einer sorgfältigen Materialkontrolle mit Fehlern behaftet sein könnten, werden immer im Werk des Lieferanten geschleudert, und jede grössere Herstellerfirma besitzt die nötigen Installationen, um diese Proben gefahrlos vornehmen zu können.

Die Niederdrucklaufwerke mit ihren Aggregaten von sehr geringen Drehzahlen erfordern bei grösseren Leistungen Olraddurchmesser bis zu 10 m und darüber, so dass die Radkränze am Umfang in mehrere Teile getrennt werden müssen. Abgesehen von den umfangreichen Installationen, welche ein Schleudern der Polräder von solchen Abmessungen im Werk des Herstellers erforderlich machen und die schliesslich vom Besteller zu bezahlen sind, verlangt die Vornahme dieser Probe einen vollständigen Zusammenbau des Polrades im Werk, alsdann eine komplette Demontage für den Transport und endlich eine nochmalige Montage im Kraftwerk, also recht viel Zeit und Arbeit. Dabei muss mit peinlicher Genauigkeit darauf geachtet werden, dass im Kraftwerk der Zusammenbau der einzelnen Teile wie das erste Mal, d. h. vor der Schleuderprobe, erfolgt, da sonst der Wert der vorgenommenen Probe fragwürdig wird. Es war daher naheliegend, für diese Rotoren eine Konstruktion zu suchen, welche dieses zeitraubende und Unkosten verursachende Verfahren als nicht mehr notwendig erscheinen lässt. Eine solche Konstruktion wurde vor ca. 20 Jahren in Amerika mit dem sog. Schicht- oder Kettenrotor eingeführt, und während der letzten 10 Jahre hat diese auch in Europa in zunehmendem Masse Eingang gefunden.

Beim geschichteten Rotor sind die Radkränze aus einzelnen Blechsegmenten aufgebaut, welche in den einzelnen Lagen, wie beim Blechkörper eines Stators, gegeneinander versetzt sind. Die Blechsegmente werden aus ca. 2...4 mm dickem Stahlblech gestanzt. An den beiden Stirnseiten der Kränze bilden Stahlblechsegmente von 20...25 mm Dicke den Abschluss. Die Kränze quer durchsetzende Stahlbolzen pressen die einzelnen Blechlagen zusammen, wobei die dickeren Endplatten die Pressung gleichmässig auf die ganze Fläche verteilen. Die Pressung der Bolzen bewirkt nun durch die

zwischen den einzelnen Lagen auftretenden Reibkräfte an den Segmenttrennungen die Übertragung der beim rotierenden Polrad auftretenden Zugkräfte auf die Segmente der benachbarten Lagen. Manche Konstrukteure benützten lediglich diese Reibkräfte für die Übertragung der Zugkräfte, indem sämtliche Querbolzen ein geringes Spiel in ihren Löchern aufweisen. Andere wiederum führen einen Teil der Bolzen als Passbolzen aus, indem diese dann ohne Spiel in speziell ausgeriebenen Löchern sitzen. Dabei wird ein Teil der Zugkräfte direkt durch die Bolzen auf die benachbarten Lagen übertragen, wobei die Bolzen zusätzlich zu ihrer Zugspannung noch auf Schub beansprucht werden.

Was sind nun die Vorteile dieser Konstruktion?

Für die Vorausberechnung der Beanspruchungen bietet sie ein überaus einfaches und übersichtliches Problem. Bei der Durchgangsdrehzahl sind die Kränze, mit Ausnahme der Partien um die Klauennuten zur Befestigung der Pole, lediglich auf Zug beansprucht. Die Beanspruchung der Kranzklauen kann ohne Schwierigkeit bei den hier auftretenden grossen Polzahlen so niedrig gewählt werden, dass eine hohe Sicherheit dieser Teile vorhanden ist.

Vom Materialstandpunkt aus betrachtet, bildet der Aufbau der Kränze aus Blechen eine ideale Lösung. Das Auftreten von Schmiedefehlern bei geschmiedeten Stahlkränzen, von Lunkern, Rissen, Seigerungen bei Stahlgusskränzen, welche selbst einer genauesten Materialkontrolle entgehen können, ist hier ausgeschlossen. Wenn auch nicht jedes einzelne Segment, bzw. jede einzelne Blechtafel auf ihre Qualität geprüft wird, so ist es doch praktisch ausgeschlossen, dass einige Tafeln von geringerer Qualität die Sicherheit der Konstruktion merklich beeinflussen könnten. Sollte sogar wegen einer fehlerhaften Montage die zur Übertragung der Zugkräfte nötige Pressung nicht vorhanden sein, so würde dies sich lediglich in einem leichten Aufgehen des Kranzes (Vergrösserung des Durchmessers) äussern. Auf keinen Fall kann aber ein explosionsartiger plötzlicher Bruch dieser Kränze wie bei massiven Radkränzen auftreten. Während bei Verwendung von Stahl oder Stahlguss für die Kränze das Schleudern der Polräder in der Fabrik angezeigt ist, kann bei Ausführung von geblechten Radkränzen auf eine solche Forderung ohne jedes Risiko für den Besteller und den Betriebsleiter verzichtet werden. Diese Erkenntnis ist auf Grund der ca. 20jährigen Erfahrung mit Polrädern dieser Bauart in Amerika fest verankert und ist auch in Europa in den letzten Jahren durchgedrungen (vgl. K. Bobek, Generatoren für neuzeitliche Wasserkraftanlagen, Elektrizitätswirtschaft, April 1952).

Im Betrieb tritt die normale höchste Drehzahl bei Volllastabschaltung des Generators ein. Der Sicherheitsregler wird gewöhnlich auf eine Drehzahl eingestellt, die ungefähr 10 % über der höchsten Abschaltdrehzahl liegt. Es ist nun gegeben, die betriebsfertige Turbinen-Generatorgruppe einer Laufprüfung mit einer Drehzahl zu unterwerfen, die z. B. noch 10 % über der Ansprechdrehzahl des Sicherheitsreglers liegt. Diese Probe mit angekuppelter Turbine bietet den grossen Vorteil, dass auch die sämtlichen anderen Organe, wie Traglager, Führungslager, angeschlossene Hilfseinrichtungen, Fundationen usw. ihr einwandfreies Verhalten bei dieser Drehzahl unter Beweis stellen können.

Sollte ein Kunde aber auf einem Schleudern des Schichtrotors mit der höchst vorkommenden Durchgangsdrehzahl der Turbine bestehen, so muss diese Probe ebenfalls im Kraftwerk vorgenommen werden, da nur dort das Polrad in seinem endgültigen Zustande vorliegt. Dabei ist wohl nicht besonders hervorzuheben, dass eine solche Probe mit Rücksicht auf die ganze Turbinen-Generatorgruppe und ihre Hilfseinrichtungen die nötige Vorsicht erfordert, indem natürlich die Drehzahl nur stufenweise auf die Schleuderdrehzahl erhöht wird, wobei jeweils vorgängig eine sorgfältige Kontrolle sämtlicher Teile vorgenommen werden muss. Auf diese Weise kann eine allfällige Veränderung rechtzeitig erkannt werden, bevor irgendwelche gefährlichen Ereignisse eintreten könnten. Nach einer solchen Prüfung könnte erst mit Recht von einer vollen Sicherheit der Anlage bei Durchgangsdrehzahl gesprochen werden.

Zusammenfassend kann gesagt werden: Rotoren mit massiven Kränzen sollten einer Schleuderprobe beim Lieferan-

ten unterworfen werden. Schichtrotoren bedürfen dieses Sicherheitsbeweises nicht, da Berechnungs- und Materialkontrolle allein eine einwandfreie Beurteilung ihrer Festigkeit ermöglichen.

In jedem Fall ist eine Laufprobe mit einer Drehzahl von ca. 10 % über der Ansprechdrehzahl des Sicherheitsreglers der Turbine, d. h. zirka 20 % über der höchsten betriebsmässigen Abschaltdrehzahl mit der kompletten, betriebsfertigen Turbinen-Generatorgruppe im Kraftwerk zu empfehlen. Wird sogar die Durchführung einer Schleuderprobe für einen Generator mit Schichtrotor gewünscht, so hat diese ebenfalls nach dem Zusammenbau der Gruppe im Kraftwerk zu erfolgen. Bei solchen mit der notwendigen Fachkenntnis durchzuführenden Werkproben wird nicht nur die schon vorher gezeigte Festigkeit des Generator-Rotors kontrolliert, sondern auch die Betriebssicherheit sämtlicher mitbeanspruchter, bewegter und unbewegter Anlageteile unter Beweis gestellt, von denen viel eher eine Störung zu erwarten ist, als vom Schichtrotor.

E. Günthardt, Baden

Antwort:

Durchgangsversuche im Kraftwerk mit der ganzen, fertig montierten Maschinengruppe sind meines Wissens nur in ganz vereinzelten Fällen vorgenommen worden, weil fast immer vor dem damit verbundenen Risiko, auch Lager, Pumpen usw. berührend, zurückgeschreckt wurde. So blieb nur der Schleuderversuch im Lieferwerk, was aber nur einen Sinn hat, wenn der Rotor nachher nicht nochmals zerlegt werden muss. Bei Rotoren für Gross-Generatoren war das aber immer notwendig, und so unterblieb der Versuch dann meistens, trotzdem er fast in allen Turbinenlieferverträgen enthalten ist.

Die dadurch entstandene Lücke wird zweifellos durch die neue Schichtbauart weitgehend geschlossen. Ob nicht aber doch im Prinzip an Stelle von Materialfehlern dann Montagefehler treten können, muss von den verantwortlichen Lieferanten entschieden werden.

Der im letzten Alinea der Zuschrift gemachte Vorschlag ist zu begrüssen und würde in manchem Werk das Gefühl der Sicherheit erhöhen.

H. Gerber

Communications des organes des Associations

Les articles paraissant sous cette rubrique sont, sauf indication contraire, des communiqués officiels des organes de l'ASE et de l'UCS

Comité Technique 12 du CES

Radiocommunications

Sous-commission des télétransmissions par ondes porteuses à haute fréquence entre usines électriques

La sous-commission des télétransmissions par ondes porteuses à haute fréquence entre usines électriques du CT 12 du CES a tenu sa 9° séance le 21 août 1952, à Berne, sous la présidence de M. W. Druey, président. Le projet des «Règles et recommandations pour les télétransmissions en haute fréquence utilisant des lignes à haute tension» ayant été liquidé à la 8° séance et transmis au CT 12, la souscommission estimait avoir ainsi achevé ses travaux et ne s'attendait pas à être convoquée à nouveau. Cela a toutefois été nécessaire, car elle devait prendre position au sujet d'une proposition de modification émanant des PTT, qui désiraient une séparation nette entre les câbles à haute fréquence et ceux à basse fréquence dans le récepteur. Cette exigence, que le constructeur est également tenu d'observer pour des raisons d'ordre technique, a pu être formulée d'une façon satisfaisante. Par la même occasion, on a en outre modifié la teneur des chiffres 30 et 31, qui concernent l'affaiblissement dû aux bobines de blocage. Le chiffre 30 concernera l'affaiblissement de blocage et le chiffre 31 l'affaiblissement supplémentaire. Une autre modification concerne l'introduction d'une mention destinée à attirer l'attention sur le fait que les gammes de fréquences disponibles pour les télécommunications le long de lignes à haute tension sont également utilisées par d'autres services (trafic commercial à grandes ondes, radiophares, etc.), ce dont il faudra tenir compte dans chaque cas particulier.

Règles d'établissement des câbles pour lignes électriques aériennes

Les «Règles d'établissement des câbles pour lignes électriques aériennes» établies par le Comité Technique 7 (Aluminium) du CES ont été mises en vigueur à partir du 1° janvier 1952 par le Comité de l'ASE, conformément aux pleins pouvoirs qui lui avaient été octroyés à cet effet par l'Assemblée Générale de 1951. Elles font l'objet de la Publication n° 201 f récemment parue, qui peut être obtenue auprès de l'Administration commune de l'ASE et de l'UCS, 301, Seefeldstrasse, Zurich 8, au prix de fr. 4.— (fr. 3.— pour les membres) par exemplaire.

Communication aux abonnés aux compléments du recueil des prescriptions de l'ASE

De nouvelles Prescriptions seront envoyées prochainement aux abonnés. Nous attirons l'attention de ceux-ci sur le fait que les diverses Prescriptions doivent être placées dans le tome correspondant, conformément aux indications qui figurent sur le bulletin de livraison bleu, joint à chaque envoi, et que les publications périmées doivent être enlevées. Par cette communication, nous espérons recevoir de moins nombreuses demandes concernant l'emplacement des diverses Prescriptions dans le recueil, demandes qui nous parviennent encore trop souvent après chaque envoi de ce genre.

Administration Commune de l'ASE et de l'UCS

Nouvelle publication commune de la CEI et de la CEE

La CEI (Commission Electrotechnique Internationale) vient de publier en commun avec la CEE (Commission internationale de réglementation en vue de l'approbation de l'Equipement Electrique) le nouveau Fascicule suivant, sur lequel nous attirons l'attention de nos membres:

Fascicule CEI 65/CEE 1: «Règles de sécurité pour les récepteurs radiophoniques reliés à un réseau de distribution d'énergie»

Le Comité Technique 12, Radiocommunications, du Comité Electrotechnique Suisse (CES), qui a participé à la mise au net de ce Fascicule, n'a recommandé au CES d'approuver cette publication qu'après maintes réflexions et en faisant quelques réserves. A sa demande, le CES a vivement recommandé à la CEI que ce Fascicule soit remanié dans quelques années, lorsque les pays qui doivent actuellement se baser dans ce domaine sur les connaissances d'autres pays auront pu faire leurs expériences. Un défaut principal de ce Fascicule est que celui-ci ne renferme pas de dispositions relatives au pouvoir radioperturbateur, alors qu'en Suisse de telles dispositions figurent dans des Prescriptions fédérales.

A la demande de la CEE, qui avait déjà publié des Prescriptions pour les récepteurs radiophoniques en 1948, il fut décidé en 1951 que la publication envisagée par la CEI serait élaborée en commun avec la CEE. C'est la raison pour laquelle le Fascicule 65 de la CEI porte en outre la désignation CEE 1.

Cette Publication peut être obtenue auprès de l'Administration Commune de l'ASE et de l'UCS, 301, Seefeldstrasse, Zurich 8, au prix de fr. 5.— par exemplaire. Il s'agit d'une publication bilingue, en français et en anglais.

Association Suisse pour l'Essai des Matériaux (ASEM) Association Suisse des Electriciens (ASE)

Assemblée commune de discussion

sur les

Métaux pour contacts électriques

Jeudi, 16 octobre 1952, à 10 h 20

à l'Ecole Polytechnique Fédérale, bâtiment principal, Auditoire I, 33, Leonhardstrasse, Zurich

10 h 20 précises

A. Conférences de la matinée

- 1. Conférence de M. R. Palme, Metallwerk Plansee GmbH, Reutte, Tyrol:

 Der Einfluss der oxydierenden Wirkung atmosphärischer Luft auf die Wirkungsweise elektrischer Kontakte.
- Conférence de M. C. L. Meyer, physicien diplômé, Dr. E. Dürrenwächter, Pforzheim: Prüfmethoden und Werkstoff-Fragen bei funkenfreien Schaltvorgängen an Abhebekontakten.
- 3. Conférence de M. J. C. Chaston, Ph. D., A. R. S. M., F. Inst. P., F. I. M., Johnson, Matthey & Co., Ltd., Londres: Light and medium duty contact materials. (Cette conférence sera donnée en anglais.)
- 4. Discussion.

12 h 45 environ

B. Lunch en commun

Lunch en commun au Bâtiment des Congrès, Salle du Club, entrée par l'Alpenquai. Prix du menu fr. 6.—, non compris les boissons et le service.

15 h 00 précises

C. Conférences de l'après-midi

- 5. Conférence de M. A. Spälti, chef du Département des recherches de la S. A. Albiswerk Zurich, Zurich: Das Kontaktproblem in der Fernmeldetechnik.
- 6. Conférence de M. Ed. Anderfuhren, fonctionnaire technique à la Division générale des PTT, Berne:
 Neue Methoden zur Schwund- und Geräuschverminderung in Fernsprechanlagen.
- 7. Conférence de M. Ch. Caflisch, physicien diplômé, Atelier de Construction Oerlikon, Zurich-Oerlikon: Probleme um Starkstromkontakte.
- 8. Discussion des conférences de l'après-midi.

D. Inscription

On est prié d'envoyer au Secrétariat de l'ASE, au plus tard jusqu'au 11 octobre 1952, la carte d'inscription (carte bleue) jointe au présent numéro du Bulletin.

Bulletin de l'Association Suisse des Electriciens, édité par l'Association Suisse des Electriciens comme organe commun de l'Association Suisse des Electriciens et de l'Union des Centrales Suisses d'électricité. — Rédaction: Secrétariat de l'Association Suisse des Electriciens, 301, Seefeldstrasse, Zurich 8, téléphone (051) 34 12 12, compte de chèques postaux VIII 6133, adresse télégraphique Elektroverein Zurich. — La reproduction du texte ou des figures n'est autorisée que d'entente avec la Rédaction et avec l'indication de la source. — Le Bulletin de l'ASE paraît toutes les 2 semaines en allemand et en français; en outre, un «annuaire» paraît au début de chaque année. — Les communications concernant le texte sont à adresser à la Rédaction, celles concernant les annonces à l'Administration. — Administration: case postale Hauptpost, Zurich 1 (Adresse: S. A. Fachschristen-Verlag & Buchdruckerei, Stauffacherquai 36/40, Zurich 4), téléphone (051) 23 77 44, compte de chèques postaux VIII 8481. — Abonnement: Tous les membres reçoivent gratuitement un exemplaire du Bulletin de l'ASE (renseignements auprès du Secrétariat de l'ASE). Prix de l'abonnement pour non-membres en Suisse fr. 45.— par an, fr. 28.— pour six mois, à l'étranger fr. 55.— par an, fr. 33.— pour six mois. Adresser les commandes d'abonnements à l'Administration. Prix de numéros isolés en Suisse fr. 3.—, à l'étranger fr. 3.50.