Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 42 (1951)

Heft: 20

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

- zu beschleunigende Masse mit grossem Schwungmoment
- M Antriebsmotor von B
- Generator
- R Rototrol-Regler
- Antrieb von Generator und Rototrol R₂ Omsche Widerstände

Wicklungen: 1 Erregerwicklung des Motors

- 2; 3 Erregerwicklungen des Rototrols
- Erregerwicklung des Generators
- Serieerregerwicklungen des Rototrols konstante Gleichspannung

Die Masse B mit grossem Schwungmoment GD^2 soll von einem Gleichstrommotor M in Ward-Leonard-Schaltung möglichst rasch angetrieben werden.

Nach dem Drallsatz beträgt das Antriebsdrehmoment M_a des Motors:

$$M_a = k GD^2 b$$

wobei

- \boldsymbol{k} Konstante
- Rotationsbeschleunigung
- GD^2 Schwungmoment der anzutreibenden Masse

Seine Grösse richtet sich einerseits nach der maximal möglichen Beanspruchung der Übertragungsorgane, anderseits nach dem zulässigen Ankerstrom Ia des Motors. Eine konstante Beschleunigung b erfordert ein konstantes Antriebsdrehmoment Ma und, da der Motor fremd erregt ist, auch einen konstanten Ankerstrom Ia.

Die Aufgabe des Rototrols ist es, den Ankerstrom Ia des Antriebsmotors möglichst konstant zu halten, damit dieser immer maximal ausgenützt ist.

Die Erregung des Generators G wird vom Rototrol gespiesen. Im Belastungskreis des Reglers fliesse der zur Erzeugung des Ankerstromes I_a notwendige Erregerstrom i_2 .

Am Widerstand R_1 wird eine dem Strome I_a proportionale Spannung erzeugt. Mit dieser Spannung wird die Erregerwicklung 2 des Rototrols gespiesen. Dieser Wicklung 2 ist eine zweite Wicklung 3 entgegengeschaltet, welche von einem konstanten Strom durchflossen wird. Fliesst im Anker-

kreis der notwendige Strom I_a , so kompensieren sich die Ampèrewindungen der Wicklungen 2 und 3 und im Belastungskreis des Reglers wird keine Spannung induziert. Der Ankerstrom Ia bleibt konstant. Ändert sich infolge der Drehzahländerung der Wert des Stromes Ia, so ändern sich die Ampèrewindungen der Wicklung 2 und im Belastungskreis des Reglers wird eine Spannung induziert, die eine $\overline{ ext{A}}$ nderung der $\overline{ ext{A}}$ nkerspannung des $\overline{ ext{G}}$ enerators $\overline{ ext{G}}$ zur Folge hat, bis der Motorstrom Ia seinen Sollwert wieder erreicht hat. Dann hört die regelnde Wirkung des Rototrols wieder auf.

Diese Art Regulierung kommt häufig vor bei Walzwerk-Antrieben. Die Walzen sollen möglichst rasch auf eine bestimmte Drehzahl gebracht oder bis zum Stillstand abgebremst werden. Der grosse Vorteil des Rototrol-Reglers bei diesem Vorgang ist das stufenlose Arbeiten. Es tritt keine sprunghafte Anderung des Motorstromes I_a auf, die den Ubertragungsorganen des Drehmomentes schaden könnte. Mit grosser Präzision hält der Rototrol den Maschinenstrom Ia unabhängig der Drehzahl kon-

Diese Beispiele mögen zeigen, auf welch mannigfaltige Art und Weise der Rototrol-Verstärker-Regler in der Praxis für Regulierzwecke gebraucht werden kann.

Literatur

- [1] Carleton, James T.: The Transient Behavior of the 2-Stage Rototrol Main Exciter Voltage Regulating System as Determined by Electrical Analogy. Electr. Engng. Bd. 68 (1949), S. 59...63.
- [2] Erbe, J.R.: Electric Control. Iron Age Bd. 163(1949), Jan. [3] Fisher, M. H.: Industrial Applications of Rotating Regulators. Power Generation Bd. -(1949), April/Juni.
- [4] Hélot, Jacques: Rototrol. Bull. Soc. franç. Electr". 6. Serie Bd. 9(1949), Nr. 94, S. 328...342.
- [5] Baker, R. R.: Pulp and Paper Industry Electrical Developments. Electr. Engng. Bd. 67(1948).
- [6] Lynn, C. und C. E. Valentine: Rototrol Provides Generator Excitation. Westinghouse Engr. Bd. 8(1948), Nr. 2, S. 34...36.
 [7] Kimball, A. W.: Two-Stage Rototrol for Low-Energy Regulating Systems. Electr. Engng. Bd. 66(1947), S. 1507...1511.
- Liwschitz, M. M.: The Multistage Rototrol. Electr. Engng. Bd. 66(1947), S. 564...568.
- [9] Harris, W. R.: Industrial Application of Rototrol Regulators. Electr. Engng. Trans. Bd. 65(1946), März, S. 118...123.

Adresse des Autors:

F. Tschappu, Dipl. El.-Ing., Schönbühl 8, Zug.

Technische Mitteilungen — Communications de nature technique

Anwendung von Widerständen mit negativem Temperaturkoeffizienten

[Nach R. Kretzmann: Anwendungsmöglichkeiten von NTC-Widerständen. Funk-Techn. Bd. 6(1951), Nr. 15, S. 419...421.]

Widerstände mit negativen Temperaturkoeffizienten (im folgenden NTC-Widerstände) unterscheiden sich von den üblichen Widerständen durch einen grossen negativen Temperaturkoeffizienten des Widerstandswertes (-3...4,5 % pro °C bei 20 °C). Steigt die Temperatur eines solchen Widerstandes infolge Anstieg der Umgebungstemperatur oder auch durch Wärmeentwicklung im Widerstand selbst, so sinkt dessen Widerstand erheblich. Solche Widerstände können zu verschiedenen Zwecken verwendet werden.

Temperaturmessung

Wird der Ohmsche Widerstandswert eines NTC-Widerstandes mit einer derart geringen Stromstärke gemessen, dass im Widerstand selbst keine nennenswerte Erwärmung erfolgt und somit der Widerstandswert ausschliesslich von der Umgebungstemperatur abhängt, so kann der NTC-Widerstand als Widerstandsthermometer benützt werden. Die Empfind-

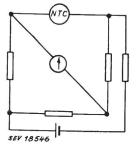


Fig. 1 Brückenschaltung mit NTC-Widerstand für **Temperaturmessung**

lichkeit solcher Widerstandsthermometer ist bei Zimmertemperatur 8...12mal so hoch als diejenige der üblichen Widerstandsthermometer; bei niedrigeren Temperaturen

nimmt die Empfindlichkeit noch zu, bei höheren allmählich ab.

Das Schaltschema in Fig. 1 zeigt die Verwendung eines NTC-Widerstandes für genaue Temperaturmessungen. Die Brücke wird mit Gleichstrom oder mit niederfrequentem Wechselstrom gespeist.

Wenn der NTC-Widerstand als frequenzbestimmendes Element eines RC-Tonfrequenzgenerators verwendet wird, so können die Messwerte auf drahtlosem Wege übertragen werden, falls die erzeugte Tonfrequenz zur Modulation eines Senders verwendet wird.

Temperaturregelung

Für wissenschaftliche Zwecke bzw. für physikalische, chemische und industrielle Verwendungen eignen sich NTC-Widerstände als Messelemente von Thermostaten. Infolge der kleinen Masse der NTC-Widerstände können diese schnell den Temperaturschwankungen der Umgebung folgen; ihre Eichwerte ändern sich auch nach längerer Zeit nur unwesentlich. Sie werden für Regelzwecke am besten in Brückenschaltung verwendet, in Kombination mit einem elektronischen Relais, oder im Eingangskreis eines Verstärkers, wo sie ein mechanisches Relais steuern.

Vacuummessung (Gas-Analyse)

Fig. 2 zeigt die Verwendung von NTC-Widerständen zur Vacuummessung. Ein von einem bestimmten Strom durchflossener NTC-Widerstand erreicht sein Temperaturgleichgewicht in Funktion der Wärmeabgabe an die Umgebung. Da die Wärmeabgabe im Vacuum geringer ist als in einer gasförmigen Umgebung, kann ein NTC-Widerstand zu Va-

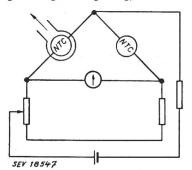


Fig. 2 Brückenschaltung für Vacuum-Messungen und Gas-Analysen

cuummessungen benützt werden. Dabei können sehr genaue Messungen bis zu etwa 10⁻⁵ mm Hg durchgeführt werden. Der zweite NTC-Widerstand in Fig. 2 dient zur Kompensierung des Einflusses der schwankenden Temperatur.

Strömungsgeschwindigkeits-Messung von Gasen und Flüssigkeiten

Die Schaltung für einen Strömungsgeschwindigkeits-Messapparat zeigt Fig. 3. Es werden zwei NTC-Widerstände verwendet, von denen der eine in die strömende Flüssigkeit, der andere jedoch in den stationären Teil getaucht ist. Je schneller die Strömung ist, um so grösser wird der Unterschied in

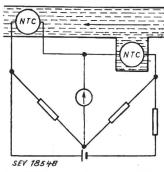
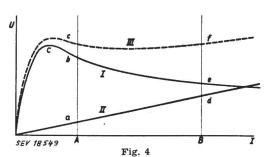


Fig. 3 Messung der Strömungsgeschwindigkeit von Flüssigkeiten und Gasen

der Wärmeabgabe der beiden NTC-Widerstände und damit auch der Ausschlag des Messinstrumentes. Sofern die Umgebungstemperatur der beiden NTC-Widerstände gleich ist, spielt die Temperatur des Mediums keine Rolle.


Pegelstand-Signalisierungen

In die Höhe des nicht zu unterschreitenden Flüssigkeits-

pegels wird ein von konstantem Strom durchflossener NTC-Widerstand gebracht. So lange der Widerstand in die Flüssigkeit getaucht ist, wird seine Erwärmung niedriger und damit sein Widerstand höher sein, als wenn die Flüssigkeit sinkt und der NTC-Widerstand mit der Luft umgeben ist. Der auf diese Weise gesunkene Widerstandswert ermöglicht das Aufleuchten einer in Serie geschalteten Kontrollampe oder die Auslösung eines akustischen Warnsignals.

Spannungsstabilisierung

Ein NTC-Widerstand, mit einem gewähnlichen Ohmschen Widerstand in Reihe geschaltet, ermöglicht zwischen gewissen Grenzen eine gute Spannungsstabilisierung. Fig. 4 zeigt,

Strom-Spannungskurve eines NTC-Widerstandes (I), eines Ohmschen (II) und ihrer Kombination (III)

dass man bei einer solchen Kombination die Stromstärke zwischen A und B gut ändern kann, ohne dass die Ausgangsspannung sich wesentlich verändern würde.

NTC-Widerstand als Sperrorgan

Aus Kurve I in Fig. 4 geht hervor, dass die Spannung über einen im Temperaturgleichgewicht befindlichen NTC-Widerstand zunächst mit zunehmendem Strom steigt, um dann nach Überschreitung des Maximums (C) wieder abzunehmen. Diese Eigenschaft des NTC-Widerstandes kann man besonders in der Schwachstromtechnik für Schaltzwecke verwenden und ihn als Sperrorgan gebrauchen. Wenn nämlich die Spannung den genannten Maximalwert überschreitet, nimmt der Strom sehr rasch zu und umgekehrt. Es ist also möglich, unterhalb einer gewünschten Spannung einen verhältnismässig grossen Strom zu sperren ohne jegliche Kontaktöffnung.

NTC-Widerstände für Anlasszwecke

Elektronenröhren haben bekanntlich einen positiven Temperaturkoeffizienten, d. h. der Widerstand des Heizfadens ist in kaltem Zustand niedriger als in warmem. Beim Einschalten von Elektronenröhren mit indirekt geheizter Kathode dauert es bekanntlich eine gewisse Zeit, bis die Kathode ihre Betriebstemperatur erreicht hat. Sind nun die Elektronenröhren mit anderen Schaltelementen in Serie geschaltet, dann kann beim Einschalten der Röhren an diesen eine zu hohe Spannung auftreten. Diese Überspannungen kann man mit einem in Serie in den Heizstromkreis geschalteten und entsprechend bemessenen NTC-Widerstand auffangen.

NTC-Widerstand als Shunt

Wenn verhütet werden soll, dass ein Stromkreis beim Durchbrennen eines in Serie geschalteten Schaltelementes, z. B. einer Kontrollampe, stromlos wird, kann mit diesem Schaltelement ein NTC-Widerstand parallel geschaltet werden. Ist z. B. die Kontrollampe intakt, so nimmt der NTC-Widerstand wegen seines grossen Widerstandes nur geringen Strom auf; wenn die Lampe ausfällt, erwärmt sich der NTC-Widerstand, lässt einen grösseren Strom durch und kann im Stromkreis als Belastung die Lampe ersetzen.

NTC-Widerstände als Verzögerungselemente

Es ist auch möglich, mittels NTC-Widerständen die Ansprechzeit von Relais und anderen Schalteinrichtungen zu verzögern. Die Verzögerung ist abhängig von der thermischen Trägheit, d. h. von der Masse des Widerstandes.

Als Beispiel sei erwähnt die Verwendung in automatischen Lichtschaltern. Bekanntlich werden solche Schalter

von Photozellen gesteuert. Es ist aber unerwünscht, dass der Schalter auf kurzzeitige Beleuchtungsänderungen, z. B. Blitz, reagiert. Die Verzögerung des Steuerbefehls der Photozelle kann gut mit einem NTC-Widerstand durchgeführt werden.

Zum Schluss seien einige Daten solcher Widerstände an-

gegeben:

Verwendung	Kalt- widerstand		Warm- derstand	Belastbarkeit
	$\mathbf{k}\Omega$		Ω	max. mA
Parallelwiderstand	815	\approx	240	100
Seriewiderstand .	23	\approx	220	100
Seriewiderstand .	1014	\approx	415	100
	11.			Schi.

Les réparations par soudure dans la centrale électrique de Chandoline

621.791:621.311.21(00467) Ravagée par un violent incendie le 3 avril 1951, cette centrale a été mise complètement hors service. Les travaux

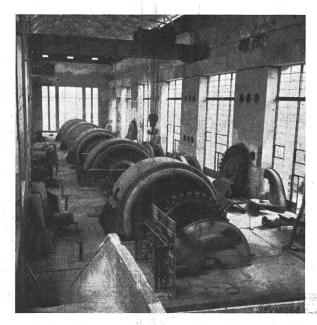
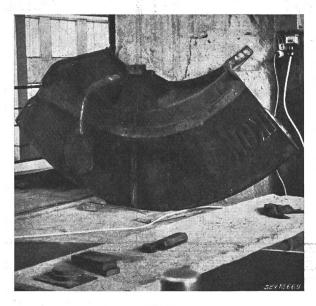



Fig. 1 Vue d'ensemble de la centrale avariée Chandoline-Dixence le 26 avril 1951

Culasse en fonte d'un alternateur de 30 000 kVA, fissurée sur une longueur d'environ 1 m et soudée à l'électrode Castolin N° 24 Epaisseur de la fonte environ 30 mm

de réparation, immédiatement entrepris par la S. A. l'Energie de l'Ouest-Suisse et les constructeurs des machines ont permis la remise en service beaucoup plus vite que l'on n'avait pensé. En effet, le 12 mai, c'est-à-dire moins de six semaines après le sinistre, un premier groupe générateur de 30 000 kVA tournait déjà, et un deuxième suivit bientôt.

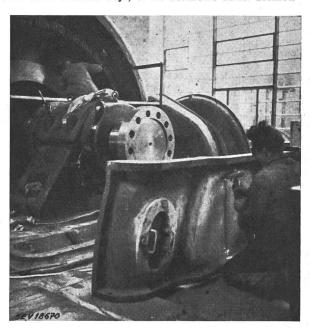


Fig. 3 Bâti d'une turbine Pelton, dont une fissure a été resoudé à l'électrode Castolin N° 24 Vue lors de l'usinage du cordon de soudure. Epaisseur de la fonte 30...35 mm

La réparation rapide des turbines et alternateurs a été possible grâce, entre autre, à la soudure à l'arc. Ces quelques photos donnent une idée de l'importance des soudures exécutées avec l'électrode spéciale pour la fonte Castolin

Die induktive Heizung mit Netzfrequenz in der chemischen Industrie

[Nach C. Schörg: Die induktive Heizung mit Netzfrequenz in der chemischen Industrie. Z. VDI Bd. 91(1949), Nr. 12, S. 277...284.]

Grundlagen

Bei endothermen Prozessen zur chemischen Umwandlung von Stoffen wird die nötige Wärme den Apparaten meist von aussen zugeleitet. Der Übergang der erforderlichen Wärmemenge Q vom Heizmittel auf das im Gefäss befindliche Heizgut folgt dem Gesetz:

$$Q = \propto A \cdot \Delta t$$
 kcal/h

wo ∝ die Wärmeübergangszahl in kcal/m² Grad·h, A die Heizfläche in m^2 und Δt den Temperaturunterschied zwischen Heizmittel und Heizgut in Grad bedeuten.

Die Wärmeübergangszahl ist von wesentlicher Bedeutung; sie kann erheblich verbessert werden, wenn der Wärmeübertritt vom Heizmittel auf die Wand gleich 0 wird, d. h. wenn die Wärme in der Kesselwand selbst entsteht. Das ist durch elektromagnetische Induktion möglich. Das Gefäss wird in ein magnetisches Wechselfeld gebracht, welches die Wand des Gefässes erhitzt. Die Grösse der übertragenen Energie ist abhängig:

1. Von dem Quadrat der Feldstärke des magnetischen Feldes (also von Strom und Spulenwindungszahl);
2. von der Quadratwurzel aus der Frequenz des magnetischen Wechselfeldes;
3. von der Quadratwurzel aus der Wechselstrompermeabilität des verwendeten Eisens bei der aufgedrückten Feldetärke.

stärke;
4. von der Quadratwurzel aus dem spezifischen elektri-schen Widerstand des Eisens bei der Betriebstemperatur, und 5. von einer Materialkonstante.

Da man bei den meisten chemischen Prozessen mit Temperaturen unter dem Umwandlungspunkt des Eisens arbeitet, wird die Permeabilität nicht wie beim flüssigen Eisen gleich 1, sondern in der Grössenordnung von 40...80 bleiben. Daher kann die nötige Energie mit Normalfrequenz übertragen werden, d. h. ein besonderer Stromerzeuger für höhere Frequenzen erübrigt sich.

Werkstoff

Für induktive Heizung verwendet man Gefässe aus ferromagnetischem Werkstoff. Die wichtigsten Grössen, vor allem die Leistung, werden auf die Arbeitstemperatur bezogen, da der Temperaturkoeffizient des spezifischen Widerstandes der Metalle, mit denen die induktive Heizung arbeitet, relativ hoch ist (Eisen z. B. 0,46 pro 100 °C), und die Temperaturabhängigkeit dieser Grössen somit beträchtlich wird. Ausserdem ist zu prüfen, wie sich die magnetischen Eigenschaften des Eisens mit der Temperatur unterhalb des Umwandlungspunktes ändern. Eisen und seine Legierungen werden bei etwa 870 °C unmagnetisch. Bei Legierungen ist das Verhalten starken Änderungen unterworfen, so nimmt z. B. bei Nickelzusatz etwa bei 500 °C die Induktion bei konstanter Feldstärke wieder beträchtlich zu, um dann kurz vor dem Umwandlungspunkt sehr steil abzufallen. Den Mittelwert der verschiedenen Einflüsse gewinnt man am schnellsten durch Versuche, die man bei gleichbleibender anfänglicher Querschnittsbelastung der Erregerspule für verschiedene Legierungen durchführt. Bis kurz über 500°C nimmt die aufgenommene Leistung dabei ziemlich gleichmässig ab, um dann bei etwa 600...750 °C konstant zu bleiben. Über 750 °C wurden keine Versuche durchgeführt, weil für höhere Temperaturen kein praktisches Interesse vorlag.

Praktische Ausführung

Der Grundgedanke der Heizung lässt sich in einfacher Weise dadurch realisieren, dass man den Kessel in das Feld einer von netzfrequentem Wechselstrom durchflossenen Spule stellt. Diese Spule muss hitzebeständig isoliert sein. Dafür haben sich Isoliermassen, die Silicofluoride enthalten und mit verdünntem Kaliwasserglas angerührt werden, bewährt. Sie erhärten in etwa 10 h und bilden nach einer Trock-nungszeit von weiteren 10 h bei 200°C einen festen Körper, der allen auftretenden mechanischen Beanspruchungen gewachsen ist. Die Isoliermasse wird während des Wickelns der Spule aufgebracht. Das Wicklungskupfer wird dadurch von der Aussenluft abgeschlossen und oxidiert praktisch nicht. Solche Spulen haben in der Praxis wochenlang Temperaturen von 700 °C ausgehalten. Bei 400 °C sind viele Spulen schon seit Jahren im Dauerbetrieb. Sie liegen an Klemmenspannungen bis zu 550 V, direkt am Kraftnetz der Betriebe. Grössere Gefässe können an Drehstrom angeschlossen werden; die Wicklungen bestehen dann aus drei übereinander liegenden Spulen. Zwischen die einzelnen Phasen werden zwei- oder mehrteilige U-förmige Ringe eingebaut, deren Flansche über die Spulen hinausragen, damit die von den Stirnflächen der Spulen herrührenden Streufelder abgeschirmt werden. Diese Ringe, die zweckmässig durch Punktschweissung an einzelnen Stellen der Kesselwand angeheftet werden, tragen überdies die Spulen. Spulen und Ringe können dann bei nötigem Ausbau mühelos freigelegt werden.

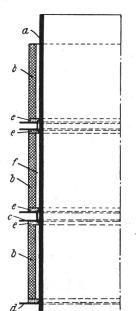
Die Kesselwand wird gleichmässig erwärmt. Die Heizung einzelner Zonen bei einem Kessel von ausreichender Höhe

ist möglich und hat sich betrieblich bewährt.

Für die Wärmeisolierung empfiehlt es sich, feste Isolierstoffe wie Diatomitsteine und Magnesiaschalen zu wählen, die nach aussen von Textilbandagen gehalten werden, da Metallmäntel durch die in ihnen induzierten Ströme erhitzt würden. Das Kesselblech oder das Gusseisen braucht keine besonderen Eigenschaften zu haben; der Werkstoff muss nur magnetisch sein. Wo aus Gründen der Korrosionsfestigkeit unmagnetische Legierungen notwendig sind, verwendet man plattierte Bleche.

Die Eigenverluste der Spulen sind bei richtiger Wahl des Leitungsquerschnittes gering. Thermisch stellen sie keine Verluste dar, da die in ihnen entstehende Joulesche Wärme nicht verloren geht, sondern dem Prozess erhalten bleibt. Die einzigen Verluste sind Abstrahlungsverluste, deren Höhe nur von der Güte der Isolation abhängt.

Der Leistungsfaktor für normale Eisensorten liegt bei 0,6...0,65.

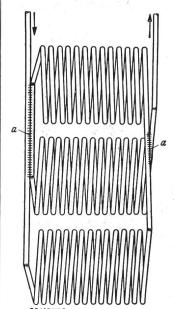

Grössenbeschränkungen nach oben sind nur durch die Herstellungseinrichtungen für die Spulen bedingt. Niedrige Leistungen mit kleinen Durchmessern und Wicklungshöhen sind unzweckmässig, da dann die Spulen zu grosse Windungszahlen erhalten müssen und zu dick werden.

Rohrschlangen als Sekundärwicklung

Als das Problem Vorwärmrohrsysteme für kontinuierlichen Hochdruckbetrieb elektrisch zu beheizen gestellt wurde, musste eine andere Art der induktiven Heizung entwickelt werden. Um mit kleinen Heizflächen relativ grosse Leistungen zu erzielen, wurden Pumpen für Zwangsumlauf einge-

baut. Die beim Hochdruckbetrieb üblichen lichten Rohrdurchmesser ergaben günstige Lösungen. Das Rohrsystem wurde in Schlangenform gewickelt und durch Verschweissen von Anfang und Ende der Polleiter kurzgeschlossen (Fig. 1, 2 u. 3). Diese Schlangen wurden als Sekundärwicklung des Transformators benutzt.

Der Leistungsfaktor solcher Apparate ist verschieden, je nachdem man magnetische oder unmagnetische Rohre verwendet. Im ersten Fall liegt er bei 0,6...0,65, da auch bei stromdurchflossenen Eisenleitern ein magnetisches Feld aufgebaut wird, das einen



SEV 18251

Fig. 1 Dreiphasige Wicklung zur induktiven Erwärmung eines Kessels (Schnitt)

a Kesselwand;
 b Spulen;
 c U-förmige Ringe;
 d Flacheisenring;
 e, f Asbestpackungen

Magnetisierungsstrom verlangt, der von der Primärseite (Netz) geliefert werden muss. Bei unmagnetischem Werkstoff steigt der Leistungsfaktor auf 0,95, weil es sich hier auf der Sekundärseite um rein Ohmschen Widerstand handelt.

Selbsttätige Regelung

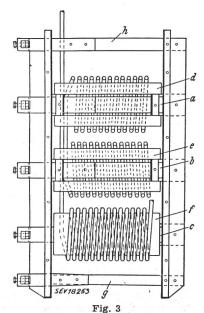
Für beide Formen der induktiven Heizung lässt sich die selbsttätige Regelung durchführen. Wegen der sehr kleinen Wärme-trägheit der Apparate haben Fallbügelregler sich gut bewährt. Regulier- und Anzapftransformatoren zum Einstellen verschiedener Leistungsstufen braucht man nicht, da die Spulen zur Leistungsabstufung mit Anzapfungen versehen werden können. Es genügt eine ganz grobe Abstufung, die

Fig. 2

Hochdruck-Rohrschlangen
als Sekundärwicklung des

Transformators

a Schweißstellen


Feineinstellung besorgt der selbsttätige Regler. Hiedurch ergeben sich erhebliche Verminderungen an Anschaffungskosten.

Ausgeführte Anlagen

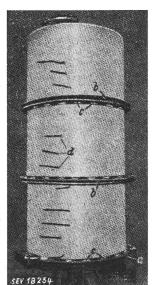
In der Original-Arbeit werden folgende ausgeführte Anlagen beschrieben:

a) Kleiner Hochdruckautoklav aus Chrommolybdänstahl von 500 mm Aussendurchmesser und 930 mm Höhe für Betriebsüberdruck von 300 kg/cm² und 300°C, der mit einer Einphasenwicklung für 500 V versehen ist. Die Leistung beträgt 43 kW mit einer Anzapfung bei 14 kW.

b) Induktiv beheizter Kontaktofen mit Ringraum (Fig. 4) für eine Höchstleistung von 96 kW mit Anzapfungen bei 66 und 44 kW zum Anschluss an Drehstrom 550 V. Der Ofen ist 4 m hoch und hat einen Aussendurchmesser von 1600 mm. Die Arbeitstemperatur beträgt 270 °C.

Hochdruck-Rohrschlangen im Magnetgestell

- a, b, c lamellierte Kerne der drei Pole d, e, f Primärwicklungen g, h vierter und fünfter Schenkel. 1
- Primärwicklungen vierter und fünfter Schenkel, unbewickelt
- c) Ein aus remanitplattiertem Stahlblech hergestellter Rührwerkskessel von 8,5 m³ Fassungsvermögen, mit einem Aussendurchmesser von 1900 mm und einer Höhe von 3,5 m. Die Höchstleistung ist 143 kW für Drehstrom 500 V bei 300 °C Betriebstemperatur.
- d) Eine besondere Lösung erlaubte ein rotierender Hochdruckautoklav aus Chromnickelstahl für 300 l. Die Leistung beträgt 25 kW bei 350 °C Arbeitstemperatur, mit Anzapfungen bei 14 und 6 kW.
- e) Eine Übergangsstufe zum reinen Transformator ergab die Konstruktion eines Verdampfers. Die Leistung dieses Ap-parates beträgt bei 220 V Wechselstrom primär 21 und 14 kW, sekundär 9,5 und 6,5 kW, bei einem Gesamtleistungsfaktor von 0,7. Der Apparat kann auch dreiphasig ausgeführt werden.


Vergleich mit andern Beheizungsarten

Bei allen mit offenen Flammen arbeitenden Systemen (Kohlen-, Koksfeuerung, Gasheizung) kann infolge der ho-Verbrennungstemperaturen ungleiche Heizflächenbelastung auftreten und damit die Gefahr örtlicher Überhitzung entstehen. Solche Fälle sind z. B. beim Eindampfen von Laugen aufgetreten und führten zu frühzeitiger Zerstörung der Eindampfkessel. Die hohen Abgastemperaturen haben hohe Abgasverluste zur Folge.

Die induktive Heizung mit kleiner Wärmeträgheit und meist niedrigen Wärmegefällen schafft günstige Verhältnisse für eine einfache Regelung. Die Folge ist eine gleichmässige Güte der Produkte bzw. der Chargen. Explosionsgefährliches Heizgut kann ohne besondere Vorsichtsmassnahmen in induktiv beheizten Geräten behandelt werden.

Die indirekte Flammenheizung vermindert zwar die Gefahr einer ungleichmässigen Heizflächenbelastung und lokalen Überhitzung, ist aber umständlich. Sie beseitigt nicht die Regelschwierigkeiten und bringt auch wärmewirtschaftlich keine Vorteile.

Auch die elektrische Widerstandsheizung hat mit der direkten Flammenheizung manches gemeinsam, wie die Explosionsgefahr, die nur durch Anwendung eines Schutzgases gebannt werden kann.

Das ideale Heizmittel des chemischen Betriebes ist der Sattdampf mit seinem grossen Wärmeinhalt. Er beherrscht das Gebiet bis etwa 180 °C, weil bis dahin noch keine beson-ders hohen Drücke nötig sind. Bei höheren Temperaturen kommt man rasch zu hohen Drücken, die häufig in den Betrieben nicht verfügbar sind.

Systeme, Neuere Hochdruck-Heisswasserheizung, bedingen bedeutenden Raumaufwand, hohe Kosten und Komplikation

Fig. 4 Stehender Kontaktofen

- Flacheisenring
- b U-förmige Ringe
- Asbestpackungen Anzapfungen der Spulen

der Anlage durch die hohen Drücke. Auch bei Heizung mit Diphenyl und Diphenyloxyd ergeben sich Schwierigkeiten, weil Verdampferanlagen nötig sind.

Wirtschaftlichkeit

Die Frage der Wirtschaftlichkeit lässt sich nicht durch einfache Rechnung lösen. Induktive Heizungen haben die niedrigsten Übertemperaturen und daher bei guter Isolierung die kleinsten Abstrahlverluste. Die Wirtschaftlichkeit ist nur zur Hälfte eine Energiepreisfrage. Bei den geltenden Gasund Energiepreisen und den üblichen Wirkungsgraden ist eine ungefähre Kostengleichheit dann gegeben, wenn die Gasund Energiepreise pro m³ bzw. pro kWh etwa gleich sind. Bei derartigen Betrachtungen ist es wesentlich zu berücksichtigen, dass durch die Anwendung dieser Art elektrischer Heizung eine Verbesserung des Produktes oder eine Vereinfachung des Herstellungsprozesses möglich ist.

Nachrichten- und Hochfrequenztechnik — Télécommunications et haute fréquence

Der Einfluss des Fernsehens auf den Haushalt-Energieverbrauch

[Nach Ray Pfaff: The Effect of Television on the Domestic Power Load. Electr. Digest, Bd. 20(1951), Nr. 3, S. 38...40.]

Vor der Einführung des Fernsehens war man der Ansicht, dass das Fernsehen keinen wesentlichen Mehrbedarf an elektrischer Energie bringen wird, da man beim Betrachten der Sendungen das Licht abschaltet. Dass dem nicht so ist, zeigt das Beispiel im Netz von St. Katharina (USA), wo eine Erhöhung des Energieverbrauches infolge des Fernsehens von 10,5 % festgestellt wurde.

Die wichtigsten der infolge des Fernsehens auftretenden Probleme sind die Spannungsregulierung und die Beseitigung der durch Interferenz hervorgerufenen Störungen. Sinkt die Netzspannung, so werden die Bilder kleiner und von einem dunklen Rand eingerahmt. Ist die Spannungsregulierung schlecht, so funktioniert der Fernsehapparat gut, solange nur eine kleine Netzbelastung vorhanden ist. Bei Be-lastungsspitzen beginnen aber die Störungen. Eine Überprüfung der Netzspannung bei Reklamationen ergab jedoch in St. Katharina in den meisten Fällen, dass die Empfänger nicht richtig justiert waren. Spannungsschwankungen, die beim Einschalten von Motoren oder grosser Belastungen auftreten, verursachen auch Störungen des Fernsehempfanges. Durch den auftretenden Spannungsabfall scheint sich das Bild vom Betrachter wegzubewegen und wieder zurückzukommen.

99 % der Interferenz-Störungen im Fernsehempfang sind auf die elektrischen Apparate des Abonnenten zurückzuführen. Grosse Störungen verursacht z. B. eine alte Wolfram-Glühlampe, welche den Empfang in einem Umkreis von etwa 500 m vollständig verunmöglichen kann.

Um alle diese Störungen zu verhindern und die Elektrizitätswerke der Allgemeinversorgung von der Entstörung zu entlasten, ist es wünschenswert, dass die Fernsehapparate von gut geschultem Personal inbetriebgesetzt und instandgehalten werden. H. Speglitz

Phonevision

621.397.5

[Nach K. Tetzner: Phonevision. Funk-Technik Bd. 6(1951), Nr. 12, S. 314...316.]

Einleitung

In den USA ist die Teilnahme am Fernsehen wie am Rundfunk gebührenfrei, die Fernsehgesellschaften müssen also ihre grossen Ausgaben aus dem Verkauf der Sendezeit decken. Sie sind gezwungen, Werbesendungen kapitalkräftiger Firmen durchzuführen, was auf Kosten des Niveaus geht.

Gute und vor allem neuere Filme dürfen nicht über den Fernsehsender laufen, denn, nach Ansicht der Filmproduzenten, würden damit die Lichtspielhäuser geleert werden. Das ist der Grund des Krieges zwischen den Fernsehgesellschaften und Hollywood.

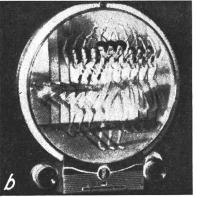


Fig. 1 Fernsehbilder mit und ohne Zusatzsignal

a Das klare Bild einer Phone vision-Sendung mit über Telephonleitung Zusatzsignal

b Phonevision-Sendung ohne Zusatzsignal (infolge der raschen Zitterbewegung in der Horizonta-len ist der Bildeindruck völlig verwischt)

dem Fernsehempfänger zugeführt wird, das das Bild entzerrt bzw. beruhigt. Für das Zusatzsignal muss aber bezahlt werden; damit ist die Fernsehsendung nicht mehr vogelfrei, es kann nicht mehr ein jeder die Sendung beliebig aufnehmen. Für ein zweistündiges Fernsehprogramm (meistens ein Spitzenfilm) hat man in Chicago I Dollar zu bezahlen. Bezahlt wird ein Fernsehprogramm in den USA nur dann, wenn ausschliesslich erstklassige Filme übertragen werden, wenn also das Niveau der Fernsehsendungen gehoben wird.

Grundlagen

Für die Geheimhaltung des Inhalts einer Fernsehsendung gibt es verschiedene Methoden. Eine von ihnen ist die Phonevision. Sie besteht darin, dass das Bildsignal in seinem Verhältnis zu den horizontalen oder vertikalen Synchronisierimpulsen geändert wird. Gleichzeitig wird über einen zweiten Weg ein «Schlüssel- oder Zusatzsignal» zum Fernsehempfänger geschickt, mit der Aufgabe, die Geräte von der zu erwartenden Änderung zu unterrichten, so dass entsprechende Korrekturen vorgenommen werden können. Zenith ändert zeitweilig die Phasenlage des Bildsignals zum horizontalen Synchonisierimpuls, wobei sich die Änderung nur auf einen verhältnismässig kleinen Prozentsatz der Zeilendauer bezieht. Man hat es also mit zwei Sendefolgen zu tun: bei der ersten sind Bildinhalt und horizontale Synchronisierimpulse gleichphasig, bei der zweiten besteht eine geringe Phasenverschiebung.

Die Umschaltung zwischen den Sendefolgen geschieht völlig unregelmässig. Es können einige Bilder (z. B. 2, 4 oder

5) mit Phasenverschiebung, dann wieder einige (z. B. 1, 3 oder 4) in normaler Lage über den Sender laufen. Die unregelmässige Steuerung des «Verschlüsslers» (Coder) wird durch Geräuschgenerator erreicht, dessen unregelmässiges «körniges» Signal über einen Begrenzer zu Impulsen umgeformt wird. Das Ergebnis ist auf dem Schirm des Empfängers ein unstabiles Bild, das häufig und unberechenbar in der horizontalen Ebene zittert und einen verwischten Eindruck gibt. Niemand kann durch eine selbstgebaute Einrichtung das Bild am Empfänger zum Stehen bringen und ohne Zusatzsignal an der Sendung teilnehmen, was aber wohl möglich wäre, falls das Bild rhythmisch zittern würde.

Der Übergang zwischen den Sendefolgen, d. h. zwischen phasengleich und phasenverschoben, wird während der Bildaustastperiode durchgeführt, so dass alle Kreise genügend Zeit zur Stabilisierung finden.

Das Schlüsselsignal

Die phasenverschobene Sendefolge wird von einem Ton als «Schlüsselsignal», auch «Zusatzsignal» genannt, begleitet, dessen Frequenz über der Bildwechselzahl (60 Hz) liegt. Es wird auf einem zweiten Weg zum Empfänger geleitet und dient zur Anregung bestimmter Schaltungseinheiten, welche ihrerseits die Lage des Bildsignals zum horizontalen Synchronisierimpuls berichtigen. Trifft das Zusatzsignal ein, so wird der Einsatzpunkt des Zeilenkipps entsprechend eingeregelt, fehlt dieses Signal, so folgt eben ein normales Bild. Es ist zweckmässig, das Schlüsselsignal eine gewisse Zeit, etwa ¹/₆₀ s, vor der phasenverschobenen Bildfolge zu senden. Dadurch wird der Ausgleich kleiner Laufzeitverzögerungen auf dem Zuführungswege möglich, auch bleibt die Bandbreite gering, ein Vorteil, wenn die Zuleitung noch für

Es stellt sich das Problem: wie kommt man vom reinen Werbecharakter der Fernsehprogramme los und was kann man tun, damit Hollywood seine neuen Filmstreifen überlässt? Es muss offenbar für Einnahmen gesorgt werden, welche den Filmgesellschaften an Stelle von einigen hundert Dollar zehntausende und noch mehr pro Leihkopie bieten. Damit könnte dem Fernsehauditorium etwas geboten werden, was es sonst nicht auf dem Bildschirm sieht, wofür es aber bezahlen müsste. Teilnehmergebühren sind aber vom amerikanischen Standpunkt aus gesehen völlig abwegig, so dass man nach anderen Methoden suchen muss, um die nötigen Mittel aufzubringen.

Es scheint, dass die Lösung in der sog. Phonevision ge-funden wurde. Dieses System hat die Zenith Radio Corp. in Chicago versuchsweise eingeführt.

Bei diesem System werden die Fernsehsendungen in gewohnter Weise über den Fernsehsender ausgestrahlt. Die Sendung kommt aber beim Teilnehmer so stark verzerrt bzw. zitternd an, dass das Bild nicht mit Genuss und Verständnis angesehen werden kann (Fig. 1). Dies ist erst dann möglich, wenn über die Telephonleitung ein Zusatzsignal

andere Zwecke wie im vorliegenden Fall für Sprachübertragung ausgenützt wird.

Im Empfänger vereinigt man einen Impuls vom Zeilenkippgerät mit der Zusatzfrequenz, so dass sich der erste Zeilenkippimpuls mit oder ohne Zusatzfrequenz darbietet; in diesem Falle bedeutet dies Übergang zum phasengleichen

gewissen Annahmen wird die Bandbreite für die Übermittlung des Zusatzsignals nur 120 Hz betragen; die höchste Signalfolge ist 30 pro s, die niedrigste 10 oder weniger.

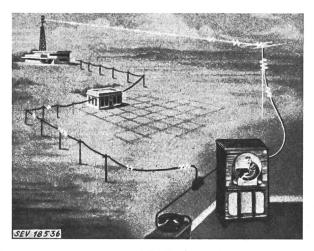


Fig. 2 Der Weg der Phonevision-Sendung

Die Phasenlage des Bildsignals zum Synchronisierimpuls wird zeitweilig geändert. Ein Zusatzsignal über die Telephonlei-tung stellt im Empfänger den richtigen Einsatzpunkt wieder her

Der Phonevisionsender unterscheidet sich in seinem grundsätzlichen Aufbau nicht von einem Sender normaler Bauart. Die Vertikalsynchronisierimpulse (Bildkipp) laufen von der Impulszentrale direkt zu den entsprechenden Kreisen, während die Zeilenkippimpulse zuerst eine besondere Einheit passieren müssen, welche bereits als «Coder» bezeichnet wurde. Diese steuert die Phasenlage zwischen Bildinhalt und horizontalen Synchronisierungsimpulsen und erzeugt das Zittern des Bildes. Gleichzeitig erzeugt sie die Zusatzfrequenz, die über die Telephonleitung zum Teilnehmer läuft (Fig. 2).

Die Schaltung eines Fernsehempfängers ändert sich ebenfalls nur wenig. Hinter dem Bildgleichrichter findet man das Amplitudensieb, dann die Impulstrennstufe. Die vertikalen Synchronisierimpulse werden dem Bildkippgerät zugeführt, während die horizontalen zuerst den «Entschlüssler» (Decoder) passieren und diesen zur Lieferung einer Korrekturspannung anregen, mittels welcher das Zeilenkippgerät jeweils im richtigen Zeitpunkt ausgelöst und so die korrekte Phasenlage wiederhergestellt wird und das Bild dann ruhig

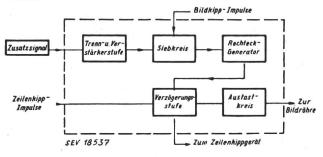


Fig. 3 Blockschaltbild des Phonevision-Entschlüsslers (Decoder)

Die Zusatzfrequenz kommt über die Telephonleitung an und wird zunächst in einer Trennstufe verstärkt (Fig. 3), in einer weiteren erfolgt die Mischung mit den Bildkippimpul-

sen aus dem Empfänger zwecks Anregung eines Rechteckwellen-Generators. Man kann beim ersten Bildkippimpuls erkennen, ob mit oder ohne Zusatzfrequenz gearbeitet wird. Nachher erfolgt die Steuerung des Zeilenkippgenerators und ein besonderer Austastkreis kontrolliert die richtige Breite der Austastimpulse.

In den USA ist das Telephon sehr verbreitet, kann also gut zur Übertragung der Zusatzfrequenz benützt werden, ohne dass zu befürchten ist, dass ein hoher Prozentsatz der Haushaltungen für die Phonevision nicht erfasst werden kann. Die erwähnte 120-Hz-Bandbreite erlaubt es, das Zusatzsignal unmittelbar neben den Sprachfrequenzen durchzubringen, wobei die Dämpfung durch Anlagen und Leitungen gering ist. Zur Verfügung stehen noch einfache Frequenzweichen, deren Einfügungsdämpfung vernachlässigt werden darf. Über die notwendigen Einrichtungen zur Übermittlung des Zusatzsignals in den Fernsprechzentralen soll hier nicht eingegangen werden; die Problemstellung soll aber angedeutet sein:

a) Der Phonevisionteilnehmer muss das Zusatzsignal an-

a) Der Pronevisionteinnermer muss das Zusatzsignaf anfordern können;
b) es muss ihm durchgeschaltet werden, ohne dass der normale Fernsprechverkehr gestört wird;
c) es muss eine Vorrichtung zur Registrierung dieses Vorganges vorhanden sein, damit die festgelegte Gebühr in Rechnung gestellt werden kann.

Gegenwärtig arbeitet man mit einer achtstelligen Impulsfolge, ausgelöst durch achtmaliges Betätigen der Wählscheibe des Telephonapparates. Die drei erst gewählten Nummern schalten den Teilnehmer auf die direkten Phonevisionanschlüsse in der Zentrale, wobei ein besonderes Signal zurückmeldet, wenn eine Leitung frei ist. Nachher kann eine vier- oder fünfstellige Zahl gewählt werden, welche die zugewiesene Nummer des Teilnehmers darstellt. Nun kann man den Hörer auflegen, denn die Zentrale schaltet automatisch das Zusatzsignal, welches über die Frequenzweiche ankommt; der Fernsprecher aber ist für weitere Gespräche und Anrufe wieder betriebsbereit.

Versuchsergebnisse

Anfangs 1951 hat man in Chicago bei 300 durch das Nationale Institut für Meinungsforschung ausgewählten Familien Phonevisionsender aufgestellt. Während des ersten Vierteljahres wurden täglich drei abendfüllende Filme gesendet, wobei fast täglich für eine Sendung ein neuer Film in das Programm aufgenommen wurde.

Während der ersten 4 Wochen wurde das Schlüssel- oder Zusatzsignal 2561mal angefordert, d. h. dass im Durchschnitt jede Familie 8,5mal ins «Heimkino» ging.

Nachteile der Phonevision

Mit dem Zusatzsignal werden natürlich die Telephonzentralen zusätzlich belastet, zumal sich die Anrufe kurz vor Beginn der Phonevisionsendungen zusammendrängen. Die allgemeine Einführung der Phonevision bedingt Ausrüstung der Zentralen mit 100...200 direkten Anschlüssen pro 35 000 Teilnehmer. Die Übermittlung des Zusatzsignals für Tausende von Teilnehmern wird bei der allgemeinen Einführung gewisse Schwierigkeiten verursachen.

Subscriber-Vision

Die zu erwartenden Schwierigkeiten mit der allgemeinen Einführung der Phonevision haben ein anderes System auf den Plan gerufen, das zwar auch mit einem Zusatzsignal das verzerrte Fernsehbild entzerrt, das Signal jedoch im Empfänger selbst erzeugt.

Die Einrichtung dazu besteht aus einer Kathodenstrahlröhre, die synchron zur Bildröhre einen Raster auf ihren Bildschirm schreibt. Dieser Schirm ist mit einem Karton abgedichtet, der nur an vier bestimmten Stellen kleine Öffnungen enthält. Durch diese vier Löcher fällt jeweils ein kurzer Lichtstrahl auf eine Photozelle. Die hiedurch ausgelösten Impulse dienen zur Steuerung des Zeilenkippgerätes, d. h. zur Wiederherstellung der richtigen Phasenlage zwischen Bildinhalt und den horizontalen Synchronisierimpulsen.

Im «Coder» des Senders benützt man die gleiche Lochkarte zum Verschieben der Phase.

Der Teilnehmer am Subscribersystem bekommt jede Woche eine neue Lochkarte für eine entsprechende Gebühr zugestellt. H. Mayer

Wirtschaftliche Mitteilungen — Communications de nature économique

Die Energieproduktion der Vereinigten Staaten von Amerika

621.311(73)

[Nach L. de Heem: La Production d'Energie Electrique aux Etats-Unis. «Bull. Soc. belge Electr.». Bd. 67(1951), Nr. 1, S. 14...24 und L'industria elettrica degli Stati Uniti nel corso del 1950. Quad". Studi Notizie, Bd. 7(1951), Nr. 96, S. 229...234.]

Die Energieerzeugung der Vereinigten Staaten von Amerika hat in den letzten Jahren riesenhaftes Ausmass angenommen; im Jahre 1948 entfielen von der auf 600 TWh¹) geschätzten jährlichen Weltproduktion 336 TWh, also mehr als die Hälfte, auf die USA.

Der letzte Weltkrieg zwang die amerikanischen Elektrizitätswerke, mit möglichst kleinem Aufwand die Energieerzeugung dem stark gestiegenen Bedarf anzupassen. Um die Kraftwerke noch besser auszunützen, wurden sie systematisch durch Ausbau der Verbundnetze («Systems» genannt) zusammengefasst. Die meisten Systems umfassen installierte Leistungen von 2...3 GW²).

- a) die Schiffbarkeit des Flusses Tennessee zu verbessern und gleichzeitig seine Überschwemmungen einzudämmen;
 b) die Wiederaufforstung zu beschleunigen;
 c) die Landwirtschaft und die Industrie des Tennesseetales zu

Die Erzeugung elektrischer Energie war eigentlich bloss Nebenzweck; immerhin erzeugte diese gewaltige Unternehmung 15 Jahre nach ihrer Gründung nahezu 15 TWh; hievon wurden 60% grossen Industrieanlagen der Regierung zugeleitet. Weitere 26% verkaufte die TVA an private industrielle Betriebe, und die restlichen 14% an Gemeinde- bzw. private Elektrizitätswerke. Sie verfügt über eine installierte Generatorenleistung von 2,6 GW, die sich auf 26 hydraulische und 6 thermische Kraftwerke verteilt. Die TVA beabsichtigt ihre Anlagen noch weiter auszubauen.

Im Westen des Landes, am Stillen Ozean, entstand im Jahre 1942 ein weiteres gewaltiges Verbundsystem, der «Northwest Power Pool», dessen Netze das Gebiet der 5 Staaten Washington, Oregon, Idaho, Utah und Montana umfassen. Anlass zu seiner Bildung gab die Inbetriebnahme der Kraft-

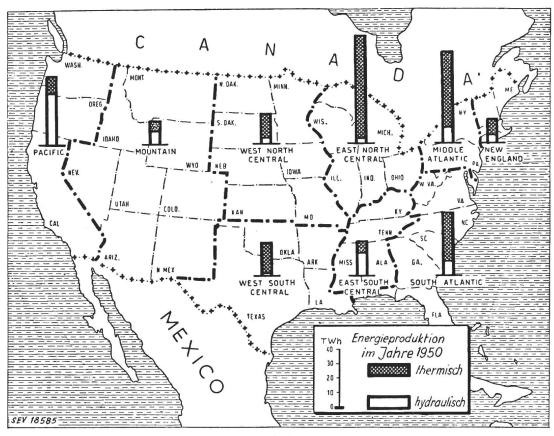


Fig. 1

Besonders gewaltig ist jenes Verbundsystem, dessen Kern nicht nur die sieben Staaten Illinois, Indiana, Ohio, West-Pennsylvania, Kentucky, Virginia und Tennessee umfasst, sondern sich auch auf Teile von 14 anderen Staaten erstreckt. Diese Gruppe, «South Atlantic and Central Areas Group» genannt, erfasst eine installierte Kraftwerkleistung von 21 GW. Im Norden liegen Gebiete, die zu den reichsten von ganz Amerika zählen. 7 Verteilgesellschaften, deren Anlagen parallelgeschaltet sind, beliefern dort Teile der 7 Staaten Michigan, Indiana, Ohio, West-Virginia, Kentucky und Tennessee.

Im Süden der South Atlantic and Central Areas Group sind die Netze der «Tennessee Valley Authority» (TVA), mit den zahlreichen Netzen der Südstaaten gekuppelt. Die TVA wurde im Jahre 1933 durch ein Gesetz ins Leben gerufen und bezweckt:

werke von Grand Coulee mit einer Leistung von 0,8 GW (= 800 000 KW, ausbaufähig auf 2 GW), und von Bonneville (0,52 GW = 520 000 KW). Der Northwest Power Pool verfügt über etwa 300 Kraftwerke, die zusammen eine Leistung von 4 GW repräsentieren. Sein besonderes Merkmal besteht darin, dass es Netze zusammenfasst, die in der zeitlichen Staffelung der Verbrauchspitzen stark verschieden sind. Dadurch entstehen ausgezeichnete Kompensationsmöglichkeiten. Man rechnet, dass allein durch den Parallelbetrieb eine Leistung von rund 0,1 GW = 100 000 kW frei wurde, was eine Ersparnis an Anlagekosten von 25 Millionen Dollar ermöglichte.

Allerdings stellt die Verteilung der Belastungen auf die verschiedenen Kraftwerke eines ausgedehnten «Systems» selbstverständlich schwierige Probleme. Man löste sie dadurch, dass man in die Verbundnetze besondere Zentralstellen zur Verteilung der Last einfügte. Diese «Load dispatching»-Bureaus befinden sich jeweils im geographischen Schwerpunkt des «Systems», von wo aus es jederzeit möglich ist, die Be-

^{1) 1} TWh (Terawattstunde) = 10° (1 Milliarde) kWh.

 $^{= 10^{6}}$ (1 Million) kW. 2) 1 GW (Gigawatt)

triebe zu überwachen, das Einhalten der Lastverteilprogramme zu kontrollieren und die Arbeitsweise der Kraftwerke der jeweiligen Situation anzupassen. Entsprechend ihrer besonderen Funktion sind die «Load dispatching offices» besonders gut eingerichtet; sie besitzen grosse Wandschemata des überwachten Netzes, zahlreiche Hochfrequenz-Telephonanschlüsse, Fernschreiber, Fernmesseinrichtungen usw. Ihre Aufgabe ist es ferner auch, die Belastungsprogramme der einzelnen Kraftwerke aufzustellen, um die beste Wirtschaftlichkeit innerhalb des Verbundbetriebes zu gewährleisten.

Besonders aufschlussreich ist in dieser Beziehung die Organisation des «South Atlantic and Central Areas Group», wo sich nicht weniger als 80 Einzelunternehmungen an der Erzeugung und am Verkauf von elektrischer Energie beteiligen. Diese Verbundgruppe ist in 4 Kreise eingeteilt; in jedem Kreis besteht eine Regionalkommission, die die jeweiligen Bedingungen für einen einwandfreien Parallelbetrieb zu beraten und zu beschliessen hat. Jeder Kommission steht ein Ausschuss zur Seite, der ausschliesslich Fragen der Telephonverbindungen, Fernmessung und Fernmeldung behandelt. Die Tätigkeit der Regionalkommissionen ist durch sog. «Test Committees» koordiniert; einem weitern zentralen Organ, dem sog. «Interconnected Committee» ist die allgemeine Planung der Verbindungen reserviert.

Mögliche Energieerzeugung der Kraftwerke

Tabelle I

		Eigenerzeugung	Einfuhr (aus	m . 1	
Jahr	Thermisch GWh	Hydraulisch GWh	Total GWh	Canada) GWh	Total GWh
1938	69 533	44 279	113 812	1867	115 679
1948	200 228	82 470	282 698	1113	283 811
1949	201 351	89 748	291 099	1004	292 103
19501)	233 596	95 432	329 028	1200	330 228

¹) Die Zahlen für 1950 sind auf Grund der Ergebnisse der ersten zehn Monate geschätzt.

Totale installierte Generatorenleistung der Kraftwerke

		Generatorenleistung	
Jahr	Thermische Kraftwerke	Hydraulische Kraftwerke	Total
	$\mathbf{G}\mathbf{W}$	GW	GW
1938	27 976	11 066	39 042
1948	40 908	15 652	56 560
1949	46 447	16 654	63 100
1950^{1}	49 947	17 562	67 509

1) am 1. November 1950.

Die Lastverteilung auf die verschiedenen Kraftwerke erfolgt im allgemeinen nach der «Differential-Methode». Diese gründet sich auf die Erkenntnis, dass der optimale Wirkungsgrad von parallelarbeitenden Einheiten dann erreicht wird, wenn die Gestehungskosten für die zusätzlich erzeugte elektrische Energie in allen Kraftwerken gleich sind. Alle «Systems», die grossen und die kleinen, sind mit automatischer Leistungs-Frequenz-Regulierung ausgestattet.

Die Gesamterzeugung der Vereinigten Staaten an elektrischer Energie belief sich im Jahre 1950 auf 329 TWh; das sind 38 TWh mehr als im Jahre 1949 (siehe auch Tabelle I). Am 1. November 1950 betrug die in thermischen Kraftwerken installierte Leistung 49,95 GW, jene in hydraulischen Kraftwerken 17,56 GW, also insgesamt 67,51 GW, d. h. 7% mehr als 1949 (siehe Tabelle II).

Von den Kraftwerkleistungen entfallen rund 20% auf öffentliche Unternehmungen und 80% auf private Gesellschaften. Entsprechend der intensiveren Ausnützung hat sich seit 1949 die jährliche Gebrauchsdauer der total verfügbaren

Generatorenleistung erhöht und zwar von 4610 h auf 4847 h für die thermischen und von 5556 h auf 5578 h für die hydraulischen Kraftwerke (Tabelle III). Bei den thermischen Kraftwerken konnte zudem der spezifische Brennstoffverbrauch (auf Kohle umgerechnet) von 0,571 kg/kWh im Jahre 1949 auf 0,553 kg/kWh im Jahre 1950 gesenkt werden (Tabelle IV).

Gebrauchsdauer der installierten Generatorenleistungen

Tabelle II

Jahr	Thermische Anlagen h	Hydraulische Anlagen h	Total h
1938	2635	4143	3063
1948	5117	5386	5193
1949	4610	5556	4865
1950¹)	4847	5578	5038

1) Schätzungswerte auf Grund der ersten 10 Monate.

Thermische Energieerzeugung und Brennstoffverbrauch
Tabelle 1

Jahr Erzeugte ther- mische Energie TWh		Äquivalente Kohlenmenge 10³ t¹)	Spezifischer Kohlenverbrauch kg/kWh		
1938	69 255	44 053	0,636		
1948	199 796	118 043	0,589		
1949	201 351	115 267	0,571		
1950 ²)	233 596	124 838	0,553		

Kohle, Öl, Gas in t äquivalenter Kohle ausgedrückt.
 Schätzungswerte auf Grund der ersten 10 Monate.

Durch den vermehrten Energieabsatz stiegen auch die Bruttoeinnahmen; sie bezifferten sich im Jahre 1950 auf 5040 Millionen Dollar (Zunahme gegenüber 1949 = 9,2%). In etwas geringerem Masse (8,8%) erhöhten sich die Bruttogewinne. Diese erfreulichen Resultate liessen sich trotz der Baisseperiode, die dem Ausbruch des koreanischen Konflikter vorausging, erreichen. Es mag in diesem Zusammenhang von Interesse sein, zu erfahren, wie die Bruttoeinnahmen prozentual verwendet wurden:

Von den Ausgaben entfielen in den Jahren:

	1948 %	1949 °/ ₀	1950 %
auf Brennstoffe	19.3	16.6	16.6
auf Betrieb und Unterhalt	10,6	10,9	9,8
auf Löhne und Saläre	20,4	20,3	19,9
auf Abschreibungen	9,1	9,2	9,5
auf Steuern und Kapitalkosten	23,9	25,0	26,4
auf Einnahmenüberschüsse	16,7	18,0	17,8
,	100.0	100,0	100,0

Jährliche Zunahme der installierten Generatorenleistung

Tabelle V

	Ins	tallierte Generatorenleist	ing
Jahr	Thermische	Hydraulische	Total
	· MW	MW	MW
1938	1350	346	1696
1939	915	370	1285
1940	1361	332	1693
1941	2292	786	3078
1942	1756	1027	2783
1943	1835	1089	2924
1944	778	768	1546
1945	622	266	887
1946	355	6	361
1947	1784	393	2177
1948	3132	880	4012
1949	5441	1201	6642
1950	4719	1067	5786
19511)	5675	1574	7249
19521)	6538	1613	8151
19531)	6316	1110	7426

¹⁾ Schätzungswerte auf Grund der Bauprogramme.

Verteilung der Energielieferungen auf verschiedene Verbraucherkategorien in TWh

Tabelle VI

Jahr	Landwirt- schaftliche Betriebe	Haushalte	Kleinbezüger	Grossbezüger	Strassen- beleuchtung	Zug- förderung	Gemeindeunter- nehmungen und Verschiedenes	Total
1938	1,577	19,371	19,137	43,140	1,929	5,438	3,138	$\begin{array}{c} 93,731 \\ 240,740 \\ 248,542 \\ 278,800 \end{array}$
1948	6,327	50,978	43,193	124,088	2,525	6,720	6,909	
1949	7,384	58,139	46,262	120,766	2,726	6,112	7,153	
1950 ¹)	7,450	66,450	50,050	138,350	2,975	5,850	7,675	

1) Schätzungswerte auf Grund der ersten 10 Monate.

(Fortsetzung auf Seite 816)

Statistique de l'énergie électrique

des entreprises livrant de l'énergie à des tiers

Elaborée par l'Office fédéral de l'économie électrique et l'Union des Centrales Suisses d'électricité

Cette statistique comprend la production d'énergie de toutes les entreprises électriques livrant de l'énergie à des tiers et disposant d'installations de production d'une puissance supérieure à 300 kW. On peut pratiquement la considérer comme concernant toutes les entreprises livrant de l'énergie à des tiers, car la production des usines dont il n'est pas tenu compte ne représente que 0,5 % environ de la production totale.

La production des chemins de fer fédéraux pour les besoins de la traction et celle des entreprises industrielles pour leur consommation propre ne sont pas prises en considération. La statistique de la production et de la distribution de

ces entreprises paraît une fois par an dans le Bulletin.

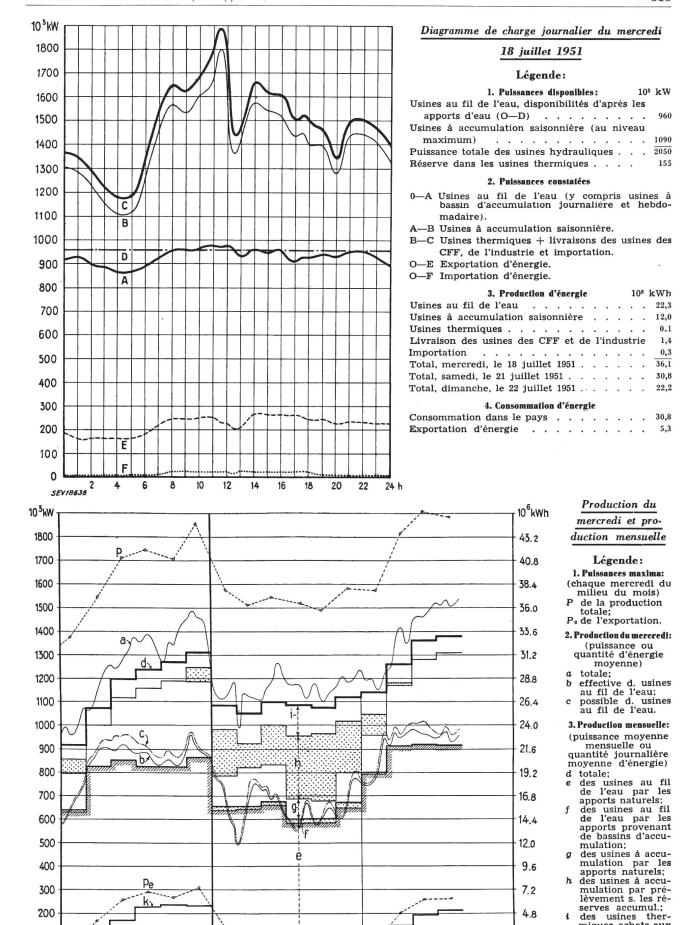
				Pr	oduction	et acha	t d'énerg	gie				Acc	umulati	on d'éne	rgie		
Mois	Produ hydra			iction nique	acheté entre	prises aires et	Ene impo		fou	ergie rnie éseaux	Diffé- rence par rapport à l'année	gasinée bassins mulati	e emma- dans les d'accu- on à la mois	const pen- le r — vida	rences tatées dant nois ange plissage	Export d'éne	
v	1949/50	1950/51	1949/50	1950/51	1949/50	1950/51	1949/50	1950/51	1949/50	1950/51	précé- dente	1949/50	1950/51	1949/50	1950/51	1949/50	1950/51
				en	millions	de kW	h				0/0		eı	million	s de kV	Vh.	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Octobre	600	733	22	9	37	23	17	42	676	807	+19,4	844	1034	-123	-158	30	58
Novembre	534	666	33	8	28	21	55	61	650	756	+16,3	722	1019	-122	- 15	22	37
Décembre	551	746	28	3	29	19	63	47	671	815	+21,5	609	831	-113	-188	26	46
Janvier	564	710	21	5	31	19	50	74	666	808	+21,3	406	617	-203	-214	21	46
Février	501	647	13	2	32	16	44	55	590	720	+22,0	291	409	-115	-208	19	48
Mars	597	759	4	2	28	19	29	, 54	658	834	+26,8	186	250	-105	-159	22	59
Avril	620	753	2	1	27	29	12	38	661	821	+24,2	172	264	- 14	+ 14	33	61
Mai	745	879	2	1	46	47	4	11	797	938	+17,7	434	415	+262	+151	81	113
Juin	805	925	2	1	50	48	4	7	861	981	+13,9	799	768	+365	+353	119	141
Juillet	865	974	1	1	51	43	4	8	921	1026	+11,4	1073	1140	+274	+372	170	161
Août	889		1		52		4		946			1179		+106		176	
Septembre	900		1		40		5		946			11924)		+ 13		166	
Année	8171		130		451		291		9043			¥				885	
Octmars	3347	4261	121	29	185	117	258	333	3911	4740	+21,2					140	294
Avril-juillet .	3035	3531	7	4	174	167	24	64	3240	3766	+16,2					403	476

							Distr	ibution	d'énergie	dans le	pays						
		iges itiques				etro-	Chau	diàras				es et			n en Su	isse et	pertes
Mois	e	t anat	Indu	ıstrie	métal	lurgie, rmie		ques 1)	Trac	etion		ie de age *)	chaud	s les ières et mpage	Diffé- rence º/o	chaudi	e les ières et mpage
	1949/50	1950/51	1949/50	1950/51	1949/50	1950/51	1949/50	1950/51	1949/50	1950/51	1949/50	1950/51	1949/50	1950/51	3)	1949/50	1950/51
								en mi	llions de	kWh							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Octobre	281	314	122	136	87	110	13	33	47	50	96	106	629	713	+13,4	646	749
Novembre	293	321	122	135	60	90	7	14	51	52	95	107	616	700	+13,6	628	719
Décembre	307	348	118	136	60	89	5	23	62	62	93	111	635	742	+16,9	645	769
Janvier	314	350	116	140	54	87	5	16	63	61	93	108	639	743	+16,3	645	762
Février	269	307	105	127	48	81	6	14	56	51	87	92	560	655	+17,0	571	672
Mars	296	328	115	133	64	118	14	37	54	56	93	103	616	735	+19,3	636	775
Avril	277	305	104	130	85	127	21	49	47	50	94	99	596	704	+18,1	628	760
Mai	267	298	110	131	100	124	91	112	40	43	108	117	604	699	+15,7	716	825
Juin	250	276	114	130	100	118	126	149	35	44	117	123	593	678	+14,3	742	840
Juillet	256	281	115	128	109	123	120	167	36	47	115	119	612	687	+12,3	751	865
Août	265		121		109		118		35		$\begin{array}{c} (19) \\ 122 \end{array}$	(11)	637			770	
Septembre	281		123		106		114		39		117		656			780	
Année	3356		1385		982		640		565		1230		7393			8158	
Octmars	1760	1968	698	807	373	575	50	137	333	332	557 (26)	627	3695	4288	+16,1	3771	4446
Avril-juillet .	1050	1160	443	519	394	492	358	477	158	184	434 (74)	458 (45)	2405	2768	+15,1	2837	3290

Chaudières à électrodes.
 Les chiffres entre parenthèses représentent l'énergie employée au remplissage des bassins d'accumulation par pompage.
 Colonne 15 par rapport à la colonne 14.
 Energie accumulée à bassins remplis: Sept. 1950 = 1310 Mio kWh.

200

100


0

VI VII VIII IX

X XI XII

111

V V VI VII VIII IX

4.8

2.4

0

des usines ther-miques, achats aux entreprises ferrov.

et indust. import.; exportation;
-k consommation

dans le pays.

Prix moyens (sans garantie) le 20 du mois Métaux

		Septembre	Mois précédent	Année précédente				
Cuivre (fils, barres) 1).	fr.s./100 kg	430/5204)	430/5204)	246.—				
Etain (Banka, Billiton)2)	fr.s./100 kg	1163.—	1097.—	990.—				
Plomb 1)	fr.s./100 kg	220.—	210.—	169.—				
Zinc 1)	fr.s./100 kg	310.—	280/4004)	215.—				
Fer (barres, profilés) 3)	fr.s./100 kg	67.—	67.—	49.50				
Tôles de 5 mm ³)	fr.s./100 kg	80.—	80.—	54.—				
Prix franco Bâle, marchandise dédouanée, chargé sur wagon, par quantité d'au moins 50 t								

2) Prix franco Bâle, marchandise dédouanée, chargée sur wagon, par quantité d'au moins 5 t
1) Prix franco frontière, marchandise dédouanée, par

quantité d'au moins 20 t

4) Prix du «marché gris» (Valeurs limites correspondant à divers termes de vente).

Combustibles et carburants liquides

		Septembre	Mois précédent	Année précédente
Benzine pure / Benzine éthylée 1)	fr.s./100 kg	70.14	70.14	65.80
Mélange-benzine, carbu-	fr.s./100 kg	_	_	_
Carburant Diesel pour véhicules à moteur 1)	fr.s./100 kg	51.75	51.75	47.25
Huile combustible spé- ciale ²) Huile combustible lé-	fr.s./100 kg	21.90	20.65	21.40
gère ²)	fr.s./100 kg	20.10	18.85	19.90
dustrielle (III) ²) Huile combustible in-	fr.s./100 kg	16.20	15.20	10.55
dustrielle (IV) 2)	fr.s./100 kg	15.40	14.40	_

dustrielle (IV) ²) . . | fr.s./|00 | | 15.40 | 14.40 | —

1) Prix-citerne pour consommateurs, franco frontière suisse, dédouané, ICHA non compris, par commande d'au moins 1 wagon-citerne d'environ 15 t.

2) Prix-citerne pour consommateurs, franco frontière suisse Bâle, Chiasso, Iselle et Pino, dédouané, ICHA et taxe de compensation du crédit charbon (fr.s. —.65/100 kg) non compris, par commande d'au moins 1 wagon-citerne d'environ 15 t. Pour livraisons à Genève et à St-Margrethen les prix doivent être majorés de fr.s. 1.—/100 kg resp. fr.s. —.60/100 kg.

L'hulle combustible spéciale et l'huile combustible légère ne sont pas seulement utilisées pour le chauffage, mais aussi pour les moteurs Diesel de groupes électrogènes stationnaires; dans chaque cas, il y a lieu de tenir compte du tarif douanier correspondant.

Charbons

	0.10.0				
		Septembre	Mois précédent	Année précédente	
Coke de la Ruhr					
I/II	fr.s./t	121.—	121.—	100.—	
Charbons gras belges		1-1.		200.	
pour l'industrie					
Noix II	fr.s./t	120.50	120.50	88.—	
Noix III	fr.s./t	116.—	116.—	83.50	
Noix IV	,		111.50		
	fr.s./t	111.50	111.50	82.50	
Fines flambantes de la					
Sarre	fr.s./t	90.—	90.—	72.50	
Coke de la Sarre	fr.s./t	120.50	120.50	95.—	
Coke métallurgique					
français, nord	fr.s./t	122.50	122.50	100.—	
Coke fonderie français	fr.s./t	124.30	124.30	97.—	
Charbons flambants po-					
lonais					
Noix I/II	fr.s./t	123.50	123.50	84.50	
Noix III	fr.s./t	120.50	120.50	79.50	
		100000000000000000000000000000000000000			
	fr.s./t	119.50	119.50	78.50	
Houille flambante		700	3.00	×	
criblée USA	fr.s./t	130.—	139.—	_	

Tous les prix s'entendent franco Bâle, marchandise dédouanée, pour livraison par wagons entiers à l'in-dustrie, par quantité d'au moins 15 t.

Données économiques suisses

(Extraits de «La Vie économique» et du «Bulletin mensuel Banque Nationale Suisse»)

Dufferin mensuer Danque 14ationale Suisse)						
N°		Août				
-11		1950	1951			
1.	Importations)	421,3	441,4			
	(janvier-août) en 10° fr.	(2574,1)	(4046,3)			
	Exportations	299,9	348,2			
	(janvier-août)	(2263,3)	(2983,4)			
2.	Marché du travail: demandes		, , ,			
	de places	3895	1866			
3.	Index du coût de la vie*)) août (159	168			
	Index du commerce de 1939					
	gros*)	205	222			
	Prix-courant de détail*):					
	(moyenne du pays)					
	(août $1939 = 100$)					
	Eclairage électrique ct./kWh	32 (89)	32 (89)1)			
	Cuisine électrique ct./kWh	6,5 (100)	6,5 (100)			
	Gaz ct./m ³	28 (117)	28 (117)			
	Coke d'usine à gaz fr./100 kg	14 58(186)	18,12(231)			
		14,00(100)	10,12(201)			
4.	Permis délivrés pour logements	1200	1407			
	à construire dans 41 villes	1300	1487			
_	(janvier-août)	(11280)	(12309) 1,50			
5.	Taux d'escompte officiel . %	1,50	1,50			
6.	Banque Nationale (p. ultimo) Billets en circulation 106 fr.	4290	4498			
	Autres engagements à vue 106 lf.	2187	1704			
	Encaisse or et devises or 10 ⁶ ft.	6495	6190			
	Couverture en or des billets	0475	0190			
	en circulation et des au-					
	tres engagements à vue %	94,87	96,45			
7.	Indices des bourses suisses (le	71,01	50,10			
	25 du mois)					
	Obligations	107	103			
	Actions	249	295			
	Actions industrielles	351	440			
8.	Faillites	47	29			
"	(janvier-août)	(392)	(334)			
	Concordats	12	17			
	(janvier-août)	(172)	(143)			
			` ´			
9.	Statistique du tourisme	Juillet				
	Occupation moyenne des lits	1950	1951			
	existants, en %	50,6	55,3			
		T:	llet			
10.	Recettes d'exploitation des		1951			
	CFF seuls					
	Marchandises \	27 715	31 415			
	(ignation intillat)	(171 897)	(215 572)			
	Voyageurs \\ en 1000 fr. \\	30 456	30 582			
	(janvier-juillet)	(154 333)	(159 653)			
			,			
*) Conformément au nouveau mode de calcul appli-						

*) Conformément au nouveau mode de calcul appliqué par le Département fédéral de l'économie publique pour déterminer l'index général, la base juin 1914 = 100 a été abandonnée et remplacée par la base août 1939

1) Le prix-courant de détail pour l'énergie destinée à l'éclairage électrique a été noté, par mégarde, pour février et mars 1951, à 35 ct./kWh à la place de 32 ct./kWh.

(Fortsetzung von Seite 813)

Die Anstrengungen zur Wiederaufrüstung, die die Industrie der Vereinigten Staaten von Amerika während einiger Jahre wird unternehmen müssen, bedingen entsprechende Erweiterungen der energieliefernden Kraftwerke. Wenn früher die bis zum Jahre 1955 gesamthaft zu installierende Generatorenleistung auf 92 GW veranschlagt worden war, so sprechen neuere Programme bereits von 102 GW. Man schätzt, dass sich die Energieerzeugung bis zu jenem Zeitpunkt auf 450 TWh erhöhen wird, was einer jährlichen Zunahme um etwa 6% entspricht. Hiefür sind gewaltige Kapitalinvestitionen notwendig: man spricht von 2,2 bis 2,6 Milliarden Dollar pro Jahr allein für die privaten Gesellschaften.

Tabelle V gibt einen Überblick über die jährliche Leistungszunahme der elektrischen Erzeugungsanlagen in den Vereinigten Staaten; Tabelle VI zeigt schliesslich, wie die Energie-

lieferungen sich auf die verschiedenen Verbraucherkategorien verteilen³).

K. Lips

³) Die Zahlen der Tabellen I...VI wurden einem Bericht der «Federal Power Commission and Edison Electric Institute», der in der Zeitschrift «Electrical World», New York, Januar 1951, erschienen ist, entnommen.

Miscellanea

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

Bernische Kraftwerke A.-G., Bern. Als Nachfolger des verstorbenen Direktors Paul Keller wählte der Verwaltungsrat Ingenieur Charles Savoie, bisher Betriebsleiter des Kreises Bern der BKW, Mitglied des SEV seit 1930, zum Direktor. Der bisherige Adjunkt der Direktion III, Ingenieur Arthur Binz, Mitglied des SEV seit 1919, wurde zum Vizedirektor befördert. Zum neuen Betriebsleiter des Kreises Bern wurde Adolf Urheim, Mitglied des SEV seit 1941, ernannt. An Stelle des infolge Erreichung der Altersgrenze zurückgetretenen Inspektors Karl Ischi wurde Georg von der Crone zum Inspektor gewählt.

Aktiengesellschaft R. & E. Huber, Pfäffikon. M. Suter, bisher Vizedirektor, wurde zum Direktor gewählt. Zu Vizedirektoren wurden W. Keller, F. Kappeler und M. Werner, zu Prokuristen Dr. M. Weber, E. Studer, H. Frei, F. Ruckstuhl und A. Guggenbühl ernannt.

Zent A.-G., Fabrik für Zentralheizungsmaterial, Ostermundigen. Ingenieur *Fritz Beutler*, Mitglied des SEV, wurde zum Kollektiv-Prokuristen der Gesellschaft, die seit 1926 Kollektivmitglied des SEV ist, ernannt.

ETZ, Elektrotechnische Zeitschrift. Die ETZ, das Organ des Verbandes Deutscher Elektrotechniker (VDE), verlor vor einiger Zeit ihren Hauptschriftleiter, Dipl.-Ing. G. H. Winkler. Die Hauptschriftleitung hatte seither interimistisch Dr. F. Lauster inne. Am 1. September 1951 übernahm Dr.-Ing. P. Jacottet, Mitglied des SEV, der Leiter der VDE-Vorschriftenstelle, die Hauptschriftleitung der ETZ. Bis auf weiteres wird er auch noch der VDE-Vorschriftenstelle vorstehen.

Kleine Mitteilungen

Vortragstagung «Die fertigungsgerechte Konstruktion». Das Betriebswirtschaftliche Institut an der Eidgenössischen Technischen Hochschule (ETH) führt am 17. Oktober 1951 im Auditorium VI des Maschinenlaboratoriums der ETH, Sonneggstrasse 1, Zürich, eine Vortragstagung mit dem Motto «Die fertigungsgerechte Konstruktion» durch. An dieser Tagung sprechen 5 berufene Fachleute aus dem Inund Ausland über Konstruktionsplanung, zweckmässiges und arbeitssparendes Konstruieren, Organisation des Zeichnungswesens, Normung usw.

Anmeldungen für die Teilnahme an der Tagung nimmt das Betriebswirtschaftliche Institut an der ETH, Leonhardstrasse 33, Zürich 6, bis spätestens Mittwoch, den 10. Oktober 1951, entgegen, das auf Anfrage (Telephon [051] 32 73 30) auch das ausführliche Tagungsprogramm zur Verfügung stellt.

Weiterbildungskurse der Gewerbeschule der Stadt Zürich. Im kommenden Winter führt die Gewerbeschule der Stadt Zürich zur Weiterbildung folgende 5 Kurse durch:

Grundlagen der Funktechnik in Theorie und Praxis Kurs Nr. 341

Dieser Kurs vermittelt jene Kenntnisse, die für eine berufliche Betätigung im Radio-Service und in der HF-Industrie (Werkstatt, Prüffeld, Labor) erforderlich sind. Er dient auch zur Vorbereitung auf die Meisterprüfung als Radio-Installateur ebenso auch als Vorbereitung für den späteren Besuch eines Spezialkurses über Fernsehtechnik. Auf die Praxis ausgerichtet, behandelt er die mathematischen und theoretischen

Grundlagen, die zum Verständnis der Vorgänge notwendig sind, die sich in HF-Geräten abspielen. Darüber hinaus macht er die Kursteilnehmer in einem Werkstatt-Teil, in welchem einzelne Geräte praktisch aufgebaut und verdrahtet werden, mit den speziellen Arbeitstechniken des HF-Gebietes vertraut. Ein messtechnisches Praktikum führt in die Messmethoden ein, die zur Untersuchung von Bestandteilen, Schaltungen und Geräten angewendet werden.

Kursdauer: 2 Semester, jeweils Montag, Mittwoch, Freitag 19 bis 21 Uhr (Montag bis 20.30 Uhr), dazu jeden 2. Samstag von 14 bis 17 Uhr.

Kursbeginn: Montag, den 22. Oktober 1951, Zimmer 214.

Kursgeld: Fr. 44.— pro Semester, Lehrmittel ca. Fr. 16.—.
 Auswärtige Kursbesucher haben bei Steuerdomizil im Kanton Zürich Fr. 62.—, bei Steuerdomizil in der übrigen Schweiz Fr. 71.— zu entrichten.

Aufnahmebedingungen: Bestandene Lehrabschlussprüfung in einem Beruf der mechanisch-technischen Fachrichtung. Gute Vorkenntnisse in der allgemeinen Elektrotechnik.

2. Niederfrequenzverstärker, Kurs 342

Dieser Kurs behandelt in ausführlicher Weise die Probleme des NF-Verstärkers und stellt eine Ergänzung zum Einführungskurs in die Funktechnik dar. Er bildet aber einen selbständigen Teil und kann, unter Voraussetzung genügender Vorkenntnisse auch ohne einen vorgängigen Besuch eines Funktechnik-Kurses absolviert werden.

Das Kursprogramm umfasst:

Anforderungen an den NF-Verstärker; die Röhre als Verstärker; der Vorverstärker; der Niederfrequenzübertrager; die Treiberstufe; die Endstufe; die Gegenkopplung; Verstärkerschaltungen; akustische Grundlagen.

Kursdauer: 1 Semester, jeweils Dienstag 19 bis 21 Uhr.

Kursbeginn: Dienstag, den 23. Oktober 1951, Zimmer 217.

Kursgeld: Fr. 12.—. Teilnehmer mit Wohnsitz ausserhalb der Stadt Zürich haben 50 % Zuschlag, solche mit Wohnsitz ausserhalb des Kantons Zürich einen Zuschlag von 75 % auf das Kursgeld zu entrichten. Für Ausländer gelten besondere Ansätze.

 $\begin{tabular}{lll} Aufnahmebedingungen: Berufliche T\text{atigkeit} & auf dem Radio-Gebiet und ausreichende Vorkenntnisse. \end{tabular}$

3. Weiterbildungskurse Nrn. 347, 348 und 352

Telephoninstallation A, Kurs Nr. 347; Theoretischer Teil je Donnerstag von 19.30 bis 21.00 Uhr, Zimmer 219, mit Beginn am 25. Oktober 1951; praktischer Teil je Mittwoch von 19.00 bis 21.30 Uhr, Zimmer K 18a, mit Beginn Anfang Januar 1952.

Kursgeld: Fr. 16.-.

Telephoninstallation B, Kurs Nr. 348; Theoretischer Teil je Montag von 19.30 bis 21.00 Uhr, Zimmer 217, mit Beginn am 22. Oktober 1951; praktischer Teil je Mittwoch von 19.00 bis 21.30 Uhr, Zimmer K 18a, mit Beginn Anfang Januar 1952. Kursgeld: Fr. 16.—.

Hausinstallations- und Starkstromvorschriften, Kurs Nr. 352, je Montag 19.00 bis 21.00 Uhr, Zimmer 206, mit Beginn am 22. Oktober 1951.

Kursgeld: Fr. 10.-

Teilnehmer mit Wohnsitz ausserhalb der Stadt Zürich haben 50 % Zuschlag, solche mit Wohnsitz ausserhalb des Kantons Zürich einen Zuschlag von 75 % auf das Kursgeld zu entrichten. Für Ausländer gelten besondere Ansätze.

Die Anmeldung zu allen Kursen hat Dienstag, den 9. Oktober 1951, von 17.30 bis 19.00 Uhr im Gewerbeschulhaus zu erfolgen.

Ausnahmsweise werden auch schriftliche Anmeldungen angenommen. Diese sind zu richten an den Vorsteher der mechanisch-technischen Abteilung der Gewerbeschule der Stadt Zürich, Ausstellungsstrasse 60, Zürich 5, dessen Sekretariat auch nähere Auskunft gibt.

Technische Weiterbildungskurse in Luzern. Im Rahmen der Technischen Abendfortbildungskurse Luzern werden mit Beginn (und Anmeldetermin) am 8. Oktober 1951 besondere Kurse für Elektroinstallateure und Monteure durchgeführt. Das Programm umfasst Teilgebiete aus der Physik mit Betonung der Elektrotechnik, Fachrechnen, Studium der

Vorschriften des SEV, Projektierung und Skizzierung elektrischer Anlagen und Maschinen, Fachzeichnen, Werkstoffkunde und Kalkulation. Ausführliche Programme über diese von Bund, Kanton und Stadt anerkannten und subventionierten Kurse sind kostenlos erhältlich bei der administrativen Leitung der Technischen Abendfortbildungskurse Luzern, Rektorat der Gewerbeschule, Burgerstrasse 24, Luzern (Telephon [041] 2 09 86), die den Interessenten gern jede weitere Auskunft erteilt.

Schweizerische Verwaltungskurse an der Handels-Hochschule St. Gallen. Am 26. und 27. Oktober 1951 wird an der Handels-Hochschule St. Gallen als 68. Veranstaltung im Rahmen der Schweizerischen Verwaltungskurse ein Kurs unter dem Motto «Wirtschaftliche Betriebe der Gemeinden» durchgeführt. Der Vortragsplan umfasst folgende Referate:

«Wasserversorgung», von Betriebsleiter E. Bosshardt, Rorschach

schach
«Gaswerke», von Direktor Dr. H. Deringer, Winterthur
«Elektrizitätswerke», von Stadtrat J. Baumann, Zürich
«Verkehrseinrichtungen», von Direktor F. Joss, St. Gallen
«Gemeindliche Kreditinstitute», von Dr. A. Stampfli, Bern
«Schlachthöfe», von Direktor Dr. V. Allenspach, Zürich
«Die Wirtschaftsbetriebe im Gemeindehaushalt», von Finanzsekretär Dr. A. Elser, St. Gallen.

Die Vorträge finden in der Handels-Hochschule St. Gallen, Notkerstrasse 20, St. Gallen, statt. Anmeldungen sind bis spätestens Mittwoch, den 10. Oktober 1951, an das Sekretariat der Verwaltungskurse, Notkerstrasse 20, St. Gallen (Telephon [071] 2 48 34), einzureichen, das auf Wunsch das genaue Programm zur Verfügung stellt und auch weitere Auskünfte erteilt.

Der Verband Schweizerischer Transportanstalten hielt am 14. September 1951 in Crans-sur-Sierre unter dem Vorsitz von Dir. X. Remy seine 138. Verbandskonferenz und am Vortag Sitzungen seiner drei Sektionen ab. In der Verbandskonferenz kamen Fragen der Hilfe der öffentlichen Hand an notleidende Transportanstalten zur Sprache. Mittels anschaulicher Graphiken wurde am Beispiel einiger Bahnunternehmungen die besorgniserregende Entwicklung der Lohn- und Sachkosten, sowie der Betriebsergebnisse, Betriebsüberschüsse und Amortisationen dargelegt. Das Problem Schiene-Strasse beschäftigte die Verbandskonferenz ebenfalls, weil die Transportunternehmungen sich nach Ablehnung der ATO vor eine veränderte Situation und vor ungelöste Probleme gestellt sehen. Die Konferenz befasste sich mit der Frage der auf 1. Januar 1952 in Aussicht stehenden linearen Erhöhung der Personentarife um 5 % und der zukünftigen Aufrundung der Personentaxen auf volle 10 Rp. und der Abonnementspreise auf volle 50 Rp., sowie der Erhöhung einiger Nebengebühren, wie sie seitens der SBB in Aussicht genommen sind.

Der bisherige Verbandspräsident, X. Remy, Direktor der Gruyère-Fribourg-Morat-Bahnen und der Tramways de Fribourg, Freimitglied des SEV, tritt nach Ablauf seiner zweijährigen Amtsdauer vom Amt zurück. Zu seinem Nachfolger wurde auf Vorschlag der 1. Sektion (Trambahnen) Dr. F. Bandi, Direktor der Verkehrsbetriebe der Stadt Bern und der Vereinigten Bern-Worb-Bahnen, und als neuer Vize-Präsident H. Gavin, Direktor der Yverdon-Ste-Croix-Bahn, gewählt. Als neue Sektionspräsidenten beliebten für die 1. Sektion (Trambahnen) O. Bovet, Direktor der Tramways de Neuchâtel, und für die 2. Sektion P. Diem, Direktor der Wynental-Bahn und der Aarau-Schöftland-Bahn. Nationalrat R. Grimm, Präsident der 3. Sektion (Normalspurbahnen), behält sein Amt während einer weiteren Amtsdauer bei.

Die Verbandskonferenz ehrte den seit 50 Jahren dem Verband treu gebliebenen Dr. R. Zehnder, Mitglied des SEV seit 1941. Dr. R. Zehnder feiert gleichzeitig sein 50jähriges Jubiläum als früherer Direktor und derzeitiger Delegierter des Verwaltungsrates der Montreux-Oberland-Bahn. Wir beglückwünschen Herrn Dr. Zehnder, den Promotor der Furka-Oberalp-Bahn, bestens zu seinem seltenen Jubiläum.

Literatur — Bibliographie

621.39 Nr. 10 846

Einführung in die Nachrichtentechnik. Von Richard Feldtkeller und Georg Bosse. Stuttgart, Wittwer, 1950; 8°, VIII, 143 S., 204 Fig. — Die Ingenieurswissenschaften, Bd. VII — Preis: geb. DM 11.—; brosch. DM 9.50.

Sowohl Studierende wie Praktiker greifen mit Vorteil zu diesem Buch, wenn sie eine handliche Zusammenfassung der in der Nachrichtentechnik vorkommenden Probleme und Aufgaben ohne viel mathematischen Aufwand wünschen. Entsprechend der überwiegenden Bedeutung der Telephonie ist weitaus der grösste Raum der Übertragung des gesprochenen Wortes gewidmet. Während die Kapitel über Leitungstheorie, Verstärkerröhren, Übertrager, elektroakustische Wandler, Sender- und Modulatorschaltungen usw. auch in andern Büchern gefunden werden können, sind hier besonders die Angaben über die Anforderungen an die Übertragungsgeräte bezüglich Natürlichkeit und Verständlichkeit und über die Wählertechnik sowie den Aufbau des Fernsprechnetzes in verschiedenen Ebenen zu erwähnen. Von den modernen Übertragungsmethoden sind nur die Trägersysteme eingehender behandelt; der drahtlose, gerichtete Verkehr dagegen wird kaum erwähnt. Telegraphie und Bildübertragung bilden ein besonderes Kapitel, worauf ein kurzer Ausblick auf das Fernsehen das Buch beschliesst. J. Meyer

621.317.333.6 Nr. 10 837

Prüfung der Isolation von Hochspannungsfreileitungen und Schaltanlagen im Betrieb. Von Bernhard Koske. Essen, Girardet, 3. verb. Aufl. 1951; 8°, 95 S., 62 Fig., Tab. — Preis: geb. Fr. 8.05.

Der Autor beschreibt die während 15 Jahren gesammelten Erfahrungen mit einem Störsuchgerät von Siemens & Halske. Bei Glimm- und Gleitentladungen und auch Durchschlägen — nicht aber beim Lichtbogen — entstehen hochfrequente elektromagnetische Schwingungen über ein sehr weites Frequenzband. Dieses hochfrequente Störfeld wird

mittels einer Rahmenantenne an Erdleitungen abgenommen und verstärkt. Aus der Grösse der Störspannung lässt sich mit einiger Sicherheit auf den Störherd schliessen und damit die fehlerhafte Isolation rechtzeitig entdecken. Die Methode versagt in Anlagen, wo Leiter und spannungführende Metallteile sprühen. Ausserdem sind einzelne gut definierte Erdleitungen für die Messung günstig. Sie eignet sich also besonders gut für Freileitungen mit Metallmasten, um defekte Elemente von Kappenisolatoren ausfindig zu machen. Wird an einem Mast ein besonders starker Störstrom festgestellt, so müssen die Isolatoren ausgebaut und mit bekannten Methoden im Prüffeld weiter untersucht werden. Das Messgerät bildet also eine wertvolle Ergänzung für die Leitungskontrolle.

621.314.22.08.0046 Nr. 522 011

Die Berücksichtigung der Messwandler-Phasenfehler bei der Messung elektrischer Leistung. Von H. Tobler, Zürich, Voit & Nüssli, 1950; 8°, 20 S., 8 Fig. — Preis: brosch. Fr. 4.80.

Mit der vorliegenden, 20 Seiten umfassenden Broschüre will der Autor — wie er einleitend hervorhebt und einfach anzuwendende Unterlagen für die Berücksichtigung der Phasenfehler der Messwandler bei elektrischen Leistungsmessungen schaffen. Nach Definierung des Phasenfehlers, wie diese international anerkannt ist, wird im 1. Abschnitt in klarer Weise die Fehlerformel auf Grund der Phasenfehler δ und ε des Strom- bzw. Spannungswandlers für den Fall der induktiven Einphasen-Leistungsmessung abgeleitet unter Zuhilfenahme des diesem Fall zugeordneten Vektordiagramms. (In diesem Abschnitt hat sich auf Seite 5, Zeile 12, ein Fehler eingeschlichen. Statt «sin φ » sollte es heissen «sin β».) In analoger Weise werden in den drei folgenden Abschnitten die bei der Messung der kapazitiven Einphasenleistung sowie der Drehstromleistung nach der Zweiwattmeter-Methode anzuwendenden Fehlerformeln ermittelt. Praktisch ist die auf Seite 18 zusammengestellte graphische Darstellung zur raschen Orientierung des Fehlervorzeichens, wenn die Zweiwattmeter-Methode zur Drehstrom-Leistungsmessung benützt wird.

Zwei vollständig durchgerechnete Beispiele zeigen, wie der Messwandler-Phasenfehler unter Anwendung der abgeleiteten Fehlerformeln berücksichtigt wird. Zu diesen Beispielen ist die vollständige Zweiwattmeter-Meßschaltung angegeben. Schade ist, dass die den Vektordiagrammen (Abb. 3 und 4) zugrunde gelegte Schaltung nicht mit der für die Beispiele gewählten und üblichen Schaltung der Messwandler übereinstimmt.

Das Werk ist klar geschrieben und die Ableitungen sowie die Diagramme sind übersichtlich dargestellt. Druck und Papier sind ausgezeichnet. Die Broschüre wird bestimmt jedem in der Praxis stehenden Ingenieur, der sich mit messtechnischen Aufgaben zu befassen hat, ein wertvoller Helfer sein.

P. E. Fehr

537.523:54 Nr. 10 821

Hochspannungs-Entladungschemie und ihre industrielle Anwendung. Von *Theodor Rummel*. München, Oldenbourg und Reich, 1951; 8° 310 S., 142 Fig. — Preis: geb. DM 30.—.

Hochspannungsentladungschemie, eine Wortschöpfung, die den Leser nicht so sehr durch ihren lyrischen Klang erlaben, sondern eher durch die Kombination verschiedener Begriffe fesseln wird. Es handelt sich um ein Grenzgebiet, das bis jetzt noch nie im eigenen Zusammenhang behandelt worden ist, wohl darum, weil seine Wurzeln zu weit in vielen Spezialgebieten von Chemie und Physik verteilt sind. Sehr oft befragen sich Physiker und Chemiker gegenseitig über den Einfluss der Feldstärke auf den Verlauf von chemischen Reaktionen zwischen Konstruktionsmaterialien und in Versuchsanordnungen. Die Antwort geht meist dahin, dass man darüber noch zu wenig exakte Unterlagen gegenwärtig habe. Das Buch von Rummel orientiert immerhin an Hand von etwa 1100 Zitaten von wissenschaftlichen Originalarbeiten über die bis heute bekannten Tatsachen der Beeinflussung von chemischen Reaktionen durch elektrische Felder. Dabei werden absichtlich und gemäss Definition des Arbeitsgebietes diejenigen Vorgänge, die sich als klassisch elektro-chemisch deuten lassen und diejenigen, die dem Gebiet der Kernphysik zugeordnet sind, beiseite gelassen. Um eine Vorstellung der in diesem äusserst konzentriert geschriebenen Werk behandelten Probleme zu vermitteln, sei an das klassische Siemensche Ozonrohr erinnert. In diesem «Reagensglas mit Hochspannungsanschluss» können feste, flüssige und gasförmige Substanzen unter gleichzeitiger Einwirkung des elektrischen Feldes studiert werden. Der Autor behandelt zuerst allgemein die Entladung in ihrer Mannigfaltigkeit und in Kombination mit den verschiedenen apparativen Möglichkeiten, sowie die physikalischen und chemischen Wechselwirkungen mit dem Reaktionsgut. Dann folgt eine allgemeine Darstellung der Reaktionsarten, die durch elektrische Entladung hervorgerufen werden können. Hierauf wird das hochspannungsentladungschemische Verhalten einzelner Stoffe, Wasserstoff, Sauerstoff, Stickstoff, Halogene, Kohlenwasserstoffe usw. im einzelnen beschrieben. Aus den Bemerkungen über die technische Anwendung hochspannungsentladungschemischer Vorgänge ist zu ersehen, dass diesen bereits jetzt in der Schmiermitteltechnik eine bestimmte Bedeutung zugeschrieben wird, obwohl gerade hier noch sehr viel mit empirischen Methoden und Resultaten gearbeitet wird. Es wäre wünschenswert, wenn auf diesem Gebiet durch eine exakte Grundlagenforschung, wie sie von Rummel angebahnt wird, die Bedeutung und Notwendigkeit der elektrischen Behandlung begründet werden könnte. In diesem Sinne ist das Werk, welches dem Physiker, Chemiker und Elektrotechniker gemeinsame Probleme und Anregungen bringt, sehr zu empfehlen und es ist ihm, als erstem zusam-menfassendem Werk über die Wechselwirkung zwischen Hochspannung und chemischer Reaktion, eine weite Beach-Zürcher tung zu wünschen.

621.3.015.34: 621.315.1

Nr. 10 826

Traveling Waves on Transmission Systems. By L. V. Bewley. New York, Wiley; London, Chapman & Hall, 2nd ed. 1951; 8°, VIII, 543 p., fig., tab. — Price: \$ 12.—.

Das in zweiter Auflage erschienene Werk behandelt das Gesamtgebiet der mit den Wanderwellen zusammenhängenden Erscheinungen. Das Werk hat den Charakter eines Lehrbuches und ist gemäss amerikanischer Übung mit konkret durchgerechneten Beispielen ausgestattet. Die einzelnen Kapitel schliessen in der Regel mit einer Reihe von Übungsaufgaben, die meistens auch konkrete Fälle behandeln. Der Inhalt des Werkes ist breiter ausgelegt als dessen Titel erwarten lassen könnte. Neben der ausführlichen mathematischen Theorie der Wanderwellen auf Einfach- und Mehrleitersystem werden auch die Vorgänge behandelt, welche Anlass zu diesen Erscheinungen geben. Es sind dies die Blitzüberspannungen, Erdschlussüberspannungen und die Schaltüberspannungen. Das Kapitel über die Blitze enthält die wichtigsten statistischen Daten, welche nötig sind, wenn man das Verhalten der Leitungen und Apparate bezüglich Blitzüberspannungen beurteilen will. Auch die übrigen Kapitel liefern die entsprechenden Grundlagen. Dem Schutz der Anlagen gegen Wanderwellen ist ein grosses Kapitel gewidmet. Auch hier werden die notwendigen Daten in vielen graphischen Darstellungen mitgeteilt. Im zweiten Teil des Buches wird die Theorie der Spannungsbeanspruchung der Transformatorwicklungen bei auflaufenden Wanderwellen entwikkelt. Die schwierige Theorie wird so weit entwickelt, dass die Berechnung der Beanspruchungen an Hand der angeführten Formeln praktisch durchführbar wird. Die Darstellung ist in sich abgeschlossen, so dass nur wenig Literaturangaben mitgeteilt werden, die sich überdies oft auf Originalarbeiten des Verfassers beziehen. W. Frev

621.313.0045 Nr. 10 819

Industrial Electrical Plant Maintenance. By E. G. Anness. London, Pitman, 1950; 8°, VIII, 191 p., 90 fig., tab. — Price: cloth £ 1.7.6.

Das vorliegende Buch wendet sich vor allem an Betriebstechniker, Maschinenmeister und Monteure, denen die Betriebsüberwachung, der Unterhalt und die Instandstellung von elektrischen Maschinen und Apparaten anvertraut ist. Es behandelt in drei Kapiteln die hauptsächlich an Gleichstrom-Synchron- und Asynchronmaschinen auftretenden mechanischen und elektrischen Störungen, deren Ursache und Behebung. Praktische Anleitungen für die Montage und Revisionen vervollständigen das Ganze. Den Lagern ist ein besonderer Abschnitt gewidmet. Von den Apparaten werden nur die Transformatoren und die in industriellen Verbraucheranlagen zur Verbesserung des Leistungsfaktors viel verwendeten Kondensatoren kurz behandelt.

Das Buch erhebt keinen Anspruch auf eine lückenlose Darstellung der Störungsbehebung an Starkstromobjekten. Der Verfasser versucht vielmehr seine, in Verbindung mit zahlreichen englischen Firmen gesammelten Erfahrungen an einzelnen Maschinen und Apparaten der Öffentlichkeit zugänglich zu machen, wobei die klare, einfache Diagnose der möglichen Störungen, die übersichtliche tabellarische Zusammenstellung der Fehler und ihrer Ursachen und die zahlreichen Illustrationen dem kleinen Buch einen besonderen Wert verleihen.

O. Celio

621.81 . Nr. 10 797,1

Neuzeitliche Maschinenelemente. Bd. I. Von Franz Findeisen. Zürich, Schweiz. Druck- und Verlagshaus, 1950; 8°, 184 S., 122 Fig., Tab., 20 Taf. — SVD Fachbücher — Preis: geb. Fr. 14.—.

Das Buch enthält keine Wiederholung dessen, was man im allgemeinen unter Maschinenelemente versteht; es geht vielmehr neue Wege und führt den Leser in das Fachgebiet der Normungszahl der Passtechnik und der Presspassung ein.

Die rationalisierten Arbeitsmethoden der heutigen Technik verlangen genaueste Kenntnisse des weiten Fachgebietes der Passungstechnik der miteinander in loser oder fester Verbindung stehenden Maschinenelemente. Die richtige Wahl der Passung vermag eben die Herstellungskosten, insbesondere die Arbeitslöhne stark zu beeinflussen. Die Kenntnis dieses Fachgebietes ist deshalb von grosser Wichtigkeit.

Das vorliegende Buch in seiner vortrefflichen Aufmachung wendet sich sowohl an Studierende der Techniken und Hochschulen als an Lehrer, Konstrukteure, Betriebstechniker und Praktiker. In klarer und präziser Formulierung behandelt der Verfasser in Anwendung von Beispielen die Kapitel: Normung und Normungszahl, Masstoleranz, ISA-Passung mit und ohne Berücksichtigung hoher und tiefer Betriebstemperaturen bei verschiedenen Werkstoffen und in verschiede-

nen andern Kapiteln die Presspassung.

Es wird gezeigt, wie durch Reihen gleichartige Konstruktionselemente in ihren Dimensionen gestuft, wie ausgehend vom Mutterentwurf durch Anwendung des Modellgesetzes von Cauchy die Dimensionen, Kräfte und Momente einer Serie dieser gleichartigen Elemente bestimmt werden können. Weiter macht der Verfasser den Leser mit den Grundbegriffen des Toleranzwesens bekannt. In einem besonderen Kapitel wird der Einfluss der Betriebstemperatur bei verschiedenen Baumaterialien der Elemente auf die Wahl der Passung beschrieben. Der abschliessende, wohl interessanteste Teil des Buches behandelt die kraftschlüssige Verbindung der Maschinenelemente und zeigt, wie durch Anwendung der Preßsitze Material gespart und die Anfertigungszeit gekürzt werden kann. Die zur Berechnung der Spannungen und Dehnungen bei Pressverbindungen notwendigen Formeln wer-den abgeleitet. In allen Kapiteln wird das Gesagte durch Beispiele in rechnerischer und graphischer Methode vertieft. Als Anhang sind dem Buche 20 Konstruktionsblätter in Tabellenform beigefügt, die zum Teil Auszüge aus den ISA-Normen, zum Teil Berechnungsbeispiele für Presspassungen Eichenberger enthalten.

621 2 Nr. 10 853

Wasserkraftmaschinen und Wasserkraftanlagen. Von Ludwig Keyl. Neubearb. von Hans Häckert. Stuttgart, Koehler, 3. Aufl. 1949; 8°, XII, 228 S., 125 Fig., 13 Tab., Formelsamml. — Jäneckes Bibliothek der gesamten Technik — Preis: brosch. DM 7.80.

Im vorliegenden Buche werden in einfacher Form fast alle mit dem Bau einer Wasserkraftanlage zusammenhängenden Fragen behandelt, wobei das Hauptgewicht auf die Beschreibung der Anlageteile und ihre zeichnerische Darstellung, in Verbindung mit praktischen Angaben, gelegt wird. Ausgehend von den allgemeinen theoretischen Grundlagen, wird der Aufbau einer Wasserkraftanlage (Stauwehranlage, Wasserführung zur Turbine, Rechen, Absperrmittel usw.) beschrieben. Es folgt dann ein Kapitel über das Verhalten der Turbinen (Kenngrössen, Kennlinien, Ähnlichkeit usw.), Aufbau der Turbinen und ihre Regelung. Besondere Kapitel beschäftigen sich mit den Speicheranlagen, dem Verbundbetrieb und dem Gesamtaufbau der verschiedenen Turbinenarten, wobei mit zahlreichen Ausführungsbeispielen der Text ergänzt wird. Die Abnahmeprüfung der Turbinen wird in einem besonderen Abschnitt behandelt, wobei leider die neuen «Schweizerischen Regeln für Wasserturbinen» keine Berücksichtigung fanden. Am Schlusse des Buches werden die Kosten einer Wasserkraftanlage besprochen sowie die Wasserräder und die Sonderbauten von Turbinen.

Für eine weitere Auflage wäre zu wünschen, dass $\gamma=1000~{\rm kg/m^3}$ gleich am Anfang aufgeführt und der Wirkungsgrad nicht zu 75 % angenommen würde, und dass ferner die Buchstabensymbole $(v,\,c,\,w,\,u)$ für die eingangs definierten Geschwindigkeiten konsequent angewendet werden. Die Reynoldssche Zahl R_o ist nirgends erwähnt, obschon der Strömungszustand und die Reibungszahl durch ihre Grösse bestimmt werden. In gekrümmten Rohren findet nicht immer eine Ablösung statt. An Stelle des Sohlengefälles wäre wohl besser das Spiegelgefälle zu nehmen. Beim Messüberfall muss die Breite nicht immer zu 1 m gewählt werden. Bei der Freistrahlturbine ist der gewählte Wert $K_{u1}=0.475...0.490$ zu hoch. In Abb. 120 sollten die Spuren der Niveauflächen in den Zellen Kreise und nicht horizontale Linien sein.

Im vorliegenden Rezensionsexemplar erscheint die Seite 150 zweimal, aber sie enthält nicht das gleiche. Die Seiten 151, 152 und 153 erscheinen auch zweimal aber mit dem gleichen Text. Trotz diesen und noch andern nicht erwähnten kleinen Mängeln kann die Anschaffung des Buches allen denen sehr empfohlen werden, welche sich in Kürze über alle wesentlichen Teile einer Wasserkraftanlage orientieren wollen.

R. Dubs

621.317 Nr. 10 824

Elektrische Messgeräte und Messverfahren. Von P. M. Pflier. Berlin, Springer, 1951; 8°, 193 S., 241 Fig. — Preis: geb. DM 21.—.

Der Verfasser dieses neuen Buches über elektrische Messtechnik ist sich bewusst, dass über diese Materie bereits gute Lehrbücher geschrieben worden sind; wie er aber im Vorwort bemerkt, möchte er sich nicht in erster Linie an die Hersteller und Meßspezialisten wenden, sondern an alle diejenigen, welche gelegentlich elektrische Messungen auszuführen haben. Aus diesem Grunde sind Theorie und Wirkungsweise der verschiedenen Messwerke nur kurz behandelt und das Hauptgewicht ist auf die Eigenschaften, Schaltungen und Anwendungen gelegt worden.

In der Einleitung werden die allgemeinen Eigenschaften der elektrischen Messgeräte behandelt, wie Einstellvorgang, Ermittlung des Skalenverlaufes aus Ablenk- und Richtmoment, Definition der für die Beurteilung eines Messinstrumentes wichtigen Begriffe des Einstellmomentes und der Gütezahl. Die Dynamik der beweglichen Organe wird nur gestreift. Der Leser findet dort die Antwort auf die oft gestellte Frage nach der Eignung elektrischer Messgeräte zur Anzeige bzw. Registrierung schnell verlaufender Vorgänge (Auflösungsvermögen). Angaben über Genauigkeit und Fehlerquellen, Eigenverbrauch, Empfindlichkeit, Überlastbarkeit schliessen diesen ersten Teil.

Der zweite und umfangreichste Abschnitt des Buches ist der Beschreibung von nicht weniger als 18 verschiedenen Messwerken gewidmet, darunter auch solchen wie das Taumelspul- oder das Hysteresemesswerk, welche wenig bekannt sind und angewendet werden. Jedem Messwerk, bzw. Messinstrument ist ein Kapitel zugeteilt, in welchem das Prinzip, womöglich die Berechnung, die Eigenschaften, die Ausführungsformen — Beschreibungen und Abbildungen beziehen sich auf Instrumente der deutschen Messtechnik - und das Anwendungsgebiet behandelt werden. Diese sehr klare und übersichtliche Darstellungsweise ist begrüssenswert und macht das Buch u. a. als Nachschlagewerk besonders wertvoll. Betreffend die Kreuzspulinstrumente schreibt der Verfasser auf S. 65: «Ein Temperaturfehler kann nur auftreten, wenn sich die beiden Drehspulen verschieden erwärmen, was praktisch nicht vorkommt.» In Wirklichkeit tritt auch im normalen Fall, also wenn die beiden Spulen sich gleich erwärmen, bei den üblichen Schaltungen ein Temperaturfehler auf, weil dadurch das Verhältnis der Gesamtwiderstände und demzufolge der Ströme in den beiden Stromkreisen beeinflusst wird; nur in der Symmetrielage (identische Spulen vorausgesetzt) ist der Temperaturfehler gleich Null; er nimmt nach den beiden Skalenenden zu, lässt sich aber durch besondere Massnahmen klein halten. Unsere Bemerkung gilt sinngemäss auch für den Drehmagnet-Quotientenmesser (S. 120).

Unter den Messverfahren, welche den Gegenstand des letzten Abschnittes bilden, werden die Gleichstrom- und Wechselstromkompensatoren, die Isolationsmessungen, sowie die verschiedenen Methoden der Erdwiderstandsmessungen und Fehlerortsbestimmung an Leitungen und Kabel behandelt.

Das Buch ist tadellos gedruckt und ausgestattet; es enthält viele interessante Angaben in Form von Tabellen und Kurventafeln und wird allen denjenigen, die sich gelegentlich mit Messproblemen zu befassen haben und sich rasch über die zweckmässigen Messgeräte und Schaltungen sowie über die zu erwartenden Ergebnisse orientieren wollen, von grossem Nutzen sein.

R. Grezet

621.395.64 Nr. 10 847

Das Fernmelderelais und seine Schaltung. Von Herbert Petzoldt. Leipzig, Geest & Portig, 1951; 8°, VII, 153 S., 206 Fig., Tab. — Preis: geb. DM 15.80.

Der erste Teil dieses Buches behandelt Aufbau, Wirkungsweise und Berechnung von Relais. Ferner wird eine Übersicht über verschiedene Relaistypen gegeben. Ziemlich ausführlich werden die normalen magnetischen Relais behandelt. Es folgen Hinweise über Funkenlösch-, Rundfunkentstör- und Verzögerungsschaltungen. Einige Seiten sind der Messtechnik mit stroboskopischen Methoden gewidmet. Auf die Verwendung von Impulsschreiber und Schleifenoszillograph geht der Verfasser nicht ein. Polarisierte Relais sowie Glimm-Relais werden leider nur kurz behandelt.

Der zweite Teil ist der zeichnerischen Darstellung der Schaltungen gewidmet. Die Details treffen jedoch teilweise nur für Deutschland zu. Einige Seiten betreffen die praktische Ausführung der Schaltungen. Der dritte Teil des Buches behandelt die allgemeine Relaisschaltungslehre. In ca. 100 Beispielen versucht der Verfasser allgemeine Prinzipien für Schaltungen anzugeben und vermittelt dabei wertvolle Anregungen. Gewisse allgemeine Grundsätze über den Schaltungsaufbau, die in der Praxis unbedingt erforderlich sind, würden das Buch wertvoll ergänzen. Die letzten Seiten enthalten Tabellen über Füllfaktoren, Daten von Relais und Schaltzeichen, welche in Deutschland genormt sind und welche für die Schweiz teilweise Gültigkeit haben.

621.311.161 Nr. 10 850

Energieverbundwirtschaft. Vorträge und Diskussionsberichte der 3. Arbeitstagung am 29. und 30. April 1950 in der Universität Köln. München, Oldenbourg, 1951; 8°, 288 S., 44 Fig., Tab. — Tagungsberichte des Energiewirtschaftlichen Instituts, hg. v. Energiewirtschaftlichen Institut an der Universität Köln, Heft 3.

Die Broschüre - in Wirklichkeit ein stattlicher Band von nahezu 300 Seiten — enthält eine Reihe von Vorträgen deutscher und anderer westeuropäischer Referenten zu Fragen der Energieverbundwirtschaft. Diese wird dabei verstanden: im weiteren Sinne als die Zusammenarbeit der Energieträger Gas und Elektrizität, im engeren Sinne (Elektrizitätsverbundwirtschaft) als Zusammenwirken von verschiedenartigen, z.B. thermischen und Wasserkraftwerken zur Versorgung eines ausgedehnten Gebietes. Neben technischen werden produktionswirtschaftliche, organisatorische und rechtliche Fragen in meist recht anregender Weise durch prominente Fachleute der verschiedenen Gebiete behandelt. Das Thema der Tagung bringt es mit sich, dass in manchen der Vorträge planwirtschaftliches Denken offen oder unbewusst zu Tage tritt; auch in «Grossraum» begriffen wird gedacht und geredet. Dass solche Denkweise immerhin noch nicht europäisches Allgemeingut ist, zeigen neben anderen in erfreulicher Weise die Ausführungen des schweizerischen Refe-

Gemäss der oben gegebenen Umschreibung des Begriffs der Verbundwirtschaft sind die Themen der Vorträge rein produktionswirtschaftlich orientiert; über die Verwendung der erzeugten Energie und den Wettbewerb der verschiedenen Energieträger beim Verbraucher wird leider kaum etwas gesagt. Damit soll die sehr verdienstvolle Wirksamkeit des veranstaltenden Instituts keineswegs verkleinert werden; vielleicht bietet eine spätere Tagung die Gelegenheit, auch diese ebenso wichtige Seite einer (im weitesten Sinne verstandenen) Verbundwirtschaft zur Sprache zu bringen.

R. J. Oehler

621.315.59

Nr. 10 833

Semi-Conductors. By D. A. Wright. London, Methuen; New York, Wiley, 1951; 8°, 130 p., 32 fig., tab. — Methuenn's Monographs on Physical Subjects — Price: cloth £ —.6.7.

Die vorliegende Monographie gibt einen kurzgefassten, klaren Überblick über die wichtigsten Eigenschaften der Halbleiter und einen Teil ihrer technischen Anwendungen. Der Verfasser begnügt sich dabei nicht mit einer rein qualitativen Beschreibung. Jedes Kapitel enthält vielmehr in massvoller und zweckmässiger Weise soviel mathematische Herleitungen und Formeln, wie es zu einem ersten Verständnis der Phänomene unbedingt nötig ist. Das kleine, nur 130 Seiten starke Büchlein enthält bemerkenswert viele konkrete Angaben allgemeiner und spezieller Natur über Halbleiter, so dass es sich zur Einführung in dieses an wissenschaftlicher und technischer Bedeutung fortwährend zunehmende Gebiet ausgezeichnet eignet.

621.313.13-181.4 Nr. 10 834

Fractional Horse Power Motors. By Stuart F. Philipott. London, Chapman & Hall, 1951; 8°, XII, 367 p., fig., tab. — Price: cloth £ 1.10.—.

In den angelsächsischen Ländern werden elektrische Klein-Motoren für Leistungen unter 1 PS mit «Fractional Horse Power Motors» bezeichnet. Durch die in den letzten Jahren immer mehr zur Anwendung kommenden elektrischen Haushaltmaschinen sowie Handwerkzeug-Antriebe, z. B. Kühlschränke, Waschmaschinen, Staubsauger, Knet-, Rührund Schwingmaschinen sowie Antriebe für Ölbrenner, Bohrund Poliermaschinen usw., ist naturgemäss das Interesse an Motoren für derartige Antriebe sehr stark gestiegen. Parallel dazu schwillt auch die einschlägige Literatur stark an. Das vorliegende Buch will einen Überblick über die verschiedenen Systeme von Antriebsmotoren kleiner Leistung geben, ohne jedoch näher auf die Berechnung und den Entwurf derselben einzugehen. An Hand einfacher und deutlicher Skizzen wird in klarer, knapper Darstellung die physikalische Grundlage von Gleichstrom-, Wechselstrom- und Drehstrom-Motoren erläutert, und hierauf an Hand vieler Abbildungen und Skizzen die verschiedenen Motortypen und deren Betriebseigenschaften und Anwendungsgebiete beschrieben. Ebenso werden viele konstruktive Details, wie Lager, Getriebe, Geschwindigkeitsregler usw., eingehend behandelt. Weiter wird in besonderen Kapiteln die Prüfung und Messung sowie die Auffindung von Fehlern besprochen. Dass auch dem Überlast- und Radio-Störschutz je ein Kapitel eingeräumt wird, zeigt von der Vollständigkeit der Arbeit.

Das Buch wird in erster Linie Installateuren, Herstellern und Verkäufern von Elektro-Werkzeugen und Haushaltmaschinen, Musikapparaten usw. wertvoll sein, die selbst keine Elektro-Motoren bauen, da es ihnen die Möglichkeit gibt, sich über die in ihren Erzeugnissen eingebauten Motoren zu informieren, ohne dass selbst grössere Fachkenntnisse erforderlich wären.

M. Riggenbach

621.395.722 Nr. 10 849

Fernämter. Von Hans Rjosk. München, Oldenbourg, 1951; 8°, 200 S., 121 Fig., Tab., 5 Taf. — Fernsprechtechnik — Preis: geb. DM 15.—.

Das vorliegende Werk füllt eine lang empfundene Lücke in der Literatur über manuelle Fernämter aus. In 10 Abschnitten werden Leitungs- und Verkehrsfragen, Betriebsvorgänge, Fernämter mit Schnüren und schnurlose Ämter, besondere Einrichtungen, die deutsche Landesfernwahl und die Planung der Handfernämter zum Teil umfassend behandelt. Das Buch zeichnet sich durch eine kurze, leicht fassliche Darstellung des Stoffes sowie durch klare Formulierung der mannigfaltigen Begriffe und Probleme aus. Es leistet sowohl dem erfahrenen Konstrukteur als auch dem Betriebsfachmann wertvolle Dienste. Aber auch Studierende und jüngere Fachleute ohne Erfahrung im Bau und Betrieb manueller Ämter werden grossen Nutzen aus diesem Werk ziehen und ihr fachliches Wissen bereichern können. Die verschiedenen Hinweise auf die Empfehlungen des CCIF sowie das umfangreiche Literaturverzeichnis vervollständigen das Buch auf treffliche Weise.

621.389.38

Nr. 10 802

The Industrial Applications of Gasfilled Triodes (Thyratrons). By R. C. Walker. London, Chapman & Hall, 1950; 8, X, 325 p., fig. — Price: cloth £ 2.—.—.

In einer kurzen Einleitung wird das grundsätzliche Verhalten einer gasgefüllten Entladungsröhre beschrieben, ohne die Theorie der Gasentladung näher darzustellen. Der Hauptteil des in 8 Kapitel unterteilten Buches umfasst die Anwendungsmöglichkeiten von Thyratrons mit beheizter Kathode. Eine Vielzahl von prinzipiellen Schaltungen ohne detaillierte Angaben für deren Dimensionierung zeigt die allgemeinen Anwendungsmethoden. Zwei Kapitel sind Lösungsmöglichkeiten spezieller Probleme, wie elektronische Schalter, Anzeige-, Überwachungs- und Messeinrichtungen gewid-met. Den Anwendungen für Strom- und Spannungsregulierung ist ein spezielles Kapitel reserviert. Im Zusammenhang mit den heute sehr aktuellen Röhrensteuerungen für Motoren kommt diesem Abschnitt besondere Wichtigkeit zu. Ein weiteres Kapitel befasst sich, allerdings nicht sehr eingehend, mit Kaltkathoden-Gasentladungsröhren, dem Igritron einerseits als Vertreter der Anwendung für Gleichrichter für hohe Leistungen und andererseits einigen Spezialanwendungen von Kaltkathoden-Steuerröhren, sowie Entladungsröhren zur Erzeugung von Lichtblitzen.

Das Buch, offensichtlich von einem Praktiker geschrieben, wendet sich weniger an den Starkstromingenieur, als an den Spezialisten, der die mannigfachen mit der Energieerzeugung und -verteilung zusammenhängenden Steuer- und Kontrollprobleme zu behandeln hat. Der Titel verrät schon diese bewusste Beschränkung auf ein abgegrenztes Anwen-

dungsgebiet. Nicht zu vergessen ist der Umstand, dass das Werk, 1950 erschienen, dem Vorwort nach zu schliessen, schon im Jahre 1948 druckreif vorgelegen haben muss. Dass deshalb gewisse neuere Anwendungsmöglichkeiten vorab von Kaltkathoden-Entladungsröhren nicht oder nur flüchtig erwähnt wurden, tut dem Wert des Buches nur unwesentlichen Abbruch. Ein jedem Kapitel beigefügtes Literaturverzeichnis, das sich vorab auf angelsächsische Autoren stützt, ergänzt in wertvoller Weise das Werk.

de Quervain

537.226 Nr. 523 011

Dispersion et absorption. Contribution au formalisme électroschématique de la polarisation diélectrique. Par *Jacques* Stehelin. Strasbourg, Heitz, 1950; 8°, VII, 95 p., 52 fig., 9 teh

Après avoir rappelé les schémas représentatifs des principales théories de la dispersion, l'auteur indique un schéma général avec spectre complet. Il donne les formules de dispersion et recherche la distribution des constantes de temps. Les exemples d'application de la formule de distribution sont intéressants, notons en particulier le cas du papier imprégné pour condensateurs, pour lequel l'auteur fait une analyse de courbe de conductance. L'étude est complétée par la recherche d'une relation entre l'indice de réfraction et le pouvoir inducteur spécifique. Parmi les exemples d'application des formules optiques, l'auteur examine les cas du Quartz, de la Sylvine et du Sel gemme; il fait également quelques considérations sur les lames métalliques ultra-minces (Argent) et sur un colorant (Fuchsine). Puis la variabilité des éléments du schéma avec la température, la pression et la tension de mesure est examinée. L'étude se termine par l'esquisse d'une phénoménologie du système dispersif élastique.

Ce bref résumé montre qu'il s'agit d'une étude s'adressant surtout aux spécialistes des questions de dispersion et d'absorption; il intéressera aussi tous ceux qui ont affaire de près ou de loin avec les diélectriques. Les idées nouvelles de l'auter sont certainement une contribution à l'étude de ces problèmes.

J. Piguet

628.9.03:621.327.43

Nr. 10 860

L'éclairage par fluorescence. Par R. Cadiergues. Paris, Dunod, 1951; 8°, XIV, 319 p., 214 fig., 138 tab. — Manuel d'éclairage par fluorescence — Prix: rel. Fr. 27.50.

Ein zweiteiliges Handbuch für Ingenieur, Architekt und Installateur aus der Not geboren, um die lawinenartig ansteigende Anwendung der Fluoreszenzbeleuchtung in Bahnen zu lenken, die dem Stand der Erkenntnisse entsprechen. Konzentrierte, allgemein orientierende Einleitung, die eine Art von Leitsätzen darstellt.

Der Autor wendet sich im ersten, technisch-praktischen Teil an den Leser, der beruflich mit der praktischen Anwendung der Fluoreszenzlampenbeleuchtung zu tun hat, indem er den Röhrenaufbau, die Arten der auf dem Markt eingeführten Lampen, das Funktionieren der Lampen und der Hilfsapparate in allen Teilen der möglichen Schaltungskombinationen behandelt und auch auf die Störungsfragen eingeht.

Dem Leuchtenbau, den wirtschaftlichen Fragen und der praktischen Projektierung von Anlagen ist je ein Kapitel gewidmet. Bei der Projektierung ist allgemeinen Grundsätzen, der Wahl der Beleuchtungs- und Installationsart, sowie der Berechnung und der Kontrolle von Anlagen ein breiter Raum gegeben. In gleichem Ausmass werden Industrie-, Bureau-, Schul-, Kommerzial-, öffentliche und Spezial-heleuchtung behandelt.

Im 2. Teil wendet sich der Autor an eine tiefer interessierte Leserschaft. Wenn die Titel der Kapitel jenen im ersten Teil auch öfters ähnlich sind, bedeutet dies keine Wiederholung. Unter Zuhilfenahme der elementaren Mathematik werden die physikalischen Zusammenhänge bei der Lichterzeugung und Fragen der Beleuchtungswissenschaft besprochen; im speziellen die Strahlungsphysik, Phosphoreszenz, Fluoreszenz, spektrale Farbenprobleme sowie die Fabrikation von Lampen und ihrer Kontrolle. Ein letztes Kapitel ist der Photometrie, der qualitativen Klassifizierung von Leuchten, sowie physiologischen und anderen Einflüssen auf die Berechnungsart von Anlagen gewidmet.

Im Anhang werden physiologische Einflüsse der Fluoreszenzbeleuchtung auf den Menschen behandelt, besonders im Hinblick auf die Wirkung der Ultraviolettstrahlungen, des intermettierenden, bzw. des fluktuierenden Lichtstromes, sowie der Blendung.

Eine Aufzählung der internationalen und nationalen Organisationen, die sich mit Licht- und Beleuchtungsfragen befassen, ferner eine reiche Bibliographie und ein anglo-französischer Fachdiktionär beschliessen das vielseitige Werk, das einen weiten Überblick über alle mit der Fluoreszenzbeleuchtung verbundenen Fragen gewährt. Es ist nur bedauerlich, dass dem englisch-französischen Wörterbuch nicht von Anfang an der entsprechende deutsche Teil beigefügt ist.

W. v. Berlepsch-Valendas

538.3 Nr. Hb 89,2

Lehrbuch der Physik. Bd. 2: Elektromagnetisches Feld. Von Grimsehl. Hg. v. W. Schallreuter und R. Seeliger. Leipzig, Teubner, 12. erw. Aufl. 1951; 8°, VIII, 552 S., 725 Fig., Tab. — Preis: geb. \$ 4.22.

Die Neuauflage dieses bekannten und in seiner Art ausgezeichneten Lehrbuches wird von vielen Fachleuten begrüsst werden. Gibt es doch nur wenige Physikbücher, in denen sowohl Experiment als Theorie in gleichem Masse auf die Rechnung kommen. Weil an mathematischen Kenntnissen nur die Grundlagen der Vektorrechnung, Integralrechnung und Vektoranalysis vorausgesetzt werden, ist das Buch auch breiteren Kreisen zugänglich. Sein Aufbau ist klar und übersichtlich. Zunächst werden Elektrostatik und Magnetostatik behandelt, wobei besonderes Gewicht auf anschauliche Erklärung der Grundbegriffe und auf die Messmethoden gelegt ist. Interessant ist auch das Kapitel über den Erdmagnetismus. Im zweiten Abschnitt des Buches werden alle Erscheinungen beschrieben, die bei stationären Strömen auftreten: magnetische Wirkungen, Arbeitswert und Stromdurchgang durch Elektrolyte, Gase, Vakuum und Metalle. Der letzte Teil des Bandes handelt von den zeitlich veränderlichen Phänomena: Induktion, Wechselstrom, elektromagnetische Wellen. Daneben werden im dritten Abschnitt viele technische Anwendungen besprochen, besonders Motoren und Generatoren. Auf die atomistische Deutung der elektrischen Erscheinungen wird fast vollständig verzichtet, weil die Atomphysik im Band 4 dieses Werkes ausführlich behandelt werden soll.

Gegenüber den früheren Auflagen weist das Buch ausser einigen Ergänzungen keine wesentlichen Änderungen auf. Neu sind die Abschnitte über Kontaktpotentiale, über den lichtelektrischen Effekt, die Kapillarität, die Luftelektrizität und über die Elektronenröhren. Zu bedauern ist eigentlich nur, dass man sich nicht zur konsequenten Benützung des Giorgi-Maßsystems entschliessen konnte. Dadurch wurden einige Abschnitte über Maßsysteme notwendig, die für den Studierenden immer eine Belastung bedeuten. Doch ist die Schreibweise der Formeln so gewählt, dass sie ohne grosse Umrechnungen in jedem Maßsystem verwendet werden können, wozu auch der Anhang des Buches nützliche Dienste leistet.

R. Rüetschi

621.315.611 Nr. 10 854

Die festen Isolierstoffe der Elektrotechnik als Bau- und Austauschstoffe. Von Walter Demuth. Schloss Bleckede/ Elbe, Meissner, 1951; 8°, XIII, 233 S., Fig., Tab., 2 Beil. — Preis: geb. DM 24.—.

Wer glaubt, in diesem Buch eine Werkstoffkunde mit klaren, oder sogar zahlenmässigen Angaben von Werkstoffeigenschaften vorzufinden, wird es sehr enttäuscht beiseite legen. Es werden nur anorganische, insbesondere keramische Produkte behandelt und zwar in Anlehnung an die VDE-Vorschriften, welche unter Beigabe von uninteressanten Massskizzen von Isolatoren, von Werbephotographien aus der keramischen Industrie usw. oft seitenweise abgedruckt werden. Eine Beschäftigung mit diesem Buch bedeutet lediglich Zeitverlust.

37.311.33 Nr. 114 002

Semi-conducteurs électroniques et complexes dérivés. Théories, applications. Par Stanislas Teszner. Paris, Gauthier-Villars, 1950; 4°, *96 p., 84 fig. — Collection technique du CNET (Centre National d'Etudes des Télécommunications) — Prix: broché Fr. 1000.—.

Der Elektrotechniker und Ingenieur wird sich in Zukunft mehr und mehr mit den physikalischen Eigenschaften der Halbleiter und ihrer zahlreichen Anwendungsmöglichkeiten vertraut machen müssen. Teszners Monographie stellt einen begrüssenswerten Versuch dar, Theorie und technische Verwendung der Halbleiter zusammenfassend darzustellen. Die Probleme der nicht linearen und temperaturabhängigen Widerstände, sowie der Kristallgleichrichter und Kristalltrioden werden zum Teil eingehend behandelt. Ferner finden sich viele interessante Angaben technologischer Art, die für den Praktiker wertvoll sein können.

Der Autor hat in seiner Monographie viele eigene Gedanken hineingearbeitet, die zum Teil als wertvolle Kritik der bestehenden Ansichten gewertet werden müssen, zum Teil aber offenbar auf Missverständnissen beruhen.

G. Busch

621.316.37

Nr. 10 842

Hochspannungs- und Niederspannungs-Schaltanlagen.
Von Botho Fleck. Essen, Girardet, 1950; 8°, 271 S., 221
Fig., Tab. — Preis: geb. Hln. Fr. 20.70; Ln. Fr. 22.10.

Der Verfasser setzte sich in dieser, vom Verlag Girardet, Essen, mit gewohnter Sorgfalt betreuten Buchpublikation zum Ziel, eine gedrängte, aber doch genügend ausführliche Darstellung der elektrischen Schaltanlagen zu geben. Das Buch richtet sich in erster Linie an den projektierenden Ingenieur, gibt aber auch dem Konstrukteur die nötigen Berechnungsunterlagen und einen Überblick über grundsätzliche Ausführungsformen von Schaltanlagen. In der Auswahl des Stoffes, dessen Eingrenzung auf knappe 260 Seiten grosses Geschick verrät, und in allerlei praktischen Hinweisen, z. B. für Montage und Betrieb, erkennt man, dass das Buch ganz aus der Erfahrung einer langjährigen Berufspraxis heraus geschrieben wurde. Dem tiefer schürfenden Spezialisten ist ein am Schluss beigefügtes reichhaltiges Literaturverzeichnis, das sich mit wenigen Ausnahmen allerdings auf das deutsche

Schrifttum beschränkt, willkommen. Dass der Inhalt auf die einschlägigen Richtlinien des VDE abgestimmt ist, dürfte für die Verwendung des Buches z. B. in der schweizerischen Praxis kaum eine Einschränkung bedeuten.

Der erste Hauptabschnitt über 72 Seiten behandelt die Berechnung der Kurzschlußströme in Hoch- und Niederspannungsschaltanlagen von den beiden Hauptgesichtspunkten der dynamischen und der thermischen Beanspruchung aus, wobei mit vorteilhafter Klarheit die gesonderte Behandlung des Einflusses der Stoss- und Dauerkurzschlußströme angewendet wird.

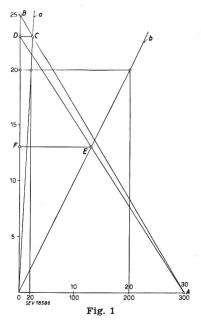
Der zweite Hauptabschnitt behandelt die schaltungstechnischen Gesichtspunkte auf der Hoch- und Niederspannungsseite, wobei den Fragen der zweckmässigen Schaltung der Hilfsstromkreise für Steuerung, Signalisierung, Messung, Schutzeinrichtungen und Erdung weiter Raum gewährt wird. Auch hier verdient die knappe, übersichtliche Darstellungsweise mit kritischer Beleuchtung von Vor- und Nachteilen verschiedener Schaltungsarten ungeteiltes Lob. Es ist klar, dass der erfahrene Schaltanlagenpraktiker aus diesen Abschnitten noch vieles herauszulesen hat, auf das der Autor im einzelnen nicht eintreten konnte.

Der dritte und letzte Hauptabschnitt gibt eine Übersicht über die Konstruktion von Schaltanlagen, wobei anhand von Schnittskizzen und einigen Abbildungen ausgeführter Anlagen (einschliesslich Kommandoräumen) das Typische des deutschen Schaltanlagenbaues veranschaulicht wird. Innenraumanlagen über 60 kV bis zu 150 kV, welche in der Schweiz jedenfalls heute nicht mehr in dieser Art gebaut werden, kommen in Deutschland noch da und dort vor und sind im Buch kurz behandelt. Bei den Schaltanlagen für Innenräume überwiegen die Anordnungen mit ölarmen oder öllosen Leistungsschaltern, bei den Freiluftanlagen sind überhaupt nur neuzeitliche Schaltgeräte berücksichtigt, so dass das Buch durchwegs dem heutigen Stand der Technik entspricht. Dieses bildet zweifellos eine erfreuliche Neuerscheinung in der Fachliteratur über das wichtige Gebiet des M. Schultze Schaltanlagenbaus.

Briefe an die Redaktion — Lettres à la rédaction

«Graphische Methode zur Bestimmung des resultierenden Widerstandes von mehreren parallelgeschalteten Widerständen»

518.4:621.316.8.062.1


[Bull. SEV Bd. 42(1951), Nr. 8, S. 275...276.]

Zuschrift:

Im Aufsatz «Graphische Methode zur Bestimmung des resultierenden Widerstandes von mehreren parallel geschalteten Widerständen» ist eine sehr zweckmässige Methode angegeben. Es wird aber nicht darauf hingewiesen, dass diese graphische Methode sich auf ein Nomogramm (Fluchtentafel) stützt. Dieser Hinweis wäre deshalb interessant weil in diesem Fall die beiden Maßtäbe ganz willkürlich angenommen und sogar während der Rechnung gewechselt werden können. Die einzige Bedingung ist, dass die schräge Gerade — statt der Winkelhalbierenden — immer als Diagonale eines Rechteckes gezeichnet wird, dessen Seiten gleichen Widerständen entsprechen.

Als Beispiel nehmen wir drei parallel zu schaltende Widerstände 25, 30 und 300 Ω (Fig. 1), deren resultierender Widerstand zu ermitteln sei. Es soll dabei von drei verschiedenen Maßstäben Gebrauch gemacht werden: Senkrecht wird der 25- Ω -Widerstand (\overline{OB}) auf einem Maßstab 1 $\Omega \triangleq 1$ cm gezeichnet. Waagrecht wird zuerst der 30- Ω -Widerstand auf einem Maßstab 1 $\Omega \triangleq 0,5$ cm und dann der 300- Ω -Widerstand auf einem Maßstab 10 $\Omega \triangleq 0,5$ cm gezeichnet. Die Diagonalen sind mit a und b angegeben. Der Punkt A entspricht sowohl dem 30- Ω - wie dem 300- Ω -Widerstand. Die Strecken \overline{OD} und \overline{DC} (C = Schnittpunkt von \overline{AB} mit der Diagonalen a) entsprechen 23,08 Ω , der Parallelschaltung von 25 und 300 Ω . Die Strecken \overline{OF} und \overline{EF} (E = Schnittpunkt von \overline{AD} mit der Diagonalen b) entsprechen 13 Ω , der Paral-

lelschaltung von 23,08 und 30 Ω und deshalb dem Rechnungsergebnis. Eine genaue Rechnung gibt 23,0769 bzw. 13,043 Ω . Es zeigt sich, dass die Maßstäbe nicht gleich sein

müssen und dass man auch Widerstände von verschiedenen Grössenordnungen mit dieser Methode untersuchen kann. Jean Patry. Zürich

Estampilles d'essai et procès-verbaux d'essai de l'ASE

I. Marque de qualité

B. Pour interrupteurs, prises de courant, coupecircuit à fusibles, boîtes de jonction, transformateurs de faible puissance, douilles de lampes, condensateurs.

pour conducteurs isolés.

Transformateurs de faible puissance A partir du 1er septembre 1951.

E. Lapp & Cie, Zurich.

Marque de fabrique:

Appareils auxiliaires pour lampes fluorescentes.

Utilisation: Montage à demeure dans des locaux secs ou temporairement humides.

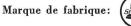
Exécution: Appareil auxiliaire surcompensé sans coupecircuit thermique. Enroulement en fil de cuivre émaillé. Bobine de réactance et condensateur en série sur plaque de base commune en tôle. Couvercle en tôle. Livrable également sans couvercle, pour montage dans des armatures en tôle.

Pour lampe de 30 W. Tension: 220 V, 50 Hz.

Condensateurs

A partir du 1er septembre 1951.

LECLANCHE S. A., Yverdon.


Marque de fabrique: Jeclanche

Condensateurs pour l'amélioration du facteur de puissance. $3,6~\mu F \pm 5~\%$ 380 V 50 Hz Fhr 38 — 3.6 $2,9 \, \mu F \pm 5 \, \%$ 380 V 80 °C Fhr 35 — 2.9 50 Hz Tension de perforation au choc min. 5 kV. Condensateurs à huile pour montage dans des appareils

auxiliaires pour lampes fluorescentes.

Standard Téléphone & Radio S. A., Zurich.

ZM 234914 Z N° 96126 $1 \mu F \pm 10 \%$ 220 V~ Tension de perforation au choc min. 3 kV

ZM 234924 Z N° 96127 50 000 pF \pm 10 % 240 V \sim + 10 % $2\ 000\ pF \pm 10\ \%$ $200\ V =$ Tension de perforation au choc min. 5 kV

Condensateurs spécials pour montage dans des récepteurs d'installations de commande à distance.

Douilles de lampes

A partir du 15 septembre 1951.

Ingste-Vertriebs-Aktiengesellschaft, Zurich.

Marque de fabrique: INGSTE

Douilles de lampes.

Utilisation: dans des locaux mouillés.

Exécution: Douilles pour lampes fluorescentes avec culots à broches (entr'axe des broches 13 mm).

N° 5005: avec boîtier en matière isolante moulée brune.

Rudolf Fünfschilling, Bâle.

(Repr. de la maison Lindner G. m. b. H., Bamberg.)

Marque de fabrique: LJS ou LINDNER

Douilles et luminaires E 27.

Utilisation: dans des locaux secs ou humides.

Exécution: sans interrupteur, corps isolant en porcelaine.

a) Douilles E 27 pour locaux secs.

Douilles en porcelaine avec raccord fonte vissé: N° 1103 M, 1112

Douilles de plafond, en porcelaine: Nº 3400 M Douilles murales, en porcelaine: Nos 3402 M, 3404 M

Douilles d'illumination, en porcel.: N° 1530 M, 1533 M

Douilles E 27 pour locaux humides. Douilles à suspendre, en porcelaine: Nos 1102 M, 1111

c) Luminaires pour locaux secs, avec douille E 27 Armatures à suspendre, en porcelaine: Nos 1956, 1920, 1967, 1983

Armatures en porcelaine avec raccord fonte vissé: N° 1957, 1921, 1968, 1984

Plafonniers en porcelaine: Nos 1263, 1063, 1078, 1079,

960/265, 960/266, 1255/171, 1256/172, 1154/262 Appliques en porcelaine: N° 1265, 1065, 1066, 1062, 1285, 1184, 1085, 1086, 1087, 1282, 982, 983, 984, 1186, 1187, 1225/264, 1231/296

Appliques en porcelaine pour montage d'angle: N°s 1160, 1161, 1162, 1168, 1169, 1170, 1226/264, 1227/264

Luminaires pour locaux humides, avec douille E 27 Plafonniers en porcelaine: Nos 1073 Kab, 1073 Kab2, 1078 Kab, 1078 Kab2, 1079 Kab, 1079 Kab2, 1154 Kab/262, 1154 Kab2/262

Armatures de plafond, en porcelaine: N°s 400, 400 E2, 407, 407 E2, 308, 308 E2, 310, 310 E2, 315, 315 E2, 317/4

Appliques en porcelaine: Nos 1285 Kab, 1285 Kab2 1184 Kab, 1184 Kab2, 1086 Kab, 1086 Kab2, 1087 Kab, 1087 Kab2, 1282 Kab, 1282 Kab2, 982 Kab, 982 Kab2, 983 Kab, 983 Kab2, 984 Kab, 984 Kab2, 1186 Kab, 1186 Kab2, 1187 Kab, 1187 Kab2, 401, 401 E2, 408, 408 E2, 309, 309 E2, 311, 311 E2

Appliques en porcelaine pour montage d'angle: N° 1160 Kab, 1160 Kab2, 1161 Kab, 1161 Kab2 1162 Kab, 1162 Kab2, 1168 Kab, 1169 Kab, 1170 Kab

III. Signe «antiparasite» de l'ASE

Sur la base de l'épreuve d'admission, subie avec succès, selon le § 5 du Règlement pour l'octroi du signe «antiparasite» de l'ASE [voir Bull. ASE t. 25(1934), nº 23, p. 635...639, et nº 26, p. 778], le droit à ce signe a été accordé:

A partir du 1er septembre 1951.

ROBOT S. A., Berne.

Marque de fabrique:

Batteur-mélangeur «ROBOT».

Type M 10.

Tension: 220 V~. Puissance: 260 W.

Appareils HOOVER S. A., Zurich.

(Représentant de la Hoover Limited, Perivale.)

Marque de fabrique: HOOVER

Circuse «HOOVER». Modèle 0212, 275 W

125, 145, 220 et 250 V.

IV. Procès-verbaux d'essai

[Voir Bull. ASE t. 29(1938), No 16, p. 449.]

Valable jusqu'à fin août 1954.

P. Nº 1597.

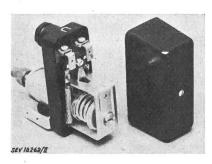
Pressostats à membrane Objets:

Procès-verbal d'essai ASE: O. Nº 25 660b, du 16 août 1951. Commettant: S. A. pour la vente des produits Klöckner-Moeller, Stampfenbachstrasse 12, Zurich.

Désignations:

Type MS 1½, MSU 1½, MS 6, MSU 6, MSW 6, MSUW 6, MSW 12, MSUW 12, TSKP 41

Inscriptions:


KLÖCKNER-MOELLER BONN

(Typ) 250 V~ 4 A 350 W

Description:

Pressostat à membrane, selon figure, avec membrane en caoutchouc ou soufflet métallique. Déclencheur unipolaire avec 2 endroits de coupure. Touches de contact en argent. Fonctionnement brusque. Socle et capot en matière isolante moulée. Pression de couplage ajustable par vis,

Ces pressostats à membrane ont subi avec succès des essais analogues à ceux prévus par les «Prescriptions pour les interrupteurs» (Publ. n° 119 f). Utilisation: dans des locaux secs ou temporairement humides.

Valable jusqu'à fin août 1954.

P. Nº 1598.

Objet:

Essoreuse

Procès-verbal d'essai ASE: O. N° 26 354, du 17 août 1951. Commettant: S. A. des produits électrotechniques Siemens, Zurich.

Inscriptions:

ક્રુ

Siemens Siemens-Schuckert WS 2 a Nr. 3104 V 220 W 90

Description:

Essoreuse transportable, selon figure. Entraînement par moteur monophasé série, ventilé, dont le fer est isolé des autres parties métalliques. Cordon de raccordement à deux conducteurs, fixe à la machine, avec fiche 2 P + T. Fond en tôle. Poignées isolées. Dispositif de freinage.

Cette essoreuse a subi avec succès les essais relatifs à la sécurité. Elle est conforme au «Règlement pour l'octroi du signe distinctif antiparasite» (Publ. n° 117 f). Utilisation: dans des locaux mouillés.

P. Nº 1599.

Objet:

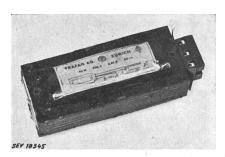
Appareil auxiliaire pour lampe fluorescente

Procès-verbal d'essai ASE: O. N° 26 336a, du 24 août 1951.

Commettant: Trafag S. A., Löwenstrasse 59, Zurich.

Inscriptions:

TRAFAG AG


ZÜRICH

40 W 220 V 0,41 50 ~

Description:

Appareil auxiliaire, selon figure, pour lampe fluorescente de 40 W, sans coupe-circuit thermique. Exécution étroite, sans plaque de base, ni couvercle, pour montage dans des armatures en tôle fermées. Deux cylindres en laiton de 11 mm de hauteur assurent l'écartement nécessaire avec la base. Bornes sur socle en matière isolante moulée, vissé à l'une des extrémités. Dimensions de l'appareil, bornes comprises: $130 \times 48 \times 43$ mm.

Cet appareil auxiliaire a subi avec succès des essais analogues à ceux prévus dans les «Prescriptions pour transformateurs de faible puissance» (Publ. n° 149 f). Utilisation: dans des locaux secs ou temporairement humides.

Les appareils de cette exécution portent la marque de qualité de l'ASE; ils sont soumis à des épreuves périodiques.

Valable jusqu'à fin août 1954.

P. Nº 1600.

Objets: Thermostats à tube capillaire

Procès-verbal d'essai ASE: O. N° 26 362/I, du 22 août 1951. Commettant: Fr. Sauter S. A., Bâle.

Désignations:

Types TV 1, 11, 31, 41, 51, 61, 91 et TVB 1: avec commutateur pour 2 A, 380 V \thicksim , 220 V =

Types TV 2, 12, 32, 42, 52, 62, 92 et TVB 2: avec déclencheur pour 6 A, 380 V \sim , 220 V =

Inscriptions:

FR. SAUTER A. G. BASEL, SCHWEIZ TYPE TV... V 380 \sim A... No....

Descriptions:

Thermostat à tube capillaire, selon figure, pour —50 à +300 °C, avec interrupteur basculant à mercure (commutateur ou déclencheur unipolaire). Température et sensibilité ajustables à l'aide de vis plombables. Coffret en métal léger, prévu pour mise à la terre. Bornes de raccordement sur socle en matière céramique. Coffret étanche pour utilisation dans des locaux humides ou mouillés.

Ces thermostats à tube ca-

pillaire ont subi avec succès des essais analogues à ceux prévus dans les «Prescriptions pour les interrupteurs» (Publ. n° 119 f). Utilisation: dans des locaux humides ou mouillés.

Valable jusqu'à fin août 1954.

P. Nº 1601.

Objet:

Brûleur à mazout

Procès-verbal d'essai ASE: O. Nº 26 469, du 29 août 1951. Commettant: Novelectric S. A., 25, Claridenstrasse, Zurich.

Inscriptions:

SILENT GLOW
Oil Burner
nvader Serial 20016 M. P. 567 Model 1200 Invader Serial 20016 The Silent Glow Oil Burner Corp. Hartford, Conn., U. S. A.

sur le moteur:

Sur te moteur:

A — C Motor Single Phase

S = 1179230 — A HP 1/10

Type FH

Frame SE 56 Z Code V

Volts 220 R.P.M. 1425 Amps.1.2

Deg. C 55 Cycles 50

Hours-SF Cont.

Westinghouse Fleatric Westinghouse Electric Corporation Made in U.S.A. NP45290-A

sur le transformateur d'allumage Fabrik für elektrische Apparate Ernst Schlatter Meilen/Zch.

Tel. 92 70 10

Kl. Ha 1 Ph 50 ~


U₁ 220 V U₂ 14 000 Vampl.

N₁k 220 VA 1₂k 13,5 mA

Typ Z. Tr. B. F. No. 59 Vorsicht Hochspannung!

Description:

Brûleur automatique à mazout, selon figure. Vaporisation du mazout par pompe et gicleur. Allumage à haute tension. Moteur monophasé à induit en court-circuit. Mise à la terre

du point médian de l'enroulement à haute tension du transformateur d'allumage. Commande par appareil automatique de couplage, thermostat de chaudière et thermostat d'ambiance «Minneapolis Honeywell».

Ce brûleur à mazout a subi avec succès les essais relatifs à la sécurité. Il est conforme au «Règlement pour l'octroi du signe distinctif antiparasite» (Publ. nº 117 f).

Valable jusqu'à fin août 1954.

P. Nº 1602.

Objet:

Brûleur à mazout

Procès-verbal d'essai ASE: O. Nº 26 211 du 30 août 1951. Commettant: Nouvelle SIAM S. A., Vevey.

Inscriptions:

SIAM

sur le moteur:

50 Per./s 2,5fach

D Mot. No. 41063 LO Type KDF 074 Δ/Υ 220/380 V 1/0,58 A 1/6 PS 1400 T/min

sur le transformateur d'allumage:

Moser-Glaser & Co. AG.,

Mutterz b. Basel
Prim. 220–380 V 50 ~
Sek. 13000 V Ampl.
Kurzschluss-Scheinleistung
Puissance de courtcircuit Kurzschluss-Strom

sek.
Courant de courtcircuit sec.
Type Ha 0,16 Z No. 94786/4
Sek. Mittelpunkt
point interm. sec.

Description:

Brûleur automatique à mazout, selon figure. Vaporisation de l'huile par pompe et gicleur. Allumage à haute tension. Commande par moteur pour courant triphasé à induit en court-circuit. Le point médian de l'enroulement haute tension du transformateur d'allumage est mis à la terre.

Le règlage se fait en courant monophasé 36 V. Transformateur de faible puissance, marque de fabrique Gloor, interrupteur automatique, marque de fabrique Ghielmetti Type TSC 0113, thermostat de chaudière, marque de fabrique Sauter Type TSC 2, thermostat de cheminée, marque de fabrique SIAM Type SV.

Le brûleur à mazout a subi avec succès les essais relatifs à la sécurité. Il est conforme au «Règlement pour l'octroi du droit au signe antiparasite de l'ASE» (Publ. nº 117 f).

P. Nº 1603.

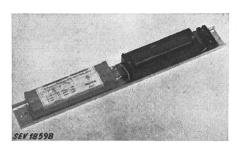
Objet:

Appareil auxiliaire pour lampe fluorescente

Procès-verbal d'essai ASE: O. Nº 26 175a, du 29 août 1951. Commettant: Trafag, Fabrique de transformateurs S. A., Zurich.

Inscriptions:

 $\begin{array}{ccc} & TRAFAG & Z\ddot{u}rich \\ Ueberkompensiertes & Vorschaltgerät\\ & f\ddot{u}r & Fluoreszenzlampen \\ & 40 & W & 220 & V & 50 & Hz & 0,41 & A \end{array}$


sur le condensateur en série:

Sterol C Kap. 3,9 $\mu F/5$ Nennspg. 360 V \sim ZM 324284 L 20 max. 60 °C Stossdurchschlagsspg. 5 kV

Description:

Appareil auxiliaire surcompensé, selon figure, pour lampe fluorescente de 40 W, sans coupe-circuit thermique. Condensateur en série de 3,9 µF. Condensateur de déparasitage de

0,01 µF, en parallèle avec la lampe. Plaque de base en tôle d'aluminium. Bornes sur socle en matière isolante moulée. Appareil d'exécution étroite, sans couvercle, pour montage dans le luminaire.

Cet appareil auxiliaire a subi avec succès des essais analogues à ceux prévus dans les «Prescriptions pour transformateurs de faible puissance» (Publ. nº 149 f). Utilisation: dans des locaux secs ou temporairement humides.

Les appareils de cette exécution portent la marque de qualité de l'ASE; ils sont soumis à des épreuves périodiques.

P. Nº 1604.

Objet:

Appareil auxiliaire pour lampe fluorescente

Procès-verbal d'essai ASE: O. Nº 26 431, du 27 août 1951.

Commettant: H. Graf, Fabrique de transformateurs, Hedingen a. A.

Inscriptions:

Hegra Vorschaltgerät 30 W 220 V 0,35 A 50 Hz Nr. 10007 H. Graf, Hedingen, Transformatorenbau

Description:

Appareil auxiliaire, selon figure, pour lampe fluorescente de 30 W, sans coupe-circuit thermique, ni starter. Enroulement en fil de cuivre émaillé. Plaque de base et couvercle en tôle d'aluminium. Bornes sur socle en matière isolante moulée.

Cet appareil auxiliaire a subi avec succès des essais

analogues à ceux prévus dans les «Prescriptions pour transformateurs de faible puissance» (Publ. nº 149 f). Utilisation: dans des locaux secs ou temporairement humides.

Les appareils de cette exécution portent la marque de qualité de l'ASE; ils sont soumis à des épreuves périodiques.

Valable jusqu'à fin août 1954.

P. Nº 1605.


Objet:

Moteur monophasé

Procès-verbal d'essai ASE: O. Nº 25 565a, du 29 août 1951. Commettant: S. A. des appareils Hoover, 20, Beethovenstrasse, Zurich.

Inscriptions:

HOOVER Trade Mark ~ Motor to B.S.S. 170/39 Made at Cambuslang Scottland Typ 2303 H.A.R. Ser. No. 34217 CR Betriebsv. Cont. Wickl. Cap. St. Volt 220/230 Amp. 3,0 Phase 1 P.S. 1/3 Per/s. 50 U/Min 1425 Hoover A.G. Gross Britannien

Description:

Moteur monophasé ouvert, ventilé, à induit en court-circuit, avec paliers lisses et carcasse en fonte injectée, selon figure. L'enroulement auxiliaire et le condensateur sont déconnectés du réseau par un interrupteur centrifuge, la fin du démarrage. Carcasse montée sur blocs de caoutchouc. Plaque des bornes encastrée dans l'un

des flasques-paliers. Tubulure de raccordement pour tube isolant armé d'acier.

Ce moteur est conforme aux «Règles suisses pour les machines électriques» (Publ. nºs 108a et bf). Utilisation: dans des locaux mouillés, lorsque le moteur est protégé contre les projections d'eau.

Valable jusqu'à fin août 1954.

P. Nº 1606.

Objet:

Cuisinière

Procès-verbal d'essai ASE: O. Nº 26 445, du 27 août 1951. Commettant: Fael, Degoumois & Cie S. A., Saint-Blaise.

Inscriptions:

No. 104420 Type DIX4C V 380 W 6700

Description:

Cuisinière électrique, selon figure, avec quatre foyers de cuisson et un four. Corps de chauffe de voûte et de sole disposés à l'extérieur du four. Tiroir sous le four. Prises de courant pour plaques de cuisson normales de 145 à 220 mm de diamètre. Bornes prévues pour différents plages.

Cette cuisinière est conforme aux «Prescriptions et règles pour les plaques de cuisson à chauffage électrique et les cuisinières électriques de ménage» (Publ. n° 126 f). Utilisation: avec des plaques de cuisson conformes aux Prescriptions ci-dessus.

P. Nº 1607.

Objet:

Appareil auxiliaire pour lampe fluorescente

Procès-verbal d'essai ASE: O. Nº 26 135,

du 24 août 1951.

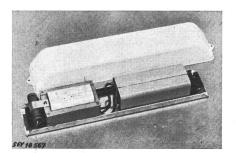
Commettant: H. Leuenberger, Oberglatt.

Inscriptions:

ük 220 V 40 Watt 0,41 A 50 Hz 53000

H. Leuenberger, Fabrik elektr. Apparate Oberglatt/Zürich

sur le condensateur en série:



Sterol C Kap. $3.6~\mu F \pm 5~\%$ Nennspg. $390~V \sim max.~60~^{\circ}C$ Stossdurchschlagsspg. min. 3~kV ZM 234484~L 7

Description:

Appareil auxiliaire surcompensé, selon figure, pour lampe fluorescente de 40 W, sans coupe-circuit thermique, ni starter. Condensateur en série avec la bobine d'inductance. Conden-

sateur de déparasitage de $0.1 + 2 \times 0.0025 \,\mu\text{F}$. Plaque de base et couvercle en tôle d'aluminium.

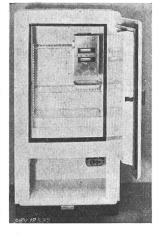
Cet appareil auxiliaire a subi avec succès des essais analogues à ceux prévus dans les «Prescriptions pour transformateurs de faible puissance» (Publ. nº 149 f). Utilisation: dans des locaux secs ou temporairement humides.

Les appareils de cette exécution portent la marque de qualité de l'ASE; ils sont soumis à des épreuves périodiques.

Valable jusqu'à fin août 1954.

P. Nº 1608.

Objet:


Réfrigérateur

Procès-verbal d'essai ASE: O. N° 26 147, du 27 août 1951. Commettant: ODAG Fabrique de réfrigérateurs S. A., Adliswil.

Inscriptions:

ODAG

Type 70 No. 101 Volt 220 Watt 185 NH3

Description:

Réfrigérateur, selon figure. Groupe réfrigérant à absorption fonctionnant en permanence, à refroidissement naturel par air. Evaporateur avec deux tiroirs à glace disposé latéralement, en haut de l'enceinte. Bouilleur logé dans un carter en tôle. Régulateur de température à 8 échelons. Extérieur en tôle laquée, intérieur laqué blanc. Espace non refroidi, sous l'armoire. Cordon de raccordement à trois conducteurs, fixé à l'appareil, avec fiche $2\,\mathrm{P} + \mathrm{T}$. Dimensions intérieures: 645×420×

250 mm; extérieures: 1200×620×580 mm. Contenance utile 59 dm³. Poids 75 kg.

Ce réfrigérateur est conforme aux «Conditions techniques auxquelles doivent satisfaire les armoires frigorifiques de ménage» (Publ. n° 136 f).

Communications des organes des Associations

Les articles paraissant sous cette rubrique sont, sauf indication contraire, des communiqués officiels des organes de l'ASE et de l'UCS

Nécrologie

Nous déplorons la perte de Monsieur F. A. von Moos, membre de l'ASE depuis 1917, ingénieur-conseil, décédé le 11 juillet 1951 à Lucerne, à l'âge de 64 ans. Nous présentons nos sincères condoléances à la famille en deuil.

Nous déplorons la perte de Monsieur August Frisch-Dressel, ingénieur, membre de l'ASE depuis 1903 (membre libre), décédé le 5 septembre 1951 à Hofstetten près de Brienz, à l'âge de 74 ans. Nous présentons nos sincères condoléances à la famille en deuil.

Nous déplorons la perte de Monsieur H. von Schulthess Rechberg, ingénieur diplômé EPF, décédé le 17 septembre 1951 à Zurich, à l'âge de 65 ans. M. von Schulthess fut président des conseils d'administration de la S. A. Motor-Columbus, Baden et de l'Aar et Tessin S. A. pour l'électricité, Olten, ainsi que membre du conseil d'administration de la S. A. Brown, Boveri & Cie, Baden, membres collectifs de l'ASE. Nous présentons nos sincères condoléances à la famille en deuil et aux entreprises auxquelles il fut attaché.

Comités Techniques 1 et 24 du CES

CT 1: Vocabulaire

CT 24: Grandeurs et unités électriques et magnétiques

Les CT 1 et 24 ont tenu respectivement leurs 8° et 11° séances le 11 septembre 1951, à Lausanne, sous la présidence de M. M. Landolt, président.

Après avoir entendu un bref commentaire du président sur la réunion du Comité d'Etudes n° 1 de la CEI à Estoril, le CT 1 a institué un sous-comité préparatoire pour l'élaboration du groupe 35 du Vocabulaire Electrotechnique International. Le président de ce sous-comité est M. H. Abegg, le secrétaire M. H. Bugnion. Le Bureau Central de la CEI a remis au CES, pour préavis, quelques groupes de ce vocabulaire, élaborés par d'autres Comités Nationaux. Ces documents seront examinés par trois sous-comités, présidés respectivement par MM. J. Dufour, J. Ganguillet et H. König. Ces sous-comités commenceront leurs travaux aussitôt que possible, car ceux-ci doivent être terminés avant la fin de l'année.

Le CT 24 a examiné deux questions posées par le Comité d'Etudes n° 24 de la CEI, au sujet de la désignation du système de mesure de Giorgi et de la désignation de l'unité d'induction (au lieu de Wb/m²). Le CT a décidé de recommander à la CEI d'utiliser l'expression de «système Giorgi» et de renoncer à donner un nom à l'unité d'induction.

Signes graphiques pour installations à courant faible

Publication nº 112 dfe

Cette publication trilingue (allemand, français, anglais) est en vente auprès de l'Administration commune de l'ASE et de l'UCS, au prix de fr. 6.— (fr. 4.— pour les membres de l'ASE) l'exemplaire.

Bulletin de l'Association Suisse des Electriciens, édité par l'Association Suisse des Electriciens comme organe commun de l'Association Suisse des Electriciens et de l'Union des Centrales Suisses d'électricité. — Rédaction: Secrétariat de l'Association Suisse des Electriciens, 301, Seefeldstrasse, Zurich 8, téléphone (051) 34 12 12, compte de chèques postaux VIII 6133, adresse télégraphique Elektroverein Zurich. — La reproduction du texte ou des figures n'est autorisée que d'entente avec la Rédaction et avec l'indication de la source. — Le Bulletin de l'ASE paraît toutes les 2 semaines en allemand et en français; en outre, un «annuaire» paraît au début de chaque année. — Les communications concernant le texte sont à adresser à la Rédaction, celles concernant les annonces à l'Administration. — Administration: case postale Hauptpost, Zurich 1 (Adresse: S. A. Fachschriften-Verlag & Buchdruckerei, Stauffacherquai 36/40, Zurich 4), téléphone (051) 23 77 44, compte de chèques postaux VIII 8481. — Abonnement: Tous les membres reçoivent gratuitement un exemplaire du Bulletin de l'ASE (renseignements auprès du Secrétariat de l'ASE). Prix de l'abonnement pour non-membres en Suisse fr. 45.— par an, fr. 28.— pour six mois, à l'étranger fr. 55.— par an, fr. 33.— pour six mois. Adresser les commandes d'abonnements à l'Administration. Prix de numéros isolés en Suisse fr. 3.—, à l'étranger fr. 3.50.