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43e année N° 17 Samedi, le 23 août 1952

BULLETIN
DE L'ASSOCIATION SUISSE DES ELECTRICIENS

Anwendung statistischer Methoden in der Elektrotechnik
Vortrag, gehalten an der Jahresversammlung des SEV und VSE vom 14. Juni 1952 in Fribourg,

von Arthur Linder, Genf 519.24:621.3

Nach einigen grundsätzlichen Bemerkungen und historischen

Hinweisen wird gezeigt, welche Bedeutung den
statistischen Methoden für die Elektrotechnik zukommt. Als
Beispiele tverden behandelt: die Wirkungsweise eines
Abnahmeplanes, die Berechnung der Belastungsschwankungen
zentraler Verteilanlagen, die Beurteilung kleiner Messreihen,
Abhängigkeit der Überschlagshäufigkeit von der Spannung,
Prüfen von Radio-Störspannungsgrenzen, Tarifstudien.

Après un aperçu des principes et de l'évolution des
méthodes de la statistique, l'auteur montre l'importance de
celles-ci pour l'électrotechnique. A titre d'exemples, il traite
ensuite des sujets suivants: Fonctionnement d'un plan pour
des essais de réception, calcul des variations de la charge
d'installations centrales de distribution, appréciation des
résultats de petites séries de mesures, fréquence des con-
tournements en fonction de la tension, examen des limites
de la tension radioperturbatrice. études tarifaires.

1. Einleitung
Im Verlaufe der letzten Jahrzehnte hat sich die

Bedeutung des Wortes Statistik gewandelt. Während

man früher, wenigstens im deutschen Sprachgebiet,

unter Statistik Zusammenstellungen über
Ereignisse in der Bevölkerung — Geburten, Todesfälle

usw. — oder über Preise und dergleichen mehr
verstand, benützt man heute das Wort Statistik ganz
allgemein, wenn man die Ergebnisse von Beobachtungen

oder von Versuchen zusammenstellt und
kritisch beurteilt. Für uns ist demnach Statistik im
wesentlichen angewandte Mathematik; sie hat zur
Grundlage die Wahrscheinlichkeitsrechnung,
unterscheidet sich aber von der reinen Wahrscheinlichkeitstheorie

dadurch, dass man es in der Statistik
immer mit Beobachtungs- oder Versuchsergebnissen
zu tun hat. Die Wahrscheinlichkeitsrechnung
dagegen ist ein Teil der reinen Mathematik. Der Zweck
des Vortrages besteht darin, an Hand einiger
Beispiele zu zeigen, welche Bedeutung die neueren
statistischen Methoden in der Elektrotechnik haben
können. Sie werden schon seit einiger Zeit in der
Industrie und in der Materialprüfanstalt des SEV
angewendet. Schon wegen der Kürze der Zeit werde ich
mich auf die Anwendungen beschränken und nur
ganz ausnahmsweise mathematische Formeln
angehen ; wer sich näher mit dem Gegenstand befassen
möchte, findet einige Hinweise im Literaturverzeichnis.

Die Geburtsstätte der modernen mathematischen
Statistik ist England. Dort sind um die Jahrhundertwende

entscheidende Fortschritte erzielt worden,
die ihren Ausgangspunkt in den Forschungen von
Karl Pearson hatten, der, angeregt durch Galton, die
Mathematik auf biologische Probleme anzuwenden
versuchte, und damit der Begründer der sog.
Biometrie wurde. Einen entscheidenden Fortschritt
erzielte einer seiner Schüler, W. S. Gösset, der unter
dem Pseudonym Student seine Arbeiten veröffentlichte,

in denen er vor allem zeigte, wie man
Beobachtungsserien von sehr kleinem Umfang beur¬

teilen kann. Die volle Tragweite der Auffassung
von Student erkannte R. A. Fisher (jetzt Sir
Ronald Fisher) [9] 1), der zuerst als Mathematiker an
einer landwirtschaftlichen Versuchsanstalt tätig war,
und z. Z. als Professor für Genetik in Cambridge
wirkt.

Die industriellen Anwendungsmöglichkeiten der
modernen Methoden wurden insbesondere von
Shewhart [29], Fry, Molina, Dodge und Romig, die
sämtliche in den Bell Laboratories tätig waren, voll
erkannt. Die ersten Anwendungen in der Technik
erfolgten somit im Gebiete der Elektrotechnik.

Die modernen statistischen Methoden haben ein
sehr weites Aliwendungsfeld, werden sie doch heute
z. B. in der Biologie, in der Medizin, in der
Landwirtschaft, itn Forstwesen, in den Wirtschaftswissenschaften

angewandt, kurz, überall wo es sich darum
handelt, Beobachtungen und Versuche auszuwerten.

2. Die Abnahmeprüfung
Als erstes Beispiel einer Anwendung statistischer

Methoden sei folgende Frage untersucht:
54 Spulen eines Generators sollen auf ihren

Isolationswiderstand geprüft werden. Da die Prüfung
zur Zerstörung des Prüflings führt, können nicht
sämtliche Spulen geprüft werden; man muss sich
mit einer Stichprobe begnügen. Das Los von 54
Spulen wird also angenommen oder zurückgewiesen
auf Grund einer Stichprobe. Es frägt sich nun,
welche Risiken Verkäufer und Käufer bei diesem
Vorgehen eingehen. Um dies beurteilen zu können,
muss man zunächst die Prüfvorschrift eindeutig
und klar festlegen. Selbstverständlich betrachten
wir hier lediglich die statistische Seite der ganzen
Angelegenheit; es ist klar, dass sich dazu auch
technische und kaufmännische Fragen stellen, die hier
nicht berücksichtigt werden sollen.

Nehmen wir an, die Prüfvorschrift oder der
Ahnahmeplan sei wie folgt festgelegt:

l) siehe Literatur am Schluss des Aufsatzes.
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Prüfvorschrift oder Abnahmeplan A

2 gut:
ANNAHME

2 Spulen prüfen

1 gut:

1

0 gut:
RÜCKWEISUNG

2 gut:
ANNAHME

2 weitere Spulen prüfen

1 gut: 0 gut:
RÜCKWEISUNG

Um die Wirkungsweise dieses Abnahmeplanes
überblicken zu können, gehen wir aus von allen
möglichen Fällen, die sich bei der Prüfung eines
Loses ergeben können. Wir berechnen nach den
einfachen Regeln der Wahrscheinlichkeitsrechnung
die Wahrscheinlichkeit P, dass ein Los von 54 Spulen

angenommen wird, wenn unter den 54 Spulen
d defekte vorhanden sind. Die Wahrscheinlichkeit
P lässt sich nach folgender Formel berechnen:

P

54 — d\d
2 J\0

54
—dj Id 53 — d\ d — 1

2 )\ 0

52'

2

Trägt man die Wahrscheinlichkeit P als Ordinate

und die Zahl der defekten Stücke im Los als
Abszisse auf, so erhält man die sog. «operating
characteristic» des Abnahmeplanes (Fig. 1).

«o

zo ta

24 30 36
iTn-h^iz
42 Sk

UV1MM *" d

Fig. 1

Wahrscheinlichkeit der Annahme eines Loses
unter Abnahmeplan A

P Wahrscheinlichkeit der Annahme eines Loses; d defekte
Spulen im Los

Fig. 1 zeigt unter anderem, dass ein Los mit 6

defekten Spulen in 5 % aller Fälle zurückgewiesen
wird. Anderseits wird ein Los mit 43 defekten
Spulen noch in 5 % aller Fälle angenommen
werden. Der Abnahmeplan ist somit mit verhältnismässig

grossen Risiken behaftet, und zwar sowohl
für den Käufer wie für den Verkäufer. Man kann
sich fragen, wie ein Plan sich auswirken würde,
bei dem man nicht nur 4, sondern z. B. 10 Spulen
prüfen würde. Die entsprechende Prüfvorschrift
wäre etwa die folgende:

Prüfvorschrift oder Abnahmeplan B

5 Spulen prüfen

5 gut: 4 gut: 3, 2, 1 oder 0 gut:
ANNAHME RÜCKWEISUNG

5 weitere Spulen prüfen

5 oder 4 gut: 3, 2, 1 oder 0 gut:
ANNAHME RÜCKWEISUNG

Aus Fig. 2 ist ersichtlich, dass hei dieser zweiten

Prüfvorschrift, mit im ganzen 10 Prüflingen,
die Risiken für Käufer und Verkäufer zwar kleiner
werden, aber vielleicht doch nicht so klein, wie man
dies ohne genaue Kenntnis der Annahmewahrscheinlichkeiten

voraussetzen dürfte. Aufgabe des
Technikers ist es, in Zusammenarbeit mit dem Statistiker

den besten, wirtschaftlich tragbaren Abnahmeplan

zu ermitteln.

100

%

40

20

12

"fîTTTT-^—
24 30 36 420 6

UV19US - d
Fig. 2

Wahrscheinlichkeit der Annahme eines Loses
unter Abnahmeplan B

Bezeichnungen siehe Fig. 1

Eine wichtige Bemerkung sei hier angeschlossen.
Bei der Bestimmung der Annahmewahrscheinlichkeit

P wird vorausgesetzt, dass jede der 54 Spulen
des Loses die gleiche Wahrscheinlichkeit besitzt, in
die Stichprobe einbezogen zu werden. In der Praxis

muss dieser Voraussetzung entsprechend gehandelt

werden, da sonst die mathematisch berechneten
Wahrscheinlichkeiten keine Gültigkeit beanspruchen

dürfen. Es genügt nicht, zu fordern, dass die
Auswahl der Prüflinge «beliebig» erfolgen solle,
denn beliebig bedeutet, dass die Auswahl dem
Ermessen des Prüfenden anheimgestellt ist. Wenn der
Verkäufer Anhaltspunkte dafür hat, dass gewisse
seiner Spulen besser sind als die andern, und wenn
er diese in der Reihe der Spulen an die vorderste
Stelle bringt, und wenn weiter der Käufer bei seiner
beliebigen Auswahl einfach nur die 4 ersten Spulen
prüft, so werden diese Prüflinge in keiner Weise
den Wahrscheinlichkeiten entsprechen, die oben
berechnet wurden. Die streng «zufällige» Auswahl der
Prüflinge müsste etwa wie folgt vor sich gehen:

Die 54 Spulen werden von 1...54 numeriert.
Sodann schreibt man auf 54 Karten die Nummern
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1...54 auf. Hierauf mischt man diese Karten gründlich

und erhält damit eine zufällige Reihenfolge
der Nummern 1...54. Indem man die ersten in dieser
zufälligen Reihenfolge auswählt, hat man eine
zufällige Auswahl der entsprechenden Prüflinge
erreicht. Statt dieses Vorganges wählt man heute
Prüflinge aus einem Los mit Hilfe von Tafeln zufällig

angeordneter Zahlen, die eigens zu diesem
Zwecke hergestellt wurden [11]. Wenn man sich
stets an diese zufällige Auswahl hält, entsprechen
die tatsächlichen Risiken eines Ahnahmeplanes den
theoretisch berechneten.

In den letzten Jahren sind zahlreiche theoretische

und praktische Untersuchungen üher
Abnahmepläne durchgeführt worden. Hier sei nur ein
wichtiges Ergebnis dieser Untersuchungen vorgeführt,

und zwar auf Grund der Fig. 3, die dem
Werk von Graut [13] entnommen wurde.

Aus der Fig. 3 ersieht man, dass es unzweckmäs-
sig ist, in einer Abnahmevorschrift einfach festzulegen,

dass der Umfang der Stichprobe 10 % der
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Fig. 3

Wahrscheinlichkeit der Annahme eines Loses
bei verschiedenen Abnahmeplänen

N Anzahl der Stücke im Los; n Anzahl der Stücke in der
Stichprobe; d Anzahl der in der Stichprobe zugelassenen

defekten Stücke; 8 Prozentsatz defekter Stücke im Los
Weitere Bezeichnungen siehe Fig. 1

Zahl der Stücke des Loses enthalten soll. Wie Fig. 3

zeigt, sinkt die Wahrscheinlichkeit der Annahme
stark, wenn die Zahl der Stücke im Los und die
Zahl der Stücke in der Stichprobe erhöht werden,
trotzdem ihr Verhältnis immer 10 % ist. Es
entscheidet also üher die Wahrscheinlichkeit der
Annahme in erster Linie der Umfang der Stichprobe,
d. h. die absolute Zahl der Prüflinge.

Wer sich für Abnahmepläne im allgemeinen
interessiert, sei nachdrücklich auf die aus der Praxis
herausgewachsenen Arbeiten von H. C. Hamaker
[14] hingewiesem.

3. Belastungsschwankungen
zentraler Verteilanlagen

Auf Grund von Methoden, die grundsätzlich
gleicher Art sind, wie die im vorigen Abschnitt
erwähnten, hat Prof. Kummer [20, 21] in mehreren
Arbeiten gezeigt, wie sich die Belastungsschwankungen

zentraler Verteilanlagen berechnen lassen.
Dieselben Methoden können angewandt werden, um die
Bemessung von Anschlüssen auszurechnen, wie aus
den Arbeiten von Schellenberg [28] und Henzi [15]
hervorgeht. Ein einfaches Beispiel möge zeigen,
welche Fragen damit in der Praxis beantwortet werden

können [25].
An ein Netz seien 80 Kirchenheizungen von je

47 kW mittlerer Leistung angeschlossen. Dabei ist
die Bedingung gestellt, dass an Werktagen nur Vs

der Nennleistung jeder Heizung eingeschaltet werden

darf. Welches ist der Beitrag der
Kirchenheizungen zur Spitzenbelastung zwischen 7.00 und
8.30 Uhr, wenn bekannt ist, dass während 126 Werktagen

zur gleichen Zeit 57 Einschaltungen
vorgenommen wurden?

0,06492

0.00960

SEV19637

Fig. 4

Wahrscheinlichkeit P, dass von 80 Kirchenheizungen deren k
werktags zwischen 7.00 und 8.30 Uhr gleichzeitig eingeschaltet

werden

Da an den 126 Tagen 126X80 10 080 Einschaltungen

möglich gewesen wären und nur deren 57
tatsächlich erfolgten, beträgt die Wahrscheinlichkeit,

dass eine bestimmte Heizung an einem Tag zu
der angegebenen Zeit eingeschaltet wird, 57:10 080.
Man kann nun die Wahrscheinlichkeit dafür
ausrechnen, dass an einem Tage 2, 3, 4 usw. Heizungen
gleichzeitig eingeschaltet werden. Aus der Fig. 4
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geht hervor, dass die Wahrscheinlichkeit von 4

gleichzeitigen Einschaltungen mit rund V10oo schon
sehr gering ist. Somit darf man annehmen, dass 3

gleichzeitig eingeschaltete Heizungen dem Beitrag
an die Leistungsspitze entsprechen, der im Grenzfall

normalerweise noch zu erwarten ist. Da die
Nennleistung jeder dieser Heizungen gemäss den
Betriebsbedingungen auf 47/3 kW begrenzt werden
muss, wäre also der gesamte Beitrag der drei
Heizungen an die Leistungsspitze (47/3) X 3 47 kW.

4. Beurteilung kleiner Messreihen

Dass die statistischen Methoden nicht nur
angewendet werden können, wenn zahlreiche Messwerte
vorliegen, sondern auch hei sehr kleinen Stichproben,

soll das folgende Beispiel beweisen:
Die Messung des Lichtstromes von 5 Fluoreszenzlampen

zu 40 W nach 100 Brennstunden ergab die
folgenden Werte (in Lumen):

2290; 2290: 2278; 2283; 2268.

Man kann sich fragen, welches der Zentralwert und
die Streuung für diese Messreihe seien. Wie so oft,
weist auch hier eine genaue Fragestellung den Weg
zur richtigen Antwort.

Man muss sich darüber klar sein, dass die 5 Lampen

nicht für sich allein betrachtet werden dürfen,
sondern dass sie Schlüsse gestatten sollen, entweder

a) auf die Gesamtheit der Lampen eines Loses,
die miteinander hergestellt wurden, oder

b auf die theoretische Gesamtheit aller Lampen,
die unter den gleichen Bedingungen hergestellt werden

könnten, wie die gemessenen 5 Lampen. Diese
theoretische Gesamtheit, die notwendigerweise
unendlich viele Elemente umfasst, nennt man die
Grundgesamtheit.

Die 5 Lampen sind also eine Stichprobe, entweder

aus einem Los, oder aus der Grundgesamtheit;
sie gehen Anhaltspunkte über die Eigenschaften des
Loses oder der Grundgesamtheit.

Was kann aus einer kleinen Stichprobe auf eine
Grundgesamtheit geschlossen werden? Im allgemeinen

sehr wenig, wenn dagegen die Grundgesamtheit
«normal» ist, d. h. wenn sie dem Gauss-Laplaceschen
Verteilungsgesetz folgt, kann die Stichprobe gute
Anhaltspunkte über die Grundgesamtheit geben.

Was wissen wir aber über die Grundgesamtheit
in unserm Beispiel? In der Fabrikation von
Fluoreszenzlampen trachtet man danach, alle
Eigenschaften der Lampen nach Möglichkeit konstant zu
halten, soweit sich dies wirtschaftlich erreichen
lässt. Das bedeutet, dass in der Praxis kleine
Abweichungen in Kauf genommen werden, z. B.
Abweichungen in

a der Länge der Lampen,
b) dem Durchmesser der Lampen,
c) der Form der Lampen,
d) der Form der Elektrode,
e) dem Material der Elektrode,
f) dem Gasgemisch,
g) der angelegten Spannung bei der Prüfung

usw.
Es lässt sich nicht verhindern, dass diese und weitere

kleine Abweichungen von der Norm eintreten.

Diese kleinen Abweichungen sind nicht
vorausberechenbar, sie werden die Lichtstrommenge bald in
der einen, bald in der andern Richtung beeinflussen.

Wie schon Gauss gezeigt hat, entsteht in einem
solchen Falle, wenn die Wirkungen der einzelnen
Abweichungen sich summieren, eine normale
(Gauss-Laplacesche) Häufigkeitsverteilung der
Lichtstrommenge, wie sie Fig. 5 darstellt.

Fig. 5

Normale (Gauss-Laplacesche) Grundgesamtheit
(x—n)

1 2 o~
<p(tf) ; C (1 «p (x) cp (X) ax

a y 2 n
Erklärungen siehe im Text

Eine normale Verteilung ist bestimmt, wenn wir
ihre Parameter: den Durchschnitt p und die
Standardabweichung o, kennen. Es handelt sich nun
darum, aus den 5 oben angegebenen Lichtstrommengen

einen oder beide Parameter der normalen
Verteilung zu schätzen. Dabei kann man auf
verschiedene Arten vorgehen. Als Schätzung des
Durchschnitts p kann man z. B. den Zentralwert
benützen, das ist in unserer Zahlenreihe der Wert
2283, unterhalb dessen und oberhalb dessen je 2

Werte liegen. Anderseits können wir den Wert p
auch schätzen, indem wir den Durchschnitt der 5

Werte berechnen, der sich auf 2281,8 beläuft. Auch
der Parameter o kann auf verschiedene Arten
geschätzt werden, einmal indem man die Variationsbreite

R 2290 — 2268 22 benützt, oder indem
man die Standardabweichung

=l/S ("-*>' 9,2in— 1

benützt. Man nennt s2 85,7 auch die Streuung.
Wie R. A. Fisher [9] gezeigt hat, sind der Durchschnitt

und die Standardabweichung in gewissem
Sinne die besten Schätzungen der Parameter p und
ö der normalen Verteilung. Wir werden uns daher
im folgenden nur dieser Masszahlen bedienen.

Für unser Beispiel ist wohl die wichtigste
Fragestellung, innerhalb welcher Grenzen der Wert u
der Grundgesamtheit liegt. Dies kann entschieden
werden, indem man die sog. F-Verteilung benützt.
Entnimmt man nämlich einer normalen
Grundgesamtheit n Werte zufällig, so lässt sich berechnen,

mit welcher Wahrscheinlichkeit der Wert

n{x—p)2F= —2
2) Xi rr Einzelwerte; x — Durchschnitt; n — Zahl der

Einzelwerte.
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überschritten wird. Entscheidend ist nun, dass diese
Wahrscheinlichkeit in keiner Weise von der
Standardabweichung a der Grundgesamtheit
abhängt. Die Verteilung von F hängt lediglich vom
Umfang n der Stichprobe ah. Aus den eigens
berechneten Tabellen, die allen modernen statistischen

Lehrbüchern beigefügt sind [1, 9, 12, 22]
findet man für unser Beispiel mit n 5 einen
Wert F0,„g 7,71, was bedeutet, dass in 5 % aller
Stichproben, die zufällig einer Grundgesamtheit
entnommen werden, der Wert F grösser ist als 7,71.
95 % der Stichproben geben kleinere Werte von F
als 7,71. Man kann die Formel für F nach u,

auflösen und erhält

X±^/Fn

Setzt man darin den Durchschnitt x 2281,8,
die Streuung s2 85,2, den Umfang der Stichprobe
n 5 und F0,os 7,71, so erhält man jli 2281,8
± 11,5. Man findet damit die sog. Vertrauensgrenzen;

sie betragen 2270,3 und 2293,3. Der
Durchschnitt « der Grundgesamtheit ist mit 95 %
Wahrscheinlichkeit zwischen den Grenzen 2270,3 und
2293,3 zu erwarten. Aus der Formel für u ist zu
ersehen, dass diese Grenzen um so enger werden, je
grösser der Umfang n der Stichprobe ist.

Die hier skizzierte Methode findet eine wichtige
Anwendung bei der Überwachung der Qualität im
Laufe einer Fabrikation. Ich verweise dafür auf die
im Literaturverzeichnis angegebenen Arbeiten [3,
4, 12, 26, 29].

5. Abhängigkeit der Überselilagshäufigkeit
von der Spannung

Aus der Scliulpliysik sind uns die funktionalen
Beziehungen, die wir bei elementaren physikalischen

Gesetzen finden, vertraut. Man darf indessen
nicht übersehen, dass viele Erscheinungen nicht
diesem einfachen Schema entsprechen, sondern dass

Fig. 6

Schematicher Verlauf der Überschlagshäufigkeit eines
Isolators in Funktion der Spannung

ü Überschläge; U Spannung

Abhängigkeitsverhältnisse vorliegen, die, wie man
auch sagt, stochastisch und nicht funktional sind.
Ein Beispiel dafür ist die Häufigkeit der
Überschläge hei einem 50-kV-Stützisolator in Abhängigkeit

von der Stoßspannung. Schematisch darge¬

stellt hat man eine Beziehung zwischen Überschlagshäufigkeit

und Spannung, wie sie in Fig. 6 dargestellt

ist. Es scheint demnach einfach, die
Haltespannung als den 0-%-Wert zu definieren und zu
bestimmen, ebenso einen 50-%- und einen 100-%-
Wert. Aber in Wirklichkeit liegen die Verhältnisse
anders, wie aus Fig. 7 hervorgeht, in der die Ergeb-

ioo T • —
%

so

<0

40

s>

°2S5 Z60 265 2}0 2?5 feV 280
SEV 19040 ~ U

Fig. 7

Beobachtete Überschlagshäufigkeit in Abhängigkeit
von der Spannung

ü Überschläge (je 20 Stösse); U Spannung

nisse von Versuchen dargestellt sind. Obschon diese
Versuche zweifellos unter sorgfältig genormten
Bedingungen durchgeführt wurden, liegen die Punkte
keineswegs auf einer schönen Kurve. Aus den
Versuchsergebnissen geht hervor, dass beim Wiederholen

des Versuches mit gleicher Spannung eine
gewisse Variabilität besteht, indem die Häufigkeiten
in einem bestimmten Bereich variieren. Könnte man
die Zahl der Versuche erhöhen, so erhielte man
einen Punkteschwarm, der innerhalb eines gewissen
Bandes liegen würde. Es ist nun die Aufgabe der
mathematischen Statistik, aus den beobachteten
Punkten die mittlere Kurve zu errechnen, und
gleichzeitig die Unsicherheit anzugeben, mit der
man zu rechnen hat.

Um dies tun zu können, muss man eine
bestimmte Voraussetzung treffen über das dem
Geschehen zu Grunde liegende theoretische Modell.
Wir werden annehmen, dass die in Fig. 6 schematisch

dargestellte Kurve als Summenkurve einer
normalen Verteilung aufgefasst werden kann. Unter

dieser Voraussetzung lässt sich diese Kurve
durch eine Darstellung im Wahrscheinlichkeitsnetz
oder, was dasselbe ist, durch die Verwendung der
sog. «Probits» [8, 11] in eine Gerade transformieren.

Dies ist in Fig. 8 durchgeführt.
Das Verfahren besteht darin, die beobachteten

Punkte in Beziehung zu setzen mit einer standardisierten

normalen Verteilung, deren Durchschnitt
Li 5 und deren Standardabweichung o 1 ist.
Der Durchschnitt wird gleich 5 gewählt, um negative
Werte zu vermeiden.

Es handelt sich nun darum, an die Punkte im
Wahrscheinlichkeitsnetz eine Gerade anzupassen;
dies kann entweder nach dem Augenmass oder nach
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statistischen Grundsätzen geschehen. In gewissen
Fällen genügt eine Anpassung nach dem Augenmass
vollkommen. Man muss sich indessen bewusst sein,
dass dieses Verfahren nicht objektiv ist, indem
verschiedene Personen verschiedene Geraden einzeich-

Fig. 8

Darstellung beobachteter Häufigkelten im
Wahrscheinlichkeitsnetz mit Angabe der «Probit»-Werte

Pb Probits; ü Überschläge; U Spannung

nen werden. Auch bestellt die Gefahr, bei Vergleichen

z. B. zweier Isolatoren kleine zufällige
Unterschiede fälschlicherweise als wesentlich anzusehen.
Bei Anpassung der Geraden nach statistischen
Verfahren erhält man dagegen stets dasselbe Ergebnis,

100
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Fig. 9

Anpassung der Geraden im Wahrscheinlichkeitsnetz und
Berechnung der ausgeglichenen mittleren Häufigkeitskurve

Für die den Häufigkeiten von 1, 50 und 99 % entsprechenden
Spannungen sind die Vertrauensgrenzen, bei einer Wahrschein¬

lichkeit von 0,95 %, eingezeichnet
Pb Probits; ü Überschläge; U Spannung

d. h. das Verfahren ist objektiv und es hat weiter
den Vorteil, zu zeigen, ob die Voraussetzung
zutrifft, dass die Mittelkurve der Summenkurve der
normalen Verteilung entspricht. Ausserdem
gestattet die Auswertung nach den neueren statistischen

Methoden Vertrauensgrenzen zu berechnen
und den Unterschied von 2 Geraden kritisch zu prüfen.

Fig. 9 zeigt das Ergebnis der Berechnung für
unser Beispiel.

Definieren wir jene Spannung, die einer Über-
schlagsliäufigkeit von 1 % entspricht, als
Haltespannung. Sie beträgt 251,4 kV und hat Vertrauensgrenzen

von 247,0 und 254,4 kV bei einer
Wahrscheinlichkeit von 95 %. Es geht nicht an, die
Haltespannung zu definieren als jene Spannung, die einer
Überschlagshäufigkeit von 0 % entspricht, da dieser
Wert theoretisch gesehen nicht im Endlichen liegt.

Diese Berechnungen erfolgen nach einer
Methode, die zuerst in der Pharmakologie und
Toxikologie entwickelt wurde [8]. Ihre Anwendung
auf das hier besprochene Problem wurde in der
Maschinenfabrik Oerlikon erprobt [18].

Für die ganze Frage der Koordination der
Isolationen dürften die hier skizzierten Verfahren von
grundlegender Bedeutung sein.

6. Prüfen von Radio-Störspannungsgrenzen
Für kleine Apparate wie Registrierkassen,

Küchenmaschinen, Staubsauger und Nähmaschinen ist
bekanntlich eine Störspannungsgrenze von 1 mV
festgelegt worden. Diese Grenze ist so aufzufassen,
dass man verlangt, es dürfe nur 1 Prozent der Werte
der Grundgesamtheit die Störspannungsgrenze
überschreiten. Wenn man nun einige Messwerte besitzt,
und aus diesen entscheiden soll, ob 99 % der Werte
der Grundgesamtheit unterhalb der Störspannungsgrenze

liegen, so handelt es sich statistisch gesehen
um ein Problem, das schon verschiedentlich theoretisch

bearbeitet wurde, und dessen Lösung bekannt
ist. Leider stehen aber für die praktische Anwendung

des Prüfverfahrens keine geeigneten Tafeln
zur Verfügung, ohschon solche in vielen Fragen der
industriellen Forschung und Praxis verwendet werden

könnten [4].
Auf dieselbe Methode führt übrigens die Frage

nach der Wasserführung von Gewässern, wie sie von
Eggenberger [7] behandelt wurde.

7. Tarifstudien
Bei Tarifstudien spielen neben den technischen

und kaufmännischen Überlegungen statistische
Grundsätze eine nicht zu unterschätzende Rolle.
Ein erster Schritt hei einer Tarifstudie besteht in
der Regel in der Auswahl einer Stichprobe von
Verbrauchern, um die Struktur des Energiekonsums
genauer kennenzulernen, und um die Wirkung
allfälliger Tarifänderungen beurteilen zu können.

Erster Grundsatz bei der Auswahl einer
Stichprobe ist, die Verbraucher, die in die Untersuchung
einbezogen werden sollen, zufällig auszuwählen.
Auch hier ist es allein die zufällige Auswahl, die
einseitige Fehler zu vermeiden erlaubt.
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Bei gleichem Aufwand kann die Genauigkeit der
Strukturuntersuchung beträchtlich erhöht werden,
wenn man sog. Schichten bildet.

In einer Stadt kann es z. B. vorkommen,
dass einzelne Stadtteile, etwa grössere Wohnkolonien,

verhältnismässig gleichartige Verbrauchsgewohnheiten

aufweisen, während andere Stadtteile
mit stark gemischter Bevölkerung starke
Unterschiede im Verbrauch zeigen. Es ist nun zweckmässig,

in jenen Gebieten einen schwächeren
Stichprobensatz zu wählen als in diesen. So lassen sich
bei gleichem Aufwand oft sehr bedeutende Gewinne
an Präzision erzielen.

Aber auch bei der Auswertung der Ergebnisse
wird man statistische Methoden mit Nutzen
beiziehen, so etwa, wenn man die Abhängigkeit des
Verbrauchs von der Personenzahl oder der Zahl der
Wohnräume, oder der Fläche der Wohnräume
untersuchen will. Auch dies sind stochastische
Abhängigkeiten und sie müssen mittels statistischer
Methoden erfasst werden [24].

8. Weitere Anwendungen
Es konnte sich hier nur darum handeln, eine

kleine Zahl von Anwendungen zu schildern; es gibt
aber eine grosse Zahl weiterer Anwendungsmöglichkeiten,

von denen ich nur noch zwei erwähnen
möchte.

Die einen sind jene Anwendungen, die mit dem
Problem der Wartezeiten bei Telephonanschlüssen
zusammenhängen. Darüber besteht eine ganze
Literatur, die in einer jüngsten Arbeit von D. G. Kendall

[17] zusammengefasst wurde.
Ein zweites Beispiel, das ich erwähnen möchte,

betrifft die sog. Streuungszerlegung, eine äusserst
praktische Methode mit vielfältigen
Anwendungsmöglichkeiten, die z. B. von Herzog und Burton
[16] bei der Beurteilung von Zugversuchen mit
vulkanisierten Weichkautschuken verwendet wurde.

Einen der wichtigsten Beiträge der neueren
Statistik bildet das Planen und Auswerten von Versuchen;

es würde den Rahmen dieser Arbeit
überschreiten, auch hierauf einzutreten. Es besteht
indessen kein Zweifel, dass dieses Gebiet gerade für
die schweizerische Industrie von höchstem Wert
sein muss.

9. Schlussbemerkungen
Zusammenfassend kann festgestellt werden, dass

die neueren statistischen Methoden überall verwendet

werden sollten, wo man die Ergebnisse von
Beobachtungen und Versuchen kritisch verwerten
will.

In diesem Sinne ist die mathematische Statistik,
wie der Physiker C. G. Darwin [2] hervorhob, von
zentraler Bedeutung. Sie lehrt uns, die Welt so zu

sehen, wie sie wirklich ist. Die Ungenauigkeit, die
scheinbar mit den statistischen Methoden verbunden

ist, liegt nicht in der Methode, sondern sie liegt
in den Dingen. Erst durch die Anwendung der
mathematischen Statistik vermögen wir diese Unge-
nauigkeiten zu messen und richtig zu bewerten.

Literatur
[1] Arley, N. and K. R. Buch: Introduction to the theory of

probability and statistics. New York: Wiley 1950.

[2] Darwin, C.G.: Logic and probability in physics. Nature,
Lond. Bd. 142(1938), Nr. 3591, S. 381...384.

[3] Davies, O. L. : Statistical methods in research and pro¬
duction. 2nd ed. Edinburgh: Oliver and Boyd 1950.

[4] Dudding, B.D. and W.J.Jennett: Quality control charts.
British Standard 600R: 1942.

[5] Dufour, E.: La revision des tarifs d'électricité des Ser¬
vices industriels de Genève. Bull. ASE Bd. 38(1947), Nr. 9,
S. 243...254.

[6] Dufour, E.: Méthode graphique de contrôle de l'appro¬
visionnement en énergie électrique d'une entreprise de
production et de distribution. Bull. ASE Bd. 39(1948), Nr.
13, S. 427...430.

[7] Eggenberger, F.: Wahrscheinlichkeitstheoretische Analyse
der Wasserführung einiger Flüsse der Schweiz. Diss. ETH.
Zürich: Leemann 1950.

[8] Finney, D.J.: Probit Analysis. 2nd ed. Cambridge: Uni¬
versity Press 1952.

[9] Fisher, R.A.: Statistical methods for research workers.
11th ed. Edinburgh: Oliver and Boyd 1950.

[10] Fisher, R. A.: The design of experiments. 5th ed. Edin¬
burgh: Oliver and Boyd 1950.

[11] Fisher, R. A. and F. Yates: Statistical tables. 3rd ed. Edin¬
burgh: Oliver and Boyd 1948.

[12] Freeman, H.A.: Industrial statistics. New York: Wiley
1942.

[13] Grant, E.: Statistical quality control. New York: McGraw-
Hill 1946.

[14] Hamaker, H.C. in Philips Techn. Rev. Bd.—(1949), Dez.,
S. 176...182; —(1950), März, S. 260...270; Juni, S. 362...370.

[15] Henzi, R.: Berechnung des Belastungsausgleiches in Ver¬
teilanlagen. Schweiz. Bauztg. Bd. 68(1950), Nr. 13, S. 161...
165.

[16] Herzog, R. und R. H. Burton: Einfluss des Prüfstabes auf
die Resultate des Zugversuches von vulkanisierten
Weichkautschuken. Schweiz. Arch, angew. Wiss. Techn. Bd. 18
(1952), Nr. 6, S. 177...189.

[17] Kendall, D.G.: Some problems in the theory of queus.
J. R. Statist. Soc. Ser. B, Bd. 13(1951), S. 151...185.

[18] Krondl, M.: Auswertung von Messreihen der Überschlag-
Stoßspannung von Funkenstrecken. Techn.Bericht. Zürich:
Maschinenfabrik Oerlikon 1952.

[19] Krondl, M.: Die Auswertung kleiner Messreihen. Techn.
Bericht. Zürich: Maschinenfabrik Oerlikon 1951.

[20] Kummer, W.: Die Effektschwankung im elektrischen Be¬
triebe der Schweizerischen Bundesbahnen. Schweiz. Bauztg.

Bd. 96(1930), Nr. 1, S. 1...4.
[21] Kummer, W.: Sur l'application du calcul des probabilités

dans les projets de l'ingénieur. Bull, techn. Suisse rom.
Bd. 59(1933), Nr. 11, S. 129...132; Nr. 12, S. 141...144.

[22] Linder, A.: Statistische Methoden für Naturwissenschaf¬
ter, Mediziner und Ingenieure. 2. erw. Aufl. Basel:
Birkhäuser 1951.

[23] Meyer de Stadelhofen, Jean: Sondages statistiques con¬
cernant l'auditoire radiophonique et sa consommation
d'électricité. Bull, techn. TT Bd. 24(1946), Nr. 4, S. 163...170.

[24] Morel, Ch.: Mathematische Statistik und Tarifwesen. Bull.
SEV Bd. 38(1947), Nr. 6, S. 141...149; Bd. 39(1948), Nr. 6,
S. 161...174.

[25] Morel, Ch.: Adaption des méthodes statistiques modernes
aux besoins des électriciens (Erscheint als Kongressbericht

der «Union Internationale des Producteurs et
Distributeurs d'Energie»).

[26] Rissik, H.: Quality control in production. London: Pitman
1947.

[27] Rohrer, H.: Dispersion des tensions d'amorçage au choc
des parafoudres. Conf. int. Grands Rés. Electr., Paris,
Session de 1952.

[28] Schellenberg, H.: Belastungsausgleich in Verteilanlagen.
'Schweiz. Bauztg. Bd. 65(1947), Nr. 36, S. 495. ..498.

[29] Shewhart, W.A.: Economic control of quality of manu¬
factured product. New York: van Nostrand 1931.

Adresse des Autors:
Prof. Dr. A. Linder, 24, avenue de Champel, Genève.


	Anwendung statistischer Methoden in der Elektrotechnik

