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Logarithmisches Netz fiir komplexe und Schwingungsrechnungen

Von W. de Beauclair, Stuttgart (Deutschland)

Die Gaufische Zahlenebene zur Darstellung komplexer Zahlen
wird in anschaulicher Weise logarithmisch verzerrt und dadurch
einfache Multiplikation nur durch vektorielle Addition ermig-
licht. Das so entstandene «komplex-logarithmische Netz» ist wie
vorher zur Darstellung von Vektorplinen und Ortskurven geeig-
net ; von besonderem Vorteil ist aber die aus dem Netz entwickelte
« Komplex-Rechenwalze» als logarithmisch-instrumentelles Re-
chenhilfsmittel, das bei zweckdienlicher Gestaltung universell und
gleich gut fiir skalare und komplexe Rechnungen brauchbar ist.
Einige Richilinien und Beispiele fiir die hdufigsten Aufgaben-
gebiete erldutern die Handhabung des Netzes und sollen seine ein-
gehende Verwendung in der Praxtis veranlassen.

1. Einleitung

Ebenso niitzlich wie der fast unentbehrliche loga-
rithmische Rechenschieber fiir die Rechnung mit
skalaren Grossen ist ein logarithmisch verzerrtes
Netz der GauBschen Zahlenebene fiir die Umrech-
nung und Multiplikation von komplexen Zahlen.
Bei geeigneter Ausbildung des Netzes und handli-
cher Anordnung der Ablesehilfsmittel kénnen viele
in Zusammenhang mit komplexen Zahlen stehende
Aufgaben der Elektrotechnik und Schwingungs-
technik einfach und schnell gelost werden, deren
Bearbeitung mit dem Rechenschieber wesentlich
langwieriger ist.

2. Aufgabenstellung

Komplexe Zahlen in Komponentenform z =
a + jb') oder in Polarform z =r - ei® lassen sich
durch Punkte im Netz der GauBschen Zahlenebene
(Fig. 3) darstellen. Da sich die Kreisfunktionen, und
damit Schwingungsvorginge aller Art, als Projek-
tionen, d. h. als Real- und Imaginiirteil eines um-
laufenden Drehzeigers 2) auffassen lassen,

r-sin wt = Im (r - ei*¥)

2n

/4
und man bei Drehzeigern gleicher Frequenz von
ihrem Umlauf absehen kann (da sich dabei ihre ge-
genseitige Lage nicht veridndert), kann man auch
die Diagramme und Ortskurven der Elektrotechnik
und Schwingungstechnik in eine GauBlsche Zahlen-
ebene einzeichnen. Dadurch hat sie ihre grosste prak-
tische Bedeutung. Aber viele andere auch rein ma-
thematische Aufgaben sind in der komplexen Ebene
gut darstellbar.

Man kann das Kartesische Koordinatennetz der
GauBschen Zahlenebene zur Darstellung komplexer
Zahlen und das Polarkoordinatennetz zu ihrer Dar-
stellung nach Betrag und Winkel iibereinander-
legen; dann entsteht also ein doppeltes Netz: ein
rechtwinkliges mit achsparallelen Geraden gleichen
Realteiles @ = r - cos ¢ und gleichen Imaginérteiles

r-cos ot = Re (r-ei*) mit o =2xf=

1) Im Gegensatz zur Elektrotechnik braucht man in der
Mathematik ausschliesslich i als imaginiire Einheit.

?) Im folgenden werden zeitunabhingige komplexe Zahlen
oder Vektoren einer Ebene als «Operatoren», zeitabhiingige
umlaufende Drehzeiger als « Zeitvektoren» bezeichnet, obwohl
sie streng genommen keine Vektoren sind.

681.143.3: 511.147

Le plan numérique de Gauss destiné a représenter des
nombres complexes, est ordonné logarithmiquement, ce qui
permet de procéder a des multiplications par de simples
additions vectorielles. Le réseau complexe-logarithmique ob-
tenu de la sorte convient, lui aussi, a la représentation de
plans vectoriels et de courbes locales. En partant de ce ré-
seau, Uauteur a construit un tambour & calcul complexe, qui
a le mérite d’étre utilisable aussi bien pour le calcul vec-
toriel que pour le calcul scalaire. L'auteur donne quelques
renseignements sur la marche a suivre et montre, par des
exemples tirés des applications les plus fréquentes, qu’un tel
réseau peut étre utilisé dans de nombreux cas pratiques.

b = r - sin @, und dariiber ein polares mit konzen-
trischen Kreisen gleichen Betrages 1 = |/ a® -+ b?

und Radien gleichen Argumentes ¢ = arctgk
a

[Phase, Winkel werden oft in Gradmass gemessen
und geschrieben; sie sollen zu Berechnungen stets
in Bogenmass (360° = 6,28...) umgerechnet wer-
den]. Diese Darstellung in der komplexen Ebene
erlaubt also sofortiges Umlesen aus der Kompo-
nenten- in die Vektorform und umgekehrt. Dieses
Umrechnen erfordert selbst in der bei dem Rechen-
schieber «Darmstadt» moglichen vorteilhaftesten
Ausfithrungsart 2) (Fig. 1) — fiir die allerdings beide

foo o
1/r=0.2 " L ! L9

T
i 2 b= a 10

r=5 @=4 1 ]

Sinus
Tangens

T b'f 1
r 5 12 1

SEV 17781

Fig. 1
Umrechnungsbeispiel von rechtwinkligen Koordinaten in
- Polarform mit Rechenschieber
Z=a-+jb=r-ei”; (a>Db); am Beispiel 4+ 3j2>5.¢ei" %
1 1 1 1
und = = — = —+e)?; am Beispiel - -
z a+tijb T Pl it 3]

(ist a > b, so erhidlt man Komplementidrwinkel 90°—¢ )

N 0
2 02.e-i s

Komponenten innerhalb einer Dekade liegen miis-
sen, weil sonst ihr Verhiltnis < 0,1 und ihr Argu-
ment << 5,8° nicht mehr auf der Rechenschieber-
teilung sind — mehrere Einstellungen und Zwi-
schenablesungen. Durch einfache vektorielle Addi-
tion der Komponenten oder der Drehzeiger ist eine
Addition von komplexen Zahlen in der Gaufschen
Zahlenebene erledigt. Leider aber ist eine zeich-
nerische Multiplikation (auch Division und Poten-
zierung) von komplexen Zahlen in diesem Netz nur
durch umstindliche geometrische Konstruktion
méglich. Daher sind Produkte komplexer Zahlen
und darauf zuriickzufiihrende Aufgaben der Schwin-
gungstechnik in der Gaullschen Zahlenebene nicht
gut zu lésen; sie miissen durch numerische
Rechnung mit dem Rechenschieber gesondert er-
mittelt und dann erst eingezeichnet werden. Die
Gauflsche Zahlenebene ist also ein Koordinaten-
system und kein Rechenhilfsmittel, denn gerade die
Multiplikation sollte erleichtert sein. Dass dies

%) siche Edelmann, H.: Aus der Praxis des Rechenschiebers.
Elektrotechn. Z. Bd. 61(1940), Nr. 45, S. 1015...1016.
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durch logarithmische *) Rechnungsweise zu errei-
chen sein miisste, zeigt der Vergleich mit dem Re-
chenschieber. Es handelt sich also darum, die
Gaullsche Zahlenebene in ein logarithmisches Netz
zu verzerren, ohne ihre Vorteile zu verlieren. Dies
hat m. W. zuerst Reinhardt®) mit Erfolg durch-
gefithrt; seine Verdffentlichung ist jedoch nicht
mehr so bekannt geworden, wie es die Sache ver-
diente und ist zurzeit schwer zu erhalten.

3. Herleitung des Netzes

Ausser dem dort gefolgten formal-mathemati-
schen Weg, dieses logarithmische Netz zu finden,
gibt es einen recht anschaulichen, der leichter und
ohne Kenntnis des Verfahrens der «konformen Ab-
bildung» w = Inz zum Verstindnis fithrt, und der
deshalb im folgenden fiir eine breite Anwendung die-
ses Netzes werben soll, das des weiteren zu einem
recht vorteilhaften Rechenhilfsmittel ausgestal-
tet wird.

Die Formel fiir die Ausfithrung der Multiplikation
komplexer Zahlen ist bekanntlich:

— (al + jbl) . (a,2 + ij) =r; ej¢l T Ty ejlpa
=TTy el (e t+e2)

Zy %y

In Worten: Multiplikation der Betrige und Addi-
tion der Winkel.

Man erinnert sich daraufhin an halblogarithmi-
sches Netzpapier, auf dem in Richtung der loga-
rithmisch geteilten Achse durch Streckenaddition
die durch deren Liinge definierten Betrige multipli-
ziert werden, wihrend in Richtung der linear geteil-
ten Achse Addition von Strecken eine Addition der
entsprechenden Zahlen darstellt. Man wird also Be-
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Komplexe Zahlen im halblogarithmischen Netz
Beispiel zur Multiplikation:
2 = 4ell; z, = 2eB; 7 2z, = 8ell = el 290
(p im Bogenmass)

trag r und Argument @ einer komplexen Zahl in
halblogarithmisches Netzpapier so eintragen, dass
das Argument der linear geteilten Achse, der Be-

4) Ein nur indirekt logarithmisches Verfahren zur Multipli-
kation bringt Oppelt, W. : Graphische Verfahren zur komplexen
Multiplikation. Arch. f. elektr. Ubertragung 2(1948), S. 76.

%) siche Reinhardt, F.: Rechentafel zum Umrechnen von
rechtwinkligen in Polarkoordinaten. Druckschrift der Fa. Sie-
mens & Halske: Messeinrichtungen fiir die Fernmeldetechnik,
Berlin 1944.

trag der logarithmischen zugeteilt wird (Fig. 2),
und zur Multiplikation zweier so durch ihre einge-
zeichneten Netzpunkte gegebener komplexer Zah-
len die von Punkt 1 der logarithmischen Leiter zu
ihnen fithrenden Zeiger vektoriell addieren, d. h.
Argumentstrecke zu Argumentstrecke und Ordina-
tenstrecke zu Ordinatenstrecke (unter Berick-
sichtigung des Vorzeichens) ansetzen.

Damit wire ein Schritt zur Losung des Vorha-
bens, nimlich der einfachen Multiplikation, ge-
tan. Es bleibt der zweite, die Umrechnung aus der
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Fig. 3
Die vier Quadranten des doppelten Netzes der Gauflschen
Zahlenebene

Die Kreise bedeuten Linien gleichen Betrages, die Radien
solche gleichen Winkels. Die Senkrechten bedeuten Linien
gleichen Realteiles, die Waagrechten solche gleichen Imaginir-
teiles. (Die Mafstibe beider Achsen miissen gleich sein.)

Als Beispiel ist der Punkt z—4 + 3j in die Fig. eingetragen.

eben gezeichneten Vektorform in die Komponen-
tenform ebenso einfach wie in der Gaufischen Zah-
lenebene zu ermoglichen. Dazu ist eine Veranschau-
lichung niitzlich, die eine Uberfilhrung der linea-
ren Zahlenebene in die logarithmisch verzerrte ver-
sinnbildlicht. Sie geschieht in drei Schritten:

Im

N AL
NEINaH

i
o

SEVI7784

Fig. 4
Das aufgeschlitzte Netz

a) Ausgang. Die vier Quadranten des doppelten
Netzes der Gaullschen Zahlenebene ¢) zeigt Fig. 3.
Dieses Netz wird nun von unten her aufgeschnitten
und aufgebogen (Fig. 4).

) Der verlockende kiirzere Name «Gaussnetz» ist fiir ein
Netzpapier zur geradlinigen Darstellung der Gaufischen
Glockenkurve der Hiufigkeitsverteilung vorbesetzt (siche
Lorenz: Uber die Analyse von Verteilungskurven. Die Technik,

Bd. 2(1947), S. 83...88).
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b) Der Ubergang. Durch das Aufbiegen werden
die Kreise flacher; die Radien bleiben gerade und
die rechtwinkligen Netzlinien erhalten gleichartige
Kriimmung (Fig. 5).
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Fig. 5
Das aufgebogene Netz im Ubergangsstadium

Bei weitergehender Verformung ergibt sich:

¢) Das aufgebogene Netz. In diesem sind die Linien
gleichen Betrages waagrecht, die Linien gleichen
Winkels senkrecht. Die Linien gleichen Realteils
und die Linien gleichen Imaginirteils sind kon-
gruente Netzkurven. Die Maflstibe der senkrechten
Achsen sind einander gleich, der der Argument-
achse kann beliebig gewihlt werden (Fig. 6).
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270 180 90° o° 270°
S[my )
. Fig. 6

Das fertig aufgebogené Netz

Da das Polarnetz in r und ¢ mit ¢ = 360°,
d. h. mit einem vollen Umlauf, periodisch war, ist
auch das aufgeschnittene Netz mit linearer ¢-Tei-
lung mit ¢ = 360 ° periodisch, d. h. es ist nicht nétig,
mehr als die vier Quadranten im logarithmischen
Netz darzustellen. Zum Schluss driickt man die
(bisher noch gleichmissige) Betragteilung loga-
rithmisch zusammen und erhilt das gesuchte
(halb-)logarithmische Netz, das die geforderten Re-
chenoperationen gestattet.

d) Die logarithmisch verzerrte Gaufsche Zahlen-
ebene mit normal gerichtetem Achsensystem ist nun
das «komplex-logarithmische Netz». Man erkennt
in Fig. 7, Seite 21, dass die vorher geraden und
rechtwinkligen Netzlinien zu Kurven («Netzkur-

ven») verbogen sind. Sie waren vorher Linien glei-
cher Komponente, ihre Gleichung in Polarkoordi-
naten war

fir Re = konst.: r. = b = b

sing  cos (p+ 90°)
fir Im = konst.: rn = a

cos @

Zu gleichen Vektoren miissen immer gleiche Kom-
ponenten gehiren, gleichgiiltig, in welchem ver-
zerrten Netz sie dargestellt werden. Dieselbe Glei-
chung muss daher auch im logarithmischen Netz
fiir die jetzt rechtwinkligen Koordinaten der Kur-
ven gleicher Komponente gelten, sobald ihre Zah-
lenwerte in logarithmischem Maflstab abgemessen
und aufgetragen werden (Fig. 8).

(

SEVI7788

a4

Fig. 8
Vergleich der Darstellung von Komponenten in der GauBschen
Zahlenebene («) und im komplex-logarithmischen Netz (8)
zur Ableitung der Netzlinien-Gleichung

Um das Netz zu zeichnen, braucht man also nur
eine einzige Vorlage oder Schablone, mit deren Hilfe
man die unter sich simtlich gleichen und paralle-
len, um den Faktor b in Betragrichtung bzw. um
90° verschobenen Kurven gleicher Komponente
leicht erhilt. Am einfachsten ist es, dieses Kurven-
netz in eines der kiuflichen halblogarithmischen
Papiere einzutragen, dessen vorhandenes Netz Be-
trag und Winkel ordnet 7).

Es wiirde an sich ausreichen, einen Quadranten
des Netzes zu zeichnen, etwa fiir das Argument ¢
zwischen 0 und 90°. Es lassen sich namlich alle
komplexen Zahlen durch Erweitern mit passenden
Potenzen von 10 und j in diesen Bereich bringen:

—a -} jbim Quadranten 2 entspricht j (b ja)
im Quadranten 1,
—a—jb im Quadranten 3 entspricht —(a 4 jb)
im Quadranten 1,
a—jbim Quadranten 4 entspricht —j(b -+ ja)
im Quadranten 1.

Beispiel : 125 — 18 j = —100j - (0,18 4 1,25 j).

Es ist aber dennoch von grossem Vorteil, alle vier
Quadranten vor sich zu haben; man gewinnt sehr
an Anschaulichkeit und erspart sich Miithe und Feh-
ler bei der Umrechnung, besonders bei Schwin-

7) Im Notfall reicht es auch aus, sich eine einzige Netz-
kurve obiger Gleichung auf transparentes Papier zu zeichnen
und als Deckblatt zum Ablesen der Komponenten der auf
halblogarithmisches Papier eingetragenen Punkte zu ver-
wenden.
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gungs- und Ortskurvenberechnungen, die sich iiber
alle vier Quadranten erstrecken. Fiir besonders ge-
naue Darstellungen kann zusitzlich ein Quadrant
in grossem Mallstab vorgesehen werden.

Re
1000

linder schiebt man einen durchsichtigen Ablese-
mantel (Fig.10), der einige Ablesemarken und
-linien triigt, die spiter noch besprochen werden.
Uber diesen legt man noch einen durchsichtigen
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Fig. 7
Das komplex-logarithmische Netz

Erweiterung zur « Komplex- Rechenwalze» 8)

Fiir die Verwendung des Netzes als Rechenhilfs-
mittel ist es jedoch am besten, die vier Quadranten
zu einer Walze zusammenzubiegen, so dass die Win-

kelteilung fortlaufend wird ®) (Fig. 9). Uber den Zy-

8) nicht: komplexe Rechenwalze!

®) Reinhardt bog einen Quadranten mit einer logarithmi-
schen Dekade zur Walze zusammen, so dass die Betragteilung
fortlaufend wurde; siehe «Der logarithmische Rechenzylinder
fiir komplexe Zahlen». Elektrotechn. Z. Bd. 69(1948), Nr. 3,
S. 78...82. :

Ring mit einem Achsenkreuz als Ablesemarke, der
dem Liufer beim Rechenschieber entspricht.

4. Die Eigenschaften der Netzlinien
Die senkrechten Achsen des Netzes verkorpern
rein reelle oder rein imaginiire Zahlen und tragen je
eine logarithmische Teilung in gleichem Malistab,
deren Bezifferung auch fir den Betrag r gilt.
Punkte einer Waagrechten haben gleichen Betrag r.
Die waagrechte Achse trigt eine lineare, nach dem
Argument ¢ im Winkel- oder Bogenmass bezifferte
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Teilung: 0...360° oder 0...6,28..., sowie eine Tan- | Der Quotient von Sinus- und Cosinuskomponente
gensteilung,. in einem Punkt r, ¢ des Netzes, d. h. der Tangens

Netzkurven, die die reellen Achsen (Re) schnei- | des zugehorigen Winkels ¢, lidsst sich als Differenz-
den, sind Linien gleicher Cosinuskomponente (in | strecke der Minimalpunkte auf den Re- und Im-

Fig. 9 gestrichelt). Netzkurven, die die

) © . b Re Im -Re -Im Re
imagindren Achsen (Im) schneiden, sind
o5 ¥ . . N 1 - = . .
Linien gleicher Sinuskomponente (in Fig. 9 S P T J%é\ S e S O
ausgezogen). 1 P A R QOO A &;(/ =
Jamni 4 > T T A
Die Schnittpunkte der Betragswaag- IR W AT \i’ N LA AT JL— “\ ISEAH
: . TS NS TSI TN
rechten 1 mit den Netzkurven geben die 4 5T ,/ \( AN A XX
% E 5 E \ - " i \ 2 _ /
Ordinaten der Kreisfunktionen sin und cos g3+ ) e N e i\/r
in Abhingigkeit vom Argument; die $.L VL | NN |\ C’\ [ DN
A\, = // \, #:
RN 4 > 4
Fig. 9 INEAdRANERNEARN el | L
Das Netz der Komplex-Rechenwalze 0 90° 180° 270° 360°
SEVIZ787 ?
Gradmass 180° 90°
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Dampfungs-
Dehrement

Fig. 10
Der Ablesemantel zum komplex-logarithmischen Netz

o

o

o
L
—

Schnittpunkte einer anderen Waagrechten kon- | Achsen der sich in diesem Punkt schneidenden
stanten Betrages geben die Ordinaten von Sinus- | Netzkurven in logarithmischem BetragsmaBstab
und Cosinuswellen der Amplitude r. abmessen (Fig. 11), sein Reziprokwert ist der Co-
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tangens. Eine grobe Tangensteilung ist ausserdem
parallel zur Winkelteilung des Arguments ange-
bracht.

Re Im
"\,p
&
anar
1 __as‘!' S~—1 1o Fig. 11
ctg spl : l 1 Das Ablesen des Tangens
und des Cotangens
1 . -
o° 4sf 90° ¢
L 1 1
0 Sev17791 1 @ tg¥

Die Netzkurven sind weiterhin logarithmierte
Sinus- oder Cosinuslinien der Amphtude r, deren

negative Halbperioden-Aste zu den positiven gleich-

laufend umgeklappt sind und die sich auf die
Reziprokteilung des Betrages beziehen (Fig. 12).

gy -]
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r — ;o \ 1
1t I, \\ * 19 + ! I_ “ + 1 ‘I l' !
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SEV17792 ! L
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Fig. 12

Entstehung der Netzkurve aus der Cosinuskurve

5. Die Komplex-Rechenwalze als Rechenhilfsmittel
und ihre Anwendung

Die einfachen Aufgaben, die mit dem beschriebe-
nen Netz oder der Rechenwalze gelost werden kon-
nen, ergeben sich aus den Eigenschaften des Netzes
und der Aufgabenstellung seiner Herleitung. Sie
sind ohne weitere Erliduterung auszufiihren. Dar-
itber hinaus aber gibt es eine Menge von Sonder-
méglichkeiten, die nicht so unbedingt auf der Hand
liegen und auf die daher im einzelnen hingewiesen
werden soll. Eine Anzahl von Ablesehilfsmitteln ist
zur bequemen Benutzung noch nétig; sie werden bei
der Behandlung der entsprechenden Aufgaben er-
wihnt und eiliutert. Naturlich kann nicht jede in
der Praxis vorkommende Aufgabe hier im einzel-
nen vorgefiithrt werden; eine volle Ausnutzung aller
Vorteile der Rechenwalze wird erst durch Ubung
und Erfahrung gewihrleistet — wie es beim iibli-
chen Rechenschieber auch der Fall ist.

a) Multiplizieren von zwei oder mehreren Vekto-
ren geschieht durch vektorielle Addition. Dazu
stellt man die Ablesemarke 0M des durchsichtigen
Mantels auf den einen Faktor kennzeichnenden
Netzpunkt, die Marke des Liufers 0L auf Re =1
und verschiebt dann beide gemeinsam, bis 0L auf
den zweiten Faktor zeigt: dann steht 0M iiber dem
Produkt. Dessen Betrag und Phase sind am Schnitt
der Reziprokteilung des Mantels mit der Argument-
teilung zu finden. (Siehe hierzu das Netz Fig. 9 und
dessen Deckblatt Fig. 10, das dem Ablesemantel
entspricht.)

Der Leser lasse es sich nicht verdriessen und
zeichne das Achsenkreuz des Ablesemantels nach
Fig. 10 auf transparentes Papier durch. Dann lisst

sich die Multiplikation in Fig. 9 leicht ausfiihren,
wie sie anhand des dort eingezeichneten Beispiels
aus Fig. 2 nochmals erldutert werde: i

z,=4ell, z,=2eB, 2z 2,=8el

Man legt das Transparent des Ablesemantels so auf
das Netz, dass seine waagrechte (Winkel-)Achse in
Héhe des Betrages r; = 4 (Teilung am linken Rand)
verlduft und seine senkrechte (Betrags-)Achse
gleichzeitig auf den Winkel ¢, = 1 in Bogenmass
(Teilung an der unteren Netzkante) zeigt. Dann
deckt der Achsenschnittpunkt, die Ablesemarke 0 M,

den dem Vektor z, entsprechenden Netzpunkt. Den
linken unteren Netzpunkt Re = 1 markiert man
(mangels des bei der Rechenwalze vorgesehenen Liu-
fers) mit einem Bleistiftpunkt auf dem transparenten
Deckblatt, so die fehlende Marke 0L des Liufers erset-
zend. Dann verschiebt man das Deckblatt parallel
zu sich selbst, bis diese Bleistiftmarke iiber dem
Netzpunkt z, mit den Werten r, = 2 und g, = 3
liegt. Der Achsenschnittpunkt 0M zeigt dann auf
das Produkt z, z,, dessen Betrag r = 8 und Winkel
@ = 4 man leicht an den Teilungen des Netzes oder
der Mantelachsen abliest.

b) Dividieren und Potenzieren erfolgen smn-
gemiss. Beim i

¢) Wourzelziehen sind ausser dem Vektor des Be:-

trages 1/ r und des Argumentes % noch die n—1 wei-

teren Wurzeln gleichen Betrages giiltig, die um die
Winkel
der zwelten und der dritten Wurzeln triigt die Argu-

mentteilung des Mantels die zugehorigen Ablese-

marken bei 22”, 25 und i

3 3

Wohlgemerkt diirfen diese Operationen nur zwi-
schen zeitunabhingigen Vektoren oder zwischen
einem Operator und einem Zeitvektor ohne weiteres
vorgenommen werden; Zeitvektoren dndern durch
Multiplikationen und dergleichen miteinander ihre
Umlauffrequenz und sind daher nicht mehr mit
ihren Faktoren gemeinsam in einem Vektorplan dar-
zustellen, weil sie ja dann mit der Zeit ihre gegen-
seitige Lage verindern.

gegenseitig verdreht sind. Zum Ablesen

d) Die konjugiert komplexe Zahl Z =a— jb =
re’? hat umgekehrtes Vorzeichen des Imaginiir-
teiles oder des Winkels.

e) Die Inversion, das Bilden der reziproken kom-
plexen Zahl, geschieht nach :

a? + b? a? | b2 or
diese hat reziproken Betrag und umgekehrtes Vor-
zeichen des Winkels (Fig. 13).

Man kann diese Punktspiegelung durch Emstellen

z

von z und Re = 1 mit den beiden Ablesemarken wie
beim Multiplizieren vornehmen. Einfacher ist es,
mit der auf dem Mantel angebrachten Reziprok-

teilung den Betrag von 1/z abzulesen. Die Kom-
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ponenten liest man mit Hilfe der reziproken Ab-
lesekurve auf dem Mantel an der Betragteilung ab
(Fig. 14).

f) Eine waagrechte Gerade stellt einen umlaufen-
den Drehzeiger konstanten Betrages dar, ist also
Ortskurve einer ungedimpften Schwingung y = reit,

Im -Im Re im

N|

rk-—=-

1 o .
Re 90° ¥ 0°
1
z 1w ]l
z

T
SEVI7 795

¥ 90° ¥

Fig. 13
Inversion

(Spiegelung am Einheitskreis und an der reellen Achse;
im logarithmischen Netz Punktspiegelung an Re = 1)

g) Eine schrige Gerade im Netz reprisentiert eine
exponentiell gedimpfte Schwingung y = reto+io)t,
Der Dampfungsfaktor im Exponenten der Schwin-
gungsgleichung ist

Jw

27

Das logarithmische Dekrement ¢ der Dimpfung
darin ist der natiirliche Logarithmus des Verhalt-
nisses zweier aufeinanderfolgender Maximalampli-
tuden,

0

U

?=1n

Uut+T

Ein Biischel solcher schriger Geraden 19) fiir einige
Dekrementwerte und nach i1hnen beziffert ist auf
dem Mantel angebracht; Zwischenwerte kénnen
leicht interpoliert werden. Mit ihrer Hilfe kénnen
einerseits die Ordinaten gedimpfter Schwingungen
einfach abgelesen werden, deren Berechnung sonst

Im- Re, Im
|z 5
t4 7 11
1 <15
d # 1l b
-y
b
Fig. 14

Ablesen von z und ?1 nach Betrag und Komponenten
a im Netz; b mittels des Ablesemantels

einige Rechenschieberarbeit erfordert, anderseits
kann aus mindestens zwei Werten einer gediampf-
ten Welle, die nicht um eine volle Periode versetzt
zu sein brauchen, die wirksame Dampfung bestimmt
werden. Beides ist je eine kleine, aber wesentliche
Erleichterung fiir die praktische Schwingungsrech-
nung und -analyse und rechtfertigt diese von Rein-
hard: abweichende Gestaltung der Rechenwalze.

Zur Amplitudeninderung einer Sinusschwingung
wird die waagrechte oder schrige Gerade um die

10) Umgekehrt entsprechen solchen schriigen Geraden im
polaren Netz logarithmische Spiralen; daher kann das Multipli-
kationsparallelogramm dort durch ein Viereck aus Spiralen-
stiicken ersetzt werden; siche Oppelt, Fussnote 4.

dem Faktor entsprechende Strecke achsenparallel
verschoben. Zur Addition eines Phasenwinkels wird
die Argumentteilung als Ganzes verschoben. Zur
Multiplikation mit einem Frequenzfaktor n wird
die Argumentteilung um diesen Faktor verzerrt,
d. h. statt bei dem Argument ¢ wird bei dem Pro-
dukt nt abgelesen.

h) Die reziproke Ablesekurve auf dem Mantel ist
in bezug auf die Betragsteilung eine Sinusquadrat-
kurve und erlaubt ein Ablesen der Funktionswerte
rsin? ¢ und r cos? ¢.

i) Differenzieren eines Zeitvektors geschieht be-
kanntlich durch Vordrehen um 90° und Multipli-

zieren mit o gemiss:

k) Integrieren verlangt umgekehrt Riickdrehen
um 90° und Dividieren durch w:

fzdt:— - S
w jow

Beides geschieht im logarithmischen Netz, indem
man die Argumentteilung des Mantels mit +90°
oder —90° auf den Netzpunkt einstellt und neben
der Betragteilung des Mantels bei dem Skalenwert w
oder 1/ w nach Betrag oder Komponenten abliest.

6. Beispiel fiir die Anwendung des Netzes
als Rechenbhilfsmittel

Ein Kettenbruch im Komplexen. Fiir die Kaska-
denschaltung zweier Induktionsmaschinen lasst
sich ein einphasiges Ersatzschaltbild nach Fig. 15
aufstellen. Darin sind Widerstinde und Reaktan-

11

0,59 1,74 055405 374 1.74

=]
n,‘w
©

0,023 0,023

o
SEr 17795

Fig. 15
Schaltschema zum Zahlenbeispiel

zen in Ohm, Querwiderstinde und Admittanzen in
Siemens argzgeben. Der Schlupf s sei 39,. Die
resultierende Impedanz Z lisst sich sofort als Ket-
tenbruch aufschreiben:

Z=0,59+j1,74-

5 0,098 ——

2,14 +j3,47 + !

i 1
-30,023 + ——
J 19,67+j1,74
(Kettenbriiche entstehen auch bei der Berechnung
von Bandfiltern.)

Hieraus ermittelt man in iiblicher Weise mit dem
Rechenschieber « Darmstadt» den Wert

- Z=10,39 4j14,1 = 17,5 ei**¢ und damit den Strom

=12,6 e 535 und seine Komponenten.
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Bei dieser Rechnung muss man, vom letzten Nenner
ausgehend, die Komponenten nach Betrag und Win-
kel umrechnen, die Inversion durchfithren und wie-
der in Komponenten auflésen. Wenn wie hier die
Komponenten nicht innerhalb einer Dekade liegen,
der Winkel also klein ist, kann diese Umrechnung
auch nicht in der gezeigten einfachsten Weise
geschehen, in der schon fiir diesen einen Nen-
ner allein acht Einstellungen und Ablesungen nétig
wiren: ¢ und b — @; ¢ —>l; —und ¢ - —und .
ror a b
Nach der Addition des Summanden wird diese ganze
Umrechnung erneut vorgenommen, insgesamt vier-
mal.

Bei Verwendung des logarithmischen Netzes ist
der Arbeitsgang viel einfacher: man sucht den den
Komponenten entsprechenden Netzpunkt und liest
seine reziproken Komponenten mittels der Mantel-
kurve ab. Das erfordert vier gegen anders mindestens
acht Ablesungen, und fiir den viermal zu wieder-
holenden Vorgang insgesamt nur etwa drei Minuten.
Eine gewiss bedeutende Erleichterung des Rech-
nungsganges ! Allerdings sei zugegeben, dass die er-
reichbare Genauigkeit bei handlichem Format der
Rechenwa ze nicht ganz die des Rechenschiebers ist,
besonders fiir die Bereiche kleiner Winkel. Ob das
aber die Anwendung dieses schnellen Verfahrens
ausschliesst, ist von Fall zu Fall zu entscheiden.
Dann bleibt immer noch der Ausweg, ein grossfor-
matiges Blatt eines Quadranten als Netz zu ver-
wenden. :

7. Die Ortskurve im komplex-logarithmischen Netz

Bisher wurden im wesentlichen einzelne mathe-
matische Operationen an zeitunabhingigen Opera-
toren oder Zeitvektoren behandelt, d. h. das Netz
als Rechenhilfsmittel verwendet. Dabei konnten
Zeitvektoren und Operatoren gemlscht und ver-
kniipft werden, solange dadurch eine Anderung der
Umlauffrequenz nicht eintrat oder beachtet wurde.
Benutzt man jedoch das Netz als Koordinaten-
system zum Einzeichnen von Vektorplinen oder
Ortskurven, dann ist auf die Frequenzgleichheit
aller Vektoren zu achten. Ein Produkt zweier Zeit-
vektoren, z. B. die Leistung, darf nicht im gleichen
Vektorplan mit den Faktoren Strom und Spannung
auftreten.

| Vektorpline, d. h. additive Aneinanderreihungen
. von komplexen Zahlen, lassen sich im logarithmi-
schen Netz ebenso leicht zeichnen wie im linearen.
Durch die logarithmische Teilung sind grosse Zah-
lenwerte immer noch in handlichen Formaten unter-
zubringen, und der nicht erreichbare Nullpunkt ist
mit beliebiger Genauigkeit anzunihern. Eine Addi-
tion ist hier zahlenmissig ohne Hilfsmittel und eine
Multiplikation zeichnerisch durchzufiithren, wund
leichter als umgekehrt im linearen Netz, wo die
Multiplikation einen Rechenschieber als zweites
Hilfsmittel erfordert.

Auch Ortskurven (d. h. die zeitmarkierte Bahn des
Endpunktes eines zeitverinderlichen Vektors) las-
sen sich im logarithmischen Netz mit besonderem
Vorteil darstellen, da die im normalen Netz hiufi-
gen einfachen Formen Gerade und Kreis hier meist
zu ebenso einfachen Geraden und Netzkurven wer-
den, deren Einzeichnung in das Netz oft noch leich-
ter ist. Es ist dabei bequem und praktisch, das Netz
als Transparentblatt auf eine Unterlage zu legen,
die die auf dem Mantel der Rechenwalze vorhande-
nen Teilungen und Marken trigt, so dass diese
durchscheinen und leicht durchgezeichnet werden
kénnen.

Zum Einzeichnen von Ortskurven ist das kom-
plex-logarithmische Netz schon bekannt geworden
u. a. durch die Biicher von Bode!!) und von
Strecker 12), der es benutzt, um mehrfach durch-
laufende Kurven dhnlich den « Riemannschen Blit-
tern» voneinander zu trennen und sie einzeln an-
einanderzureihen. Beide erkennen jedoch nicht die
besondere Elgnung des Netzes zum einfachen Multi-
plizieren.

Im Zuge der hier beabsichtigten Einfithrung in
die Vorteile des komplex-logarithmischen Netzes
im Interesse einer Forderung der praktischen Ana-
lysis allgemein kann natiirlich nicht tiefer auf die
speziell in der Elektrotechnik und neuerdings auch
fiir die Darstellung von Stabilititsproblemen in der
Regeltechnik gebriuchlichen Ortskurvendarstellun-
gen eingegangen werden.
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Dr.-Ing. W. de Beauclair, Stuttgart-Degerloch, Bohmstrasse 11.

11) Bode, H. W.: Network Analysis and Feed-back Ampli-
fier-Design. van Nostrand Verlag, New York 1945.

12) Strecker, F.: Die elektrische Selbsterregung. Hirzel-
. Verlag, Stuttgart 1947.
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Extrait du Rapport du Secrétaire Général concernant la
période de mai 1949 a mai 1950
061.2: 621.3 (100)
1. Introduction

Au cours des douze derniers mois, I'activité d’ensemble
de la Commission s’est maintenue a un niveau élevé, se tra-
duisant par des progrés sensibles dans la plupart des do-
maines ou elle s’exerce. Pour mettre en évidence le dévelop-
pement soutenu des travaux des Comités d’Etudes, il parait
utile de citer tout d’abord quelques faits et chiffres.

24 Comités d’Etudes sont actuellement en pleine activité,
contre 18 en 1948; plusieurs autres sont sur le point de
reprendre le travail.

230 documents, y compris les comptes rendus de réunions,
ont été diffusés au cours de I'année 1949, contre 170 en
1943.

Le nombre de réunions techniques internationales, y com-
pris celles de divers comités préparatoires et comités de
rédaction, a atteint 17 pendant la période a 1’examen, contre
11 pour la période correspondante précédente. 21 réunions
sont prévues au cours des seuls mois de juin et juillet 1950.

Un nouveau fascicule intitulé «Recommandations inter-
nationales concernant les culots et douilles ainsi que les
calibres pour lé contréle de D’interchangeabilité> est en
instance de publication, ’enquéte en vue de son approbation
suivant la régle des six mois ayant pris fin récemment.

Des recommandations portant sur les sujets suivants sont
maintenant a I’état de projets avancés:
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