Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 42 (1951)

Heft: 11

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wärmetechnik und anderer Gebiete ist noch offen und harrt der Lösung. Während man bisher zur praktischen Klärung nur weniger Fälle der unterbrochenen Heizung Monate und Jahre benötigte, ausserdem bei verschiedenen Messungen fast nie gleiche Betriebs- und klimatische Bedingungen zugrunde legen konnte, ist es mit dem Modell möglich, diese Aufgaben in einem verschwindenden Bruchteil der Zeit unter stets gleichen Bedingungen abzuspielen und einwandfrei miteinander zu vergleichen.

Literatur

[1] Beuken, C. L.: Wärmeverluste bei periodisch betriebenen Öfen, Dissertation; Freiberg/Sachsen, 1936.

[2] Fischer, W.: Die elektrische Modellabbildung von Wärmeströmungsvorgängen und ihre messtechnische Ausnutzung. Elektrowärme Bd. 1939, Nr. 7, S. 133...142.

Adresse des Autors:

Dipl. Ing. R. Czepek, Hallstahammar, Schweden.

Berichtigung

«Fehlerbegrenzung der Durchhangsberechnung von Freileitungen» von K. Kohler, Karlsruhe (Bull. SEV Bd. 42 (1951), Nr. 9, S. 303...306). Wegen eines Missverständnisses in der Bezeichnung der Winkelfunktionen sind die Funktionen des Argumentes ψ durch die entsprechenden Hyperbelfunktionen zu ersetzen. An Stelle von $\sin \psi$, $\cos \psi$, ctg ψ muss es also immer sinh ψ , cosh ψ und ctgh ψ heissen. Im weiteren sind die Arcus- durch Areafunktionen zu ersetzen.

Technische Mitteilungen — Communications de nature technique

Die Supraleitfähigkeit

537.312.62

[Nach P. Grassmann: Erscheinungen und Anwendungen der Spuraleitfähigkeit. Z. VDI Bd. 92(1950), Nr. 20, S. 554.]

Schon im Jahre 1911 wurde die Supraleitfähigkeit — die Eigenschaft einiger Materialien, z. B. Blei, Zinn, Quecksilber und verschiedener Halbleiter - bekannt, wonach diese Stoffe bei einer für jedes Material charakteristischen tiefen Temperatur, der sog. Sprungtemperatur, ihren Widerstand praktisch völlig verlieren.

Dieser Eigenschaft zufolge bleibt der in einem supraleitenden Stromkreis induzierte Strom, auch nach dem Aufhören jeglicher elektromotorischen Kraft, weiter bestehen. Selbst mit den empfindlichsten Verfahren liess sich dabei keine Ausnahme des Stromes nachweisen. Nach Angaben verschiedener Forscher ist die Leitfähigkeit von z. B. Blei unterhalb der Sprungtemperatur $1\cdot 10^{-17}~\Omega mm^2/m$. Die höchste Sprungtemperatur der bisher bekannten Supraleiter weisen Niobiumhydrid und Niobiumnitrid auf. Diese Stoffe verlieren die Supraleitfähigkeit schon zwischen - 250 und 260 °C. Die Sprungtemperatur von z. B. Quecksilber liegt bei — 260 °C, von Blei bei — 266 °C und von Zinn bei — 270 °C. Kupfer besitzt nicht die Eigenschaft der Supraleitfähigkeit, verhält sich demnach bei solchen tiefen Temperaturen gegenüber Supraleitern als Isolator.

In neuerer Zeit beginnt man die Supraleitfähigkeit praktisch auszunützen. Der Widerstand der Supraleiter ist oberhalb der Sprungtemperatur gut messbar; innerhalb eines Temperaturbereiches von nur wenigen Tausendstel Grad aber kann der Widerstand unmessbar kleine Werte annehmen. Diese Eigenschaft wird zum Nachweis geringer Wärmestrahlungen benützt, die mit andern Geräten nicht mehr erfasst werden könnten.

Die Supraleitfähigkeit kann ausser durch eine Temperaturerhöhung auch durch ein starkes Magnetfeld aufgehoben werden. Diese Eigenschaft wird neuerdings zu Steuerungszwecken benützt. Wird z. B. um einen supraleitenden Draht eine Spule gelegt, so kann durch das Magnetfeld des in der Spule fliessenden Stromes die Supraleitung im Draht entsprechend dem Spulenstrom unterbrochen und wieder hergestellt werden. Damit wird es möglich, einen wesentlich stärkeren Strom im Supraleiter durch einen schwachen Spulenstrom zu steuern.

Man kennt heute auch schon Schaltungen, die teilweise aus supraleitenden Kreisen aufgebaut die Erzeugung von langsamen elektrischen Schwingungen ermöglichen.

Als besonderen Vorteil derartiger Stromkreise darf man erwähnen, dass Störerscheinungen, die von der thermischen Bewegung der Elektronen herrühren und bei besonders hoher Verstärkung als Störgeräusche auftreten können, bei tiefen Temperaturen völlig unterdrückt werden. Schi.

Einsteins neue Untersuchungen

Von P. Jordan, Hamburg

[Aus Elektrotechn. Z. Bd. 71(1950), Nr. 22, S. 615...618.]

Die in der Tagespresse verbreiteten Nachrichten über einen Vortrag, in welchem Einstein neue theoretische Gedanken entwickelt hat, welche er als geglücktes Endergebnis dreissigjähriger unausgesetzter Bemühungen bewertet, haben erneut die allgemeine Aufmerksamkeit auf diesen Denker gelenkt, welcher - trotz aller glänzenden Erfolge seiner Forschungsarbeit, und trotz aller Anerkennung auch äusserer

Art, die ihm zuteil geworden ist - in seinem Schaffen doch

weitgehend einsam geblieben ist.

Die in jenem Vortrag dargelegten Ideen sind inzwischen veröffentlicht worden als Anhang zur dritten Auflage seiner Schrift «The Meaning of Relativity». In wenigen Seiten ist hier der konzentrierte Ausdruck seiner Gedanken gegeben in jener Konzentration, die eben nur in der mathematischen Formelsprache erreichbar ist; die aber anderseits natürlich auch die volle Kenntnis der Relativitätstheorie, der speziellen und der allgemeinen, voraussetzt.

Ein Versuch, in diesem Aufsatz zwar keineswegs eine Wiedergabe der neuen Einsteinschen Theorie zu unternehmen, wohl aber zu erläutern, um was es sich dabei eigentlich handelt, muss naturgemäss in erster Linie gerade auf das eingehen, was in der knappen Einsteinschen Abhandlung nicht gesagt, sondern als Vorkenntnis des dort gemeinten Lesers (also des trainierten Spezialisten der modernen theoretischen Physik) vorausgesetzt ist. Ich hoffe, dem Wunsche der Schriftleitung, ihren Lesern eine brauchbare Erläuterung der Sache vorzulegen, am besten zu entsprechen, wenn ich möglichst wenig auf den mathematischen Formelapparat eingehe, dafür aber um so genauer auf den Gedankeninhalt der Sache. Obwohl die Formeln unter Umständen den Vorteil haben, «imponierend» zu wirken, so ist ihre gehäufte Vorführung doch sachlich nutzlos, sofern nicht die Ausführung vollständiger fachwissenschaftlicher Formulierungen und Beweise unternommen wird -- die aber schliesslich doch nur den Spezialisten reizen könnte.

Bekanntlich ist die Relativitätstheorie ein Gebäude in zwei Stockwerken: Die «spezielle» Relativitätstheorie hat sich in erster Linie aus Einsteins bahnbrechender Abhandlung von 1905 entwickelt; die «allgemeine» ist von Einstein 1915/16 begründet worden. Zunächst sei an die Hauptgedanken der speziellen Relativitätstheorie erinnert, obwohl diese den Freunden der Naturwissenschaft heute schon teilweise gut bekannt sind. Grundlegend sind zwei grosse Prinzipien Zusammenfassungen von Erfahrungstatsachen zunächst als unvereinbar miteinander scheinen: Das (spezielle) Relativitätsprinzip behauptet die Gleichwertigkeit aller Koordinatensysteme, die gegenüber dem «natürlichen» (praktisch durch den Fixsternhimmel gegebenen) Koordinatensystem in gleichförmig-geradliniger Bewegung sind. In einem nach aussen abgeschlossenen Raumschiff, das sich im

schwerefreien Weltraum unbeschleunigt bewegen würde, könnte durch keinerlei Experiment (also durch keinerlei nicht mit der Aussenwelt sich in Beziehung setzendes Experiment) festgestellt werden, welche Geschwindigkeit das Raumschiff relativ zum Fixsternhimmel hat. Dass mechanische Experimente eine solche Feststellung nicht erzielen könnten, folgt ja schon aus dem Grundgesetz der Newtonschen Mechanik, wonach die eintretenden Beschleunigungen das Mass der wirkenden Kräfte sind. Das spezielle Relativitätsprinzip ist also innerhalb der Newtonschen Mechanik eine logische Folge aus deren Grundgesetzen. Wie steht es aber, wenn wir innerhalb des Raumschiffs elektromagnetische Experimente machen, insbesondere etwa optische, wie eine Messung der Lichtgeschwindigkeit? Die alte Äthertheorie liess vermuten, dass wir auf diese Weise einen «Ätherwind» feststellen könnten, der uns unsere relative Bewegung gegenüber dem Weltäther messbar machen würde. Die experimentelle Erfahrung hat aber vielseitig gelehrt, dass auch in der Elektrodynamik das Relativitätsprinzip gilt, und zwar paradoxerweise in Verbindung mit dem Prinzip der «Konstanz der Lichtgeschwindigkeit: Wenn unser Raumschiff (als solches können wir auch unsere Erde benutzen, so lange uns noch kein schnelleres Fahrzeug zur Verfügung steht) dem Sirius mit einer Geschwindigkeit v entgegen läuft, so ist die Geschwindigkeit des vom Sirius kommenden Lichtes relativ zu uns nicht etwa gleich c + v (mit c = Normalwertder Lichtgeschwindigkeit), sondern immer noch genau gleich c.

Das ist sehr verwirrend, das Additionsgesetz w = u + v, in welchem u unsere eigene Geschwindigkeit ist, v die eines auf uns zukommenden Körpers und w dessen relative Geschwindigkeit uns gegenüber - dieses Additionsgesetz erschien den Physikern vor Einstein als eine so selbstverständliche Gesetzmässigkeit, dass man darin eher eine logische Denknotwendigkeit, als eine Erfahrungstatsache sehen wollte. Aber durch eine tiefgründige kritische Analyse unserer Raum-Zeit-Vorstellungen hat Einstein zeigen können, dass es sich in Wahrheit nicht um Denknotwendigkeit handelt, sondern nur um eine empirische (uns durch lange Gewohnheit vertraut gewordene) Regel, die nur approximativ zutrifft, nämlich dann, wenn die fraglichen Geschwindigkeiten klein gegenüber c sind. Andernfalls muss das exaktere Einsteinsche «Additionstheorem der Geschwindigkeiten» der Rechnung zugrunde gelegt werden, wenn wir zu richtigen Ergebnissen kommen wollen:

$$w = \frac{u+v}{1+\frac{uv}{c^2}}. (1)$$

Die Begründung dieser Formel gehört in die Lehrbücher der Relativitätstheorie — nur zu ihren Folgerungen soll hier kurz etwas gesagt werden. Im Spezialfall u=c wird auch w=c; die Geschwindigkeit des uns entgegen kommenden Lichtes kann durch unsere eigene Bewegung nicht mehr (relativ zu uns) vergrössert werden — dieses so paradox scheinende empirische Resultat wird durch die Einsteinsche Theorie voll verständlich. Allgemeiner deutet sich eine grosse, grundlegende physikalische Erkenntnis in obiger Formel an: Es gibt überhaupt keine Bewegung, die noch schneller als c wäre — die Lichtgeschwindigkeit bedeutet eine obere Grenze aller möglichen Geschwindgkeiten überhaupt.

Näheres Zusehen zeigt nun, dass die Elektrodynamik, wie sie in den grundlegenden Maxwellschen Gleichungen formuliert ist, von vornherein bereits den Anforderungen der speziellen Relativitätstheorie entspricht; sie wird dadurch nicht mehr verändert, sondern nur tiefer verstanden. Aber die Newtonsche Mechanik ist, obwohl sie dem Relativitäts-prinzip ganz entspricht, im Widerspruch mit dem Prinzip der konstanten und unüberschreitbaren Lichtgeschwindigkeit: durch Einwirkung einer konstanten Kraft, also mit gleichbleibender Beschleunigung, könnte man nach Newton schliesslich beliebig grosse Geschwindigkeiten eines Massenpunktes erzielen. Deshalb kann die Newtonsche Mechanik nur noch als Approximation (gültig für kleine Geschwindigkeiten) angesehen werden, und bedarf grundsätzlicher Korrekturen. Insbesondere muss auch die Masse als relativer Begriff angesehen werden: Ein Massenpunkt, der im mitbewegten Koordinatensystem die Masse mo besitzt, hat in einem anderen Koordinatensystem, in dem er sich mit der Geschwindigkeit v bewegt, eine vergrösserte Masse, gegeben durch die berühmte Formel

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}.$$
 (2)

Damit hängt eng das andere wichtige Ergebnis der speziellen Relativitätstheorie zusammen, dass Masse und Energie, diese beiden Grundbegriffe aller Physik, letzten Endes gleichbedeutend sind: Wo eine Masse m vorhanden ist, da ist eine Energie

$$W = mc^2 \tag{3}$$

vorhanden. Dies Gesetz hat uns den Weg zur Atomkernenergie gewiesen, und die Formeln (2) und (3) haben in der Kernphysik in zahlreichen Beispielen ihre unmittelbare experimentelle Bestätigung gefunden.

Von diesen Gedankengängen aus war der weitere, zur allgemeinen Relativitätstheorie führende Weg eigentlich zwangsläufig vorgegeben. Freilich bedurfte es des Genies eines Einstein, um diesen auf steilsten Höhen verlaufenden Weg sicher und schwindelfrei zu begehen. Dass die Maxwellsche Theorie bereits den Ansprüchen der speziellen Relativitätstheorie genügte, hing damit zusammen, dass Maxwell den bedeutungsvollen Schritt von der Fernwirkungstheorie Vorstellung ausschliesslicher Nahewirkung vollzogen hatte. Wenn es echte Fernwirkungen gäbe, wie das Coulombsche Gesetz und die ihm ähnlichen anderen elementaren Gesetze anzuzeigen scheinen, dann könnten physikalische Wirkungen über beliebige Entfernungen ausgeübt werden ohne Zeitdifferenz; damit wäre aber das Raum-Zeit-System der Relativitätstheorie über den Haufen geworfen. Aber die Maxwellsche Theorie hatte schon im voraus durch die von ihr mathematisch präzisierte Nahewirkungsvorstellung dazu geführt, dass wir nur mit einer endlichen Ausbreitungsgeschwindigkeit elektromagnetischer Wirkungen, elektromagnetischer Felder rechnen - und diese Ausbreitungsgeschwindigkeit ist eben die «Grenzgeschwindigkeit» c.

In der Theorie der Gravitation aber kannten wir vor 1915 nur das alte Newtonsche Gesetz — jenes älteste Beispiel eines Fernwirkungsgesetzes, nach dessen Vorbild ja auch das spätere Coulombgesetz aufgestellt wurde. Sollen die Gravitationserscheinungen einbezogen werden in eine relativistische Theorie, dann muss auch hier der Schritt zum Nahewirkungsgesetz vollzogen werden. Einstein erkannte nun, dass die Gedankengänge der Relativitätstheorie nicht nur, wie soeben besprochen, die Notwendigkeit einer «Feldtheorie der Gravitation» erschliessen liessen, sondern auch einen Weg zur Aufstellung einer solchen Theorie vorzeichneten.

Das war entscheidend wichtig, weil wir vom Experiment her sehr wenig Hilfe für dieses Unternehmen erwarten können. Wenn in einer Vakuumröhre die Elektronen tanzen, können wir leicht nachweisbare Energien als elektromagnetische Wellen zur Ausstrahlung bringen. Aber Gravitationswellen experimentell erzeugen zu wollen, ist ein hoffnungsloses Unterfangen: Die Gravitationsanziehung zwischen einem Elektron und einem Proton ist (unabhängig vom jeweiligen Abstand der beiden Teilchen) grössenordnungsmässig 10³⁹mal kleiner als die elektrische Anziehung.

Dennoch fand Einstein in empirischen Gegebenheiten ausreichende Anhaltspunkte, um eine Nahewirkungstheorie (Feldtheorie) der Gravitation zu schaffen — er benutzte dabei eine kühne Erweiterung des Relativitätsprinzips. Die empirische Tatsache, von der er ausging, ist die allgemeine Proportionalität von schwerer und träger Masse: Diese bedingt oder bedeutet ja, dass - abgesehen vom Luftwiderstand - alle Körper im Schwerefelde der Erde gleich schnell fallen; Schwefel ebenso schnell wie Eisen. Folglich - die ungeheure Einfachheit dieses Gedankens macht es nachträglich geradezu erstaunlich, dass kein anderer Mensch darauf aufmerksam geworden war - folglich kann der im vorhin gedachten Raumschiff befindliche Physiker auch diese Frage grundsätzlich nicht entscheiden (so dass sie überhaupt keine sinnvolle Frage ist): «Befindet sich mein Raumschiff z. Z. in einem homogenen Gravitationsfeld (an einem Seile aufgehängt) oder ist statt dessen mein Raumschiff einer gleichförmigen Beschleunigung unterworfen?»

Unter beiden Voraussetzungen nämlich beobachtet der Physiker in seinem geschlossenen Experimentierraum eine gleichförmig beschleunigte Fallbewegung aller frei beweglichen Körper. Also eine Erweiterung der Relativität auf beschleunigte Bewegungen! Hier war durch eine einfache, geniale Besinnung das gefunden, was man zuvor angesichts des Foucaultschen Pendelversuches für ausgeschlossen gehalten hatte.

Freilich war mit diesem Ansatz nur die Wegrichtung zu einer Feldtheorie der Gravitation bezeichnet; die wirkliche Aufstellung dieser Theorie war noch eine ungeheure Aufgabe. Zu ihrer Lösung hat Einstein bekanntlich auch auf die nichteuklidische Geometrie, in der Form der Riemannschen Geometrie, zurückgreifen müssen. Beim euklidischen Parallelenaxiom liegt ja eine ähnliche Problematik vor wie beim oben besprochenen Additionsgesetz der Geschwindigkeiten. Eine sich uns aufdrängende — und lange Zeit von Philosophen verteidigte - Ansicht meint, dass es sich hier um eine unabweisbare Denknotwendigkeit handle. Aber jene drei grossen Mathematiker des vorigen Jahrhunderts haben gezeigt, dass das ganz irrig ist: Man kann auch ein nichteuklidisches Lehrgebäude der Geometrie mathematisch-logisch einwandfrei durchdenken. Obwohl diese nur dem abstrakten Denken zugängliche Geometrie unserer anschaulichen Raumvorstellung völlig zuwiderläuft, ist sie als Denksystem widerspruchsfrei in Ordnung. Danach ist es eine Frage der Erfahrung, der empirischen Entscheidung, ob die Massverhältnisse unseres realen Raumes euklidisch sind oder nicht wir wissen, dass sie bestimmt in hoher Approximation euklidisch sind; aber mehr zu behaupten, ist naturwissenschaftlich unzulässig.

Jedoch hatten Gauss, Lobatschewsky, Bolyai sich noch zu eng an das Vorbild des euklidischen Lehrgebäudes gehalten, um die Möglichkeiten nichteuklidischer Geometrie in vollem Ausmass zu erschliessen. Riemann erst drang völlig in die Tiefe des Problems, indem er — so kann man es ausdrücken — auch hier den Gedanken einer «Nahewirkung» durchführte.

Bei ihm wird das Parallelenaxiom nicht mehr entweder bejaht oder verneint, sondern es wird alles offen gelassen, was die geometrischen Beziehungen im Grossen betrifft. Es wird lediglich das Axiom zugrunde gelegt, dass sehr kleine (streng genommen nur infinitesimale) Figuren euklidisch sind. Daraus ist dann zu folgern, dass im Grossen mannigfachste Abweichungen auftreten können — der Raum hat bei Riemann eine im allgemeinen von Ort zu Ort veränderliche «Krümmung», während Gauss usw. nur die Möglichkeit konstanter Krümmung des Raumes durchdacht hatten.

Die passende Formulierung des erwähnten Riemannschen Axioms ist die Aussage, dass der Satz des Pythagoras für infinitesimale Dreiecke gelten soll; bei Anwendung schiefwinkliger Koordinaten (im gekrümmten Raum können wir im allgemeinen natürlich nicht mehr Koordinatensysteme einführen, die überall rechtwinklig sind) ist das Quadrat ds² des Abstandes zweier Punkte eine quadratische Form der zugehörigen Koordinatendifferenzen:

$$\mathrm{d}s^2 = \sum_{k,l} g_{kl} \, \mathrm{d}x_k \, \mathrm{d}x_l \,. \tag{4}$$

Aus dieser einzigen Formel entwickelt sich die ganze Riemannsche Geometrie. (Nach Einsteins Vorschlag pflegt man in dieser Formel, und in allen anderen Formeln der «Tensorrechnung» ebenso, das Summenzeichen gar nicht hinzuschreiben, weil der Kundige schon sieht, dass eine Summe gemeint ist. Hierdurch gewinnen die relativistischen Formeln sehr an Einfachheit und Übersichtlichkeit für den Eingeweihten; freilich auch an Rätselhaftigkeit für den Fernerstehenden).

Diese auf axiomatische Vorwegnahme von «Ferngesetzen» ganz verzichtende Riemannsche Nahe-Geometrie bot das, was Einstein brauchte: Die Denkmöglichkeit einer Geometrie, eines Raumes, der sich in jeder Stelle den physikalischen Inhalten, die er tragen soll, gewissermassen anschmiegen kann — in der vertieften Auffassung vom Wesen der Gravitation, zu der Einstein gelangte, sind überhaupt Geometrie und Physik nicht mehr trennbar, sondern zur Einheit verschmolzen: Die in (4) ausgedrückte «Metrik» des Raumes, durch Ausmessung mit Maßstäben erfahrbar, enthält (im Zusammenhange mit der «Krümmung» dieses Raumes) auch schon das in diesem Raum ausgebreitete Gravitationsfeld.

Genauer muss freilich gesagt werden, dass das soeben Ausgeführte sich nach Einstein nicht auf den dreidimensionalen Raum als solchen bezieht, sondern auf die (vierdimensionale) «Raum-Zeit-Mannigfaltigkeit». Die Riemannsche Geometrie muss, wenn wir zur Feldtheorie der Gravitation kommen wollen (mit der Newtonschen Theorie als erster Approximation), sogleich auf einer höheren Stufe angewandt werden: auf der Stufe der Einsichten, die uns schon durch die spezielle Relativitätstheorie gegeben waren.

Die spezielle Relativitätstheorie hatte der allgemeinen auch in Bezug auf die erforderlichen mathematischen Entwicklungen wesentlich vorgearbeitet; sie hatte die gewohnte dreidimensionale Vektorrechnung zur «vierdimensionalen» Vektor- und Tensorrechnung erweitert. Wenn wir geometrische oder physikalische Beziehungen in dreidimensionalen Vektorformeln ausdrücken, so wollen wir damit ja deutlich machen, dass die fraglichen Beziehungen nicht etwa von der Achsenorientierung des benutzten Koordinatensystems abhängig sind. Man könnte sagen, dass die Isotropie des Raumes durch die Vektorrechnung ausgedrückt wird.

Ganz analog kann man nun mit dem Hilfsmittel der «vierdimensionalen» Tensorrechnung physikalische Gesetze so formulieren, dass dadurch unmittelbar ihre «Invarianz» sichtbar gemacht ist, d. h. die Tatsache, dass diese Gesetze im Einklang sind mit den Forderungen des speziellen Relativitätsprinzips und des Prinzips der Konstanz der Lichtgeschwindigkeit. Man kann endlich diese Tensorrechnung auch auf Riemannsche Geometrie und allgemeine Relativitätstheorie ausdehnen (was freilich mathematisch schon nicht mehr ganz einfach ist): So tritt bei jedem physikalischen Gesetz, wenn es in seiner richtigen, exakten Gestalt gegeben ist (nicht nur in einer bedingt brauchbaren Approximation), sofort zutage, dass sein Inhalt unabhängig ist von der Wahl des Koordinatensystems, das ganz allgemein als krummliniges und zeitlich bewegtes System gedacht werden kann. Diese letzten Bemerkungen wollen wir einen Augenblick in Erinnerung behalten.

Denn nun können wir endlich die Problemstellung betrachten, auf welche sich Einsteins neueste Forschungsergebnisse beziehen. Der Name Einsteins ist ja oben immer wieder erwähnt worden, als der des Hauptbegründers der speziellen, und des Alleinbegründers der allgemeinen Relativitätstheorie. Aber natürlich haben sich viele andere Physiker und Mathematiker an der Durchführung und Klärung der Einsteinschen Ideen mit beteiligt — darunter bedeutendste Namen, wie Planck, Hilbert, Weyl, Eddington, Schrödinger und viele andere. Dasjenige Problem, für welches Einstein jetzt nach dreissigjährigem Ringen die Lösung gefunden zu haben glaubt, wurde seinerzeit zuerst von Weyl ausgegriffen. Zweifellos war Weyls Lösung nicht die richtige. Aber zweifellos hat Weyl sich damit bleibende Verdienste erworben.

Er sagte etwa: Wir haben jetzt eine Theorie der Gravitation, durch welche nicht nur Trägheit und Schwere vereinheitlicht werden, sondern auch die Metrik, die Massbeziehungen von Raum und Zeit, mit der Gravitation unlösbar verbunden wird — in dieser Theorie kommt die Gravitation nicht etwa noch zusätzlich hinzu zu den rein geometrischen Eigenschaften des Raumes, sondern ist bereits durch diese mitgegeben; sie ist völlig «geometrisiert» worden. Was sollen wir nun aber vom *elektromagnetischen* Felde halten? Es bereitet zwar keine Schwierigkeit, die Maxwellschen Gleichungen so zu vervollkommnen, dass sie «invariante» Tensorgleichungen werden, also allen Erfordernissen auch der allgemeinen Relativitätstheorie vollauf genügen. Dennoch bleibt, so meint Weyl, die Lage in gewisser Weise unbefriedigend. Nachdem wir gelernt haben, die Gravitation als in der Geometrie mitenthalten zu verstehen, sind wir anspruchsvoll geworden: Müssen wir uns endgültig damit abfinden, die elektromagnetischen Felder als etwas zwar im Riemannschen Raume Ausgebreitetes, aber doch als etwas gewissermassen nur äusserlich Hinzugefügtes, in ihn Eingefülltes aufzufassen; können wir nicht vielmehr hoffen, ein noch tieferes Verständnis für die Geometrie zu gewinnen, und danach auch den Elektromagnetismus als einen in seinem Wesen geometrischen Tatbestand zu verstehen?

Das hiermit angedeutete Problem ist berühmt geworden unter dem Namen: «Problem der einheitlichen Feldtheorie». Viele Physiker und Mathematiker haben sich in den letzten Jahrzehnten am Ringen um dies Problem beteiligt. Mehrere verschiedenartige Lösungsvorschläge sind zur Erörterung gestellt. Der Inhalt der neuen Einsteinschen Untersuchung, welcher dieser Aufsatz gewidmet ist — obwohl er sich im wesentlichen nur damit beschäftigen konnte, den Weg zu diesem Problem hin zu beleuchten — dieser Inhalt ist nichts anderes, als eine neue Lösung dieses Problems. Einstein, der die bisherigen Lösungen als unbefriedigend betrachtet, ist durchdrungen von der Überzeugung, jetzt die richtige, die endgültige Lösung gefunden zu haben.

Damit ist eigentlich alles gesagt, was augenblicklich zum Thema gesagt werden kann - auf Einzelheiten der schwierigen Mathematik einzugehen, in der sich die Formulierungen dieser neuen Einsteinschen Theorie bewegen, würde natürlich zu weit führen. Hinzuzufügen ist nur noch, dass Einstein selber die Entscheidung über die Richtigkeit seiner Lösung noch nicht in absehbarer Zukunft erwartet. Diese Entscheidung kann ja nur aus neuen Experimenten kommen, in denen die Behauptungen dieser Theorie bestätigt (oder widerlegt) werden. Aber die Aussichten für solche Experimente sind leider sehr schlecht — aus den Gründen, die oben angedeutet wurden: Die Gravitationskräfte sind so klein, dass sie an handlichen, zum Experimentieren geeigneten Körpern noch kaum zur Geltung kommen — man muss schon einen Himmelskörper dabei haben, um merkliche, gut messbare Wirkungen zu bekommen.

So muss vorläufig ein Fragezeichen hinter Einsteins neuen Gedanken stehen bleiben, die er selber für die abschliessende Krönung seines Lebenswerkes hält. Irgendwann wird auch diese Entscheidung wohl einmal erreicht werden; aber vorläufig bleibt sie uns noch in weiter Ferne — in einer Ferne, die uns an die Begrenztheit aller menschlichen Bemühungen mahnt.

Beleuchtungsplanung

628.93

[Nach: Planned Lighting. Electr. Wld. Bd. 128(1947), Nr. 17, S. 95...122]

Der Entwurf eines Beleuchtungssystems und die praktische Ausführung der Anlage sind die Kernprobleme jeder Beleuchtungsplanung. Mit der künstlichen Beleuchtung können nie die Werte des natürlichen Tageslichtes erreicht werden. Trotzdem ist es nötig, die künstliche Beleuchtung so zu projektieren, dass damit ähnliche oder fast gleichwertige Arbeitsverhältnisse wie bei natürlichem Tageslicht geschaffen werden.

Dem Lichttechniker stehen zur Projektierung zahlreiche Hilfsmittel zur Verfügung, z.B. Tabellen, Kurvenblätter, Literatur, Prüfinstrumente usw. Diese Hilfsmittel sind seine Werkzeuge. Im folgenden wird versucht, eine Zusammenstellung der wesentlichsten und brauchbarsten Unterlagen zu geben, die für die Durchführung des Beleuchtungsplanes und für die Ausführung der Anlage massgebend sind. Ein grosser Teil dieses Materials stammt aus dem IES Lighting Handbook.

Beleuchtungsstärken

Die für eine bestimmte Arbeit nötige Beleuchtungsstärke ist der wichtigste Faktor, welcher der Planung zugrunde liegt. Die Untersuchungen über das Problem, wie bequemes und leichtes Sehen erreicht werden kann, zeigten jedoch, dass ausser der Beleuchtungsstärke auch anderen Faktoren, z. B. der Qualität des Lichtes, der Harmonie der Farben, den Leuchtdichten-Verhältnissen usw. erhöhte Aufmerksamkeit geschenkt werden muss. Für die verschiedenen Sehaufgaben sind Tabellen vorhanden, welche die empfohlenen Werte der Beleuchtungsstärken enthalten. Westinghouse Lighting Handbook empfiehlt die Werte in Tabelle I für die künstliche Beleuchtung.

Für die Schweiz gelten die im Handbuch der Zentrale für Lichtwirtschaft empfohlenen Werte als Richtlinien.

Eine grosse Rolle bei Festsetzung der Beleuchtungsstärken spielt das Alter des Menschen; die Sehschärfe nimmt bei ihm mit zunehmendem Alter ab.

Seit der Erfindung des Fluoreszenzlichtes besteht die Möglichkeit, die Farbe des künstlichen Lichtes nach Wunsch und Bedürfnis zu bestimmen. Die Farben und der Anstrich von Decken und Wänden sind ebenfalls wichtige Beleuchtungsfaktoren, sowie auch die Farben von Möbeln, Vorhängen, Ma-

schinen usw. Wie die Farbe einer Oberfläche erscheint, hängt von der Farbqualität des auf sie fallenden Lichtes ab, andererseits hängt die Farbe des Lichtes, das von irgendeinem Objekt reflektiert wird, von der Farbe dieses Objektes ab.

Beleuchtungsstärken

Tabelle I

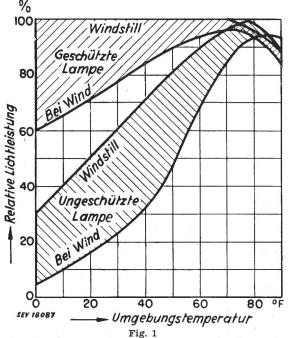
Tageslicht 500 2 0 an einem Nordfenster 1 000 10 0 im Schatten (im Freien) 50 000 10 0 direktes Sonnenlicht 50 000 10 0 Beleuchtungstärken für künstliche 8 00 5 Beleuchtung 300 5 Schulzimmer 300 5 Zeichensäle 500 1 0 Beleuchtungsstärken bei Arbeits- bzw. Fabrikationsvorgängen grobe 200 3 mittlere 300 5 feine 500 1 0												Bel	euchtui lx		tärke
Strassenbeleuchtung 6 Tageslicht 500 2 0 im Schatten (im Freien) 1 000 10 0 direktes Sonnenlicht 50 000100 0 Beleuchtungsstärken für künstliche 8 100 5 Beleuchtung 300 5 Verkaufslokale 200 5 Schulzimmer 300 5 Zeichensäle 500 1 0 Beleuchtungsstärken bei Arbeits- bzw. 500 1 0 Fabrikationsvorgängen grobe 200 3 mittlere 300 5 feine 500 1 0	Sternlicht												0,0	02	
Strassenbeleuchtung	Mondlicht .						6						0,2		
Tageslicht 500 2 0 an einem Nordfenster 1 000 10 0 im Schatten (im Freien) 50 000 10 0 direktes Sonnenlicht 50 000 10 0 Beleuchtungsstärken für künstliche 300 5 Beleuchtung 300 5 Schulzimmer 300 5 Zeichensäle 500 1 0 Beleuchtungsstärken bei Arbeits- bzw. Fabrikationsvorgängen grobe 200 3 mittlere 300 5 feine 500 1 0	Strassenbeleuc	htur	12										6		12
im Schatten (im Freien) 1 000 10 0 direktes Sonnenlicht 50 000 100 0 Beleuchtungsstärken für künstliche 300 5 Beleuchtung 300 5 Verkaufslokale 200 5 Schulzimmer 300 5 Zeichensäle 500 1 0 Beleuchtungsstärken bei Arbeits- bzw. Fabrikationsvorgängen grobe 200 3 mittlere 300 5 feine 500 1 0			_												
direktes Sonnenlicht	an einem No	rdfe	enst	er			9	į,					500	2	000
direktes Sonnenlicht	im Schatten	(im	Fr	eie	n)							1	000	10	000
Beleuchtungsstärken für künstliche 300												50	000	100	000
Beleuchtung 300															
Büros 300					-				-						
Verkaufslokale 200 5 Schulzimmer 300 5 Zeichensäle 500 1 Beleuchtungsstärken bei Arbeits- bzw. Fabrikationsvorgängen 200 3 grobe 200 3 mittlere 300 5 feine 500 1													300		500
Schulzimmer 300 5 Zeichensäle 500 1 Beleuchtungsstärken bei Arbeits- bzw. Fabrikationsvorgängen grobe 200 3 mittlere 300 5 feine 500 1								÷	i.						500
Zeichensäle 500 1 0 Beleuchtungsstärken bei Arbeits- bzw. Fabrikationsvorgängen grobe 200 3 mittlere 300 5 feine 500 1 0															500
Beleuchtungsstärken bei Arbeits- bzw. Fabrikationsvorgängen grobe 200 3 mittlere 300 5 feine 500 1 0															
Fabrikationsvorgängen 200 3 grobe 300 5 mittlere 500 1 feine													000	-	000
grobe 200 3 mittlere 300 5 feine 500 1						111	JUL	013	,	321	٠.				
mittlere													200		300
feine															500
extra feine	extra feine							•	•	•		1			000

Für jedes auftauchende Beleuchtungsproblem sind viele Lösungen möglich. Überall, wo die Sehbequemlichkeit eine Hauptbedingung ist, sind die Intensität und die Qualität der endgültigen Beleuchtung von entscheidender Bedeutung. In vielen Fällen spielen aber auch dekorative und ästhetische Momente eine Rolle. Ferner ist auf die Architektur und die Wünsche des Architekten Rücksicht zu nehmen. Jeder gutgeschulte Lichttechniker sollte die Wünsche des Architekten, des Dekorateurs und des Bauherrn befriedigen können. Es ist gut möglich, Beleuchtungsstärken, Leuchtdichten und Leuchtdichten-Verhältnisse mit Instrumenten zu messen. Viele Faktoren aber, die auf die Beleuchtung einen Einfluss haben, können nicht gemessen werden, z. B. die Sehbequemlichkeit, die Harmonie der Farben usw.

Wahl der Lichtquellen

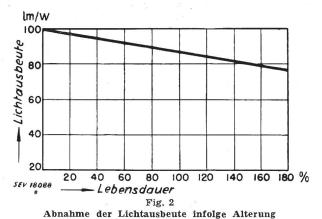
Bei der Bestimmung der richtigen Lichtquelle muss man die Farbqualität des Lichtes, die Lebensdauer der Lichtquelle, deren Lichtausbeute, den Energieaufwand, allfällig den stroboskopischen Effekt, ferner den Einfluss der Temperatur der Umgebung auf die Lichtquellen und deren Lichtausbeute, berücksichtigen. Bei Leuchtstoffröhren ist es ferner nötig, festzustellen, ob Lampen mit Heiss- oder Kaltkathoden zu wählen seien. Bei Verwendung von Neonröhren ist die Farbzusammenstellung der Röhren wichtig.

Vergleich des stroboskopischen Effekts bei den verschiedenen Lichtquellen bei Wechselstrom von 60 Hz


Tabelle II

Lichtquelle und Betriebsart	Relativer strobo- skopischer Effekt
Glühlampen 200 W	1
40 W	• 7
Fluoreszenzröhren	
Grün mit Einzelvorschaltgerät	11
Weiss mit Einzelvorschaltgerät	19
Blau mit Einzelvorschaltgerät	49
Weiss mit Duo-Vorschaltgerät (1 Vorschaltgerät für 2 Röhren)	9
Weiss, 3 Röhren pro Leuchte, Einzelvor- schaltgeräte an jedem Pol des Drehstromnetzes	3
Weiss, 3 Röhren pro Leuchte, 1 Röhre mit Einzelvorschaltgerät und 2 Röhren mit 1 Duo- Vorschaltgerät	14

Für die allgemeine Beleuchtung stehen folgende Lichtquellen zur Verfügung: die Glühlampe, die Quecksilberdampflampe, die Neonröhre und die Fluoreszenzlampe.


Die Glühlampen und Quecksilberdampflampen sind Punktlichtquellen mit gut lenkbarer Lichtverteilung. Die normale Lebensdauer beträgt bei Glühlampen 1000 h. Die Lichtausbeute ist unabhängig von Schwankungen der Raumtempe-

ratur. Quecksilberdampflampen haben eine durchschnittliche Lebensdauer von 3000...5000 h und ungefähr die doppelte Lichtausbeute wie die Glühlampe. Die Lichtausbeute dieser Lichtquelle wird durch anomal tiefe Temperaturen stark beeinflusst. Die Neonröhre wird sowohl für Innenbeleuchtung

Einfluss der Temperatur auf Fluoreszenzlampen (nach Westinghouse Lighting Handbook)

wie für Reklamezwecke verwendet. Ihre Lebensdauer ist unabhängig von der Zahl der Zündungen und beträgt ca. 10000 h. Sie ist temperaturempfindlich. Die Fluoreszenzlampe eignet sich als lineare Lichtquelle, besonders für diffuses Licht. Die durchschnittliche Lebensdauer hängt von der Zahl der Zündungen ab und variiert von 2500...6500 h (Fig. 1 und 2).

Wahl des Beleuchtungssystems Leuchtentyp

Tabelle III

Lichtverteilung	Leuchten				
direkt (A)	a) an Pendeln b) an der Decke montiert				
halb-direkt (B)	c) in die Decke eingebautd) verkleidet (in Zwischendecke)				
all gemein diffus (C) \cdot .	e) leuchtende Elementef) architektonische Elemente				
halb-indirekt (D) .	g) auf Ständer oder auf dem Fussboden montierth) an der Wand montiert				
$\mathrm{indirekt}\;(E)\;\cdot\;\cdot\;\cdot\;\cdot$	i) Vouten-Beleuchtungj) spezielle Zierleuchten				

Beleuchtungsstärken bei den verschiedenen Leuchtentypen

Leuchten-Typ	Art der Lichtquelle	Footcandles pro W pro square foot ¹) ³)						
Indirekt herabhängend Direkt eingebaut und ab- geschirmt allgemein diffus direkt offen Indirekt herabhängend direkt abgeschirmt direkt offen	Glühlampe Glühlampe Glühlampe Glühlampe Fluoreszenzlampe ²) Fluoreszenzlampe ²)	24 35 46 57 610 812 1014						
pen und 40-W-, 1,53-m-La men mit hochreflektierer	Serien-Anordnung von dünnen Fluoreszenzlampen und 40-W-, 1,53-m-Lampen (T-17) in Räumen mit hochreflektierenden Wänden und Decken							

- Diese Helligkeitswerte sind diejenigen, die nach 2jährigem Gebrauch der Anlage zu erwarten sind. Die niedrigen Zahlen gelten für kleine Räume, in dunklen Farben gehalten, bei geringer Wartung.
 jeder Art, Heiss- oder Kaltkathode.
 1 footcandle = 10,764 lx 1 square foot = 0,09290304 m².

Erwünschte Reflexionsfaktoren

Tabelle V

 						-	_	_			
Decken	15000	 100	1.0	, and	100	500					7585 %
Wände											5060 %
Schreibti											2535%
Fussbode	n		•			1.			•	1	1530%

Die Wahl des in Frage kommenden Leuchtentyps richtet sich nach dem Zweck, der Architektur und Ausstattung des Raumes und der Art der gewünschten Lichtverteilung. Die zur Wahl nötigen Angaben sind in den Tabellen III, IV und V zusammengestellt.

Anordnung bzw. Verteilung der Leuchten

Nachdem die gewünschte Art der Beleuchtung bestimmt ist, die Lichtquelle und der Leuchtentyp ausgewählt sind, ist es ein relativ einfaches Problem, die Anordnung der Leuchten festzustellen. Einige einfache Regeln sind im folgenden zusammengestellt:

- 1. Man erstellt eine gute Beleuchtungsanlage, um eine zweckmässige und angenehme Beleuchtung zu erhalten, nicht um Beleuchtungsmaterial, Lichtquellen, Leuchten, Leitungsnetz usw. zu be-
- 2. Die gewählten Leuchten sollten sich sowohl der räumlichen Ausstattung, als auch den bei der Beleuchtung auszuführenden Arbeiten anpassen.
- 3. Die Anordnung der Leuchten soll sich der Struktur des Gebäudes in allen Einzelheiten anpassen. Wenn Pläne und Zeichnungen nicht erhältlich sind, stelle man durch Augenschein die Situation fest, ferner ob und wo Säulen, Balken usw. vorhanden sind.
- 4. Klassische Anlagen mit symmetrischer Aufteilung der Leuchten sind bevorzugt. Anordnungen nach geometrischen Fantasiemustern können in besonderen Fällen zweckmässig sein, sollten aber im allgemeinen verwieden werden. gemeinen vermieden werden.
- 5. Fluoreszenzleuchten sind länger als die Länge der darin verwendeten Lampen. Wenn die Leuchten in durchlaufenden Linien montiert werden, sollen deren Abmessungen genau kontrolliert werden. Bei Fluoreszenzbeleuchtung sehen durchlaufenden Linien besser aus als Einzelleuchten, die durch kleine Zwischenräume voneinander getrennt sind.
- 6. Viele Fabriken stellen dasselbe Leuchtenmodell mit verschiedenen Abmessungen her. Dies sollte nicht vergessen werden, damit für alle Räume die zweckmässigste Grösse gewählt werden kann.
- 7. Die Leuchten sollten mindestens 30 cm von den Wänden entfernt montiert werden. Dadurch vermeidet man, dass die Räume den Eindruck erwecken, mit Leuchten überfüllt zu sein.
- 8. Gerne werden abgeschirmte oder in die Decke eingebaute Leuchten verwendet. Man beachte, dass in diesem Fall die Decke nicht zu dunkel bleibt und keine grossen Leuchtdichtenunterschiede im Gesichtsfeld vorkommen.
- 9. Hängende Leuchten, die das Licht nach oben und nach unten richten, ergeben oft die besten Resultate, sowohl in wirtschaftlicher als auch in beleuchtungstechnischer Hinsicht. Man prüfe sorgfältig die Länge der Pendel und bemesse sie so, dass eine möglichst gleichmässige Aufhellung der Decke erreicht wird.

 10. Die Entfernung der Leuchten voneinander soll so gewählt werden, dass eine gleichmässige Aufhellung erfolgt und schwere Schatten vermieden werden.
- Schatten vermieden werden.
- 11. Die Leuchten sollen so angeordnet werden, dass später eine Erhöhung der Beleuchtungsstärke, ohne Störung der Symmetrie oder der architektonischen Harmonie, ermöglicht wird.
- 12. Man plane gleichzeitig mit der Anlage das Programm für deren Unterhalt. Man achte darauf, dass alle Leuchten leicht zugänglich und so konstruiert sind, dass sie leicht und schnell gereinigt werden können.

13. Man prüfe den Anstrich und den Reflexionsfaktor der Decken und Wände. Man empfehle helle Farben und Anstriche, um gute Leuchtdichtenverhältnisse der Umgebung zu schaffen, welche die Sehbequemlichkeit fördern.

14. Man kontrolliere alle Berechnungen und Details zweimal, um sich zu vergewissern, dass man die richtige Zahl der Leuchten berechnet hat und die gewünschte Beleuchtung wirklich erreicht.

Die Entfernung der einzelnen Brennstellen voneinander richtet sich nach der Lichtverteilungskurve der Leuchten, der Fläche des Raumes und der Montagehöhe der Leuchtkörper. Tabelle VI gibt darüber einige Anhaltspunkte.

Abstand der Leuchten [in Fuss¹)]

Tabelle VI

		Lin I do	~ /]		10	Delle v			
]	Lichtverte	ilung						
Indirekt	Indirekt + Halbindirekt								
Montagehöhe der Leuchten. Deckenhöhe bei Indirekt- und Halbindirekt- Leuchten	Maxi- maler Abstand zwischen Brenn- stellen.	Abstand von den Wänden ²)	Pendel- länge	geringere Abstände als n sich der Möblierung upassen	Maxi- maler Abstand zwischen den Brenn- stellen	Abstand von den Wänden ²)			
8	9	3	13	nan geringe um sich anzupassen	7 ½	3			
9	10 ½	3	1 1/23	an ge um azup	9	3			
10	12 1/2	3 ½	23		10 1/2	3 ½			
. 11	13 ½	3 1/2	43	lt r en,	12	3 1/3			
12	15	4	2 1/24	wählt man ebenen, un besser anzı	13 1/2	4			
13	17	4		Ψ.	15	4			
14	19	5	34	Praxis wählt r angegebenen, besser	16 1/2	5			
15	20	5		L D	18	5			
16	22	6	45	der]	20	6			
18	24	6	43	In d	22	6			
20 oder mehr	28	7	46	T P	25	7			

- 1) 1 Fuss = 30.48 cm.
- 2) Diese Abstände beziehen sich auf Räume, in welchen Schreibtische oder Werkbänke an der Wand aufgestellt sind. Sonst genügt es, wenn dieser Abstand die Hälfte des Abstandes der Leuchten voneinander ausmacht.

Quelle: General Electric Company.

Wenn die Raummasse es nicht zulassen, dass die in der Tabelle VI vermerkten Abstände zwischen den Brennstellen für eine bestimmte Leuchte eingehalten werden, soll man eine symmetrische Verteilung der Brennstellen vorsehen und den Abstand der Brennstellen voneinander eventuell verkleinern. Wenn Einzelkörper verwendet werden und ein quadratischer Grundriss vorliegt, genügt oft eine Leuchte in der Mitte des Raumes, sonst soll man 4 Leuchten nehmen, je eine in der Mitte eines Quadranten. In benachbarten Räumen soll womöglich nach dem gleichen System die Verteilung der Brennstellen vorgenommen werden, um einen einheitlichen Eindruck zu schaffen.

Wenn Leuchtdecken vorgesehen sind, sollten diese bei Beleuchtungsstärken bis zu 200 lx, $\frac{1}{4}$ oder $\frac{1}{2}$ mal so gross sein wie die Grundfläche des Raumes. Für grössere Helligkeiten bis zu 500 lx ist es nötig, praktisch die ganze Decke als Leuchtfläche auszubilden, um Blendungen zu vermeiden.

Die Lichtverteilung

Die im Handel befindlichen Leuchten und Reflektoren werden von den Fabriken mit speziellen Armaturen für bestimmte Lichtverteilungen ausgestattet. Solche Vorrichtungen sind meistens Bestandteile der Leuchten, oder sie können auch in einzelnen Fällen mit der Architektur oder der Möblierung kombiniert werden. Es handelt sich dabei z. B. um prismatische Linsen, diffusen Abschluss durch Glas oder Plastik, Kombination von Reflektoren mit Linsen, Reflektoren für Breitstrahlung, Tiefstrahlung usw.

Die Lichtverteilung durch Leuchten ist von der Internationalen Beleuchtungskommission (ICI) in 5 Klassen eingeteilt worden. Diese sind definiert durch die prozentuale Verteilung des Lichtes auf- und abwärts vom Brennpunkt der Leuchte. In Tabelle VII sind diese Werte prozentual festgelegt.

Es ist wichtig, dass bei der Wahl des Beleuchtungssystems die Lichtausbeute, die Dauerhaftigkeit, die leichte Instandhaltung und das ansprechende Aussehen in Betracht gezogen werden. Spiegelreflektoren ermöglichen es, die Lichtverteilung nach Wunsch zu regulieren. Konzentrierte und intensive Lichtverteilung verlangt Spiegelreflektoren oder halbpolierte Reflektoren. Eine etwas breitere Lichtverteilung wird durch halbmatte Aluminium- oder Glassilberspiegel-Reflektoren erreicht, während diffuse Lichtverteilung durch matierte Aluminiumreflektoren oder emaillierte Metallreflektoren erzielt wird. Die matte Oberfläche einer Decke (matter Anstrich, akustisches Material, bzw. Verputz ohne Anstrich) erzeugen eine diffuse Reflexion bei indirekter Beleuchtung.

Klassifikation der Lichtverteilung

Tabelle VII

${\bf Beleuchtungs system}$	Verteilung des Lichtes von Brennpunkt der Leuchte aufwärts abwärts % %		
Indirekt	90100	010	
Halb-Indirekt	6090	1040	
Allgemein diffus	4060	4060	
Direkt-Indirekt	4060	4060	
Halbdirekt	1040	6090	
Direkt	010	90100	

Symmetrische oder asymmetrische Lichtverteilung kann mittels Glassilberspiegel- oder Aluminiumreflektoren erreicht werden, je nach Form dieser Reflektoren. Diese sind meistens mit Glühlampen oder mit Quecksilberdampflampen ausgestattet (Punktlichtquellen). Solche Reflektoren sind für lineare Lichtquellen, wie Fluoreszenzleuchten, weniger verwendbar, sobald diese Lichtquellen einen Durchmesser von 1″ oder mehr haben. Die Lichtverteilung durch prismatische Glasreflektoren und Refraktoren geht von Tiefstrahlung bis Breitstrahlung. Solche Reflektoren und Refraktoren sind ausserordentlich dauerhaft und leistungsfähig. Sie werden überwiegend ebenfalls mit Glühlampen oder Quecksilberdampflampen ausge-

Die Auswahl der Leuchten

Tabelle VIII

Ausgaben, nach denen die Wahl der Leuchte sich richten soll	Bemerkungen
Typ der Lichtquelle	Zu berücksichtigen sind: die Lichtausbeute (lm/W), Grösse der Lampe, Farbqualität des durch die Lampe erzeugten Lichtes, Lebensdauer der Lampe und Ersatzkosten
Art der Lichtver- teilung	Die Art des Beleuchtungssystems und die gewählte Anordnung der Brenn- stellen bestimmen die Art der Licht- verteilung, welche die zu verwenden- den Leuchten oder Reflektoren haben sollen
Benötigter Licht- strom (Anfangswert)	Der Abstand der Brennstellen vonein- ander und die geforderte Beleuchtungs- stärke bestimmen den Lichtstrom, der für jede Leuchte nötig ist
Hoher Wirkungs- grad der Leuchte	Der Wirkungsgrad der Leuchte variiert von maximal 90 % abwärts. Bei der Auswahl der Leuchten sind die für jede Leuchte massgebenden Lichtkurven, die meist in den Katalogen der Fabriken enthalten sind, zu studieren.
Hohe Qualität des Materials und der Zubehörteile	Die Reflektoren sollten so beschaffen sein, dass ihre Reflexfläche intakt bleibt und das Reflexionsvermögen nicht abnimmt. Lichtdurchlässige Teile sollten aus hochwertigem Material sein und eine gleichmässig beleuchtete Fläche präsentieren. Die Metallteile sollen kräftig genug sein. Gute Lüftung ist wichtig
Leichte Pflege	Das Reinigen der Leuchten und das Auswechseln der Lichtquellen soll leicht und einfach geschehen können
Gutes Aussehen	Die Leuchten sollen schön wirken und mit der Architektur und der Möblie- rung des Raumes im Einklang stehen. Einfache, klare Linien sind vorzuziehen
Niedrige Anschaf- fungskosten	Hohe Anschaffungskosten sind oft die Ursache, dass ein gutes Beleuchtungs- system abgelehnt wird. Daher sollten die Leuchten zu annehmbaren Preisen erhältlich sein.

stattet. Es gibt aber auch bereits Ausführungen, welche mit Fluoreszenzlampen ausgestattet werden können.

Matte Aluminium- und emaillierte Blechreflektoren sind ausgezeichnete Armaturen für Fluoreszenzlampen, sofern diffuses Licht oder Breitstrahlung gewünscht wird. Aluminium-Spiegelreflektoren parabolischer Form können auch für Fluoreszenzlampen verwendet werden, sofern es sich um dünne Lampen handelt (Kaltkathoden- und T-8-Lampen), um eine Tiefstrahlung zu erzeugen. Es sind z. Z. auch verschiedene teilweise verspiegelte Glühlampen erhältlich, die ein konzentriert gerichtetes Licht erzeugen.

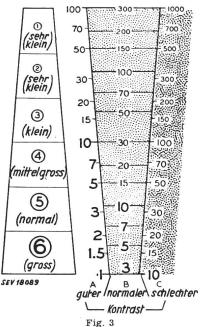
Die Auswahl der Leuchten

Tabelle VIII enthält die wichtigsten Faktoren, welche bei der Auswahl des Leuchtentypes massgebend sein sollen. Ferner ist noch zu berücksichtigen, dass Leuchten, die für die allgemeine Aufhellung eines Raumes benötigt werden, einen hohen Wirkungsgrad haben und gute Sehbedingungen schaffen sollen. Im Gesichtsfeld auftauchende Leuchten sollen gut abgeschirmt sein und möglichst geringe Blendung erzeugen. Indirekte Blendung (durch Reflexbildung) sollte auch verhindert werden. Der Lichtverteilungsplan wird nach der Wahl des Leuchtenmodells entworfen. Sind ästhetische Gründe von grösserer Wichtigkeit für die Anordnung der Brennstellen, muss diese zuerst erfolgen und danach erst die Wahl der geeigneten Leuchten getroffen werden.

Das Material der Reflektoren ist auch wichtig. Die Reflexfläche soll dauerhaft sein und weder durch Hitze noch mehrfache Reinigung beschädigt werden können, um das Reflexionsvermögen und die gewünschte Lichtverteilung für die Dauer beizubehalten. Die Zubehörteile der Fluoreszenzlampen müssen ebenfalls guter Qualität sein. Vorschaltgeräte, Starter, Schalter, Fassungen und andere elektrische Vorrichtungen sollen den Vorschriften der Überwachungsstelle entsprechen.

Das Studium des Beleuchtungsproblems

Planmässige Beleuchtungsanlagen bedingen ein genaues Studium des in Frage kommenden Beleuchtungsproblems. Die Pläne sollen alle nötigen Daten enthalten. Eine genaue Studie der vorzunehmenden Schaufgaben, des gewünschten Beleuchtungsresultates und die Berücksichtigung aller physikalischen Eigenschaften des zu beleuchtenden Raumes ist unerlässlich.


Die physikalischen Eigenschaften eines Raumes umfassen: Grundfläche, Höhe der Decke, die Reflexionsfaktoren der Decke, der Wände, des Fussbodens und der Möblierung, den Grad der Lichtabsorption durch Maschinen, Einrichtungsgegenstände, Arbeiter, den Querschnitt der Zuleitung usw. Dazu gehören auch architektonische Details und die Beschaffenheit der Abdeckungen.

Bei Neuanlagen gestattet die Planung der Beleuchtung grössere Freiheiten in der Wahl des Beleuchtungssystems oder der Ausstattung, sowie der Leitungsführung. Der Lichttechniker soll möglichst in enger Zusammenarbeit mit dem Architekten und dem Dekorateur arbeiten. Der Architekt kann sich dann in seinen Konstruktionen nach den Bedürfnissen des Beleuchtungsingenieurs richten. Bei der Änderung bestehender Anlagen ist es wichtig, sich über die Leistungsfähigkeit des Leitungsnetzes Klarheit zu verschaffen. Ist das Leitungsnetz ungenügend, muss der Lichttechniker vorschlagen, wie die Zuleitung ökonomisch verbessert und ergänzt werden kann, um in allen Teilen zu genügen. Dabei müssen alle Konstruktionsdetails berücksichtigt werden, damit die vorgeschlagenen Änderungen sich praktisch leicht durchführen lassen.

Das Verhältnis des durch die Lichtquelle erzeugten Lichtes zum Licht, welches die Nutzfläche erreicht, ist das Mass der Leistungsfähigkeit eines Beleuchtungssystems. Man bezeichnet es gewöhnlich als den Wirkungsgrad der Beleuchtung. Tabellen über den Wirkungsgrad sind bereits ausgearbeitet und in allen Handbüchern aufgenommen. Auf Grund dieser Tabellen kann man ziemlich genau die Lichtstärken festlegen, die unter den gegebenen Bedingungen erwartet werden können. Alle Studien zum Gebrauch dieser Wirkungsgradtabellen sind gewissenhaft durchzuführen. Während es einerseits wichtig ist, eine bestimmte Beleuchtungsstärke festzulegen (aus der praktischen Erfahrung empfohlene Werte für jede Seharbeit), kann man auf Grund dieser Forderung die nötige Anzahl der Leuchten sowie die Art derselben vorsehen. Man muss aber auch noch andere wichtige Faktoren berücksichtigen, u. a. die Leuchtdichte und den Leuchtdichtenkontrast.

Die Leuchtdichte einer Leuchte (oder die Leuchtdichte der Decke bei indirekter Beleuchtung) soll so gering wie möglich gehalten werden. Der Kontrast zwischen der Leuchtdichte dieser und der sie umgebenden Zonen sollte klein sein. Ist die Beleuchtung bündig in die Decke eingebaut, so soll darauf geachtet werden, dass der Kontrast zwischen Decke und eingebauter Beleuchtung in tragbaren Grenzen bleibt, d. h. die Decke, die sonst dunkel bleiben würde, soll eine zusätzliche Aufhellung erhalten. Bei solchen Anlagen soll die Decke weiss oder in hellen Farben gehalten werden, die Wände sind hell zu tönen; ferner sind heller Fussboden und helle Möblierung erwünscht, um Kontraste zu vermeiden. Den Einfluss des Kontrastes und der Grösse des Arbeitsstückes auf die Beleuchtungsstärke zeigt Fig. 3.

Empfohlene Grösse des Beleuchtungsstärke Arbeitsstückes in Footcandles

Einfluss der Grösse des Arbeitsstückes und des Kontrastes auf die Beleuchtungsstärke

Beispiel: Um ein Objekt gewöhnlicher Grösse (5) gut zu sehen, wird eine Helligkeit von 10 Footcandles bei normalem Kontrast der Leuchtdichte des Objektes mit derjenigen der Umgebung empfohlen. Bei gutem Kontrast genügen 3 Footcandles, bei schlechtem Kontrast sind 30 Footcandles nötig (1 Footcandle = 10,764 lx).

Die durchschnittlichen Reflexionsfaktoren sind in Tabelle IX zusammengestellt.

Faktoren diffuser Reflexion

Tabelle IX

Farbe	Durch- schnittlicher Refiexions- faktor	Farbe	Durch- schnittlicher Refiexions- faktor
weiss Schr hell blaugrün crème blau Lederfarbe grau Hell blaugrün crème blau Lederfarbe	0,88 0,76 0,81 0,65 0,76 0,83 0,72 0,79 0,55 0,70 0,73	Mittel blaugrün gelb Lederfarbe grau Dunkel blau gelb braun grau grün schwarz Holz Ahorn Nussbaum Mahagoni	0,54 0,65 0,63 0,61 0,08 0,50 0,10 0,25 0,07 0,03 0,42 0,16 0,12

Berechnung der Beleuchtung

Es gibt 2 Methoden, um die für einen bestimmten Raum benötigte Lichtmenge zu berechnen: die Wirkungsgrad-Methode und die Punkt-für-Punkt-Methode. Da die Berechnung nach der Wirkungsgrad-Methode relativ einfach ist, wird sie fast durchwegs angewendet.

Bei der Wirkungsgrad-Methode geht man folgendermassen

- 1. Man stellt fest, welche Betriebsbeleuchtungsstärke, d. h. welcher nach längerer Betriebsdauer eintretende Luxwert gemäss SBK-Leitsätzen empfohlen wird.
- 2. Man errechnet die Grundfläche des Raumes (in m^2) und ermittelt den Raumkoeffizienten aus der Raumkoeffizienten-Tabelle.
- 3. Man ermittelt den Wirkungsgrad des vorgesehenen oder verwendeten Leuchtentyps aus der Wirkungsgradtabelle.
- 4. Man ermittelt den Verminderungsfaktor der Leuchte nach der Wirkungsgradtabelle.
- 5. Man setzt diese Werte in die Formel zur Berechnung des Lichtstromes ein

$$\Phi_{\rm n} = rac{E \cdot B \cdot L \cdot 100}{\eta \cdot V}$$

 $(\varPhi_n$ Gesamtlichtstrom l
m, EBeleuchtungsstärke lx, $B\cdot L$ Breit
e \times Länge = Grundfläche m², η Wirkungsgrad der Leuchte %,
 VVerminderungsfaktor).

Will man die Beleuchtungsstärke ermitteln, die eine geplante oder in Aussicht genommene Anlage ergibt, so ändern sich Ziffern 1 und 5 wie folgt:

1a. Man bestimmt den Gesamtlichtstrom (Neuwert in lm), in-dem man den Lichtstrom per Lichtquelle mit der Anzahl Lichtquellen multipliziert.

5a. Die umgedrehte Formel heisst dann:

$$E_{\rm l}^{\rm l} = \frac{\Phi_{\rm n} \cdot \eta \cdot V}{B \cdot L \cdot 100}$$

Die Punkt-für-Punkt-Methode wird vor allem zur Berechnung der Einzelplatz-Beleuchtung angewendet. Eine solche Einzelplatz-Beleuchtung erweist sich als zusätzlich nötig, wenn die zu vollführenden Seharbeiten so grosse Beleuchtungsstärken erfordern, dass es unwirtschaftlich wäre, diese Helligkeitsstufe für die allgemeine Aufhellung vorsehen zu wollen.

Die Berechnung erfolgt nach der Formel

$$E\,=\frac{\varPhi}{A}\,\,=\,\frac{I_{\rm i}}{r^2}\,\cos\,i$$

(E Beleuchtungsstärke lx, Φ Lichtstrom lm, A beleuchtete Fläche m², I_i Lichtstärke in der Einfallsrichtung cd, i Einfallwinkel, r Abstand m).

Die Farbe in der Beleuchtung

Die Farbe ist ein bedeutender Faktor für den Lichttechniker. Die Strahlen, die das sichtbare Spektrum umfassen, sind zusammengesetzt aus reinen Spektralfarben, auch Farbsektoren genannt. In ihrer einfachsten Form sind diese Farben in 9 Sektoren eingeteilt: Violett, Blau, Blaugrün, Grün, Gelbgrün, Gelb, Orange, Hellrot, Dunkelrot. Im Sektor Grüngelb empfinden normale Augen die grösste Helligkeit. Die Spektralkurve zeigt dort auch die Spitze und fällt gegen den Blausektor und den Rotsektor scharf ab. Die verschiedenen Arten von künstlichen Lichtquellen erzeugen verschiedene Farbqualitäten des Lichtes. Auch die Farbqualität des Tageslichtes variiert während des Tages, und je nach der geographischen Orien-

Dem Lichttechniker stehen für jede Lichtquelle Kurven zur Verfügung, die das spezifische Farbspektrum oder die Farbqualität des erzeugten Lichtes veranschaulichen. Die Kurve für eine 500-W-Glühlampe erreicht z. B. im Rotsektor des Spektrums die grösste Höhe. Sie durchläuft aber das ganze Spektrum und hat ihren tiefsten Punkt im Violettsektor. Das Auge ist aber nicht imstande, die verschiedenen Gruppen farbiger Strahlen, die eine Lichtquelle ausstrahlt, zu unterscheiden, sondern es vereinigt die vielen Farben in einem scheinbar einzigen Farbton, welcher dieser Farbe im Spektrum am nächsten kommt. Daher erscheint gegenüber dem weissen Licht oder dem Tageslicht die Glühlampe rötlich.

Spektrale Verteilungskurven können auch für farbige Oberflächen gemacht werden. Die Kurve für eine blaue Farbe z. B. hat ihre höchste Spitze im Blausektor, und der Vergleich mit der Spektralkurve der 500-W-Glühlampe zeigt, dass beide Kurven komplementär sind. Der Farbanstrich, wenn richtig gewählt, kann also dazu beitragen, die Farbharmonie in der Beleuchtung zu verbessern. Figur 4 zeigt, welche Anstrichfarben gewählt werden sollen, um den Farbausgleich in den Räumen bei Tageslicht mit Rücksicht auf die geographische Orientierung der Räume zu bekommen. Ein warmes, helles Gelbbraun (champagne) ist z. B. für Räume, die nach Norden orientiert sind, also kaltes Nordlicht erhalten, als komplementärer Farbanstrich zu empfehlen, während ein blauer Farb-

D' IE' I I I I I D.J.....1\

				Die Wirkung o	der Farbe bei einer B	eleuchtung von	
Farbe	Munsell Farb-	Refle- xions-			Fluoresz	enzlampen	
	bezeichnung²)	faktor	Glühlampen	weichweiss	weiss	weiss 4500 °K	Tageslicht
Kirschrot	5,0 R 4/14	0,13	brillant Orange-Rot	Rosarot	fahles Orange-Rot	Gelbrot	Lichtrot
Orchideenrot	10,0 RP 7/8	0,44	Lichtrosa	Dunkelrosa	Graurot	Lichtrosa	gut angepasst³) (grauer)
Pflaumenfarbe	10,0 RP 2/2	0,04	dunkles Orange-Rot	rötlich Purpur	Dunkelbraun	lichtes Rotbraun	dunkles, bläuli ches Purpur
Kastanien- braun	7,5 YR 5/2	0,19	mittleres Gelbbraun	rosafarbiges Braun	Graubraun	lichtes Braungrau	Lichtgrau
Pfirsich	2,5 YR 8/4	0,58	rosafarbiges Gelb	Lichtrosa	helles Gelb-Rosa	sehr helles Rosa	ziemlich ange- passt (heller)
Orange	σ,υ YR 7/8	0,44	Hellorange	Lichtrosa	fahles Gelb	Lichtgelb	Graugelb
Kanariengelb	10,0 YR 7/8	0,44	Orange-Gelb	lichtes Orange-Gelb	Grünlichgelb	Lichtgelb	ziemlich ange- passt
Lichtgelb	2,5 Y 8/8	0,58	lebhaftes Orange-Gelb	rosafarbiges Gelb	Mittelgelb	lichtes, helles Gelb	lichtes Grün-Gelb
Meergrün	7,5 GY 8/4	0,58	grünliches Gelb	sehr lichtes Grau	schwaches Graugrün	lichtes Gelbgrün	gut angepasst
Jade-Grün	2,5 G 5/4	0,21	lebhaftes Gelbgrün	fahles Graugrün	schwaches Gelbgrün	Gelbgrün	ziemlich ange- passt (heller)
Lichtblau	5,0 BG 7/4	0,46	lichtes, gelbli- ches Grün	lichtes, bläuli- ches Grau	schwaches Grünblau	Blaugrau	ziemlich ange- passt (heller)
Mittelblau	5,0 PB 5/10	0,23	Blaugrün	schwaches Blaugrün	purpurfarbiges Blau	lichtes Graublau	ziemlich ange- passt (heller)
Silbergrau	2,5 Y 8/2	0,57	lichtes Gelbgrau	rosafarbenes Grau	lichtes Braungrau	sehr lichtes Grau	Blaugrau

Die Wirkung der Farben bei verschiedener Beleuchtung wurde mit der Farbwirkung derjenigen unter einer «Macbeth-Tageslicht-Einheit» (Farbtemperatur 700 °K) verglichen.
 Die Bezeichnungen sind angenähert und wurden unter der «Macbeth-Einheit» bestimmt.
 Gut angepasst» bedeutet die gleiche Farbwirkung wie bei der Beleuchtung mit einer «Macbeth-Tageslicht-Einheit».

anstrich für Räume, die nach Süden orientiert sind, gegeben

Der Reflexionsfaktor ist ein Mass der Beleuchtungsstärke und nicht eine Funktion der Strahlungsenergie. Der Reflexionsfaktor ist meist das erste Farbattribut, das für die auszuwählende Farbe eines Raumes massgebend ist, denn sowohl der Wirkungsgrad des Systems als auch der Leuchtdichten-Kontrast hängen von den Reflexionswerten der Oberflächen des beleuchteten Raumes ab. Dies bedeutet, dass die Farbe des Lichtes und die Farbe der Oberflächen bei jeder Beleuchtungsanlage ausserordentlich wichtige Faktoren darstellen, sei es für Arbeitsräume, sei es zu dekorativen Zwecken. Es ist natürlich nicht möglich, von allen im Handel befindlichen Farben und Anstrichen Spektralverteilungskurven zu erhalten. Für die Lichtquellen selbst sind sie im allgemeinen bereits erhältlich, und zwar in den Veröffentlichungen der Lampenfabriken, im neuen IES Lighting Handbook usw.

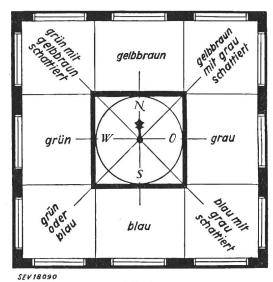


Fig. 4 Farbenwahl für Tagesbeleuchtung

Ein typisches Farbproblem, welches sich dem Lichttechniker praktisch bei der Planung jeder Beleuchtung stellt, ist da-her die Wahl der richtigen Lichtquelle, so dass der Farbanstrich der Decke, Wände, des Fussbodens und der Möblierung bei künstlichem Licht «natürlich» erscheint, ebenso die in diesen Räumen arbeitenden Menschen, d. h. wie bei Tageslicht.

Tabelle X zeigt, wie die verschiedenen Farben sich durch die im Gebrauch befindlichen Lichtquellen verändern.

Wirtschaftlichkeit der Beleuchtung

Neben den Problemen, welche die Helligkeit, die Farbe usw. betreffen, spielt auch das Kostenproblem eine grosse Rolle. Die Kosten selbst zerfallen in 2 Hauptgruppen:

1. feste Kosten, d. h. Anschaffungskosten der Anlage, 2. Betriebskosten, d. h. Energiekosten Lichtquellenersatz, Bruch, Unterhalt usw.

Um die jährlichen Betriebskosten zu ermitteln, muss man auch die jährliche Amortisationsrate festlegen, basierend auf dem Anschaffungswert der Anlage. Über die Höhe dieser Amortisationsrate, die natürlich wesentlich die jährlichen Kosten beeinflusst, gehen die Meinungen weit auseinander. Die Frage, in welcher Zeitspanne die Kosten der Anlage abzuschreiben sind, ist durch Rücksprache mit dem Kunden abzuklären. Folgende Prozentsätze gelten allgemein:

Jährliche Abschreibung von 20 % der Anlagekosten entsprechen ungefähr einer Amortisationszeit von 8 Jahren.
 Für Schulen, Büros, Fabriken sowie ähnliche Installationen, die der Modernisierung nicht so sehr unterliegen, kann diese Rate mit 15 % festgelegt werden, Amortisationszeit ca. 13 Jahre.

Was man unter Anfangskosten einer Beleuchtungsanlage versteht, ist schwer zu definieren. Manchmal wird die Beleuchtungsausstattung als ein Kostenpunkt und das Leitungsnetz plus Installation als ein anderer Posten angesehen. Wenn man einen genauen Kostenvergleich aufstellen will, darf man niemals die Kosten für die Beleuchtungsausstattung allein als Anfangskosten aufstellen, sondern muss auch das für das System nötige Leitungsnetz mit einbeziehen. In diesen festen Kosten sollen folgende Positionen enthalten sein:

- 1. die Anschaffungskosten der Leuchten und deren Ausstattung, 2. die Gesamtkosten des Leitungsnetzes einschliesslich Schaltern, Verteildosen, Zusatzgeräte (Vorschaltgeräte und Transformatoren) und die Arbeitszeit,
- 3. Kosten für zusätzliche Lüftung, welche sich eventuell bei einer

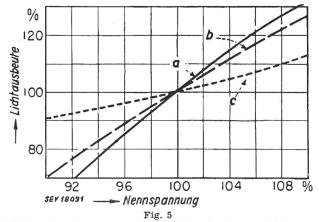
Beleuchtungsanlage als nötig erweist,

4. Kosten für die Spezialkonstruktionen, die für die Beleuchtung nötig sind, z. B. Vouten, Einbauten in die Decken usw.

Für die Betriebskosten kann man am besten ein Schema entwerfen, welches alle variablen Kosten enthält, um so in der Lage zu sein, einen Durchschnittswert zu ermitteln. Es ist selbstverständlich, dass ein planmässiger Unterhalt der Anlage zu einer guten Ausnützung beiträgt. Dazu gehört auch, dass die Lichtquellen ausgewechselt werden, bevor sie das Ende ihrer Lebensdauer erreichen, um zu vermeiden, dass die gegen Ende der Lebensdauer eintretenden Lichtverluste sich unliebsam bemerkbar machen.

Tabelle XI zeigt den Anteil der Erwärmung eines Raumes durch die Beleuchtung und die dadurch nötige zusätzliche Ent-

Angaben für die Berechnung der durch die Beleuchtungsanlage benötigten zusätzlichen Lüftung


Tabelle XI

3,414 BThU1) 1 W elektrische Energie erzeugt 1 kWh elektrische Energie erzeugt 3414 BThU Pro h erzeugte Wärmemenge in BThU = Totalanschlusswert der Beleuchtungsanlage²) in kW \times 3414 Für die Lüftung benötigte Luftmenge in t =

- [¹] BThU (britische Wärmeeinheit) ist die Wärmemenge, die nötig ist, um die Temperatur von 1 lb Wasser von 39,2°F [um 1°F bei normalem atmosphärischem Druck zu erhöff hen = 0,252 kcal.
 [²] inklusive Energieverbrauch der Zusatzgeräte.

Leitungsnetz

Das Leitungsnetz soll so projektiert sein, dass am Socke bei Glühlampen und am Vorschaltgerät bei Quecksilberdampfund Fluoreszenzlampen die volle Nennspannung effektiv vorhanden ist. Jeder Spannungsabfall bedeutet eine Abnahme der Lichtausbeute der Lichtquelle. Fig. 5 zeigt den Einfluss der Spannung auf die Lichtausbeute der verschiedenen Lichtquellen. Es ist selbstverständlich, dass ausserdem noch das Leitungssystem (Anzahl der Polleiter usw.), der Leitungsquerschnitt sowohl in der Zuleitung wie im Verteilnetz, auf das gewählte System der Beleuchtung abzustimmen sind.

Einfluss der Spannung auf die Lichtausbeute verschiedener Lichtquellen a Glühlampe; b Quecksilberdampflampe; c Fluoreszenzlampe

Während die Glühlampe lediglich mittels der Fassung an das Lichtnetz angeschlossen wird, benötigt die Quecksilberdampf- und die Fluoreszenzlampe ausserdem Zusatzgeräte Starter, Vorschaltgeräte, Transformatoren), um in Betrieb treten zu können, die je nach Art der Lichtquelle und Leistungsaufwand verschieden bemessen sein müssen. Das bedingt, dass eine grosse Zahl von Typen dieser Zusatzgeräte

stets auf Lager sein müssen. Diese Zusatzgeräte verbrauchen selber elektrische Energie, wodurch die Energiekosten der Beleuchtung erhöht werden. Der zusätzliche Verbrauch variiert beträchtlich mit der Art der Lichtquelle, wie Tabelle XII zeigt.

Lichtstrom der Fluoreszenzlampen unter Berücksichtigung des Energieverbrauches durch das Vorschaltgerät bei 220...250 V Tabelle XII

Typ des Vorschaltgerätes	Zusätzlicher Energieverbrauch durch das Vorschaltgerät in W	Totaler Energie- verbrauch in W	Total lm	${ m lm/W}$
140 240	9,5 12,5	49,5 92,5	2300 4600	46,5 49,8
340	20	140	6900	49,3
1100	30	130	4200	32,3
2100	32	232	8400	36,2

Bei der Berechnung der Energiekosten für eine 100-W-Röhre mit Einzelvorschaltgerät darf ein Verbrauch von 100 W nicht angenommen werden, sondern 100+30=130 W, für 2 Röhren mit 1 Duovorschaltgerät nicht 200 W, sondern 200+32=232 W.

Messinstrumente

Dem Lichttechniker stehen zur Überwachung und Prüfung von Beleuchtungsanlagen die verschiedensten Messinstrumente zur Verfügung. Es sind dies: Luxmeter, Sichtbarkeitsmesser, Leuchtdichtenmesser, Voltmeter usw. Alle diese Instrumente sind in tragbarer Ausführung auf dem Markt, und ermöglichen einen Vergleich der verschiedenen Vor- und Nachteile der einzelnen Beleuchtungsanlagen.

Luxmeter sind tragbare Instrumente mit einer lichtempfindlichen photoelektrischen Zelle. Da diese photoelektrischen Zellen bisher für Glühlampenlicht kalibriert wurden, müssen beim Messen anderer Lichtquellen, die vom Fabrikanten des Instrumentes angegebenen Korrekturfaktoren berücksichtigt werden.

Die Verwendung des Voltmeters ist bei allen Messungen unentbehrlich, da die Messergebnisse mit dem Luxmeter nur unter gleichen Spannungsverhältnissen zu Vergleichszwecken verwendet werden können.

E. Schneider, Basel.

Ungesättigte Polyester-Harze

Kurzer Überblick über die heutigen Anwendungen von Markon-Harz in der Elektro- und Fernmelde-Industrie

Von Brian Parkyn, Wollaston

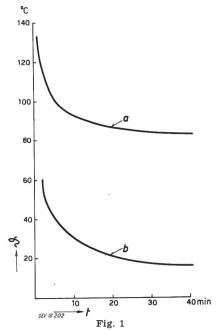
621.315.616.96

Einführung

Die Entwicklung von Kunstharzen war seit jeher eng mit der Elektro- und Radio-Industrie verbunden. Tatsächlich ist das Anwachsen der Kunststoffindustrie auf das Verlangen nach besseren, neuen Materialien, namentlich seitens der Elektrofachleute, zurückzuführen. Dies gilt besonders für Verbindungen, wie Phenol-, Anilin- und Melamin-Formaldehyd und auch für thermoplastische Kunstharze, wie Polystyrol und Polyäthylen. Im Gegensatz dazu wurde Markon-Harz 1) vorerst zu Schichtkörpern mit Glasgeweben usw. für Leichtkonstruktionen der Flugzeugindustrie angewandt. Die Erforschung der interessanten elektrischen Möglichkeiten, welche die Markon-Harze bieten, hat erst vor 3...4 Jahren begonnen.

Die hier zur Diskussion herausgegriffenen Markon-Harze gehören im wesentlichen zu den ungesättigten Polyestern, welche mit einem Monomeren, wie Styrol (Monomer C), bei Anwesenheit eines Peroxyd-Katalysators co-polymerisieren. Der Monomer-Anteil ist nötig, um die ungesättigten Teile der Harzmoleküle in nützlicher Frist zu binden und ein vernetztes Polymerisat zu bilden. Durch Variierung des Monomer-Zusatzes kann daher nicht nur die Viskosität der Harzmischung wunschgemäss eingestellt, sondern es können auch die Eigenschaften des Polymerisates verändert werden.

Obwohl thermohärtende Verbindungen resultieren, so haben sie doch auch viele Eigenschaften mit den linearen Kettenpolymerisaten gemeinsam, so dass es zweckmässig erscheint, diese Harze als «Hybriden» zu bezeichnen. Die Härtung der Harze lässt sich ohne Druck, je nach der angewandten Technik, unter Anwendung von Wärme oder bei Raumtemperatur durchführen.


Härtung unter Anwendung von Wärme

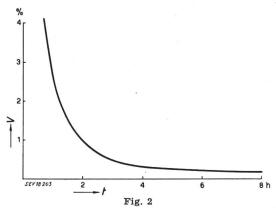
Die Anwendung eines Markon-Harzes für Härtung unter Anwendung erhöhter Temperatur besteht lediglich darin, das Harz (a) mit dem Monomer C (b) und dem Katalysator (c) zu mischen. Das Mischungsverhältnis ist dem Harztyp entsprechend einzustellen, ist aber ungefähr wie a:b:c=100:20:2.

Als Katalysator eignet sich Benzoyl-Peroxyd, welches einerseits infolge seiner aussergewöhnlichen Wirkung bei Temperaturen über 100°C andern Katalysatoren vorzuziehen ist, anderseits bei niedrigen Temperaturen kaum reaktionsfördernd auf das Harz einwirkt. Aus diesem Grunde ist es möglich, Katalysator enthaltende Harzmischungen herzustellen, welche bei 20°C bis ungefähr einen Monat haltbar sind, aber bei 120°C in nur 2 min vollständig polymerisieren.

Werden hohe elektrische Eigenschaften des Endproduktes angestrebt, so ist es notwendig, den Katalysator vor der Anwendung zu trocknen. Benzol-Peroxyd ist eine unstabile Verbindung, die sich bei unsorgfältigem Gebrauch explosiv zersetzen kann. Zudem enthält die Handelsware rund 25 % Feuchtigkeit. Es ist zu empfehlen, Benzol-Peroxyd in Aceton zu lösen und genügend Wasser beizufügen, um die Lösung zu fällen. Hierauf ist die Fällung zu filtrieren und im Ofen bei nicht mehr als 50 °C sorgfältig zu trocknen. Das resultierende Produkt ist trockenes Benzol-Peroxyd, welches am besten sofort in Monomer C gelöst und mit dem Harz vermischt wird.

Jede Temperatur unter dem Siedepunkt von Monomer C (ungefähr 140 °C) kann für die Härtung der katalysierten Harzmischung angewendet werden. Fig. 1 zeigt jedoch, dass die Härtungszeit bei Temperaturen unter 100 °C übermässig lang ist. Die optimale Härtungstemperatur ist ungefähr 120 °C.

Härtungszeit t als Funktion der Temperatur $\mathfrak S$ a mit 2 % Benzol-Peroxyd; b mit 2 % Katalysator HCH und 4 % Beschleuniger E


Härtung bei Raumtemperatur

Markon-Harze können bei Raumtemperatur vollständig polymerisiert werden, wenn ein Beschleuniger (d) der Mischung von Harz, Monomer C und Katalysator (a+b+c) beigegeben wird. Das Verhältnis von a:b:c:d ist unge-

¹) Aus Gründen des Markenschutzes werden die früher mit Marco-Harze bezeichneten Produkte nun unter dem Namen Markon-Harze in den Handel gebracht.

fähr 100:5:2:2. Häufig wirkt dieser Beschleuniger nur in Verbindung mit einem spezifischen Katalysator befriedigend. So haben Amino-Verbindungen, welche mit Benzoyl-Peroxyd so kräftig reagieren, mit anderen Katalysatoren geringe Wirkung. Benzol-Peroxyd wird jetzt in kalthärtenden Mischungen nur noch dort gebraucht, wo eine sehr rasche Aushärtung verlangt wird, da die Reaktion schwierig zu kontrollieren ist.

Die im folgenden erwähnten Anwendungen stellen auf Katalysator HCH (1-Hydroxycyclohexyl Hydroperoxyd-1) in Verbindung mit einem Beschleuniger auf Basis von Kobaltnaphthenat (Beschleuniger E) ab. Diese Kombination erweist sich mit Markon-Harzen als sehr befriedigend, da die Reaktion gut kontrolliert werden kann und die resultierenden Polymerisate gute elektrische Eigenschaften aufweisen. Bei normaler Temperatur hat die mit HCH katalysierte Harzmischung (a+b+c) eine Haltbarkeit von ungefähr 30 h, obwohl sie durch Zusatz von Beschleuniger (d) schon in 10 min verformt werden kann (siehe Fig. 1 und 2).

Einfluss des Beschleuniger-Anteils V auf die Härtungszeit t (mit 2 % Katalysator HCH)

Fabrikation von Radar-Kuppeln

Die erste wichtige Anwendung, bei der die hervorragenden elektrischen Eigenschaften der Markon-Harze zu Nutzen gezogen wurden, war die Herstellung geschichteter Stoffe mit Glasgewebe für Radar-Kuppeln, hauptsächlich für Flugzeuge. Diese Fabrikation wurde während des Krieges aufgenommen und ist sowohl in England als auch in Amerika zu einer bedeutenden Industrie geworden. Radar-Kuppeln variieren in der Grösse von kleinen Konstruktionen bis zu solchen von mehr als 3 m Durchmesser und haben folgende Eigenschaften:

- 1. Sie sind durchlässig für hohe Frequenzen, wie sie bei
- Radar gebraucht werden.

 2. Sie müssen ihre elektrischen Eigenschaften auch bei extremen Temperatur- und Feuchtigkeitsbedingungen beibe-
- A. Sie müssen mechanisch einwandfrei sein.

 3. Sie müssen mechanisch einwandfrei sein.

 4. Sie vereinigen Festigkeit mit geringem Gewicht, und die Wandstärke ist auf die Wellenlänge der Radarschwingungen

Um die letzte Forderung zu erfüllen, wird gewöhnlich ein «Sandwich-Schichtstoff» verwendet, d. h. zwischen zwei Glasgewebe-Schichtstoffen wird ein Kern aus Schaum-Gummi oder Kunststoff eingefügt. Auf diese Weise kann die geeignete Wandstärke eingehalten werden, ohne dass das Gewicht stark erhöht wird.

Kondensatoren- und Spulen-Imprägnierung

Röhrenkondensatoren zur Verwendung unter tropischen Bedingungen, wie auch kleine Radiotransformatoren und Stromwandler und gewisse Leistungstransformatoren, lassen sich mit Markon-Harz imprägnieren. Bei der erstgenannten Anwendung liegen die Vorteile gegenüber Wachs- oder Petroleum-Imprägnierungen auf der Hand. Bei Spulen sind die Hauptvorteile gegenüber den üblichen Imprägnierlacken:

- 1. Schnellere und gründlichere Durchtränkung.
- Kürzere Härtungszeiten.
 Besser wasserabstossend.
 Kriechwegfestigkeit bei Hochfrequenz-Geräten.

Die Kondensatoren und Spulen werden gründlich getrocknet und darauf mit der katalysierten Harzmischung (a+ b+c) in den gebräuchlichen Apparaten unter Vakuum imprägniert. Nach vollständiger Imprägnierung, die je nach Gegenstand 5 min bis 12 h in Anspruch nimmt, werden die Artikel aus der Vakuum-Apparatur herausgenommen und im Ofen bei 120 °C gehärtet. Bei dieser Temperatur polymerisiert das Harz in wenigen Minuten, so dass z. B. ziemlich grosse Spulen schon in 40...60 min vollständig ausgehärtet werden können. Folgende Formel, die für diese Arbeit mit befriedigendem Erfolg verwendet wurde, kann als Beispiel dienen:

	Gewichtsteil
Markon-Harz 9	100
Monomer C	30
Benzoyl-Peroxyd	2

Die katalysierte Harzmischung ist bei Temperaturen unter 20 °C während ungefähr 2 Wochen stabil. Sollte diese Haltbarkeit jedoch zu kurz befunden werden, so kann durch Zugabe von rund 0,005 % Hydrochinon eine beträchtliche Verlängerung erzielt werden. Hydrochinon sollte indessen nur beigefügt werden, wenn es absolut notwendig erscheint, da die Anwesenheit des Stoffes die elektrischen Eigenschaften des fertigen Gegenstandes leicht beeinträchtigt.

Niederdruck-Formmassen

Zweifellos bietet die Herstellung von elektrischen Bestandteilen mit geringem oder ohne Druck die grössten Möglichkeiten. Verschiedene Methoden und Formeln werden angewandt, doch stellen alle auf Teigmassen von kittähnlicher Konsistenz ab, welche durch Einverleibung eines hohen Anteils an Füllstoffen in die katalysierte Harzmischung erzielt werden. Diese Massen werden zu Tabletten vorgeformt und bei 120 °C polymerisiert. Der Druck sollte nicht mehr als ungefähr 3,5 kg/cm² betragen; häufig genügt das Eigengewicht der Form, um ein gutes Formstück zu erhalten. Da nur sehr geringer Druck notwendig ist, können die Formen aus Bleiguss, Aluminium oder aus dünnem Metall bestehen, was die Fabrikation schon von einer kleinen Zahl besonderer Formstücke an wirtschaftlich macht. Mit Hochdruckpressmassen ist dies natürlich zufolge der hohen Form- und Einrichtungskosten nicht möglich. Kleine Gehäuse für Röhrenkondensatoren können in rund $1\frac{1}{2}$ min polymerisiert werden, während grössere Stücke, wie z. B. in Fig. 3 dargestellt, ungefähr 5...8 min beanspruchen.

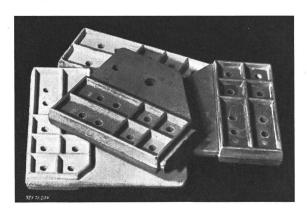


Fig. 3 Stark gefüllte Formstücke

Bei Verwendung geeigneter Füllstoffe, z. B. Silika-Pulver oder Titan-Dioxyd, und sofern der Anteil an organischen Stoffen auf ein Minimum beschränkt wird, ist eine aussergewöhnlich hohe Kriechfestigkeit erzielbar. Aus diesem Grunde ist dieses Verfahren in erster Linie für die Fabrikation von Hochspannungsgeräten von besonderem Interesse. Eine typische Mischungsformel lautet folgendermassen.

	Gewichtsteile
Markon-Harz 9	100
Monomer C	20
Trockenes Benzol-Peroxyd	2
Glas- oder Asbestfasern	10
Kaolin	rund 200

Der kleine Anteil an Faserfüllstoffen verleiht dem Formstück die gewünschten Zug-, Druck- und Biegefestigkeiten.

Eingegossene Stromkreisanlagen (Circuits)

Die Tendenz der letzten Jahre, Radar und andere elektrische Stromkreisanlagen zu verkleinern, hat zum Einbetten solcher Ausrüstungen in kalthärtendes Markon-Harz (Fig. 4) geführt. Diese Circuits sind vielfach vollständige Aus-

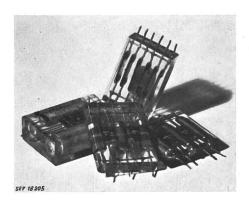
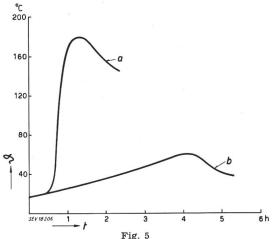


Fig. 4 In Markon-Harz eingebettete Kondensatoren und Widerstände

rüstungen unter Einschluss von Kondensatoren. Widerständen, Stromwandlern und Transformatoren. In einigen Fällen wurden auch Röhren eingebettet, obwohl es vorgezogen wird, diese an auswechselbarer Stelle zu montieren. Die drei Hauptgründe für das Einbetten von elektronischen Ausrüstungen sind:


. Das Harz schliesst die Teile vollständig von den atmo-

1. Das Harz schliest die Teile vollstandig von den atmosphärischen Einwirkungen ab.

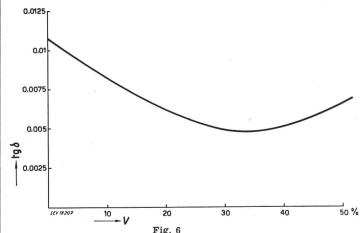
2. Die Anlage ist zu einer Einheit verbunden, welche im Gebrauch wie eine Röhre ausgewechselt werden kann.

3. Die in Harz eingeschlossene Anlage hat eine viel grössere Stossfestigkeit.

Nach dem Zusammenschluss der verschiedenen Teile wird die Miniaturstromkreisanlage in einer Form fixiert und das kalthärtende Harz eingegossen. In manchen Fällen ist diese Arbeit unter Vakuum auszuführen, um den Einschluss von Luft zu vermeiden. Je nach Beschleuniger-Zusatz kann die Härtungszeit zwischen 1...6 h eingestellt werden. Bei der Polymerisation des Harzes steigt die Temperatur, bewirkt

Exothermische Kurven von zwei ähnlichen Harzen, welche bei 20°C härten

Harz a besitzt einen hohen Katalysator-Gehalt (2 %) und Harz b einen niedrigen (0,5 %)


durch die exotherme Reaktion. Es ist wichtig, dass ein Überhitzen verhindert wird, was eine Lockerung der Anschlussdrähte und somit die Gefahr des Eindringens von Feuchtigkeit in sich birgt. Starker Temperaturanstieg kann auch zu Rissbildung führen, besonders wenn die Differenz zwischen Reaktions- und Aussentemperatur 30 °C übersteigt. Eine typische Formel für diese Art der Anwendung hat folgende Zusammensetzung:

	Gewichtsteile
Markon-Harz 9	100
Monomer C	5
Katalysator-Paste H	1
Beschleuniger E	0,5

Katalysator- und Beschleuniger-Anteil sind hier bewusst tief angesetzt, um eine langsame Härtung bei gewöhnlicher Temperatur zu erzielen. Dadurch kann eine Reaktions-Erwärmung fast gänzlich verhindert werden, und der Volumenschwund des Harzes ist sehr gering. Fig. 5 zeigt, wie die exotherme Energie bei Verwendung eines kleinen Beschleuniger- und Katalysator-Zusatzes über eine längere Zeitperiode verteilt wird. Dies äussert sich in einem viel schwächeren und weniger plötzlichen Ansteigen der Temperatur.

Eigenschaften

Es gibt bereits verschiedene Markon-Harz-Typen. Einige bilden sehr weiche Polymerisate, während andere aussergewöhnlich harte und glasähnliche Kunststoffe ergeben. Es ist daher nicht einfach, in einem kurzen Überblick eine ausführliche Zusammenstellung auch nur ihrer allgemeinen Eigenschaften zu geben. Sogar wenn ein einzelnes Harz ausgewählt wird, hangen die Eigenschaften des resultierenden Polymerisates wieder von anderen Faktoren, z. B. vom verwendeten Monomer, ab. Für elektrische Zwecke wird im allgemeinen Monomer C benützt, obwohl auch mit Diallylphtalat und Butylmetakrylat interessante Eigenschaften erzielt werden können. Aber selbst bei Verwendung von Monomer C kann festgestellt werden, dass die Eigenschaften des Polymerisates von der einverleibten Menge abhängen. Dies wird durch die Kurve in Fig. 6 dargestellt. Es besteht daher die Möglichkeit, die Harz-Monomer-Mischung so einzustellen,

Der Einfluss eines erhöhten Styrol-Gehaltes V in der Harzmischung auf den Verlustwinkel tgδ

dass beinahe jede gewünschte Eigenschaft im gehärteten Kunststoff erzielt werden kann. Diese besondere Anpassungsfähigkeit der Markon-Harze, an sich sowohl eine Quelle bahnbrechender Erfolge, als auch grosser Enttäuschungen,

Chemikalien-Beständigkeit von Giesslingen im Ausmass von 38 × 30 × 3 mm bei 7tägigem Eintauchen bei Raumtemperatur Tabelle I

Stoff	Ergebnis¹)	Stoff	Ergebnis¹)
H ₂ SO ₄ , konz. H ₂ SO ₄ , 20 %ig HCl, konz. HCl, 20 %ig HNO ₃ , konz. HNO ₃ , 20 %ig CH ₃ COOH, 20 %ig KOH, 10 %ig KOH, 5 %ig	A U E U A U U U U	Methanol Alkohol Butanol Cyklohexanol Benzol Toluol Aceton Aethylacetat Cellosolve	U U U E U A A

¹⁾ U unverändert: E erweicht: A angegriffen.

führt zu ihrer immer grösser werdenden Bedeutung in der Elektro- und Fernmeldeindustrie.

Die Tabellen I und II zeigen daher nur die Eigenschaften von Markon-Harz 9 bei Co-Polymerisation mit 5 % Monomer C.

Allgemeine physikalische Eigenschaften von Markon-Harz

-1	
	Spezifisches Gewicht
	Härte (Rockwell M-Skala) 110
	Zugfestigkeit 630 kg/cm ²
	Elastizitätsmodul 3,5 · 10 ⁴ kg/cm ²
	Druckfestigkeit 1400 kg/cm ²
	Kerbzähigkeit (Izod) 1 kgcm/cm ²
	Spezifische Wärme 0.55 cal/g/°C
	Wärme-Leitfähigkeit
	Lineare Wärmeausdehnung 59 · 10-6/°C

ĺ	Wasseraufnahme (24 h bei 20 °C)	0,15 %
	Dielektrizitätskonstante ε bei 50 Hz	3,7 bei 20 °C
I	Dielektrizitätskonstante	55/00 20/00/2 2/00/0
۱	ε bei 5·10 ⁶ Hz	3,2 bei 20 °C
١	tg δ bei 50 Hz	0,008 bei 20 °C
ı	Dielektrischer Verlustwinkel	0.010 1 : 00.00
I	tg δ bei 5·10 ⁶ Hz	0,019 bei 20 °C
ı	(Muster 0,2 mm dick)	22 kV/mm bei 20 °C
١	Spezifischer Widerstand	$10^{13} \Omega_{\mathrm{cm}}$

Adresse des Autors:

 $Brian\ Parkyn,$ Forschungs-Chemiker der Scott Bader & Co. Ltd., Wollaston [England] 1).

1) Vertretung in der Schweiz: Scott Bader & Co. A.-G., Pelikanplatz 15, Zürich 1.

Wirtschaftliche Mitteilungen — Communications de nature économique

Die Schweizerischen Bundesbahnen im Jahr 1950 1)

621.331.625.1 (494)

1. Energiewirtschaft 2)

Zu Beginn der Winterperiode 1949/50 fehlte in den Stauseen der SBB das Wasser für 61 GWh Energie. Zudem war die Wasserführung der SBB-Laufwerke in der ersten Hälfte dieser Periode eine minimale; sie verbesserte sich ab Anfang November, blieb aber immer noch unter dem betreffenden Monatsmittel. Während der Sommerperiode 1950 blieb die Wasserführung im Durchschnitt unter dem langjährigen Mittel. Immerhin füllten sich der Barberinesee und der Sihlsee vollständig, während im Ritomsee am Ende der Sommerperiode 2,5 · 10⁶ m³ Wasser fehlten.

Die Zahlenwerte über Erzeugung und Verbrauch elektrischer Energie bei den SBB im Jahre 1949 zeigt Tabelle I.

ist zum Teil auf die vermehrten Zugsleistungen zurückzuführen, zum Teil auf die im Vorjahr wegen der ausserge-wöhnlichen Trockenheit getroffenen Einschränkungen im Energieverbrauch.

Die fehlenden 61 GWh in den SBB-Stauseen zu Beginn der Winterperiode 1949/50 versetzten die Energieversorgung des Bahnbetriebes in eine schwierige Lage. Obschon die allgemeine Energieversorgung gegenüber dem Vorjahr durch die Inbetriebsetzung neuer Kraftwerke und durch Energieaustausch mit dem Ausland sich etwas gebessert hatte, konnten die Elektrizitätswerke der SBB nur 17 GWh über ihre Pflichtlieferungen hinaus zur Verfügung stellen. Zur Verhinderung einer vorzeitigen Erschöpfung der Energiereserven in den Stauseen wurden Sparmassnahmen im Bahnbetrieb, wie Einschränkung der Zugsheizung, Herabsetzung der Zugsausrüstungen und Verwendung der noch verfügbaren Dampf-

Energiewirtschaft der Schweizerischen Bundesbahnen im Jahr 1950

Tabelle I

•	1.	2.	3.	4.		tal Wh
		Qua G	1950	1949		
Eigene Erzeugung von Ein- und Mehrphasenenergie						
Kraftwerkgruppe: Amsteg-Ritom-Göschenen Kraftwerkgruppe: Vernayaz-Barberine-Trient-	47,9	92,9	111,3	61,3	313,4	342
Massaboden	57,1	76,4	86,2	83,2	302,9	256,7
Total	105,0 (100%)	169,3 (100%)	197,5 (100%)	144,5 (100%)	616,3 (100%)	598,7 (100%)
a) in den Speicherwerken Ritom, Barberine und Vernayaz erzeugt	64 , 2 (61,1%)	22,5 (13,3%)	23,4 (11,8%)	59,6 (41,3%)	169,7 (27,5%)	171,0 (28,6%)
b) in den Laufwerken Amsteg, Göschenen und Vernayaz erzeugt	40,8 (38,9%)	146,8 (86,7%)	174,1 (88,2%)	84,9 (58,7%)	446,6 (72,5%)	427,7 (71,4%)
Bezogene Einphasenenergie						
vom Etzelwerk	39,6 19,0 58,5	17,0 28,0 25,6	16,7 22,6 18,0	38,9 13,8 54,7	112,2 83,4 156,8	85,7 69,7 155,3
Total	117,1	70,6	57,3	107,4	352,4	309,7
Total der erzeugten und bezogenen Energie	222,1	239,9	254,8	251,9	968,7	908,5
Abgabe an Dritte · · · · · · · · · · · · · · · · · ·	3,1	2,2	2,3	2,6	10,2	11,5
Verbrauch für den Betrieb von Speicherpumpen Abgabe von Überschussenergie	_	7,7 8,8	6,8 10,0	0,2 0,6	14,7 19,4	15,4 23.4
Energieabgabe für den Bahnbetrieb	219,0	221,2	235,7	248,5	924,4	858,2

Im Vergleich zum Vorjahr ist der totale Verbrauch für den Bahnbetrieb um 66,2 GWh gestiegen. Der Mehrverbrauch

1) Aus den Quartalsberichten der Generaldirektion und dem Geschäftsbericht 1950 der SBB. — Für das Jahr 1949 vgl. Bull. SEV Bd. 41(1950), Nr. 15, S. 579...580 und 584.
2) Energiewirtschaft der SBB, Quartalsberichte, vgl. Bull. SEV Bd. 41(1950), Nr. 13, S. 516, Nr. 19, S. 728; Nr. 24, S. 895 und Bd. 42(1951), Nr. 8, S. 281.

lokomotiven angeordnet. Damit sollten etwa 27,5 GWh eingespart werden. Zufolge der mässigen Niederschläge anfangs November 1949 nahm die Wasserführung leicht zu. Auch konnte der Energiebezug um weitere 23,5 GWh vermehrt werden.

Im Kraftwerk Gösgen der Aare-Tessin A.-G. für Elektrizität wurde eine Einphasen-Maschinengruppe von 8000 kW/

12 000 kVA eingebaut ³) und am 1. Oktober 1950 in Betrieb gesetzt. Damit ist eine neue Energiequelle für die SBB geschaffen worden.

2. Kraftwerke

Über die Veränderung des Energieinhaltes der Stauseen orientiert Tabelle II.

eine neu erstellte Verbindungsleitung von 1,1 km Länge der 66-kV-Übertragungsleitungen Rupperswil-Olten zugeführt.

In den Unterwerken Brugg und Gossau wurde der Einbau von 15-kV-Schnellschaltern in den Speisepunkten beendigt und in den Unterwerken Giornico, Giubiasco, Melide und Grüze weitergeführt. In den Unterwerken Brugg und Grüze

Veränderung des Energieinhaltes der Stauseen

Tabelle II

	Tot	aler	Т	Tiefster Wasserstand Höchster Wasserstand						Beginn		Wasserstand unter				
Stausee		rgie- nalt		ag, nat	Verbleib Energie GW	inhalt	T ₄ Mo	ng, nat	Energiei GWI		fehle Energi	ollen See ender einhalt Wh	de Absen Tag, I	kung	Stauz 31. De	iel am zember n
,	106 m ³	GWh	1950	1949	1950	1949	1950	1949	1950	1949	1950	1949	1950	1949	1950	1949
Barberinesee	39,0	110,3	30.4	13.4	3,4	23,0	7,9	10.10	110,4	74,8	?	35,5	23,9	11.10	6,8	17,4
Ritomsee	27,5	45,1	29.4	13.4	8,2	5,0	8,10	15.10	39,9	30,0	5,2	15,1	10,10	16,10	8,4	14,9
Sihlsee	91,8	91,8	18.3	27.3	14,1 *)	1 5,3	4,9	22,9	91,8**)	82,9	0	8,9	12,10	24,9	2,9	4,2
Total		247,2			25,7	33,3			242,1	187,7		59,5				
*) Anteil SBB - 6	O CW	h ##\	Antail	CDD	- 50 5 (77171										

*) Anteil SBB = 6,9 GWh. **) Anteil SBB = 50,5 GWh.

Es wurden folgende Erweiterungs- und Instandhaltungsarbeiten an den Kraftwerken ausgeführt:

Barberine: Am 28. Oktober 1950 erfolgte der Durchschlag des 3,82 km langen Stollens für die Zuleitung des Triège in den Barberinesee. Die Fertigstellungsarbeiten wurden für das Baulos Emaney anfangs Dezember eingestellt; auf der Seite Barberine werden die Arbeiten voraussichtlich Ende Januar 1951 beendigt sein. Die Hauptwasserfassung, die Wasserfassung des Blantsin und die Zuleitungskanäle sind vollendet.

Massaboden: Die neue Wasserfassung in Mörel und der Zulaufstollen von 2,9 km Länge wurden am 17. Mai 1950 dem Betrieb übergeben.

Amsteg: Im Umleitstollen der Wasserfassung Pfaffensprung wurde ein Teil der Sohle mit Granisteinen erneuert. Eine im Frühjahr durchgeführte Kontrolle des Staubeckens Pfaffensprung, des Druckstollens, des Zulaufstollens des Kärstelenbaches und des Wasserschlosses mit der Apparatenkammer zeigte, dass diese Anlageteile in einem guten Zustande sich befinden.

Ritom: Der Vortrieb des Stollens für die Zuleitung der Garegna in den Ritomsee wurde auf Seite Piora in der geröllhaltigen, wasserführenden Dolomitschicht weitergeführt und erreichte am 31. Dezember 1950 eine Länge von 748 m. Der gesamte Vortrieb des Stollens betrug Ende Dezember 1552 m bzw. 62,5 % der Gesamtlänge. Auf der Seite Val Canaria mussten am 9. August infolge starker Wassereinbrüche die Vortriebsarbeiten bei Tunnelmeter 804 eingestellt werden. Die Hangkanäle auf beiden Talseiten sind fertiggestellt.

Anfangs Oktober wurde der Vertrag über die Ausführung der Bauarbeiten für die neue Staumauer Piora abgeschlossen. Trotz Behinderung durch die starken Schneefälle konnten bis Ende Dezember die nach Programm vorgesehenen Bauinstallationen in Piora und Piotta fertiggestellt werden.

Die 5 Bahntransformatoren von 8500 kVA wurden mit Transformatoren-Gasschutzapparaten (Buchholzschutz) ausgerüstet.

Kraftwerk Rupperswil-Auenstein: Im Kraftwerk Rupperswil-Auenstein sind Untersuchungen über die am Einphasen-Generator aufgetretenen Vibrationen durchgeführt worden. Die an den Generatorfundamenten aufgetretenen Risse erforderten den Einbau von besonderen Verankerungen.

Lungernseewerk: In der Zentrale Unteraa des Lungernseewerkes der Zentralschweizerischen Kraftwerke wurden mit der für die Speisung der Brüniglinie aufgestellten Schlupfumformergruppe Abnahmeversuche durchgeführt.

3. Übertragungsleitungen und Unterwerke

Infolge der Erstellung der Doppelspur auf der Strecke Thalwil-Sargans musste die 66-kV-Übertragungsleitung Etzelwerk-Sargans zwischen Reichenburg und Ziegelbrücke teilweise verlegt werden.

Am 1. Oktober 1950 wurde der Bahngenerator im Kraftwerk Gösgen der Aare-Tessin A.-G. für Elektrizität dem Betrieb übergeben. Die erzeugte Einphasenenergie wird über

wurden sämtliche Speisepunkte mit der neuen Prüf- und Wiedereinschalt-Automatik ausgerüstet.

Die 5000-kVA-Bahntransformatoren der Unterwerke Giornico, Giubiasco und Melide wurden mit Transformatoren-Gasschutzapparaten (Buchholzschutz) ausgerüstet; in den Unterwerken Olten und Emmenbrücke wurde mit dem Einbau von diesen Schutzapparaten in die Bahntransformatoren begonnen.

4. Elektrifizierung neuer Linien

Die Geleise A 8...11 im Rangierbahnhof Basel sind mit Fahrleitung ausgerüstet worden.

Der Mangel an elektrischen Triebfahrzeugen liess weiterhin eine gewisse Zurückhaltung bei den Elektrifikationsarbeiten auf den heute noch mit Dampf betriebenen Strecken als angezeigt erscheinen.

Die noch nicht elektrifizierten Strecken sind die folgenden:

Winterthur-Bauma-Wald	40 km
Sissach-Läufelfingen-Olten	17 km
Monthey-Bouveret-St-Gingolph	20 km
Genf-La Plaine	15 km
Cadenazzo-Ranzo/S. Albondio	23 km
Verbindungsbahn Basel	9 km
Oberglatt-Niederweningen	12 km

5. Triebfahrzeuge

Im Laufe des Berichtsjahres wurden folgende elektrische Triebfahrzeuge neu in den Dienst gestellt bzw. in Auftrag gegeben:

	Serie- bezeich- nung	in Dienst gestellt	in Auftrag gegeben
Streckenlokomotiven	R 4/4	14	_
Streckenlokomotiven	HGe 4/4	2	
Traktoren	Te	6	
Elektrothermische Traktoren	Tem	2	6

6. Signal- und Sicherungsanlagen

Im Berichtsjahr sind 15 neue elektrische Stellwerkanlagen, 384 Lichtsignale und 27 elektrische Barrierenwinden in Betrieb genommen worden.

Die Strecken Salgesch-Visp, Romont-Villaz-St-Pierre, Cottens-Matran, Brügg-Lyss, Moutier-Choindez, Zwingen-Aesch, Giswil-Meiringen, Hasle-Wolhusen, Rotkreuz-Zug, Zug-Walchwil, Aarau-Suhr, Wettingen-Otelfingen, Niederglatt-Oberglatt und Winterthur-Grüze-Winterthur-Seen sind mit dem Streckenblock ausgerüstet worden.

Der Einbau von Streckengeräten für die automatische Zugsicherung ist weitergeführt worden. Von den 2839 km normalspurigen Strecken des SBB-Netzes waren am Ende des Jahres 2253 km (79,5%) mit dieser Sicherungseinrichtung an den Vor-, Durchfahr- und Ausfahrsignalen versehen. Auf weiteren 409 km sind vorläufig die Einfahrsignale damit ausgerüstet.

7. Schwachstrom- und Niederspannungsanlagen

In den Bahnhöfen Vallorbe, Brunnen, Winterthur, St. Gallen und Landquart sind Lautsprecheranlagen gebaut und in Betrieb genommen worden.

Schi.

³⁾ siehe Bull. SEV Bd. 42(1951), Nr. 9, S. 306...307.

Extrait des rapports de gestion des centrales suisses d'électricité

(Ces aperçus sont publiés en groupes de quatre au fur et à mesure de la parution des rapports de gestion et ne sont pas destinés à des comparaisons)

On peut s'abonner à des tirages à part de cette page

	Davos	tätswerke AG., s-Platz	Ryburg-Schw	twerk vörstadt AG., nfelden	AG. Kraftw Siel	erk Wäggital, onen	Gemeindewerke Rüti, Rüti (ZH)	
	1949/50	1948/49	1949/50	1948/49	1949/50	1948/49	1949	1948
1. Production d'énergie . kWh 2. Achat d'énergie kWh 3. Energie distribuée kWh 4. Par rapp. à l'ex. préc % 5. Dont énergie à prix de	7 568 050 16 314 800 23 882 850 + 8,9	17 046 500	0	? 0 532 921 525 — 22,6 3	55 400 000 43 800 000 55 200 000 — 63,51	$151\ 600\ 000$ $33\ 700\ 000$ $151\ 300\ 000$ $+\ 63,56$	10 902 718	$545\ 500$ $10\ 984\ 159$ $10\ 264\ 250$ $+19,0$
déchet kWh	_	_ `	0	0	0	0	_	_
11. Charge maximum kW 12. Puissance installée totale kW	5 000 39 500	39 000)	111 000	87 000	106 000	15 550	$\begin{array}{c} 2\ 321 \\ 15\ 520 \end{array}$
13. Lampes { nombre kW	72 000 3 730	3 700					30 000 1 900	29 600 1 700
14. Cuisinières { nombre kW	1 950 12 000	11 690	2)	2)	9/	9)	360 280	310 250
15. Chauffe-eau { nombre kW	1 200 3 550	3 445			2)	2)	510 450	460 400
16. Moteurs industriels . $\left\{ \begin{array}{ll} \mathbf{kW} \end{array} \right\}$	1 300 1 565	1 285 1 540		J	×		1 700 5 540	1 680 5 500
21. Nombre d'abonnements 22. Recette moyenne par kWh cts.	2 400 7,35	2 350 7,27	?	?	?	?	4 620 7,4	4 590 7,3
Du bilan: 31. Capital social fr. 32. Emprunts à terme	600 000 825 000 — — 1 284 300 1 440 800 1 835 000	1 050 000 - 1 236 200 1 440 800	14 041 000 — — 63 088 066 5 913 000	14 041 000 - 63 069 170 3 665 000	_ 78 053 797	- - 77 901 283 -	- - - 586 704 - 98 013	261 704
Du compte profits et pertes: 41. Recettes d'exploitation fr. 42. Revenu du portefeuille et des participations	1 604 400 47 800 28 000 — 249 400 344 200 273 900 436 800 230 500 80 000 8	44 700 26 000 4 600 129 000 272 500 317 200 437 400 308 500 60 000 6	222 210 91 407 492 556 1 844 930 424 301 715 064 2 402 079 1 800 000 6	154 604 143 346 501 707 1 563 308 404 197 773 592 2 355 331	273 114 1 422 564 307 668 222 142 587 092 142 994	55 724 1 426 705 314 364 233 638 594 314 104 773 988 776	- 5 334 12 661 ? 117 153 107 787 436 326 132 484	- 3 711 8 243 ? 105 927 105 312 410 679 42 244
Investissements et amortissements: 61. Investissements jusqu'à fin	4 351 440	4 916 900	64 678 237	64 550 241	?	?	2 443 330	1 006 700
de l'exercice fr. 62. Amortissements jusqu'à fin de l'exercice » 63. Valeur comptable »	3 067 140 ¹) 1 284 300	3 018 700	1 590 170°)	1 490 170°		?	1 855 626	1 725 086
64. Soit en % des investissements	29	29	97,54	97,69	?	?	24,0	13,3

¹⁾ Excl. fonds d'amortissement de fr. 1835000.--.

²⁾ Pas de vente au détail.

 $^{^3)}$ Excl. fonds de renouvellement et fonds d'amortissement de fr. 2 790 057.— (pour 1949/50) et de fr. 2 567 098.— (pour 1948/49).

Prix moyens (sans garantie)

le 20 du mois

M			

		Mai	Mois précédent	Année précédente
Cuivre (fils, barres) 1).	fr.s./100 kg	430/5204)	445.—4)	194.50
Etain (Banka, Billiton)2)	fr.s./100 kg	1418.—	1485.—	725.—
Plomb 1)	fr.s./100 kg	230.—	230.—	100.—
Zinc 1)	fr.s./100 kg	300/4104)	310.—	113.50
Fer (barres, profilés) 3)	fr.s./100 kg	62.—	62.—	42.—
Tôles de 5 mm^3)				

1) Prix franco Bâle, marchandise dédouanée, chargée sur wagon, par quantité d'au moins 50 t
2) Prix franco Bâle, marchandise dédouanée, chargée sur wagon, par quantité d'au moins 5 t
3) Prix franco frontière, marchandise dédouanée, par quantité d'au moins 20 t

4) Prix du «marché gris».

Combustibles et carburants liquides

		Mai	Mois précédent	Année précédente
Benzine pure / Benzine	4 /100 t	70.25	70.25	(5.00
éthylée 1)	fr.s./100 kg	72.35	72.35	65.80
Mélange-benzine, carburants indigènes inclus 1)	fr.s./100 kg	70.15	70.15	63.80
Carburant Diesel pour véhicules à moteur 1)	fr.s./100 kg	51.75	51.75	47.25
Huile combustible spé- ciale 2)	fr.s./100 kg	23.90	23.90	16.40
Huile combustible légère 2)	fr.s./100 kg	22.20	22.20	14.90
Huile combustible industrielle (III) 2)	fr,s./100 kg	15.55	16.05	10.55
Huile combustible in- dustrielle (IV) 2)	fr.s./100 kg	14.75	15.25	_

Charbons

,		Mai	Mois précédent	Année précédente
Coke de la Ruhr				
	44	101	105 50	100
	fr.s./t	121.—	105.50	100.—
Charbons gras belges				
pour l'industrie				
Noix II	fr.s./t	120.50	118.50	88.—
Noix III	fr.s./t	116.—	114.—	83.50
Noix IV	fr.s./t	111.50	109.50	82.50
Fines flambantes de la				
Sarre	fr.s./t	90.—	72.50	72.50
Coke de la Sarre	fr.s./t	120.50	120.50	95.—
Coke métallurgique				
français, nord	fr.s./t	122,50	122.50	100.—
Coke fonderie français	fr.s./t	124.30	124.30	103.30
Charbons flambants po-				
lonais				
Noix I/II	fr.s./t	123.50	123.50	84.50
Noix III	fr.s./t	120.50	120.50	79.50
Noix IV	fr.s./t	119.50	119.50	78.50
Houille flambante		25,411,544, \$60,000		7,000,000
criblée USA	fr.s./t	135	136.—	_
l —			2	

Tous les prix s'entendent franco Bâle, marchandise dédouanée, pour livraison par wagons entiers à l'in-dustrie, par quantité d'au moins 15 t.

Miscellanea

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

Entreprises Electriques Fribourgeoises. Der Grosse Rat des Kantons Freiburg hat als Nachfolger von Prof. Dr. P. Joye, der auf 31. Dezember 1951 von der Leitung der Freiburgischen Elektrizitätswerke zurücktritt, zum neuen Direktor der EEF J. Ackermann, Regierungsrat des Kantons Freiburg, gewählt.

Fr. Sauter A.-G., Basel. Dr. O. Steiger, Mitglied des SEV seit 1946, bisher Prokurist, wurde zum Vizedirektor

Kleine Mitteilungen

Eidgenössische Kommission für Ausfuhr elektrischer Energie. Der Bundesrat hat vom Rücktritt von E. Payot, Delegierter des Verwaltungsrates der Schweizerischen Gesellschaft für elektrische Industrie, Basel, als Mitglied der Eidgenössischen Kommission für Ausfuhr elektrischer Energie unter Verdankung der geleisteten Dienste Kenntnis genommen. Für die neue dreijährige Amtsdauer 1951...1953 wird die Kommission wie folgt bestellt: R. Naville, Ingenieur, Delegierter des Verwaltungsrates der Papierfabrik Cham, Cham; Dr. ing. h. c. R. A. Schmidt, Präsident der S. A. l'Energie de l'Ouest-Suisse, Lausanne; Dr. ing. h. c. Steiner, Vizepräsident des Schweizerischen Energiekonsumentenverbandes, Zürich; A. Engler, Ingenieur, Direktor der Betriebsabteilung der Nordostschweizerischen Kraftwerke A.-G. Baden (neu).

Kraftwerk Chandoline. Die Direktion der S. A. l'Energie de l'Ouest-Suisse in Lausanne gibt bekannt, dass die Generatorgruppe Nr. 4 des Kraftwerks Chandoline ab 12. Mai 1951 mit Vollast wieder in Betrieb steht.

32. Comptoir Suisse 1951 in Lausanne

Vom 8. bis 23. September 1951 findet in Lausanne das 32. Comptoir Suisse statt. Auf einer Ausstellungsfläche von 90 000 m² werden mehr als 2000 Aussteller in 16 Hallen ihre Produkte zur Schau stellen. Wie im letzten, wird auch in diesem Jahr eine neue Ausstellungshalle eingeweiht, die im Rahmen des dreijährigen Bauprogramms erstellt wurde. Das Comptoir wird auch diesmal ein wahres Fest schweizerischer Arbeit werden.

Literatur — Bibliographie

Nr. 10 823

Electric Illumination. By John O. Kraehenbuehl. New York, Wiley; London, Chapman & Hall, 2nd ed. 1951; 8°, VIII, 446 p. — Price: cloth \$ 8.—.

Vor 10 Jahren ist dieses Buch in seiner ersten Auflage herausgekommen, jedoch bei uns infolge der Kriegswirren überhaupt nicht bekannt geworden. Nur in Literaturnachweisen begegnete man ihm und dem unseren Ohren nicht fremden Namen des Autors.

Jetzt liegt das Werk in seiner 2. Auflage vor, das ein Lehrbuch für Beleuchtungstechnik ist, wie man es sich nicht besser wünschen kann. Der Verfasser, Professor an der Universität Illinois, hat es für Studierende der Architektur, des Bauingenieurwesens und für Absolventen des Einführungskurses in die Elektrotechnik geschrieben und für diese noch speziell einen Anhang mit mathematischen Ableitungen einiger lichttechnischer Beziehungen beigefügt.

Die Kapitel über objektive und subjektive Bewertung des Lichtes und über die Beleuchtung durch leuchtende Punkte, Linien und Flächen dürften zwar bei unseren Architektur Studierenden gerade wegen der mathematischen Befrachtung keinen allzu grossen Beifall finden, um so mehr aber die Abschnitte über lichtarchitektonische Elemente und über Neuheiten in der praktischen Beleuchtungstechnik, wo in verschwenderischer Fülle Anregungen mit zeichnerisch glänzender Skizzendarstellung geboten werden. Für den Studierenden, der sich in der technischen Beherrschung der Materie ausbilden möchte, sind die den einzelnen Kapiteln beigefügten Aufgaben willkommen, weil sie ihn gleichzeitig in die Probleme der Anwendung einführen.

Dem Mann der Praxis bedeutet dieses Buch ein fast unentbehrliches Nachschlagewerk, weil es das im Jahr 1947 herausgekommene IES-Lighting Handbook der Illuminating Engineering Society bis in die neueste Gegenwart ergänzt und fast alle in amerikanischen Zeitschriften erschienenen Beiträge berücksichtigt, sowie Berechnungsmethoden behandelt, die für neuzeitliche Beleuchtungsmittel entwickelt wurden. Nicht minder wichtig für den Praktiker ist das Kapitel über Unterhalt und Wirtschaftlichkeit der Beleuchtung mit Angabe von Erfahrungswerten, welche bisher in die Projektierung zu wenig oder gar nicht einbezogen wurden.

Druck, Abbildungen und vor allem die Kurvendarstellungen sowie die ganze Buchaufmachung sind vorbildlich. Man möchte nur wünschen, dass ein gleichwertiges Lehrbuch auch in deutscher Sprache unseren Studierenden der technischen Schulen zur Verfügung stände. In französischer Sprache ist 1949 das vortreffliche Buch «Rayonnement, photométrie et éclairage» von Merry Cohu erschienen 1).

J. Guanter

656.221 Nr. 117 000

Die Mechanik der Zugförderung. Von Hans Nordmann. Berlin, Akademie-Verlag, 1949; 4°, 28 S., 8 Fig. — Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Mathematisch-naturwissenschaftliche Klasse, Jahrgang 1947, Nr. 9 — Preis: brosch. DM 3.75.

Die Mechanik der Zugförderung baut sich auf drei Komponenten auf: dem Bewegungswiderstand, der Eisenbahnzüge, der Zugkraft der Lokomotive und dem Bremswiderstand. Nur die erste Komponente ist eindeutig. Die Zugkraft der Lokomotive ist an sich willkürlich regelbar bis zu einer oberen Grenze, die man aber aus Verschleissgründen im normalen Betriebe nicht anwendet. Ebenso wäre die stärkste Bremswirkung als normale für den Fahrgast nicht mehr angenehm, und man begnügt sich daher mit einer geringeren Verzögerung. Unter deren Voraussetzung beschränkt sich die Mechanik der Zugförderung mit ihrem Hauptteil, nämlich der Fahrplantheorie, auf die Synthese von Zugwiderstand und einem solchen Verlauf der Lokomotivzugkraft, wie sie ohne übermässige Abnutzung geboten werden kann.

Die vorliegende Abhandlung erörtert zuerst den Zugwiderstand und seine experimentelle Ermittlung, sodann die ebenfalls experimentelle Bestimmung der Zugkraft, vornehmlich am Beispiel der Dampflokomotive. Die Synthese besteht dann in der graphischen Ermittlung der Fahrzeit für einen gegebenen Zug über eine gegebene Strecke, der von einer Lokomotive bekannter Leistung gefördert wird. Dabei wird vor allem der Geschwindigkeitsverlauf festgestellt; gegenüber beschleunigten und verzögerten Fahranteilen bildet die gleichförmige Geschwindigkeit die Ausnahme. Der Aufbau auf Versuchswerten sichert eine gute, aber nicht übertriebene Lokomotivausnutzung.

Wenn auch die vorliegende Abhandlung nichts grundsätzlich neues bringt, so werden doch die bekannten Zusammenhänge in einer neuartigen sehr klaren und durchsichtigen Formulierung zur Darstellung gebracht.

K. Sachs

621.38 Nr. 10 736

An Introduction to Electronics. By J. Yarwood. London, Chapman & Hall, 1950; 8°, X, 329 p., 121 fig. — Price: cloth £ 1.8.—.

Dieses Buch bietet, das darf man ohne weiteres behaupten, eine nahezu vollkommene Übersicht über die moderne Elektronik. Thematisch gut aufgebaut und in logischer Folge, aus der man die grosse Vorlesungspraxis des Autors herausspürt, wird der ganze Stoff vor dem Leser, von welchem

nicht allzu tiefgehende Vorkenntnisse verlangt werden, ausgebreitet: Da sind in einem ersten Kapitel alle Grundgesetze der Elektrizität und des Magnetismus aufgeführt und hergeleitet. Es folgen Abschnitte über das Verhalten der Elektronen, die Wechselstromtheorie, einfache Röhren und ihre Schaltungstechnik, Photozellen und Kathodenstrahlröhren, sowie über Theorie und Praxis der Elektronenoptik und der UHF-Beschleunigungsröhren. Neben einem sehr ausführlichen Index am Schluss des Buches hat zudem eine ausgesuchte Liste von Büchern über die Elektronik und ihr verwandte Gebiete Aufnahme gefunden.

Wertvolle Dienste kann dieses Buch als Nachschlagewerk und als Repetitorium ganz besonders während des Studiums leisten. So betrachtet, füllt dieses Werk, welches nicht zu hohe Ansprüche stellt, aber sehr klar, übersichtlich und konzentriert abgefasst ist, eine Lücke, die im englischen Sprachgebiet auch nicht von den bekannten amerikanischen Handbüchern der Elektronik ausgefüllt wird. Diese Tatsache war es, die den Verfasser zur Veröffentlichung seines wohlgelungenen Fachbuches veranlasst hat.

Für uns aber, die wir das Englische als Fachsprache der Elektronik benötigen, lässt sich mit dem Buch ein nützlicher Nebenzweck verbinden, nämlich derjenige, die korrekten Spezialausdrücke der uns fremden Sprache dort zu finden.

J. T. Steiger

11.56 Nr. 10 817

Formulaire du frigoriste. Par G. Göttsche et W. Pohlmann. Trad. et adapt. de la 12° éd. allm. par R. Guiems. Paris, Dunod, 3° éd. 1951; 8°, XXIV, XIV, 526 p., 192 fig., tab. — Prix: relié Fr. 34.30.

Auch diese 3. französische Auflage des weit bekannten und gut eingeführten Buches ist kein Lehrbuch, sondern eine Gedächtnisstütze für den mit der Materie schon einigermassen vertrauten Ingenieur. Gegenüber der deutschen Auflage ist sie durch zahlreiche, die französischen Verhältnisse und den französischen Markt betreffende Angaben ergänzt, z. B. über die meteorologischen Verhältnisse in Frankreich, die französischen Vorschriften für Kälteanlagen (der «Code de sécurité» für Kälteanlagen wird erst vorbereitet), die französischen Tarife für die Kühlhauslagerung. Ausserdem bringt das Buch zahlreiche statistische Angaben, die neuesten aus dem Jahr 1938. Entsprechend der schon 1947 erschienenen deutschen Ausgabe ist die Literatur bis 1940 berücksichtigt. Die Preisangaben beziehen sich teils auf die deutschen, teils auf die französischen Vorkriegsverhältnisse. P. Grassmann

621.365.2 Nr. 10 825

Einführung in die Probleme des elektrischen Lichtbogenund Widerstandsofens. Von *Erich Kluss*. Berlin, Springer, 1951; 8°, 263 S., 163 Fig. — Preis: geb. DM 28.50.

Im Vorwort umschreibt der Autor das vorliegende Buch als «eine Einführung in die elektrischen Probleme des Lichtbogen- und Widerstandsofens». Das Buch ist für den rechnenden Ingenieur geschrieben. Die grundlegenden Formeln für die Induktivitäten verschiedener Leiteranordnungen, für das magnetische Feld der Ströme, für die Wirbelströme und sogar für die Kontaktprobleme werden abgeleitet. Anschliessend werden die Hauptprobleme des elektrischen Ofens behandelt: Das Strömungsfeld im Widerstandsofen und die Lichtbogenentladung im Lichtbogenofen. Der Praktiker hätte allerdings gerne an Hand von Beispielen die Bestimmung des wichtigen Strömungsfeldes im elektrolytischen Troge gefunden. Das letzte Viertel des Buches behandelt den Transformator in verschiedenen Betriebszuständen sowie die Ausgleichsvorgänge bei Schaltmanövern.

Der Ingenieur aus der Praxis sucht immer noch nach dem Werk, das alle Hauptprobleme der Elektrotechnik behandelt, so dass dazu nur noch die Fachliteratur der Spezialgebiete notwendig wäre. Das vorliegende Buch behandelt in diesem Sinne einige Teilgebiete der Elektrotechnik, und bietet damit einem weiteren Leserkreise Interessantes.

Kläv

621.34:63 Nr. 10 709

Rural Electrification Engineering. By Unus F. Earp. New York, McGraw-Hill, 1950; 8°, IX, 313 p., fig., 44 tab. —

¹⁾ siehe Besprechung im Bull. SEV Bd. 40(1949), Nr. 23, S. 911

McGraw-Hill Publications in Agricultural Engineering — Price: cloth & 1.8.—.

Das Buch soll als Leitfaden dienen für das Elektrizitätswerk-Personal, das für Arbeiten der Energieversorgung in der Landwirtschaft eingesetzt wird. Der Verfasser rechnet nicht damit, dass der Leser über spezielle Kenntnisse der Elektrotechnik verfügt, setzt aber doch eine für einen Laien eher überdurchschnittliche mathematische Vorbildung und vor allem gutes technisches Verständnis voraus.

Nach einer Einführung über die Entwicklung der Elektrotechnik im allgemeinen und deren Anwendung in der Landwirtschaft, wird der Leser in äusserst knapper aber klarer Form mit den grundlegenden Begriffen und Gesetzen der Elektrotechnik vertraut gemacht. Generelle Ausführungen über Erzeugung, Übertragung und Verteilung elektrischer Energie umreissen in grossen Zügen das Gebiet, in welchem sich die mannigfaltigen Probleme bewegen, welche die Anwendung der Elektrizität in der Landwirtschaft aufwirft.

Im zweiten, wohl wichtigsten Teil, behandelt das Buch eingehend die Fragen der Projektierung und des Baues von Freileitungen. Nach Erörterung der in Amerika üblichen Bauformen und des verwendeten Materials, einschliesslich Schutzapparaten, erörtert der Verfasser die grundlegenden Gesichtspunkte, welche für die Wahl des Verteilsystems und des Trasses massgebend sein müssen. Besondere Sorgfalt wird den Kapiteln über die eigentliche Leitungsberechnung gewidmet, und zwar sowohl in Bezug auf die Ermittlung der Leitungsverluste, des Spannungsabfalles, des Einflusses des Leistungsfaktors usw., wie auch hinsichtlich der Anforderungen, welche an die mechanische Festigkeit gestellt werden. Die verwendeten Tabellen und Diagramme erleichtern die Rechnung sehr und bieten auch für unsere Verhältnisse wertvolle Anregungen.

Der dritte Abschnitt geht über zur Behandlung der für die Anwendung der Elektrizität in der Landwirtschaft auf dem Gebiete der Kraft, der Wärme und des Lichtes notwendigen elektrischen Apparate. Eingehend werden die Elektromotoren, ihre verschiedenen Arten, sowie deren Charakteristiken und die Schutzapparate, wie Schalter, Sicherungen, Relais usw. besprochen. Probleme des Wärmebedarfs, der Wärme-Isolation bzw. der -Leitung sind das Thema des folgenden Kapitels. Bei der Behandlung der Beleuchtung kommen die neuesten Begriffe der Beleuchtungstechnik, besonders auch die Fluoreszenzbeleuchtung zur Sprache, Bezeichnend für die Bedeutung des Gebietes der Elektronik und ihr Eindringen in die Landwirtschaft ist ein eigenes Kapitel, in welchem neben Gleichrichtern auch Photozellen und Kathodenstrahlröhren behandelt werden. Als Schluss folgt ein sehr einfacher und klarer Überblick über Messapparate und über die Messtechnik.

Finanziellen und organisatorischen Problemen ist der letzte Abschnitt gewidmet. Leider beschränkt sich das Kapitel über wirtschaftliche Fragen nur auf einige grundsätzliche Feststellungen. Es fehlen konkrete Zahlenangaben über Energieverbrauch, Energiepreise oder gar über die Grenzkosten, bei welchen die Anwendung der Elektrizität noch wirtschaftlich erscheint. Die ziemlich eingehenden Ausführungen über die Organisation der Werke hinsichtlich der Propagierung und Durchführung der Elektrifizierung der Landwirtschaft sind hauptsächlich für Amerika von Interesse und lassen sich nicht ohne weiteres auf unsere Verhältnisse übertragen.

Das ganze Buch zeichnet sich durch Klarheit, Zweckdienlichkeit und Einfachheit aus. Wenn auch seine Grundlagen oft von den unsrigen verschieden sind, so vermittelt es doch in methodischer wie in sachlicher Hinsicht originelle Gedanken und Anregungen. Sein Studium dürfte sich daher besonders für diejenigen lohnen, welche sich mit der Projektierung, dem Bau und dem Betrieb von einfachen Überlandnetzen und mit der Heranbildung des diese Anlagen betreuenden Personals befassen.

J. Blankart

621.892.092 Nr. 10 780 Kältemaschinenöle. Von Heinz Steinle. Berlin, Springer, 1950; 8°, 146 S., 60 Fig., Tab. — Preis: brosch. DM 12.—.

In Kältemaschinen liegen Betriebsbedingungen vor, die an die Schmieröle aussergewöhnliche Anforderungen stellen. Der Autor greift in seinen Betrachtungen diejenigen Gesichtspunkte der Schmieröltechnologie heraus, die für den Betrieb von Kältemaschinen besonders kennzeichnend sind, und verhilft damit dem Ölfachmann und dem Kältetechniker zu einem gegenseitigen Verständnis. Nach einer allgemeinen Übersicht über die Natur und Technologie der Mineralöle werden diejenigen Untersuchungsmethoden ausführlich behandelt, welche für die Beurteilung von Kältemaschinenölen besonders wichtig sind, wie z. B. Wassergehalt, Harzgehalt, Paraffingehalt usw. Dabei wird nicht nur der Beschreibung der Methoden, sondern auch der Interpretation der Resultate in Bezug auf Kältetechnik besondere Beachtung geschenkt. Eine besondere Würdigung erfährt natürlich das Kälteverhalten der Öle, sowie die Wechselwirkung zwischen Öl und Kühlmittel. Wertvolle Angaben, zum Teil konstruktiver Natur über die Schmierung von Kältemaschinen und über Korrosionsfragen zeigen, dass der Autor mit den Fragen der Praxis vertraut ist. Ein ausführlicher Literaturnachweis, sowie eine Zusammenstellung der heute gebräuchlichen Anforderungen und Prüfmethoden vervollständigen das Werk, welches sowohl dem Ölfachmann, wie auch dem Kältetechniker empfohlen werden kann. Zürcher

9:625.1 (43) Nr. 117 002

Die ältere preussische Eisenbahngeschichte. Von Hans Nordmann. Berlin, Akademie-Verlag, 1950; 4°, 36 S.—Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Mathematisch-naturwissenschaftliche Klasse, Jahrgang 1948, Nr. 4— Preis: brosch. DM 3.25.

Mit dieser Abhandlung hat sich der bekannte Fachmann, um nicht zu sagen der Begründer der Disziplin der modernen «Eisenbahnmechanik», Prof. Nordmann, dem immer dankbaren Gebiet der Eisenbahngeschichte zugewandt. Es wird geschildert, wie die älteren preussischen Bahnen politisch-geographisch bis zum Jahre 1859 entstanden sind, welches die ersten Vereinheitlichungen auf tarifarischem und technischem Gebiet gewesen sind und welchen Stand die Eisenbahntechnik in Deutschland um das Jahr 1850 erreicht hat. Ähnlich wie in anderen Ländern entschied sich die preussische Regierung für die Privatbahn und das erste preussische Eisenbahngesetz vom Jahre 1838 war ganz auf Privatbahnen als zukünftige Norm zugeschnitten, an deren Kapital sich der Staat weder zu beteiligen noch dessen Verzinsung zu garantieren gedachte. Das ändert sich 1842 zunächst nur gegenüber Bahnen, die dem Staat besonders erwünscht erscheinen, ohne dass die Entstehung weiterer Privatbahnen ohne Staatshilfe sich dadurch verlangsamt oder gar aufgehört hätte. 1847 machen in den Vereinigten Provinzial-Landtagen die ersten stärkeren Staatsbahn-Bestrebungen sich bemerkbar, so für die - wegen der grossen Weichselbrücke -- teuere sogenannte Ostbahn. 1848 war schon ein ganz stattliches Eisenbahnnetz vorhanden, der Staatsbahn-Wunsch verstärkte sich auf der Regierungsseite um so mehr. als man in der Erhebung der im Gesetz von 1838 vorgesehenen Eisenbahnsteuer das Mittel zur Schaffung des zum allmählichen Ankauf der Privatbahnen nötigen Kapitals glaubte erblicken zu können. Am zunehmenden parlamentarischen Widerstand scheiterte jedoch dieses Vorgehen (1859). Das folgende sogenannte «gemischte System» - Staatsbahn und Privatbahnen nebeneinander - vermag nicht voll zu befriedigen. Die Klagen mehren sich über mangelhafte Leistungen der Privatbahnen. Nachdem die schon von Bismarck bald nach der Reichsgründung geplante Reichsbahn am süddeutschen Einspruch gescheitert war, setzte dann 1879 die grosse preussische Verstaatlichung mit den preussisch-hessischen Staatsbahnen als Endziel ein, die nach dem ersten Weltkrieg mit den Staatsbahnen der übrigen deutschen Länder in die Deutsche Reichsbahn aufgingen.

Die technischen Ausführungen gelten den Bahnanlagen, Brücken und Fahrzeugen; einen Anhang bildet die Schilderung von vier Einzelschicksalen wichtiger preussischer Bahnen, nämlich einer reinen Staatsbahn, einer verstaatlichten Bahn, einer Privatbahn im Staatsbetrieb und einer reinen Privatbahn.

Die Schrift des hervorragenden Eisenbahnfachmanns ist wegen so mancher Analogien in der Entwicklung und im Zusammenhang mit den heutigen Bestrebungen, eine Anzahl weiterer Privatbahnen unseres Landes in den Besitz des Bundes überzuführen, auch für uns besonders lesenswert.

K. Sachs

Briefe an die Redaktion - Lettres à la rédaction

Zur Kontroverse über die Starterbatterie

[Bull. SEV Bd. 42(1951), Nr. 2, S. 65...66, und Nr. 6, S. 198...200.]

Vorbemerkung der Redaktion

Im Bull. SEV 1951, Nr. 2, S. 65...66, erschien ein Artikel «Eine Verbesserung der Starterbatterie». Darin sind Kurven über das Startvermögen einer neuen Leclanché-Batterie, der «Dynamic»-Batterie, ferner derjenigen einer «normalen» Leclanché-Batterie und drei anderer, mit den Zahlen 1, 2 und 3 bezeichneten Batterien wiedergegeben. Die Kurven wurden einem Versuchsprotokoll des «Laboratoire de Chimie-Physique de l'Ecole Polytechnique de Lausanne» entnommen.

Im Bull. SEV 1951, Nr. 6, S. 198...200, erschien unter dem Titel «Über den Begriff und die Aufgabe der Starter-Batterie» eine Stellungnahme zu den in Nr. 2 veröffentlichten Kurven.

Der erste Artikel wurde uns von der Leclanché S. A., Yverdon, zur Verfügung gestellt, der zweite, die Stellungnahme dazu, von der Accumulatorenfabrik Oerlikon. In Berücksichtigung des Wunsches der beiden Parteien, unsere Leser, soweit dies in dieser Zeitschrift und auf diesem Wege möglich ist, aufzuklären, veröffentlichen wir nun noch die Antwort der Leclanché S. A. samt Replik und Duplik und schliessen damit die Diskussion.

Antwort:

Der im Bulletin SEV 1951, Nr. 6, S. 198...200, unter dem Titel «Über den Begriff und die Aufgabe der Starterbatterie» erschienene Zuschrift veranlasst die Firma Leclanché S. A., Yverdon, zu folgender Richtigstellung:

Der Verfasser jenes Aufsatzes behauptet, dass die Diagramme für diejenigen Vergleichsbatterien, welche mit keiner Marke genannt sind, nicht den Tatsachen entsprechen. Wir möchten demgegenüber darauf hinweisen, dass die mit 1...3 numerierten Vergleichsbatterien ohne unsere Vermittlung angeschafft wurden. Es ist uns indessen bekannt, dass es sich hierbei um neue Batterien handelt, welche direkt durch das Laboratoire de Chimie-Physique de l'Ecole Polytechnique de Lausanne gekauft wurden.

Die Auffassung, dass die Leclanché-«Dynamic»-Batterie nicht mit den normalen Batterien verglichen werden könne, ist unbegründet. Ausschlaggebend für Batterien von gleichem Volumen und Kapazität, die dem gleichen Verwendungszwecke dienen, sind allein das Startvermögen und die Lebensdauer.

Die von der Accumulatorenfabrik Oerlikon hervorgehobenen Argumente, welche die von uns verwirklichten Verbesserungen entwerten sollen, halten der Prüfung nicht stand. Es wird uns vorgehalten, eine grössere Zahl von Platten zu verwenden, wobei der Verfasser gleichzeitig den Beweis erbringt (Fig. 1...4), dass ein derartiger Bau bessere Resultate gewährleistet. Ohne darüber orientiert zu sein, welche Mittel uns in die Lage versetzt haben, darauf hinzuweisen, dass die Batterie «Dynamic» besonders gegen Überladungen wenig empfindlich ist, wird gesagt, dass unsere Ausführungen unrichtig seien. Es wird versucht, diese Behauptung durch Messungen, die an einer Dynamo (Fig. 5) während der Ladung von zwei Batterien, mit a und b bezeichnet, durchgeführt wurden, zu beweisen. Diese Ergebnisse sind nun gerade für die Batterie Leclanché-«Dynamic» unzutreffend.

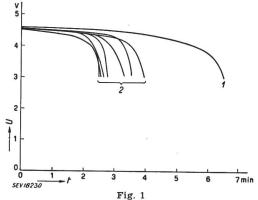
Es wird uns weiter die Ausnützung bereits bekannter physikalischer Tatsachen vorgehalten. Wir stellen hiezu fest, dass wir nie behauptet haben, einen neuen Akkumulator, basierend auf unbekannten elektrochemischen Reaktionen, erfunden zu haben. Wir bestätigen jedoch, dass der bisherige Blei-Akkumulator weitgehend verbessert werden konnte. Es ist allgemein bekannt, dass bei der schnellen Entladung des normalen Akkumulators bisher nur ein kleiner Teil des Bleis an der chemischen Reaktion teilgenommen hat. Bei der Batterie «Dynamic» ist es uns gelungen, die Reaktionsfähigkeit zu vergrössern, weshalb auch das Startvermögen erhöht werden konnte, wobei sich die Lebensdauer und die Unempfindlichkeit gegen Überladungen als sehr gut erwiesen haben. Diese Tatsachen stellen unserer Ansicht nach einen

bemerkenswerten Fortschritt auf dem Gebiete des Blei-Akkumulators dar.

Die Vorzüge dieser Batterie werden übrigens durch verschiedene Versuche, die zurzeit im Gange sind, bestätigt, und wir werden die Leser des SEV-Bulletins zu gegebener Zeit noch ausführlicher darüber orientieren.

Yverdon, den 29. März 1951

Leclanché S. A.


Replik:

In der vorangehenden Zuschrift werden unsere in der Veröffentlichung im Bulletin 1951, Nr. 6, S. 198...200 zum Ausdruck gebrachten Zweifel an der Richtigkeit der im Bulletin 1951, Nr. 2, S. 65...66 von der Firma Leclanché publizierten Kurven als unbegründet hingestellt.

Wir halten daran fest, dass die im erwähnten Artikel des Heftes Nr. 2 für die drei Batterien der nicht genannten Firmen dargestellten Spannungslagen, schon mit Rücksicht auf die Anfangsspannung, niemals von Batterien stammen können, die als marktfähig bezeichnet werden dürften.

Da die Herkunft dieser mit 1 bis 3 numerierten Batterien nicht bekannt ist, erübrigt es sich, hier weiter darauf einzutreten.

Die von uns geäusserten Zweifel an der Richtigkeit der für die Dynamic-Batterien publizierten Kurven fussen auf den Ergebnissen von Kontrollversuchen, die wir mit einer ganzen Anzahl Dynamic-Batterien durchgeführt haben. Diesen Versuchen lagen die gleichen Bedingungen zu Grunde, wie sie im Artikel Seite 65...66 des Bulletins Nr. 2 beschrieben wurden. Die Versuche zeigten, dass die mit der Dynamic-Batterie zu erreichenden Werte bei weitem nicht den veröffentlichten Kurven entsprechen. Als Beispiel sehen wir in Fig. 1 in Kurve 1 die in Fig. 3 des Artikels im Bulletin

Kontinuierliche Entladung mit $I=3,3 \times$ Kapazität bei $-18\,^{\circ}$ C. I Im Artikel des Bulletins Nr. 2 des SEV, Seite 66, veröffentlichte Kurve für die Dynamic-Batterien.

2 Kurvenschar der in unseren Versuchen mit einer grösseren Anzahl Dynamic-Batterien unter den gleichen Bedingungen wie 1 erhaltenen Resultate. Diese Werte werden durch die Ergebnisse der in unserem Auftrage durchgeführten Prüfung in den Technischen Prüfanstalten des Schweizerischen Elektrotechnischen Vereins bestätigt.

Nr. 2 für die Dynamic-Batterien veröffentlichten Werte, während die Kurvenschar 2 die von uns unter gleichen Bedingungen erhaltenen Werte dieser Spezialbatterie darstellt. In unserem Auftrag wurden in den Technischen Prüfanstalten des Schweizerischen Elektrotechnischen Vereins mit einer grösseren Zahl auf dem freien Markt erworbener Dynamic-Batterien die Versuche wiederholt. Diese Prüfung hat die bei uns gefundenen Resultate voll bestätigt.

Im übrigen haben wir in unserer von der Firma Leclanché beanstandeten Veröffentlichung nicht den Wert der Dynamic-Batterie kritisiert, sondern lediglich den Anspruch auf Neuheit widerlegt.

Eine speziell bei tiefen Temperaturen und hohen Entladeströmen günstige Massenzusammensetzung wurde uns mit dem inzwischen abgelaufenen Schweizer Patent Nr. 172 480 schon 1934 geschützt.

Die weiter beanstandeten Diagramme der Stromaufnahme in Fig. 5 unseres Artikels im Heft Nr. 6 sind bei der Ladung der Batterietypen 3 Y 7 und 3 E 5 aufgenommen worden.

Zürich 50, den 5. Mai 1951

Accumulatoren-Fabrik Oerlikon

Duplik:

Wir sehen uns wiederum veranlasst, die verschiedenen und oft sich widersprechenden Ausführungen der Accumulatorenfabrik Oerlikon zu beantworten. In unserer Duplik werden die Haupteigenschaften der «Dynamics-Batterie durch Kurven, welche vom Laboratoire de Chimie-Physique de l'Ecole Polytechnique de Lausanne erstellt wurden, illustriert.

Startvermögen. Was die mit 1...3 bezeichneten Batterien betrifft, bestätigen wir, wie bereits erwähnt, dass es sich um neue Akkumulatoren handelt, welche ohne unsere Vermittlung direkt durch das erwähnte Laboratorium dem Markte entnommen worden sind.

Die Replik der Accumulatorenfabrik Oerlikon enthält einen neuen Gesichtspunkt: Die Kurve der «Dynamic»-Batterie wird nun angezweifelt, was bisher nicht der Fall war. Die Accumulatorenfabrik Oerlikon stützt sich dabei auf Versuche, welche in ihren Laboratorien durchgeführt worden sind und durch eine unabhängige Prüfstelle bestätigt sein sollen. Wir bestreiten unserseits, dass die von unserer Konkurrenz publizierten Kurven normale «Dynamic»-Batterien betreffen. Als Bestätigung hierfür möchten wir die Kurven veröffentlichen, welche nach einer Prüfung von zwei im Handel gekauften «Dynamic»-Batterien durch die Lausanner Prüfinstanz erzielt wurden (Fig. 2). Zahlreiche in unseren eigenen Laboratorien durchgeführte Versuche ergeben gleiche Resultate.

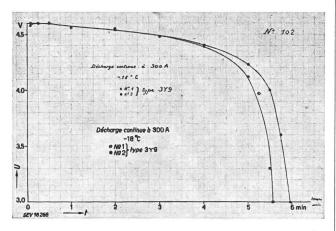


Fig. 2

Kontinuierliche Entladung mit 300 A bei —18°C

von 2 Leclanché-Dynamic-Batterien (3 Y 9)

Es sei nebenbei bemerkt, dass die von der Accumulatorenfabrik Oerlikon publizierten Kurven keine Angabe über den Typ der geprüften «Dynamic»-Batterie enthalten. Diese Unklarheit lässt schon an sich die Türe offen für Bestreitungen der Vergleichsresultate. Die von uns publizierte Kurve bezog sich auf eine «Dynamic»-Batterie Typ 3 Y 9 (Entladung mit 300 A).

Wir möchten weiter bemerken, dass die von der Accumulatorenfabrik Oerlikon gemessenen Kurven, wenn sie auch unter den von uns publizierten Kurven der «Dynamic»-Batterie 3 Y 9 liegen, denjenigen für Normalbatterien immer noch deutlich überlegen sind.

Lebensdauer. Unsere Duplik wäre unvollständig, wenn wir dem Leser die damals versprochenen Angaben über die Lebensdauer vorenthalten würden. Die Versuche wurden mit den gleichen Batterien, welche bereits für die Startvermögen-Prüfung verwendet wurden, durchgeführt. Die gewählte Prüfung entspricht einem amerikanischen Test. Sie besteht darin, dass die Batterie während 5 Stunden mit 10 A geladen wird, worauf eine Entladung unter 40 A während 1 Stunde erfolgt. Der Test wurde 400mal wiederholt. Sämtliche Batterien wurden gleichzeitig geprüft. Fig. 3 zeigt das erzielte Resultat.

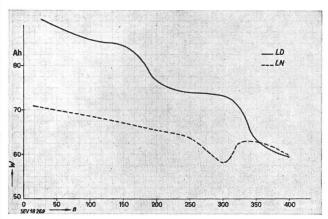


Fig. 3

Kapazität bei 40 A Belastung in Funktion der
Anzahl Entladungen

LD Leclanché-Dynamic 3 Y 9

LN Leclanché-Normal 3 E 6

Alle diese Versuche, welche durch ein Universitätslaboratorium durchgeführt wurden, dessen Unparteilichkeit nicht angefochten werden kann, zeigen eindeutig, dass die «Dynamic»-Batterie ein hohes Startvermögen auch bei sehr tiefen Temperaturen besitzt, wobei sich die Lebensdauer und die Unempfindlichkeit gegen Überladungen als sehr gut erwiesen

Yverdon, den 22. Mai 1951

Leclanché S. A.

Schlusswort der Redaktion

Beide Parteien veröffentlichen Versuchsresultate aus firmenfremden Laboratorien. Die Kurven stimmen aber nicht überein. Trotzdem die Quelle der Differenz nicht klar liegt, möchten wir die Auseinandersetzung im Bulletin nicht verlängern, in der Meinung, dass die Mehrheit unserer Leser daran keinen besonderen Gefallen hat. Mehrjährige Betriebserfahrungen werden vielleicht zeigen, ob bestimmte Batterien sich besser bewähren als andere.

Estampilles d'essai et procès-verbaux d'essai de l'ASE

III. Signe «antiparasite» de l'ASE

Sur la base de l'épreuve d'admission, subie avec succès, selon le § 5 du Règlement pour l'octroi du signe «antiparasite» de l'ASE [voir Bull. ASE t. 25(1934), n° 23, p. 635...639, et n° 26, p. 778], le droit à ce signe a été accordé:

A partir du 15 avril 1951. S. A. des produits électrotechniques Siemens, Zurich. (Représentant de la Siemens-Schuckert-Werke S. A., Erlangen.)

Marque de fabrique:

Aspirateur de poussière. Siemens Super V. St. 146 A. 220 V, 300 W.

IV. Procès-verbaux d'essai

[Voir Bull. ASE t. 29(1938), No 16, p. 449.]

P. Nº 1486.

Objets:

Quatre aspirateurs de poussière industriels

Procès-verbal d'essai ASE: O. Nº 25 921, du 10 avril 1951. Commettant: Nilfisk S. A., Limmatquai 94, Zurich.

Inscriptions:

Descriptions:

Aspirateur de poussière industriel, selon figure, avec deux soufflantes centrifuges entraînées par des moteurs monophasés série, dont le fer est isolé de la carcasse. Tuyau souple, rallonges et diverses embouchures permettant d'aspirer et de souffler. Les deux moteurs sont branchés ensemble au réseau par un cordon à trois conducteurs sous double gaine isolante, fixé l'aspirateur, avec fiche 2 P + T.

Ces aspirateurs sont conformes aux «Conditions tech-

niques auxquelles doivent satisfaire les aspirateurs électriques de poussière» (Publ. n° 139 f), ainsi qu'au «Règlement pour l'octroi du signe distinctif antiparasite» (Publ. n° 117 f).

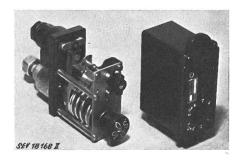
Valable jusqu'à fin mars 1954.

P. Nº 1487.

Objets:

Petits pressostats

Procès-verbal d'essai ASE: O. Nº 25 723/II, du 29 mars 1951. Commettant: Fr. Sauter S. A., Bâle.


Désignations:

Type DSS 2 °N 7652 (différence de pression 0,2...1,2 kg/cm²)
Type DSS 12 N° 7654 (différence de pression 0,5...2,5 kg/cm²)

Inscriptions:

Description:

Petit pressostat unipolaire, selon figure, à touches de contact en argent, à couplage brusque. Socle et capot en ma-

tière isolante moulée noire. Pressions d'enclenchement et de déclenchement réglables par bouton ou vis. Interrupteur à main à 3 positions: déclenché, automatique, permanent. Ces petits pressostats ont subi avec succès des essais analogues à ceux prévus dans les «Prescriptions pour les interrupteurs» (Publ. n° 119 f). Utilisation dans des locaux secs ou temporairement humides.

Valable jusqu'à fin avril 1954.

P. Nº 1488.

Objet:

Humidificateur

Procès-verbal d'essai ASE: O. N° 25 636/I, du 11 avril 1951. Commettant: Sifrag, Fabrique d'appareils spéciaux, Konsumstrasse 4, Berne.

Inscriptions:

SIFRAGE

Luftbefeuchter

| Spezialapparatebau & Ingenieurbureau Frei A.G. Bern | Modell BK2 | Mot. Type 012 | Amp. 0.45/0.25 | App. Nr. 263 | Mot. Nr. 11524 | Volt 220/380 | PS 1/15 | N1 80 W | ~50 | 3 Ph.

Description:

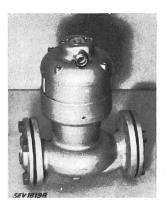
Appareil, selon figure, pour la ventilation et l'humidification des locaux. Moteur triphasé à induit en court-circuit logé dans un carter en tôle. Vaporisateur centrifuge à l'extrémité inférieure de l'arbre, ventilateur à l'extrémité supérieure. Réservoir à eau à la partie inférieure de l'appareil, avec vanne à flotteur et tubulures de trop-plein et de vidange; prévu pour raccordement à des canalisations fixes. Cordon de raccordement à quatre conducteurs sous double

gaine isolante (3 P + T), introduit par presse-étoupe et fixé à l'appareil.

Cet humidificateur a subi avec succès les essais relatifs à la sécurité.

Valable jusqu'à fin avril 1954.

P. Nº 1489.


Objet:

Pompe de circulation

Procès-verbal d'essai ASE: O. N° 25 537, du 17 avril 1951. Commettant: Mefag S. A., Schwanenplatz 4, Lucerne.

Inscriptions:

EMERJY
Type HP 14 No. 1586
190/220 V A 330/380 V 50 Hz
0,13 A 0,07 A 55 W
1400 t'm 1/45 CV
LYON - FRANCE

Description:

Pompe de circulation pour installations de chauffage central, selon figure. Moteur triphasé à induit en court-circuit, adossé latéralement. Roue de la pompe et induit du moteur fixés à un arbre commun, lubrifié par eau. Induit séparé du fer du stator par un manchon étanche en métal mince. Enroulement en cuivre émaillé. Bornes de raccordement et vis de mise à la terre protégées par un couvercle vissé. Tubulure de raccorde-

ment pour tube isolant armé d'acier.

Cette pompe de circulation a subi avec succès les essais relatifs à la sécurité d'emploi.

Valable jusqu'à fin avril 1954.

P. Nº 1490.

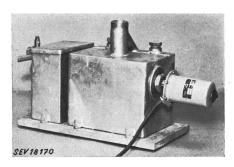
Objet:

Générateur de vapeur

Procès-verbal d'essai ASE: O. Nº 26 064, du 13 avril 1951. Commettant: B. Egli & Fils, Fabrique de machines et d'appareils, Horgen.

Inscriptions:

E G S O Schwitz- u. Gasrauch-Apparate B. Egli & Sohn, Horgen Zch. + Patente +


sur le thermoplongeur:

Lükon

Fabr. elektrotherm. Apparate
P. Lüscher, Täuffelen
Volt 500 ~ kW 1 F. No. 2351
3511998

Description:

Générateur de vapeur, selon figure, pour fumer la viande par voie humide. Réservoir à eau en métal, avec thermoplongeur introduit latéralement. Celui-ci se compose d'une

barre chauffante méplate sous gaine métallique et est équipé d'un disjoncteur thermique, qui déclenche l'appareil en cas de surchauffe par suite d'un fonctionnement à sec. Cordon de raccordement sous gaine de caoutchouc, introduit par presse-étoupe et fixé à l'appareil.

Ce générateur de vapeur a subi avec succès les essais relatifs à la sécurité.

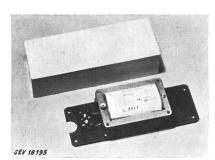
P. Nº 1491.

Appareil auxiliaire Objet: pour lampe fluorescente

Procès-verbal d'essai ASE: O. Nº 24 901a, du 14 avril 1951.

Commettant: F. Gehrig & Cie, Ballwil (LU).

Inscriptions:


F. Gehrig & Co. Ballwil (Luz) Type AK

32 Watt 220 V 50 Hz 0.43 A No. 5142

Description:

Appareil auxiliaire, selon figure, pour lampe fluorescente de 32 W, sans coupe-circuit thermique, ni starter. Enroule-

ment en fil de cuivre émaillé. Plaque de base en papier bakélisé de 3 mm d'épaisseur, couvercle en tôle. Bornes sur socle en matière isolante moulée brune.

Cet appareil auxiliaire a subi avec succès des essais analogues à ceux prévus dans les «Prescriptions pour transformateurs de faible puissance (Publ. n° 149 f). Utilisation: dans des locaux secs ou temporairement humides.

Les appareils de cette exécution portent la marque de qualité de l'ASE; ils sont soumis à des épreuves périodiques.

Valable jusqu'à fin avril 1954.

P. Nº 1492.

Torche antidéflagrante Objet:

Procès-verbal d'essai ASE: O. Nº 26 088, du 16 avril 1951. Commettant: J. Kastl, Articles d'électrotechnique et de radiotechnique en gros, Dietikon (ZH).

Inscriptions:

USA Lite, USA Electric Mfg. Comp. New York UL, Listed under reexamination service of Underwriters Laboratories Inc.

Description:

Torche cylindrique de 18 cm de longueur et d'environ 5 cm de diamètre, équipée de deux piles de 1,5 V. La lampe est antidéflagrante.

Cette torche peut être utilisée dans des locaux présentant des dangers d'explosion.

Valable jusqu'à fin avril 1954.

P. Nº 1493.

Objet:

Machine à laver

Procès-verbal d'essai ASE: O. Nº 25 320b, du 24 avril 1951. Commettant: P. Stadlin & Cie, Hardturmstrasse 102, Zurich.

Inscriptions:

STAHL
Paul Stadlin & Co., Zürich 5
Generalvertretung
Type 102 Nr. 1551 Baujahr 1951
PS 0,34 Umdr. 1400 Volt 220/380
Heizwert in Watt 4500

Description:

Machine à laver, selon figure, avec chauffage. Barres chauffantes logées au fond de la cuve à linge. Agitateur tournant alternativement dans un sens et dans l'autre. Commande par moteur triphasé blindé, à ventilation exté-rieure, à induit en court-cir-cuit. Interrupteurs pour le chauffage et le moteur, ainsi qu'une lampe luminescente avec résistance auxiliaire. Cordon de raccordement à quatre conducteurs, sous double gaine isolante, avec fiche 3 P + T. Poignées isolées.

Cette machine à laver a

subi avec succès les essais relatifs à la sécurité d'emploi. Utilisation: dans des locaux mouillés.

Communications des organes des Associations

Les articles paraissant sous cette rubrique sont, sauf indication contraire, des communiqués officiels des organes de l'ASE et de l'UCS

Nécrologie

Nous déplorons la perte de Monsieur Paul Keller, ingénieur, membre de l'ASE depuis 1909 (membre libre), directeur des Forces motrices bernoises S. A., décédé le 19 mai 1951 à Berne, à l'âge de 72 ans. Nous présentons nos sincères condoléances à la famille en deuil et aux Forces motrices bernoises.

Comité Technique 33 du CES

Condensateurs de puissance

Sous-comité de la neutralisation de l'influence des condensateurs par bobines de réactance

Ce sous-comité a tenu sa 2° séance le 20 avril 1951, à Zurich, sous la présidence de M. P. Schmid. Il s'est occupé principalement d'un deuxième projet du Chapitre F des Recommandations pour l'emploi de condensateurs à courant alternatif de grande puissance pour l'amélioration du facteur de puissance dans des installations à basse tension. Il a été décidé de compléter le projet par les décisions du sous-comité et de le mettre au net par un petit comité de rédaction, constitué par MM. H. Elsner, P. Schmid et E. Schiessl, avant de le transmettre au CT 33.

Admission de systèmes de compteurs d'électricité à la vérification

En vertu de l'article 25 de la loi fédérale du 24 juin 1909 sur les poids et mesures, et conformément à l'article 16 de l'ordonnance du 23 juin 1933 sur la vérification des compteurs d'électricité, la commission fédérale des poids et mesures a admis à la vérification les systèmes de compteur d'électricité suivants, en leur attribuant le signe de systèmes indiqués:

Fabricant: Landis & Gyr A.-G., Zoug.

Adjonction au

5

Compteur à induction à 1 système moteur, type CF 7.

Si

Compteur à induction à 2 systèmes moteurs, types FF 7, HF 7, DF 7, KF 7, LF 7.

5

Compteur à induction à 3 systèmes moteurs, type MG 21.

S

Compteur à induction à 2 systèmes moteurs, types FG 21, HG 21, DG 21, KG 21, LG 21.

Berne, le 18 avril 1951.

Le président de la commission fédérale des poids et mesures: P. Joye

Place au Congo belge pour un ingénieur électricien

Nous avons appris que la Direction de l'Administration nationale de l'électricité, à Bruxelles, cherche un ingénieur électricien diplômé pour des travaux au Congo belge. Cet ingénieur, âgé de 30 à 40 ans, devrait être capable de diriger le montage de la partie électrique d'usines génératrices. En outre, il devrait être à même d'établir des projets de lignes aériennes et de réseaux de distribution et d'en assumer l'exécution.

Les intéressés sont priés d'adresser leur offre, rédigée en français, avec curriculum vitae et tous les renseignements nécessaires, à Monsieur Paul A. Tami, ingénieur civil S. I. A., 30, rue Marie de Bourgogne, Bruxelles.

Signes graphiques pour installations à courant faible

Publication nº 112 dfe

Cette publication trilingue (allemand, français, anglais) est en vente auprès de l'Administration commune de l'ASE et de l'UCS, au prix de fr. 6.— (fr. 4.— pour les membres de l'ASE) l'exemplaire.

Télévision

Numéro spécial consacré au Congrès International de la Télévision de 1948, à Zurich

Le numéro 17 du Bulletin de l'ASE 1949 a été consacré entièrement au Congrès International de la Télévision qui s'est tenu du 6 au 10 septembre 1948, à Zurich, et avait groupé plus de 300 spécialistes. Ce Congrès avait été organisé par le Comité Suisse de la Télévision, avec le concours de l'Ecole Polytechnique Fédérale.

Cet intéressant numéro spécial d'environ 140 pages de texte renferme, dans leur langue originale, les 36 conférences présentées à ce congrès, ainsi que les principaux textes des discussions. Il constitue un remarquable aperçu de l'état actuel de la télévision dans le monde entier et traite de toutes les questions qui se rapportent à ce domaine.

Afin d'en permettre une diffusion aussi grande que possible, le prix de ce numéro spécial a été réduit à fr. 7.50 dès fin mai 1950, ce qui doit en faciliter l'acquisition à un plus grand nombre d'intéressés. Les commandes doivent être adressées à l'Administration commune de l'ASE et de l'UCS, Seefeldstrasse 301, Zurich 8.

66° Assemblée générale (extraordinaire) de l'ASE, du 26 avril 1951, à Zurich

Le 26 avril 1951, l'ASE a tenu à Zurich sa 66° Assemblée générale (extraordinaire), sous la présidence de M. A. Winiger, président. 237 personnes, totalisant 867 voix, participèrent à cette assemblée, dont l'objet principal était l'extension de l'immeuble de l'Association. Les documents et les propositions ont été publiés dans le Bulletin de l'ASE 1951, nº 7, p. 219...224. Après un discours d'ouverture du président, le délégué de la Commission d'administration de l'ASE et de l'UCS, M. A. Kleiner, donna en allemand des explications détaillées, avec projections lumineuses, sur le projet d'aménagement de la propriété de l'Association à la Seefeldstrasse nº 301, Zurich 8, puis M. H. Leuch, secrétaire de l'ASE, fit un exposé en français. Au cours de la discussion qui suivit, M. L. Mercanton, vice-président de l'UCS demanda tout d'abord la parole pour présenter les propositions formulées par le Comité de l'UCS à l'intention de l'Assemblée générale de l'ASE. Le Comité de l'UCS reconnaît la nécessité de créer de nouveau locaux, notamment pour les laboratoires des Institutions de Contrôle de l'ASE, et approuve l'ensemble du projet élaboré par le Comité de l'ASE. Îl est toutefois d'avis que le mode de financement des cons-

tructions exige un plus ample examen. Le Comité de l'UCS est d'accord que la première hypothèque grevant les propriétés de l'ASE soit portée à 1 million de francs au maximum et que les trois parcelles appartenant à l'ASE soient inscrites ensemble au Registre foncier, comme l'exige le Département des travaux publics.

D'autres personnes prirent à leur tour la parole pour discuter, en particulier, de la question du financement et de l'exécution des aménagements par étapes.

A la suite d'une discussion ultérieure au sein du Comité de l'ASE, celui-ci avait établi une proposition, dont la teneur diffère de celle qui a été publiée dans le Bulletin de l'ASE. Ce nouveau texte fut communiqué à l'Assemblée. Après avoir entendu l'avis du Comité de l'UCS et celui de quelques membres importants, cette proposition a été à nouveau modifiée et transmise aux participants de l'assemblée.

Le président constata tout d'abord que le quorum prescrit à l'article 10 des statuts de l'ASE, à savoir le 10 % de toutes les voix, était atteint, 867 voix étant présentes ou représentées, sur un total de 5683 voix.

L'Assemblée ayant décidé que les votes auraient lieu à main levée, elle approuva la demande du président de ne voter qu'au sujet de la proposition présentée en dernier lieu, et ceci dans son ensemble.

Par 179 oui contre 3 non et 55 abstentions, l'Assemblée générale de l'ASE a approuvé les propositions du Comité de

Les décisions prises par l'Assemblée générale sont les suivantes:

a) L'Assemblée générale approuve, en principe, le projet qui lui a été soumis au sujet de l'aménagement général de la propriété de l'Association Suisse des Electriciens.

b) Le Comité est autorisé à faire construire tout d'abord le bâtiment de laboratoire, dans le cadre du projet général, et de préparer les plans des autres constructions, afin de pouvoir en demander l'exécution à des Assemblées générales ultérieures, selon les besoins.

c) Le Comité est autorisé à entrer en pourparlers avec l'Union des Centrales Suisses d'électricité (UCS) pour envisager la possibilité d'un financement et d'une gérance en commun des immeubles de l'Association; il pourra charger la Commission d'administration d'établir des contrats en ce

d) Dans le but de financer les travaux de la première étape des constructions, le Comité est autorisé à adresser aux membres un questionnaire, d'un genre analogue à l'appel publié dans le Bulletin de l'ASE, pour leur demander si et dans quelle mesure ils accepteraient de contribuer volontairement au financement, soit par des cotisations à fonds perdu, soit par l'achat d'obligations.

e) Le Comité est autorisé à porter à 1 million de francs, au maximum, la première hypothèque grevant les propriétés

de l'ASE.

f) Le Comité est autorisé à faire inscrire ensemble au Registre foncier les trois parcelles appartenant à l'ASE, comme l'exige le Département des travaux publics de la Ville de Zurich.

g) Le Comité est autorisé à entrer en pourparlers avec le Comité de l'UCS, en vue de fonder — si cela s'avère judicieux — une société immobilière formée par l'ASE et l'UCS, la première y apportant les propriétés qu'elle possède.

Le président remercia les membres d'avoir accepté les propositions du Comité et déclara close le 66° Assemblée générale. Le procès-verbal officiel de cette Assemblée extraordinaire sera publié ultérieurement dans le Bulletin de

Protection contre les tensions de contact aux appareils électriques transportables à basse tension dans les installations intérieures

Communication de la Commission de l'ASE et de l'UCS pour les installations intérieures

Les statistiques annuelles des accidents occasionnés, en Suisse, par le courant fort, montrent que ce sont surtout les appareils d'éclairage mobiles (lampes à cordon avec douille métallique nue, qui ne comporte souvent même pas de bague protectrice), ainsi que les appareils transportables branchés sans être mis à la terre (outils électriques à main, appareils thermiques dans les salles de bain, etc.), qui sont la cause des accidents mortels provoqués par la basse tension. Les accidents avec les lampes baladeuses peuvent être évités par une mise en garde sérieuse des abonnés et par un contrôle sévère des installations intérieures, de façon à éliminer tout appareil d'éclairage mobile non conforme aux prescriptions.

Par contre, il est plus difficile, avec le système actuel de prises de courant pour 250 V/6 A (nouvelles: 10 A), d'obtenir automatiquement une mise à la terre lors de l'utilisation d'un outil électrique à main. La Commission de l'ASE et de l'UCS pour les installations intérieures s'est occupée depuis longtemps à rechercher un système amélioré et est parvenue récemment à trouver une solution qui permettra, au fur et à mesure de son introduction, d'obtenir de meilleures conditions de branchement pour les appareils électriques transportables et d'accroître leur sécurité d'utilisation. Ce nouveau système de prises de courant et les décisions prises à ce sujet par la Commission pour les installations intérieures ont été récemment communiqués par circulaire aux membres de l'UCS. Etant donné qu'il s'agit d'une affaire d'un intérêt général, nous publions ci-après le texte de cette circulaire adressée aux entreprises électriques.

«Comme vous le savez, des tentatives sont faites depuis plusieurs années, en vue d'améliorer les prises de courant bipolaires pour installations intérieures (2 P et 2 P + T, 250 V/6 A, nouvelles 10 A), de façon que les appareils à mettre à la terre ne puissent plus être branchés à des prises de courant 2 P ordinaires, ni à des bouchons-prises, même lorsque ces appareils sont pourvus d'une fiche 2P+T conforme aux prescriptions. Nous vous rappelons à ce propos notre dernière circulaire N° 2807, du 19 mai 1949, et profitons de l'occasion pour remercier les entreprises électriques qui nous ont fait parvenir des réponses détaillées et très utiles.

La Commission pour les installations intérieures a examiné entre temps, à plusieurs reprises, les propositions de modification et les réponses des entreprises. Avant de prendre une décision, elle a chargé une sous-commission d'étudier en détail cette affaire. Cette sous-commission était composée de partisans et d'adversaires du nouveau système de prises de courant, ainsi que de représentants de l'Inspectorat des installations à courant fort.

Elle a demandé à l'Inspectorat une statistique détaillée des accidents mortels survenus de 1935 à 1949, soit pendant

15 ans, du fait d'appareils électriques transportables. Durant cette période, 222 personnes ont été tuées par des tensions de 110 à 250 V (dont 59 par des lampes à cordon avec douille métallique nue, installées par des usagers, sans tenir compte des prescriptions), 56 par des basses tensions dé-passant effectivement 250 V et 142 par des hautes tensions de plus de 1000 V, au total 420 personnes. Parmi les 222 accidents mortels provoqués par des tensions jusqu'à 250 V, 48 l'ont été par des appareils électriques transportables (outils électriques à main, radiateurs, lampes à pied métallique, non compris les baladeuses). 16 accidents auraient pu être évités si la mise à la terre spécifiée par les Prescriptions sur les installations intérieures avait été observée. Dans 14 cas, la mise à la terre était interrompue ou inefficace (résistance trop élevée), tandis que 5 accidents mortels étaient dus à des défauts du dispositif de mise à la terre (confusion des fils ou rupture de fils).

En se basant sur cette intéressante statistique, la souscommission s'est occupée principalement des deux questions suivantes:

1º Les prescriptions concernant la mise à la terre doivent-elles être plus sévères et étendues à d'autres appareils? 2º Serait-il avantageux de multiplier les possibilités de mise à la terre dans les installations intérieures, afin d'em-pêcher que des appareils à mettre à la terre puissent être branchés sans l'être ?

La statistique prouve que la majorité des accidents mortels occasionnés par des appareils électriques transportables proviennent d'outils électriques à main branchés, sans être mis à la terre, à des prises 2 P ou à des bouchons-prises. Les accidents dus à des corps de chauffe, qui ne sont pas mis à la terre dans des locaux dangereux (salle de bain, cave, etc.) sont également nombreux, de même que ceux que provoquent des lampes à pied métallique posées à un endroit très conducteur ou à proximité d'installations de chauffage central ou autres. La mise à la terre des radiateurs et des lampes à pied, qui se chiffrent par centaines de milliers, exigerait toutefois une extension extraordinaire des consommateurs d'énergie transportables à mettre à la terre. Pour les lampes à pied, une mise à la terre serait d'ailleurs très difficile à réaliser. De plus, du fait de cette énorme augmentation d'appareils mis à la terre, les possibilités de ruptures de fils de terre deviendraient beaucoup plus nombreuses, de même que les erreurs de connexion, ce qui augmenterait les situations dangereuses. Enfin, des réparations de matériel tripolaire par les usagers sont beaucoup plus dangereuses que celles de matériel bipolaire. En conséquence, la souscommission est arrivée à la conclusion qu'une extension de l'obligation de la mise à la terre à d'autres appareils transportables n'est pas désirable.

Par contre, la sous-commission a été d'avis que les possibilités de mise à la terre devraient être plus nombreuses dans les installations intérieures. D'une part, le nombre des appareils transportables augmente sans cesse et, d'autre part, l'installation plus fréquente de chauffages centraux, de machines à laver, etc. dans des chambres, crée des connexions à la terre dans des locaux qui pouvaient être considérés jusqu'ici comme des emplacements isolants. Du fait de cette évolution, la possibilité d'introduire, sans difficulté, dans des prises ordinaires 2 P les fiches actuelles 2 P + T d'appareils à mettre à la terre constitue un désavantage de plus en plus marqué.

Tenant compte de ces faits, la Commission pour les installations intérieures a pris, sur demande de sa sous-commission, à sa séance du 8 septembre 1950 les décisions ci-après:

1º L'obligation de mise à la terre n'est pas étendue à d'autres appareils transportables et demeure réglée par les dispositions des §§ 15 et 79 des Prescriptions sur les installations intérieures, jusqu'ici en vigueur.

 $2^{\rm o}$ Il est recommandé de prévoir des possibilités supplémentaires de mise à la terre en augmentant le nombre de prises $2\,P+T$ dans les installations intérieures et en créant une prise de courant $250\,$ V/10 A, dont la fiche $2\,P+T$ ne puisse être introduite ni dans des prises ordinaires $2\,P,$ ni dans des bouchons-prises.

3º Afin d'accroître la sécurité, les prescriptions de construction et d'essais pour les appareils électriques doivent tendre à renforcer l'isolement, surtout celui des parties qui peuvent être facilement saisies pour l'emploi de l'appareil.

Entre temps, les fabricants de prises de courant pour installations intérieures et l'Administration Commune de l'ASE et de l'UCS ont poursuivi l'examen des propositions concernant l'introduction d'un nouveau système de prises de courant 250 V/10 A. Les nouvelles propositions tiennent largement compte des désirs exprimés dans les réponses des entreprises électriques et évitent que des modifications quelconques soient nécessaires dans les installations existantes, car les prises et les fiches actuelles pourront continuer à être utilisées. De la sorte, il sera possible de procéder peu à peu à l'introduction du nouveau système, sans fixation d'un délai de transition et sans occasionner de frais particuliers. Pour de plus amples explications, veuillez examiner les dessins de la fig. 1, qui représentent les anciennes prises de courant, ainsi que les innovations prévues et les possibilités d'utilisation.

Pour les nouvelles installations, le système modifié de prises de courant ne comporte plus de prises ordinaires 2 P (fig. 3), de sorte que leur fabrication peut être complètement arrêtée. Elles seront remplacées, dans les nouvelles installations, lors de transformations et d'extensions, par une prise à trois alvéoles (fig. 5), dont la troisième sert à la mise à la terre par le neutre et est reliée directement à l'alvéole destinée au conducteur neutre.

Pour les locaux dans lesquels des appareils transportables ne sont autorisés que sous certaines conditions, les anciennes prises 2P+T avec collerette de blocage (fig. 1) seront remplacées par des prises d'un modèle amélioré, selon la fig. 4 (ou fig. 6, dans les installations complètement adaptées au nouveau système). L'ancien modèle, selon la fig. 1, ne sera également plus fabriqué.

L'avantage essentiel des deux nouvelles prises, selon les fig. 4 et 5, consiste dans le fait qu'elles rendent possible, dans tous les cas, la mise à la terre, tout en permettant sans autre le branchement de n'importe quel cordon d'appareil muni d'une fiche d'ancien modèle, ceci de la même façon qu'actuellement. Les fiches 2 P, selon la fig. 12, seront d'ailleurs conservées pour le branchement des appareils qui n'ont pas besoin d'être mis à la terre. Quant aux anciennes fiches 2 P + T, selon la fig. 11, elles ne seront pas supprimées, mais simplement remplacées peu à peu, sans aucune obligation, par les nouveaux modèles, selon les fig. 13 et 14. De cette façon, on obtiendra un plus grand nombre de possibilités de mise à la terre, sans dépenses particulières, surtout dans les nouvelles installations, mais aussi peu à peu dans les installations existantes.

Dans les réseaux de distribution, où la mise à la terre se fait par le neutre selon le schéma III du § 18 des Prescriptions sur les installations intérieures, l'installation exclusive de prises avec contact de terre, selon les fig. 4, 5 ou 6, est directement possible. Par contre, dans les réseaux avec mise à la terre de protection ou par le neutre selon les schémas I, respectivement II, le tirage d'un fil de terre pour toutes les prises occasionnera naturellement quelques dépenses supplémentaires. Pour les entreprises qui possèdent encore des réseaux de distribution avec mise à la terre de protection, nous remarquons que le couvercle de la prise ordinaire 2 P + T,

selon la fig. 5, peut être aussi obtenu avec deux seules ouvertures sur les contacts pour les conducteurs actifs, tandis que le contact de terre demeure recouvert et fermé, tant qu'il ne doit pas être utilisé pour la mise à la terre directe ou par le neutre. Le cas échéant, on remplacera le couvercle ou on y fera une ouverture correspondant au contact de terre.

Pour les appareils qui doivent être mis à la terre, l'ancienne fiche $2\,P+T$ (fig. 11) est remplacée par le modèle indiqué sur la fig. 13, à trois broches (correspondant aux trois alvéoles des nouvelles prises, fig. 4, 5 et 6) et avec alvéole de terre (correspondant à la broche de terre des prises selon les fig. 1 et 4). Cette broche de terre, qui pourra être mise en place sans difficulté, doit toutefois être supprimée tant qu'une installation ne comporte pas uniquement les nouvelles prises $2\,P+T$ avec alvéole de terre (fig. 4 ou 6, et 5), mais aussi des anciennes prises $2\,P$ et $2\,P+T$ (fig. 1 et 3).

Pour des consommateurs d'énergie à isolation renforcée et qui ne doivent en aucun cas être mis à la terre, tels que les rasoirs électriques et les baladeuses, on a créé la fiche spéciale 2 P selon la fig. 15. Cette fiche n'est toutefois admise qu'à condition d'être vulcanisée ou soudée à un cordon à deux conducteurs, relié à son autre extrémité, soit directement, soit par une petite prise de courant spéciale, à l'appareil dont la mise à la terre n'est pas éxigée. Elle ne doit, en aucun cas, être utilisée dans des prolongateurs. La fiche selon la fig. 15 peut être introduite dans toutes les prises, sauf dans l'ancienne prise 2 P + T (fig. 1), pour laquelle elle est trop large. Pour les rasoirs électriques munis de la nouvelle fiche selon la fig. 15, la prise spéciale 2 P avec petit fusible incorporé (fig. 2) pourra être supprimée dans les salles de bain, où la prise 2 P + T correspond au nouveau système.

Lorsque ces divers changements seront terminés — ce qui exigera de nombreuses années — les locaux d'habitation, les bureaux, etc. posséderont uniquement des prises 2 P + T, selon la fig. 5, et les locaux, où il s'agit d'éviter que des appareils électriques munis de fiches 2 P soient utilisés sans être mis à la terre, n'auront que des prises à collerette de blocage, selon la fig. 6. Les entreprises électriques qui désirent adopter dans toutes leurs installations, c'est-à-dire même dans les anciennes, le nouveau système de prises de courant, peuvent remplacer dès le début les prises selon la fig. 1 et les fiches selon la fig. 11 par des prises selon la fig. 6 et des fiches selon la fig. 14; celles-ci sont d'ailleurs meilleur marché et plus commodes à installer.

Enfin, pour des applications spéciales (par exemple dans le cas de prises 10 A pour réfrigérateurs, qui sont branchés à des lignes pour cuisinières protégées par des fusibles pour une intensité plus élevée), les prises selon les fig. 4, 5 et 6 peuvent également être fabriquées avec fusible incorporé. De plus, les nouvelles prises seront livrées, comme les anciennes, avec différents genres d'alvéoles et ouvertures d'entrée (rondes, plates et horizontales, plates et verticales).

En résumé, le nouveau système n'occasionnera pas de frais particuliers et ne compliquera pas l'utilisation des appareils électriques, tout en permettant l'introduction progressive d'un plus grand nombre de possibilités de mise à la terre, afin de mieux garantir le branchement correct des appareils qui doivent être mis à la terre. Notre Administration Commune tient à la disposition des personnes qui s'intéressent à de plus amples détails un nouveau tableau de démonstration avec modèles d'anciennes et de nouvelles prises de courant 250 V/10 A, qui permet de se rendre compte de visu avec quelle facilité peut s'opérer la transition entre l'ancien et le nouveau système. Ce tableau est ordonné de la même façon que la feuille de figures ci-annexée, mais il renferme en outre les prises mobiles correspondantes.

A sa séance des 21/22 février 1951, la Commission pour les installations intérieures a décidé de normaliser les prises de courant 250 V/10 A (selon les fig. 4, 5, 6, 13, 14 et 15), étant donné que les fabricants de ce matériel ont approuvé nos propositions.

Nous avons tenu à vous communiquer cette décision. L'introduction du nouveau système pourra débuter dès que les nouvelles prises, selon les fig. 4, 5 et 6, ainsi que les nouvelles fiches, selon les fig. 13 (avec et sans broche de mise à la terre), 14 et 15, auront été normalisées. Nous vous rappelons que les fiches 2 P ordinaires, selon la fig. 12, pour appareils qui n'ont pas besoin d'être mis à la terre, sont maintenues.»

Fig. 1
Prises de courant à fiches 250 V/10 A pour installations

intérieures

Association Suisse des Electriciens Association «Pro Téléphone»

10° Journée Suisse de la technique des télécommunications

Vendredi 22 juin 1951, 9 h 15 précises

au Cinéma Rex, Dornacherplatz, à Soleure

9 h 15

A. Conférences

I. Über den Begriff der Information und der Übertragungskapazität in der Nachrichtentechnik.

Conférencier: M. H. Weber, professeur, chef de l'Institut de la technique des télécommunications de l'EPF, Zurich.

II. Drahtloser Telephonverkehr mit Fahrzeugen.

1^{re} partie: Probleme der drahtlosen Übertragung.

Conférencier: M. W. Klein, ing. dipl., chef de la Section «technique de la haute fréquence» du Laboratoire de recherches et d'essais de la Direction générale des PTT, Berne.

2c partie: Organisation und Betrieb, Probleme der Telephonie.

Conférencier: M. H. Abrecht, chef de la Section des installations d'abonnés de la Sous-division des téléphones à la Division des télégraphes et des téléphones de la Direction générale des PTT, Berne.

12 h 30 environ

B. Dîner en commun

Le dîner en commun aura lieu dans la Grande salle de concert de la Ville de Soleure, Untere Steingrubenstrasse 1. Prix du menu, sans les boissons, ni le service, fr. 5.80.

C. Visite de la Fabrique de cellulose d'Attisholz S. A., à Attisholz

Grâce à l'obligeance de la Direction de la Fabrique de cellulose d'Attisholz S. A., les participants pourront visiter cette entreprise dans l'après-midi. Des autocars seront à leur disposition pour se rendre dans cette localité.

14 h 30: Départ de la Grande salle de concert. Prix aller et retour, fr. 2.50, montant qui sera perçu par le chauffeur de l'autocar (prière de préparer la monnaie!).

Les automobilistes prendront la route principale Soleure—Olten et rangeront leurs voitures près du bâtiment d'administration de la fabrique (à Attisholz-les-Bains). L'utilisation de la route partant de Luterbach est interdite aux voitures privées. Les visiteurs sont instamment priés de suivre les instructions du chef de groupe (il est strictement interdit de fumer dans cette fabrique!).

17 h 00 environ: Fin de la visite. Rendez-vous libre à Attisholz-les-Bains.

17 h 45: Départ des autocars d'Attisholz-les-Bains pour Soleure (Gare principale).

D. Démonstrations d'installations téléphoniques mobiles

Avant et après la visite de la fabrique de cellulose, des démonstrations d'installations de téléphonie sans fil montées sur véhicules auront lieu.

E. Inscriptions

En vue de la préparation de cette Journée, il nous faut savoir d'avance quel sera le nombre des participants.

Nous prions par conséquent les personnes désireuses de participer à cette Journée de remplir exactement la carte d'inscription ci-jointe et de l'adresser, jusqu'au 16 juin 1951 au plus tard, au Secrétariat de l'ASE, 301, Seefeldstrasse, Zurich 8.

Bulletin de l'Association Suisse des Electriciens, édité par l'Association Suisse des Électriciens comme organe commun de l'Association Suisse des Electriciens et de l'Union des Centrales Suisses d'électricité. — Rédaction: Secrétariat de l'Association Suisse des Electriciens, 301, Seefeldstrasse, Zurich 8, téléphone (051) 34 12 12, compte de chèques postaux VIII 6133, adresse télégraphique Elektroverein Zurich. — La reproduction du texte ou des figures n'est autorisée que d'entente avec la Rédaction et avec l'indication de la source. — Le Bulletin de l'ASE paraît toutes les 2 semaines en allemand et en français; en outre, un «annuaire» paraît au début de chaque année. — Les communications concernant le texte sont à adresser à la Rédaction, celles concernant les annonces à l'Administration. — Administration: case postale Hauptpost, Zurich 1 (Adresse: S. A. Fachschriften-Verlag & Buchdruckerei, Stauffacherquai 36/40, Zurich 4), téléphone (051) 23 77 44, compte de chèques postaux VIII 8481. — Abonnement: Tous les membres reçoivent gratuitement un exemplaire du Bulletin de l'ASE (renseignements auprès du Secrétariat de l'ASE). Prix de l'abonnement pour non-membres en Suisse fr. 45.— par an, fr. 28.— pour six mois, à l'étranger fr. 55.— par an, fr. 28.— pour six mois. Adresser les commandes d'abonnements à l'Administration. Prix de numéros isolés en Suisse fr. 3.—, à l'étranger fr. 3.50.