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Logarithmisches Netz für komplexe und Schwingungsrechnungen
Von W. de Beauclair, Stuttgart (Deutschland) 681.143.3:511.147

Die Gaußsche Zahlenebene zur Darstellung komplexer Zahlen
wird in anschaulicher Weise logarithmisch verzerrt und dadurch
einfache Multiplikation nur durch vektorielle Addition ermöglicht.

Das so entstandene «komplex-logarithmische Netz» ist wie
vorher zur Darstellung von Vektorplänen und Ortskurven geeignet

; von besonderem Vorteil ist aber die aus dem Netz entwickelte
«Komplex-Rechenwalze» als logarithmisch-instrumentelles
Rechenhilfsmittel, das bei zweckdienlicher Gestaltung universell und
gleich gut für skalare und komplexe Rechnungen brauchbar ist.
Einige Richtlinien und Beispiele für die häufigsten Aufgabengebiete

erläutern die Handhabung des Netzes und sollen seine
eingehende Verwendung in der Praxis veranlassen.

1. Einleitung
Ebenso nützlich wie der fast unentbehrliche

logarithmische Rechenschieber für die Rechnung mit
skalaren Grössen ist ein logarithmisch verzerrtes
Netz der Gaußschen Zahlenebene für die Umrechnung

und Multiplikation von komplexen Zahlen.
Bei geeigneter Ausbildung des Netzes und handlicher

Anordnung der Ablesehilfsmittel können viele
in Zusammenhang mit komplexen Zahlen stehende
Aufgaben der Elektrotechnik und Schwingungstechnik

einfach und schnell gelöst werden, deren
Bearbeitung mit dem Rechenschieber wesentlich
langwieriger ist.

2. Aufgabenstellung

Komplexe Zahlen in Komponentenform z

a jb 1) oder in Polarform z r • e'f lassen sich
durch Punkte im Netz der Gaußschen Zahlenebene
(Fig. 3) darstellen. Da sich die Kreisfunktionen, und
damit Schwingungsvorgänge aller Art, als Projektionen,

d. h. als Real- und Imaginärteil eines
umlaufenden Drehzeigers 2) auffassen lassen,

r • sin cot Im (r • elm')

2jz
r cos cot Re (r • ei1) mit co 2 nf —

und man bei Drehzeigern gleicher Frequenz von
ihrem Umlauf absehen kann (da sich dabei ihre
gegenseitige Lage nicht verändert), kann man auch
die Diagramme und Ortskurven der Elektrotechnik
und Scbwingungstechnik in eine Gaußsche Zahlenebene

einzeichnen. Dadurch hat sie ihre grösste
praktische Bedeutung. Aber viele andere auch rein
mathematische Aufgaben sind in der komplexen Ebene
gut darstellbar.

Man kann das Kartesische Koordinatennetz der
Gaußschen Zahlenebene zur Darstellung komplexer
Zahlen und das Polarkoordinatennetz zu ihrer
Darstellung nach Betrag und Winkel übereinanderlegen;

dann entsteht also ein doppeltes Netz: ein
rechtwinkliges mit achsparallelen Geraden gleichen
Realteiles a r • cos cp und gleichen Imaginärteiles

*) Im Gegensatz zur Elektrotechnik braucht man in der
Mathematik ausschliesslich i als imaginäre Einheit.

2) Im folgenden werden zeitunabhängige komplexe Zahlen
oder Vektoren einer Ebene als «Operatoren», zeitabhängige
umlaufende Drehzeiger als «Zeitvektoren» bezeichnet, obwohl
sie streng genommen keine Vektoren sind.

Le plan numérique de Gauss destiné à représenter des
nombres complexes, est ordonné logarithmiquement, ce qui
permet de procéder à des multiplications par de simples
additions vectorielles. Le réseau complexe-logarithmique
obtenu de la sorte convient, lui aussi, à la représentation de
plans vectoriels et de courbes locales. En partant de ce
réseau, l'auteur a construit un tambour à calcul complexe, qui
a le mérite d'être utilisable aussi bien pour le calcul
vectoriel que pour le calcul scalaire. L'auteur donne quelques
renseignements sur la marche à suivre et montre, par des
exemples tirés des applications les plus fréquentes, qu'un tel
réseau peut être utilisé dans de nombreux cas pratiques.

b r sin cp, und darüber ein polares mit
konzentrischen Kreisen gleichen Betrages 7 ]/ «2 -]— fe2

und Radien gleichen Argumentes m arctg —
a

[Phase, Winkel werden oft in Gradmass gemessen
und geschrieben; sie sollen zu Berechnungen stets
in Bogenmass (360° 6,28...) umgerechnet
werden]. Diese Darstellung in der komplexen Ebene
erlaubt also sofortiges Umlesen aus der Komponenten-

in die Vektorform und umgekehrt. Dieses
Umrechnen erfordert selbst in der bei dem
Rechenschieber «Darmstadt» möglichen vorteilhaftesten
Ausführungsart 3) (Fig. 1) — für die allerdings beide

Rz
10 r= a=c 1

1 i/r=o,2 i
1,°

i r

1 2 6=3 4 10

Sinus
Tangensy

1

1 \ cp

Sty 17781

Fig. 1

Umrechnungsbeispiel von rechtwinkligen Koordinaten in
Polarform mit Rechenschieber

z a + jb r • e if ; (a > b); am Beispiel 4 + 3jü 5 • ei'36'6"

und U — — e f ; am Beispiel —1
„ A 0,2 e i -

- » + j6 r 4 + 3]

(ist a> b, so erhält man Komplementärwinkel 90°—<p J

Komponenten innerhalb einer Dekade liegen müssen,

weil sonst ihr Verhältnis < 0,1 und ihr Argument

< 5,80 nicht mehr auf der Rechenschieberteilung

sind — mehrere Einstellungen und
Zwischenablesungen. Durch einfache vektorielle Addition

der Komponenten oder der Drehzeiger ist eine
Addition von komplexen Zahlen in der Gaußschen
Zahlenebene erledigt. Leider aber ist eine
zeichnerische Multiplikation (auch Division und
Potenzierung) von komplexen Zahlen in diesem Netz nur
durch umständliche geometrische Konstruktion
möglich. Daher sind Produkte komplexer Zahlen
und darauf zurückzuführende Aufgaben der
Schwingungstechnik in der Gaußschen Zahlenebene nicht
gut zu lösen; sie müssen durch numerische
Rechnung mit dem Rechenschieber gesondert
ermittelt und dann erst eingezeichnet werden. Die
Gaußsche Zahlenebene ist also ein Koordinatensystem

und kein Rechenhilfsmittel, denn gerade die
Multiplikation sollte erleichtert sein. Dass dies

3) siehe Edelmann, H. : Aus der Praxis des Rechenschiebers.
Elektrotechn. Z. Bd. 61(1940), Nr. 45, S. 1015...1016.
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durch logarithmische4) Rechnungsweise zu erreichen

sein müsste, zeigt der Vergleich mit dem
Rechenschieher. Es handelt sich also darum, die
Gaußsche Zahlenebene in ein logarithmisches Netz
zu verzerren, ohne ihre Vorteile zu verlieren. Dies
hat m. W. zuerst Reinhardt 5) mit Erfolg
durchgeführt; seine Veröffentlichung ist jedoch nicht
mehr so bekannt geworden, wie es die Sache
verdiente und ist zurzeit schwer zu erhalten.

3. Herleitung des Netzes
Ausser dem dort gefolgten formal-mathematischen

Weg, dieses logarithmische Netz zu finden,
gibt es einen recht anschaulichen, der leichter und
ohne Kenntnis des Verfahrens der «konformen
Abbildung» <w lnz zum Verständnis führt, und der
deshalb im folgenden für eine breite Anwendung dieses

Netzes werben soll, das des weiteren zu einem
recht vorteilhaften Rechenhilfsmittel ausgestaltet

wird.
Die Formel für die Ausführung der Multiplikation

komplexer Zahlen ist bekanntlich:

zi • z2 (a1 + j• (o2 + jb2) rx e^ • r2 eJ>>

rx r2 • ei

In Worten: Multiplikation der Beträge und Addition

der Winkel.
Man erinnert sich daraufhin an halblogarithmi-

sches Netzpapier, auf dem in Richtung der
logarithmisch geteilten Achse durch Streckenaddition
die durch deren Länge definierten Beträge multipliziert

werden, während in Richtung der linear geteilten

Achse Addition von Strecken eine Addition der
entsprechenden Zahlen darstellt. Man wird also Be-

>ZyZ2

'fiy / 1

* y]/ / f t
i/ i

/

/ /
/

/ z2

0° 90® 180® 270® 360®
'

S17I77BS
Fig. 2

Komplexe Zahlen im halblogarithmischen Netz
Beispiel zur Multiplikation:

Zi 4e^1 ; z2 2ei3; zx z2 8ei4 ei'2290

((p im Bogenmass)

trag r und Argument <p einer komplexen Zahl in
halblogarithmisches Netzpapier so eintragen, dass
das Argument der linear geteilten Achse, der Be-

4) Ein nur indirekt logarithmisches Verfahren zur Multiplikation

bringt Oppelt, W. : Graphische Verfahren zur komplexen
Multiplikation. Arch. f. elektr. Übertragung 2(1948), S. 76.

6) siehe Reinhardt, F. : Rechentafel zum Umrechnen von
rechtwinkligen in Polarkoordinaten. Druckschrift der Fa.
Siemens & Halske: Messeinrichtungen für die Fernmeldetechnik,
Berlin 1944.

trag der logarithmischen zugeteilt wird (Fig. 2),
und zur Multiplikation zweier so durch ihre
eingezeichneten Netzpunkte gegebener komplexer Zahlen

die von Punkt 1 der logarithmischen Leiter zu
ihnen führenden Zeiger vektoriell addieren, d. h.
Argumentstrecke zu Argumentstrecke und Ordina-
tenstrecke zu Ordinatenstrecke (unter
Berücksichtigung des Vorzeichens) ansetzen.

Damit wäre ein Schritt zur Lösung des Vorhabens,

nämlich der einfachen Multiplikation,
getan. Es bleibt der zweite, die Umrechnung aus der

4+3/

Re

SEVf77BJ

Fig. 3

Die vier Quadranten des doppelten Netzes der Gaußschen
Zahlenebene

Die Kreise bedeuten Linien gleichen Betrages, die Radien
solche gleichen Winkels. Die Senkrechten bedeuten Linien
gleichen Realteiles, die Waagrechten solche gleichen Imaginärteiles.

(Die Maßstäbe beider Achsen müssen gleich sein.)
Als Beispiel ist der Punkt z 4 + 3j in die Fig. eingetragen.

eben gezeichneten Vektorform in die Komponentenform

ebenso einfach wie in der Gaußschen
Zahlenebene zu ermöglichen. Dazu ist eine Veranschaulichung

nützlich, die eine Überführung der linearen

Zahlenebene in die logarithmisch verzerrte
versinnbildlicht. Sie geschieht in drei Schritten:

Im

) Ausgang. Die vier Quadranten des doppelten
Netzes der Gaußschen Zahlenebene 8) zeigt Fig. 3.
Dieses Netz wird nun von unten her aufgeschnitten
und aufgebogen (Fig. 4).

) Der verlockende kürzere Name «Gaussnetz» ist für ein
Netzpapier zur geradlinigen Darstellung der Gaußschen
Glockenkurve der Häufigkeitsverteilung vorbesetzt (siehe
Lorenz: Über die Analyse von Verteilungskurven. Die Technik,
Bd. 2(1947), S. 83...88).

Das aufgeschlitzte Netz
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b) Der Übergang. Durch das Aufbiegen werden
die Kreise flacher; die Radien bleiben gerade und
die rechtwinkligen Netzlinien erhalten gleichartige
Krümmung (Fig. 5).

Im

Fig. 5

Das aulgebogene Netz im Übergangsstadium

Bei weitergehender Verformung ergibt sich:

c) Das aufgebogene Netz. In diesem sind die Linien
gleichen Betrages waagrecht, die Linien gleichen
Winkels senkrecht. Die Linien gleichen Realteils
und die Linien gleichen Imaginärteils sind
kongruente Netzkurven. Die Maßstäbe der senkrechten
Achsen sind einander gleich, der der Argumentachse

kann beliebig gewählt werden (Fig. 6).

Da das Polarnetz in r und cp mit cp 360 °,
d. h. mit einem vollen Umlauf, periodisch war, ist
auch das aufgeschnittene Netz mit linearer ç>Tei-
lung mit cp 360 ° periodisch, d. h. es ist nicht nötig,
mehr als die vier Quadranten im logarithmischen
Netz darzustellen. Zum Schluss drückt man die
(bisher noch gleichmässige) Betragteilung
logarithmisch zusammen und erhält das gesuchte
(halb-)logarithmische Netz, das die geforderten
Rechenoperationen gestattet.

d) Die logarithmisch verzerrte Gaußsche Zahlenebene

mit normal gerichtetem Achsensystem ist nun
das «komplex-logarithmische Netz». Man erkennt
in Fig. 7, Seite 21, dass die vorher geraden und
rechtwinkligen Netzlinien zu Kurven («Netzkur¬

ven») verbogen sind. Sie waren vorher Linien
gleicher Komponente, ihre Gleichung in Polarkoordinaten

war
b h

für Re konst. : ra
sin cp cos (cp -f- 90 °)

für Im - konst. : n, ———
cos cp

Zu gleichen Vektoren müssen immer gleiche
Komponenten gehören, gleichgültig, in welchem
verzerrten Netz sie dargestellt werden. Dieselbe
Gleichung muss daher auch im logarithmischen Netz
für die jetzt rechtwinkligen Koordinaten der Kurven

gleicher Komponente gelten, sobald ihre
Zahlenwerte in logarithmischem Maßstab abgemessen
und aufgetragen werden (Fig. 8).

Flg. 8

Vergleich der Darstellung von Komponenten In der Gaußschen
Zahlenebene (oc) und im komplex-logarithmischen Netz (0)

zur Ableitung der Netzlinlen-Gleichung

Um das Netz zu zeichnen, braucht man also nur
eine einzige Vorlage oder Schablone, mit deren Hilfe
man die unter sich sämtlich gleichen und parallelen,

um den Faktor b in Betragrichtung bzw. um
90° verschobenen Kurven gleicher Komponente
leicht erhält. Am einfachsten ist es, dieses Kurvennetz

in eines der käuflichen halblogarithmischen
Papiere einzutragen, dessen vorhandenes Netz
Betrag und Winkel ordnet7).

Es würde an sich ausreichen, einen Quadranten
des Netzes zu zeichnen, etwa für das Argument <p

zwischen 0 und 90°. Es lassen sich nämlich alle
komplexen Zahlen durch Erweitern mit passenden
Potenzen von 10 und j in diesen Bereich bringen:

—a -|- j& im Quadranten 2 entspricht j (b + ja)
im Quadranten 1,

—a—jb im Quadranten 3 entspricht —(a -\-]b)
im Quadranten 1,

o—jb im Quadranten4 entspricht —j(b + ja)
im Quadranten 1.

Beispiel : 125 — 18 j —100 j • (0,18 -f- 1,25 j).
Es ist aber dennoch von grossem Vorteil, alle vier
Quadranten vor sich zu haben; man gewinnt sehr
an Anschaulichkeit und erspart sich Mühe und Fehler

bei der Umrechnung, besonders bei Schwin-

') Im Notfall reicht es auch aus, sich eine einzige
Netzkurve obiger Gleichung auf transparentes Papier zu zeichnen
und als Deckblatt zum Ablesen der Komponenten der auf
halblogarithmisches Papier eingetragenen Punkte zu
verwenden.
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gungs- und Ortskurvenberechnungen, die sich über
alle vier Quadranten erstrecken. Für besonders
genaue Darstellungen kann zusätzlich ein Quadrant
in grossem Maßstab vorgesehen werden.

linder schiebt man einen durchsichtigen Ablesemantel

(Fig. 10), der einige Ablesemarken und
-linien trägt, die später noch besprochen werden.
Über diesen legt man noch einen durchsichtigen
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Fig. 7
Das komplex-logarithmische Netz

Erweiterung zur « Komplex- Rechenwalze» 8)

Für die Verwendung des Netzes als Rechenhilfsmittel

ist es jedoch am besten, die vier Quadranten
zu einer Walze zusammenzubiegen, so dass die
Winkelteilung fortlaufend wird 9) (Fig. 9). Über den Zy-

8) nicht: komplexe Rechenwalze!
9) Reinhardt bog einen Quadranten mit einer logarithmischen

Dekade zur Walze zusammen, so dass die Betragteilung
fortlaufend wurde; siehe «Der logarithmische Rechenzylinder
für komplexe Zahlen». Elektrotechn. Z. Bd. 69(1948), Nr. 3,
S. 78...82.

Ring mit einem Achsenkreuz als Ablesemarke, der
dem Läufer beim Rechenschieber entspricht.

4. Die Eigenschaften der Netzlinien
Die senkrechten Achsen des Netzes verkörpern

rein reelle oder rein imaginäre Zahlen und tragen je
eine logarithmische Teilung in gleichem Maßstab,
deren Bezifferung auch für den Betrag r gilt.
Punkte einer Waagrechten haben gleichen Betrag r.

Die waagrechte Achse trägt eine lineare, nach dem
Argument <p im Winkel- oder Bogenmass bezifferte
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Teilung: 0...3600 oder 0...6,28..., sowie eine
Tangensteilung.

Netzkurven, die die reellen Achsen (Re) schneiden,

sind Linien gleicher Cosinuskomponente (in
Fig. 9 gestrichelt). Netzkurven, die die
imaginären Achsen (Im) schneiden, sind
Linien gleicher Sinuskomponente (in Fig. 9
ausgezogen).

Die Schnittpunkte der Betragswaagrechten

1 mit den Netzkurven geben die
Ordinaten der Kreisfunktionen sin und cos
in Abhängigkeit vom Argument; die

Der Quotient von Sinus- und Cosinuskomponente
in einem Punkt r, cp des Netzes, d. h. der Tangens
des zugehörigen Winkels q>, lässt sich als Differenzstrecke

der Minimalpunkte auf den Re- und Im-

Fig. 9

Das Netz der Komplex-Rechenwalze

Schnittpunkte einer anderen Waagrechten kon- Achsen der sich in diesem Punkt schneidenden
stanten Betrages gehen die Ordinaten von Sinus- Netzkurven in logarithmischem Betragsmaßstab
und Cosinuswellen der Amplitude r. abmessen (Fig. 11), sein Reziprokwert ist der Co-
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tangens. Eine grobe Tangensteilung ist ausserdem
parallel zur Winkelteilung des Arguments
angebracht.

ctg 9
Fig. 11

Das Ablesen des Tangens

und des Cotangens

0 SBH773.11

Die Netzkurven sind weiterhin logarithmierte
Sinus- oder Cosinuslinien der Amplitude r, deren
negative Halbperioden-Äste zu den positiven
gleichlaufend umgeklappt sind und die sich auf die
Reziprokteilung des Betrages beziehen (Fig. 12).

Fig. 12

Entstellung der Netzkurve aus der Cosinuskurve

5. Die Komplex-Rechenwalze als Rechenhilfsmittel
und ihre Anwendung

Die einfachen Aufgaben, die mit dem beschriebenen

Netz oder der Rechenwalze gelöst werden können,

ergeben sich aus den Eigenschaften des Netzes
und der Aufgabenstellung seiner Herleitung. Sie
sind ohne weitere Erläuterung auszuführen.
Darüber hinaus aber gibt es eine Menge von
Sondermöglichkeiten, die nicht so unbedingt auf der Hand
liegen und auf die daher im einzelnen hingewiesen
werden soll. Eine Anzahl von Ablesehilfsmitteln ist
zur bequemen Benutzung noch nötig; sie werden bei
der Behandlung der entsprechenden Aufgaben
erwähnt und eiläutert. Natürlich kann nicht jede in
der Praxis vorkommende Aufgabe hier im einzelnen

vorgeführt werden ; eine volle Ausnutzung aller
Vorteile der Rechenwalze wird erst durch Übung
und Erfahrung gewährleistet —- wie es beim
üblichen Rechenschieber auch der Fall ist.

a) Multiplizieren von zwei oder mehreren Vektoren

geschieht durch vektorielle Addition. Dazu
stellt man die Ablesemarke 0M des durchsichtigen
Mantels auf den einen Faktor kennzeichnenden
Netzpunkt, die Marke des Läufers OL auf Re 1

und verschiebt dann beide gemeinsam, bis OL auf
den zweiten Faktor zeigt: dann steht 0M über dem
Produkt. Dessen Betrag und Phase sind am Schnitt
der Reziprokteilung des Mantels mit der Argumentteilung

zu finden. (Siehe hierzu das Netz Fig. 9 und
dessen Deckblatt Fig. 10, das dem Ablesemantel
entspricht.)

Der Leser lasse es sich nicht verdriessen und
zeichne das Achsenkreuz des Ablesemantels nach
Fig. 10 auf transparentes Papier durch. Dann lässt

sich die Multiplikation in Fig. 9 leicht ausführen,
wie sie anhand des dort eingezeichneten Beispiels
aus Fig. 2 nochmals erläutert werde :

2 ei3, z, z. 8 ei4zx 4 ei1, 2

Man legt das Transparent des Ablesemantels so auf
das Netz, dass seine waagrechte (Winkel-)Achse in
Höhe des Betrages rx 4 (Teilung am linken Rand)
verläuft und seine senkrechte (Betrags-)Achse
gleichzeitig auf den Winkel <px 1 in Bogenmass
(Teilung an der unteren Netzkante) zeigt. Dann
deckt der Achsenschnittpunkt, die Abiesemarke 0M,
den dem Vektor zx entsprechenden Netzpunkt. Den
linken unteren Netzpunkt Re 1 markiert man
(mangels des bei der Recbenwalze vorgesehenen Läufers)

mit einem Bleistiftpunkt auf dem transparenten
Deckblatt, so die fehlende Marke OL des Läufers ersetzend.

Dann verschiebt man das Deckblatt parallel
zu sich selbst, bis diese Bleistiftmarke über dem

Netzpunkt z2 mit den Werten r2 2 und tp2 3

liegt. Der Achsenschnittpunkt 0M zeigt dann auf
das Produkt zxz2, dessen Betrag r 8 und Winkel
q> 4 man leicht an den Teilungen des Netzes oder
der Mantelachsen abliest.

b) Dividieren und Potenzieren erfolgen
sinngemäss. Beim

c) Wurzelziehen sind ausser dem Vektor des

Betrages ]/ r und des Argumentes — noch die re—1

weiteren Wurzeln gleichen Betrages gültig, die um die
360

Winkel gegenseitig verdreht sind. Zum Ablesen
TL

der zweiten und der dritten Wurzeln trägt die
Argumentteilung des Mantels die zugehörigen Ablese-

_ 2 7t 2 7t -J
4 7Xi

marken bei und
2 3 3

Wohlgemerkt dürfen diese Operationen nur
zwischen zeitunabhängigen Vektoren oder zwischen
einem Operator und einem Zeitvektor ohne weiteres
vorgenommen werden; Zeitvektoren ändern durch
Multiplikationen und dergleichen miteinander ihre
Umlauffrequenz und sind daher nicht mehr mit
ihren Faktoren gemeinsam in einem Vektorplan
darzustellen, weil sie ja dann mit der Zeit ihre
gegenseitige Lage verändern.

—*
d) Die konjugiert komplexe Zahl z a — j&

rer^ hat umgekehrtes Vorzeichen des Imaginärteiles

oder des Winkels.
e) Die Inversion, das Bilden der reziproken

komplexen Zahl, geschieht nach

1 1 .1 1-= — j tx — tß — e~19>

z a2 + 62 a2 + 62 r
diese hat reziproken Betrag und umgekehrtes
Vorzeichen des Winkels (Fig. 13).

Man kann diese Punktspiegelung durch Einstellen
von z und Re 1 mit den beiden Ablesemarken wie
beim Multiplizieren vornehmen. Einfacher ist es,
mit der auf dem Mantel angebrachten Reziprokteilung

den Betrag von 1 jz abzulesen. Die Kom-
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ponenten liest man mit Hilfe der reziproken
Ablesekurve auf dem Mantel an der Betragteilung ab
(Fig. 14).

/) Eine waagrechte Gerade stellt einen umlaufenden

Drehzeiger konstanten Betrages dar, ist also
Ortskurve einer ungedämpften Schivingung y—r ei"'1.

-Im Re Im

90° -f p 90° s»

SEV177S5 *

Fig. 13

Inversion
(Spiegelung am Einheitskreis und an der reellen Achse;

im logarithmischen Netz Punktspiegelung an Re — 1)

g) Eine schräge Gerade im Netz repräsentiert eine
exponentiell gedämpfte Schwingung y refärim)'.
Der Dämpfungsfaktor im Exponenten der
Schwingungsgleichung ist

s
&co

o
2 71

Das logarithmische Dekrement & der Dämpfung
darin ist der natürliche Logarithmus des Verhältnisses

zweier aufeinanderfolgender Maximalamplituden,

In Ut

Ut + T

Ein Büschel solcher schräger Geraden 10) für einige
Dekrementwerte und nach ihnen beziffert ist auf
dem Mantel angebracht ; Zwischenwerte können
leicht interpoliert werden. Mit ihrer Hilfe können
einerseits die Ordinaten gedämpfter Schwingungen
einfach abgelesen werden, deren Berechnung sonst

Im Re

r* 1

Ablesen von z und -
a im Netz; b

Im Im

-* b
Fig. 14

nach Betrag und Komponenten

mittels des Ablesemantels

einige Rechenschieberarbeit erfordert, anderseits
kann aus mindestens zwei Werten einer gedämpften

Welle, die nicht um eine volle Periode versetzt
zu sein brauchen, die wirksame Dämpfung bestimmt
werden. Beides ist je eine kleine, aber wesentliche
Erleichterung für die praktische Schwingungsrechnung

und -analyse und rechtfertigt diese von Reinhardt

abweichende Gestaltung der Rechenwalze.

Zur Amplitudenänderung einer Sinusschwingung
wird die waagrechte oder schräge Gerade um die

10) Umgekehrt entsprechen solchen schrägen Geraden im
polaren Netz logarithmische Spiralen; daher kann das
Multiplikationsparallelogramm dort durch ein Viereck aus Spiralenstücken

ersetzt werden; siehe Oppelt, Fussnote 4.

dem Faktor entsprechende Strecke achsenparallel
verschoben. Zur Addition eines Phasenwinkels wird
die Argumentteilung als Ganzes verschoben. Zur
Multiplikation mit einem Frequenzfaktor n wird
die Argumentteilung um diesen Faktor verzerrt,
d. h. statt bei dem Argument t wird bei dem
Produkt nt abgelesen.

h) Die reziproke Ablesekurve auf dem Mantel ist
in bezug auf die Betragsteilung eine Sinusquadratkurve

und erlaubt ein Ablesen der Funktionswerte
r sin2 cp und r cos2 cp.

i) Differenzieren eines Zeitvektors geschieht
bekanntlich durch Vordrehen um 90° und Multiplizieren

mit a> gemäss :

z' jcoz

k) Integrieren verlangt umgekehrt Rückdrehen
um 90 ° und Dividieren durch o> :

I z dt —
CO

1

jftl

Beides geschieht im logarithmischen Netz, indem
man die Argumentteilung des Mantels mit +90°
oder —90° auf den Netzpunkt einstellt und neben
der Betragteilung des Mantels bei dem Skalenwert m
oder 11 co nach Betrag oder Komponenten abliest.

6. Beispiel für die Anwendung des Netzes

als Rechenhilfsmittel

Ein Kettenbruch im Komplexen. Für die
Kaskadenschaltung zweier Induktionsmaschinen lässt
sich ein einphasiges Ersatzschaltbild nach Fig. 15
aufstellen. Darin sind Widerstände und Reaktan-

0,59 1,74 0.5s+0,5 3,74 1,74

—TOTP—«—qjuL—

Fig. 15

Schaltschema zum Zahlenbeispiel

zen in Ohm, Querwiderstände und Admittanzen in
Siemens argîgeben. Der Schlupf s sei 3 %. Die
resultierende Impedanz Z lässt sich sofort als
Kettenbruch aufschreiben:

Z 0,59+j 1,74+ ——
-j 0,0234

2,14 -j 3,47 -

-j 0,023
19,67+j 1,74

(Kettenbrüche entstehen auch bei der Berechnung
von Bandfiltern.)
Hieraus ermittelt man in üblicher Weise mit dem
Rechenschieber «Darmstadt» den Wert

Z 10,39 A j 14,1 17,5 ei53'60 und damit den Strom

1
U 220

12,6 e i 53'6° und seine Komponenten.
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Bei dieser Rechnung muss man, vom letzten Nenner
ausgehend, die Komponenten nach Betrag und Winkel

umrechnen, die Inversion durchführen und wieder

in Komponenten auflösen. Wenn wie hier die
Komponenten nicht innerhalb einer Dekade liegen,
der Winkel also klein ist, kann diese Umrechnung
auch nicht in der gezeigten einfachsten Weise
geschehen, in der schon für diesen einen Nenner

allein acht Einstellungen und Ablesungen nötig

wären: a und b -> w; m ->— ; —und œ ->—und^-.
r r a b

Nach der Addition des Summanden wird diese ganze
Umrechnung erneut vorgenommen, insgesamt viermal.

Bei Verwendung des logarithmischen Netzes ist
der Arbeitsgang viel einfacher: man sucht den den
Komponenten entsprechenden Netzpunkt und liest
seine reziproken Komponenten mittels der Mantelkurve

ab. Das erfordert vier gegen anders mindestens
acht Ablesungen, und für den viermal zu
wiederholenden Vorgang insgesamt nur etwa drei Minuten.
Eine gewiss bedeutende Erleichterung des

Rechnungsganges Allerdings sei zugegeben, dass die
erreichbare Genauigkeit bei bandlichem Format der
Recbenwa ze nicht ganz die des Rechenschiebers ist,
besonders für die Bereiche kleiner Winkel. Ob das
aber die Anwendung dieses schnellen Verfahrens
ausschliesst, ist von Fall zu Fall zu entscheiden.
Dann bleibt immer noch der Ausweg, ein grossfor-
matiges Blatt eines Quadranten als Netz zu
verwenden.

7. Die Ortskurve im komplex-logarithmischen Netz

Bisher wurden im wesentlichen einzelne
mathematische Operationen an zeitunabhängigen Operatoren

oder Zeitvektoren behandelt, d. h. das Netz
als Rechenhilfsmittel verwendet. Dabei konnten
Zeitvektoren und Operatoren gemischt und
verknüpft werden, solange dadurch eine Änderung der
Umlauffrequenz nicht eintrat oder beachtet wurde.
Benutzt man jedoch das Netz als Koordinatensystem

zum Einzeichnen von Vektorplänen oder
Ortskurven, dann ist auf die Frequenzgleichheit
aller Vektoren zu achten. Ein Produkt zweier
Zeitvektoren, z. B. die Leistung, darf nicht im gleichen
Vektorplan mit den Faktoren Strom und Spannung
auftreten.

Vektorpläne, d. h. additive Aneinanderreihungen
von komplexen Zahlen, lassen sich im logarithmischen

Netz ebenso leicht zeichnen wie im linearen.
Durch die logarithmische Teilung sind grosse
Zahlenwerte immer noch in handlichen Formaten
unterzubringen, und der nicbt erreichbare Nullpunkt ist
mit beliebiger Genauigkeit anzunähern. Eine Addition

ist hier zahlenmässig ohne Hilfsmittel und eine
Multiplikation zeichnerisch durchzuführen, und
leichter als umgekehrt im linearen Netz, wo die
Multiplikation einen Rechenschieber als zweites
Hilfsmittel erfordert.

Auch Ortskurven (d. h. die zeitmarkierte Bahn des

Endpunktes eines zeitveränderlichen Vektors) lassen

sich im logarithmischen Netz mit besonderem
Vorteil darstellen, da die im normalen Netz häufigen

einfachen Formen Gerade und Kreis hier meist
zu ebenso einfachen Geraden und Netzkurven werden,

deren Einzeichnung in das Netz oft noch leichter

ist. Es ist dabei bequem und praktisch, das Netz
als Transparentblatt auf eine Unterlage zu legen,
die die auf dem Mantel der Rechenwalze vorhandenen

Teilungen und Marken trägt, so dass diese
durchscheinen und leicht durchgezeichnet werden
können.

Zum Einzeichnen von Ortskurven ist das
komplex-logarithmische Netz schon bekannt geworden
u. a. durch die Bücher von Bodeu) und von
Strecker 12), der es benutzt, um mehrfach
durchlaufende Kurven ähnlich den « Riemannschen
Blättern» voneinander zu trennen und sie einzeln
aneinanderzureihen. Beide erkennen jedoch nicht die
besondere Eignung des Netzes zum einfachen
Multiplizieren.

Im Zuge der hier beabsichtigten Einführung in
die Vorteile des komplex-logarithmischen Netzes
im Interesse einer Förderung der praktischen Analysis

allgemein kann natürlich nicht tiefer auf die
speziell in der Elektrotechnik und neuerdings auch
für die Darstellung von Stabilitätsproblemen in der
Regeltechnik gebräuchlichen Ortskurvendarstellungen

eingegangen werden.
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Dr.-Ing. Vf. de Beauclair, Stuttgart-Degerloch, Böhmstrasse 11.

n) Bode, H. W. : Network Analysis and Feed-back
Amplifier-Design. van Nostrand Verlag, New York 1945.

12) Strecker, F. : Die elektrische Selbsterregung. Hirzel-
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I. Introduction

Au cours des douze derniers mois, l'activité d'ensemble
de la Commission s'est maintenue à un niveau élevé, se
traduisant par des progrès sensibles dans la plupart des
domaines où elle s'exerce. Pour mettre en évidence le développement

soutenu des travaux des Comités d'Etudes, il paraît
utile de citer tout d'abord quelques faits et chiffres.

24 Comités d'Etudes sont actuellement en pleine activité,
contre 18 en 1948; plusieurs autres sont sur le point de

reprendre le travail.

230 documents, y compris les comptes rendus de réunions,
ont été diffusés au cours de l'année 1949, contre 170 en
1948.

Le nombre de réunions techniques internationales, y compris

celles de divers comités préparatoires et comités de
rédaction, a atteint 17 pendant la période à l'examen, contre
11 pour la période correspondante précédente. 21 réunions
sont prévues au cours des seuls mois de juin et juillet 1950.

Un nouveau fascicule intitulé «Recommandations
internationales concernant les culots et douilles ainsi que les
calibres pour le contrôle de l'interchangeabilité» est en
instance de publication, l'enquête en vue de son approbation
suivant la règle des six mois ayant pris fin récemment.

Des recommandations portant sur les sujets suivants sont
maintenant à l'état de projets avancés:
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