Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 41 (1950)

Heft: 18

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Technische Mitteilungen — Communications de nature technique

Bericht über die 500-kV-Prüfanlage Tidd

621.315.027.7(73)

[Nach Philip Sporn und A. C. Monteith: Report on Tidd 500-kV Test Project. Electr. Engng. Bd. 69(1950), Nr. 6, S. 506...511.]

Die American Gas and Electric Service Corporation in Brilliant, Ohio, beschäftigt sich in Zusammenarbeit mit der Industrie seit zwei Jahren mit dem Problem von Feldstärkemessungen beim Auftreten von Koronaerscheinungen und Radiostörungen bei Höchstspannungsleitungen.

Es wurde eine Prüfeinrichtung aufgestellt, welche aus drei 5000-kV-Transformatoren mit Stufenschalter zur Regulierung der Spannung zwischen 265 kV und 530 kV und drei Versuchsleitungen besteht, wovon zwei 2,25 km und die dritte 0,24 km lang sind. Die verwendeten Leiter haben Durchmesser zwischen 23,3 mm und 50,8 mm.

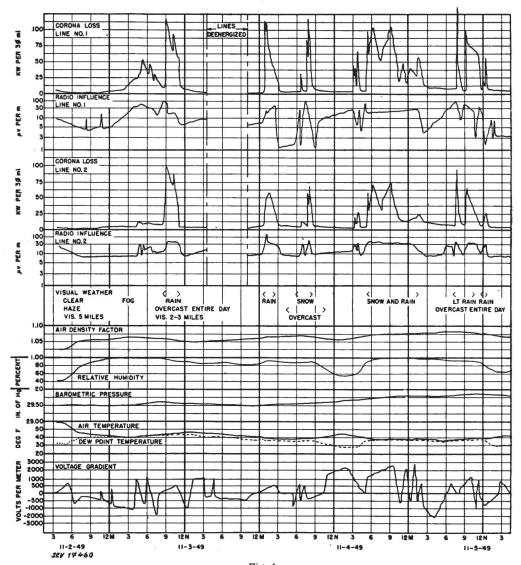


Fig. 1
Typisches Beispiel eines Diagramms der Koronaverluste und der Störfeldstärke bei verschiedenem Wetter

Spannung zwischen zwei Leitern 454 kV
Der Echtheit wegen wurde das englisch beschriftete Originalklischee wiedergegeben. Die Aufschriften haben folgende Bedeutung:

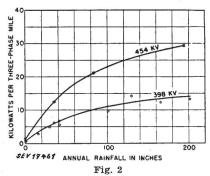
Corona loss, line no. 1 kW per 3 ϕ mi Radio influence μ V per m Lines deenergized Visual weather, clear, haze, vis. 5 miles Fog Rain, overcast entire day, vis. 2...3 miles Rain Snow Overcast Air density factor Relative humidity in percents Barometric pressure In. of Hg Air temperature Deg F

In. of Hg
Air temperature
Deg F
Dew point temperature
Voltage gradient
Volts per meter

Koronaverluste der Leitung Nr. 1 kW pro Meile bei einer Drehstromleitung (Verluste der 3 Phasen wobei 10 kW/Meile \triangleq 6,21 kW/km Störfeldstärke \parallel V/m Leitungen spannungslos Schönwetterdunst, Sichtweite 8 km Nebel Regen, ganztags bedeckt, Sichtweite ca. 3...5 km Regen Schnee bedeckt Luftdichte relative Feuchtigkeit in Prozenten Luftdruck Zoll Quecksilbersäule, wobei 1 Zoll \triangleq 2,540 cm Lufttemperatur Grad Fahrenheit. Umrechnung: $t_{0C}=0,555$ ($t_{0F}-32^{\circ}$) Taupunkt Feldstärke V/m

Für die Durchführung der Messungen stehen zur Ver-

eine überempfindliche Leistungsmesseinrichtung zur Be-stimmung der Koronaverluste, ein direkt anzeigendes und registrierendes Radio-Stör-messgerät,


kommerzielle Radioempfänger für Amplituden- und Fre-quenzmodulation sowie eine Fernseh-Empfangsapparatur, ein Feldstärke-Messgerät,

ein reinstarke-messgerat, registrierende Instrumente für Temperatur-, Luftdruck-, Feuchtigkeits- und Niederschlagsmessungen, eine automatische Photokamera, welche alle 20 Minuten Aufnahmen von Leiter und Isolatoren zur Kontrolle des Wet-tereinflusses herstellt.

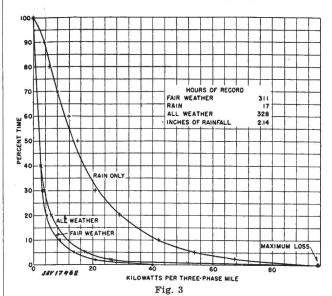
Die Versuche haben bisher folgende Resultate ergeben: Anhand graphischer Aufzeichnungen wurde der Verlauf der Koronaverluste in Abhängigkeit von der Spannung und von den Wetterfaktoren über längere Perioden bestimmt

Die Speisung der Versuchsleitung erfolgte bei 280, 345, 396 und 452 kV. Die Koronaverluste hängen in erster Linie von zwei Faktoren ab. Einerseits ist es die Oberfläche der Leiter, welche sich, sofern diese unter Spannung stehen, mit der Zeit quasi glättet und ein starkes Absinken der Koronaverluste erkennen lässt. Der stabile Zustand wird nach zirka einem halben Jahr erreicht. Anderseits vergrössern Regen, Nebel und Schneefall die Verluste. Ebenso vergrössern das Ansteigen der Temperatur, der Feuchtigkeit, des Barometerstandes und der atmosphärischen Feldstärke die Koronaver-

Die Auswertung der Messungen erlaubt die Ermittlung eines gesetzmässigen Zusammenhangs zwischen dem Mittelwert der Koronaverluste während 48 h und der entsprechenden mittleren 48stündigen Regenmenge (Fig. 2).

Zusammenhang zwischen der mittleren 48stündigen Regen-menge und den entsprechenden mittleren Koronaverlusten an verschiedenen Tagen bei konstanter Spannung

Ordinate: Mittlere Koronaverluste während 48 h einer Drehstromleitung pro Meile Leitungslänge (10 kW/Meile ≙ 6,21 kW/km)


Abszisse: Jährliche Regenmenge in Zoll (1 Zoll ≙ 2,540 cm)

Aus den Diagrammen nach Fig. 1 können Häufigkeits-

kurven für eine bestimmte Zeit errechnet werden (Fig. 3). Die Untersuchung der Radiostörungen von Höchstspannungsleitungen beschränkte sich auf die Bestimmung des Störfaktors und des Störeinflusses auf den Radioempfang. Es wurden Messungen zwischen 15 kHz und 400 MHz bei schönem Wetter, sowie bei Regen, Nebel und Schnee durchgeführt. Anderseits wurden auch während längerer Zeit Versuche graphisch ausgewertet. Bei Regen, Nebel und Schnee nehmen die Radiostörungen ebenso wie die Koronaverluste zu. Anderseits konnte jedoch auch festgestellt werden, dass während einer längeren Schönwetterperiode Schwankungen auftreten, deren Ursache nicht zu ermitteln war.

Die Störfeldstärke nimmt in Abhängigkeit von der Leiterspannung bei gegebenem Abstand von der Leitung sehr rasch ab. Ebenso stark ist die Abnahme mit zunehmendem Abstand bei konstanter Spannung. Die Störfeldstärke beträgt bei 450 kV in einem Abstand von 48 m vom äussersten Leiter nur noch zirka ¹/₆₀ jener unmittelbar beim Leiter. Auch längs der Leitung treten Schwankungen infolge ungleicher Leiterhöhe, Reflexionen und der Eisenmaste auf.

Die Radiostörungen nehmen mit zunehmender Frequenz ab. Beim amplitudenmodulierten Radioempfang sind Störungen bemerkbar, während frequenzmomulierter Empfang und Fernseh-Empfang störungsunabhängig sind. Um das Ausmass der Radioempfangsstörungen beurteilen zu können, sind genaue Untersuchungen über die Art der Störungen, über die Eigenschaften der verschiedenen Empfängertypen, über den

Monatliche Koronaverluste der mit 395 kV betriebenen Ver suchsleitung Nr. 2 (siehe Fig. 1) bei Schönwetter, Regen und normaler Witterung bei Schönwetter, Regen und

Ordinate: Zeit in %, während der die in der Abszisse aufgetragenen Verluste auftreten (10 kW/Meile \triangle 6,21 kW/km)

Hours of record: Versuchsdauer: Fair weather 311 Rain 17 All Weather 328 Inches of rainfall

Maximum loss

Klares Wetter 311 h Regen 17 h Total 328 h Regenmenge in Zoll (1 Zoll \(\triangleq\) 2,540 cm) Maximum der Verluste

zulässigen Störpegel, über die Distanz des Empfangsortes von der Leitung und über den Einfluss auf sekundäre Leitungen nötig. Jedenfalls erscheint es gegeben, für Höchstspannungsleitungen grössere Störfeldstärken als üblich zuzulassen, da Empfangsanlagen in der Nähe solcher Leitungen relativ selten sind und auch Parallelführungen und Kreuzungen mit

anderen Leitungen kaum vorkommen. Aus den bisherigen Untersuchungen können folgende Schlussfolgerungen gezogen werden:

1. Messungen der Koronaverluste in Abhängigkeit von Spannung und Leiterabmessungen besitzen mehr theoretischen Wert. Wichtiger sind Untersuchungen über die Abhängigkeit von Wettereinflüssen.

2. Die Koronaverluste hängen in erster Linie von der Beschaffenheit der Leiteroberfläche und von den atmosphäri-

schen Bedingungen ab.

3. Das Problem der Radiostörungen umfasst in erster Linie die Bestimmung des Radio-Störfaktors und des Einflusses auf den Radio-Empfang. Hierüber sind noch weitere Untersuchungen durchzuführen.

4. Die bisher veröffentlichten Resultate lassen noch nicht allgemein gültige Schlussfolgerungen zu. Es sollen jedoch in nächster Zeit ausführlichere Berichte herausgegeben werden.

Korrektur lichtempfindlicher Zellen in bezug auf den Einfallwinkel und die spektrale Qualität des Lichtes

535.247.4

[Nach G. B. Buck: Correction of Light-Sensitive Cells for Angle of Incidence and Spectral Quality of Light. Illum. Engng. Bd. 44(1949), Nr. 5, S. 293...302.]

Das Erscheinen der Fluoreszenzlampe hat nicht nur für die Beleuchtung selbst das Feld erweitert, sondern gleichzeitig neue Probleme aufgeworfen. Eines dieser Probleme, das bisher keine zufriedenstellende Lösung gefunden hat, betrifft das Messen der Lichtstärke einer Fluoreszenzlicht-Beleuchtungsanlage.

Bevor die Fluoreszenzlampen in Verwendung kamen, benützte man sowohl für den allgemeinen Gebrauch, als auch für die Untersuchungen im Laboratorium das Selenphotoelement oder die Sperrschichtzelle [1,2] 1). Diese Art Zellen erzeugen einen elektrischen Strom proportional des auf sie fallenden und absorbierten Lichtstromes. Durch Verbindung einer solchen Zelle mit einem Mikroampèremeter erhält man ein Lichtmessinstrument, das Luxmeter. Um den verschiedenen Zwecken zu dienen, wurden verschiedene Modelle entwickelt je nach den Erfordernissen an Empfindlichkeit, Präzision, Stabilität, Grösse und Kosten. Das gebräuchlichste

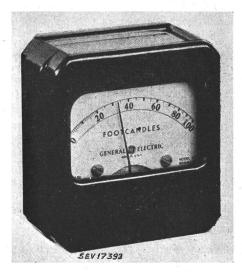
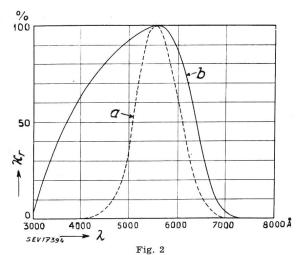



Fig. 1 Taschenluxmeter mit eingebauter Selenphotozelle und Mikroampèremeter

Luxmeter ist ähnlich Fig. 1; ein Taschenmodell, bei welchem geringere Empfindlichkeit und Präzision in Kauf genommen wurden, um kleine Dimensionen und Stabilität zu erhalten.

Spektrale Empfindlichkeit

Schon frühzeitig wurde festgestellt, dass die Empfindlichkeit der Selen-Photozelle bei den verschiedenen Wellenlän-

Relative Empfindlichkeit gegenüber den verschiedenen Wel-lenlängen elektromagnetischer Strahlung

- beim durchschnittlichen menschlichen Auge
- bei der durchschnittlichen Zelle neuerer Luxmeter relative Empfindlichkeit Wellenlänge

gen des Lichtes gegenüber der des durchschnittlichen menschlichen Auges beträchtlich differiert. Die Kurve a in Fig. 2

zeigt die Farbempfindlichkeit des menschlichen Auges basierend auf dem sog. «Standard Observer», wie er durch die Internationale Beleuchtungs-Kommission im Jahre 1931 definiert wurde [3]. Diese Differenz in der Farbempfindlichkeit war von geringer praktischer Bedeutung, ausgenommen bei Messungen des Tageslichtes, denn es war nur eine Lichtquelle für die künstliche Beleuchtung vorhanden, nämlich die Glühlampe. Die Luxmeter wurden unter dieser Lichtquelle kalibriert, und da die Differenzen der spektralen Energieverteilung der Glühlampen verschiedener Leistungsaufnahme und Glühdrahttemperatur gering waren, konnte dieser Fehler in der Farbempfindlichkeit der Selen-Photozelle gegenüber dem Auge, sowohl bei den Luxmetern für allgemeinen Gebrauch, als auch bei denjenigen für Laboratoriumszwecke, als unbedeutend unberücksichtigt bleiben. Diese Luxmeter waren aber nicht von vorneherein zum Messen des Lichtes von Gasentladungslampen verwendbar, da dessen spektrale Energieverteilung gegenüber dem zur Kalibrierung verwendeten Licht der Glühlampe sehr verschieden ist. Diese Kalibrierung ist auch nicht massgebend zum Messen von natürlichem Tageslicht, dessen Spektralcharakter gegenüber dem des Glühdrahtes verschieden ist und ausserdem von Stunde zu Stunde, von Tag zu Tag, sowie von Jahreszeit zu Jahreszeit variiert.

Zu diesem Zeitpunkt erschien die Fluoreszenzlampe mit ihren neuen Farbschattierungen und Farbreinheiten, deren spektrale Energieverteilung untereinander, und zu derjenigen der Glühlampe ebenfalls stark differiert [6, 7, 8, 9]. Es wurde festgestellt, dass Messungen mit Luxmetern, die für Glühlampen kalibriert waren, beim Messen von Fluoreszenzlicht zu falschen Resultaten führten, so dass man gezwungen war, in der Praxis sog. Korrekturfaktoren einzuführen. Ein solcher Korrekturfaktor ist für jede Farbe von Fluoreszenzlicht nötig, ebenso wie für andere Entladungslichtquellen, um aus den Ablesungen der Instrumente auf den richtigen Luxwert schliessen zu können. Da jeder Fabrikant von Luxmetern eigene Tabellen dieser Korrekturfaktoren für jede Lichtquelle, einschliesslich Quecksilber- und Natriumdampflampen usw., herausgibt, kann es sehr leicht vorkommen, dass diese Faktoren falsch berücksichtigt werden. Ausserdem beschränkt die blosse Notwendigkeit, Korrekturfaktoren zu benützen, den Gebrauch dieser Messinstrumente stark. Die grosse Verschiedenheit in der Farbe des natürlichen Tageslichtes und des Lichtes, das von farbigen Wänden reflektiert wird, ist auch eine Ursache dafür, dass es fast unmöglich ist, einen einfachen Korrekturfaktor für solche Messungen zu verwenden. Tabelle I zeigt die Korrekturfaktoren, die für die Spektral-Empfindlichkeit von Luxmetern neuerer Konstruktion bei verschiedenen Lichtquellen aufgestellt worden sind. Die Werte in der ersten Kolonne beziehen sich auf ein Instrument, das normalerweise unter einer Glühlampe von 2700 °K Farbtemperatur kalibriert wurde. Die zweite Kolonne entspricht der Kalibrierung unter einer Glühlampe von 2900 °K. Es muss betont werden, dass diese Werte sich seither geändert haben können [10], weil die spektrale Charakteristik der verschiedenen Zellen und Lampen im Laufe der Zeit sich auch geändert hat. Zukünftige Änderungen der Spektralempfindlichkeit von Zellen oder Lichtquellen, die durchaus im Bereich der Möglichkeiten liegen, würden zu weiteren Änderungen der Korrekturfaktoren führen. Die Situation wird dadurch noch verwickelter, dass jeder Fabrikant von Zellen verschiedene Fabrikationsmethoden anwendet, so dass ein Fabrikat gegenüber einem anderen in der Farbempfindlichkeit differiert und daher andere Korrekturfaktoren benötigt. Da es aber auch vorkommt, dass ein und derselbe Fabrikant verschiedene Arten von Zellen herstellt, wäre es nötig, etwas über die Geschichte einer Zelle zu wissen, bevor man bestimmen kann, welche Korrekturfaktoren-Tabelle benützt werden darf. Tab. I bezieht sich z. B. nur auf das Luxmeter nach Fig. 1. Aus ihr geht hervor, dass das Instrument 50 % zu wenig unter der grünen Fluoreszenzlampe, und mehr als das Doppelte des wahren Wertes unter der blauen Fluoreszenzlampe zeigt.

Eine mögliche Lösung besteht darin, die Empfindlichkeit der Zelle derjenigen des «Standard Observers» (des hell adaptierten Auges) anzupassen. Da die Empfindlichkeit der Zelle über ein weiteres Spektrum reicht als diejenige des Auges, ist es wohl möglich, Filter zu entwickeln, die den entsprechenden überflüssigen Anteil des einfallenden Lichts

¹⁾ siehe Literatur am Schluss des Artikels.

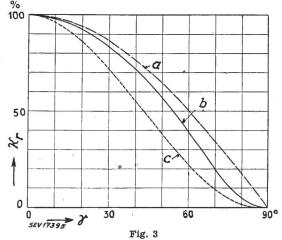
Korrekturfaktoren für photoelektrische Selenzellen 1) bei verschiedenen Lichtquellen

		Tal	oelle I
Lichtquelle	Farbe	Korrekt	urfaktor
Glühlampe	2700 °K	1,00	1,02
Giumampe	2800 °K	0,99	1,02
	2900 °K	0,98	1,00
	3000 °K	0,97	0,99
	3200 °K	0,95	0,98
	3400 °K	0,94	0,96
771			
Fluoreszenz-	weiss (3500°)	1,04	1,07
lampe	45 weiss (4500°)	0,94	0,97
	Tageslicht (6500°)	0,84	0,86
,	2) Weichweiss (A)	0,87	0,90
	(B)	0,95	0,97
*	Photofarbe	0,76	0,78
	3) Warmweiss (2800°)	1,02	1,04
	Warm getönt	1,06	1,08
	Blauweiss (RF)	0,77	0,79
	Industrieweiss (RF)	0,79	0,81
	Blau	0,46	0,47
	Grün	1,45	1,48
	Rosa	0,93	0,96
	Gold	1,27	1,31
9	Rot	0,68	0,70
	360-BL	0,07	0,07
Quecksilber-	AH-1	1,05	1,07
dampflampe	DH-1	0,84	0,86
1 1	EH-1	0,94	0,96
	AH-4	0,86	0,88
	AH-5	0,93	0,96
2	H-6 (Quarz-Kolben)	0,66	0,68
14	(Glas-Kolben)	0,70	0,71
	H-9	1,02	1,04
	UA-2	0,78	0,80
	UA-3	0,76	0,78
	UA-4	0,83	0,85
	Keimtötend (18T8)	0,58	0,60
Natriumdampf-			
lampe	NA-9	1,36	1,40
Neonröhre	15 mm, 30 ma	0,85	0,87
	Heisskathode (C-H)	0,83	0,85
	Glimmlampe	1,09	1,11
Kohlenbogen-	Cerium-Kern (50 V, 60 A)	0,48	0,49
lampe	(Cerufloid-Docht)	0,40	U,43
rampe	Geringe Stromstärke	0,31	0,32
	(140 V, 14 A)	0,01	0,02
l·	(140 1, 14 A)	l	I.

¹) Zusammengestellt für Luxmeter (Gen. Electric) der laufenden Produktion, auf Grund der zuletzt erhaltenen Daten über die Spektralemission von Lichtquellen.
²) Weichweiss (A): vor April 1948; (B) nach April

1948.
³) Farbe seit 1944 nicht mehr hergestellt.

absorbieren, so dass die Zellenempfindlichkeit der relativen Augenempfindlichkeit bei jeder Wellenlänge nahe kommt. Als jedoch solche Kombinationen von blauen und gelben Glasfiltern entwickelt wurden, stellte es sich heraus, dass die Durchlässigkeit dieser Filter nur mehr 10 % betrug. Um also eine annehmbare Farbkorrektur durch Filter zu erhalten, reduzierten diese Filter die Ausbeute der Zellen so stark, dass besonders empfindliche Messinstrumente nötig waren, um die normalen Beleuchtungsstärken für Innenbeleuchtungen anzeigen zu können. Diese empfindlichen Luxmeter waren sehr teuer und wenig widerstandsfähig, was zur Folge hatte, dass sie lediglich zu Laboratoriumszwecken verwendet wurden, und nicht für den allgemeinen Gebrauch im Aussen-


Die Winkelempfindlichkeit

Die zunehmende Verwendung von linearen Lichtquellen führte zur Notwendigkeit einer anderen Art Korrektur, nämlich der des Lichteinfalles auf die Zelle. Das bekannte Lambertsche Gesetz lautet, dass die Horizontalkomponente der Lichtintensität (Lichtstärke) I_h ein Produkt der Intensität des Lichtstahles I_b und des Cosinus des Einfallwinder (I_b) with the state of the cosinus des Einfallwinder (I_b) with the state of the cosinus des Einfallwinder (I_b) with the cosinus des Einfallwinder (Ikels y ist (des Winkels zwischen dem Lichtstrahl und der Senkrechten zur Oberfläche):

$$I_h = I_b \cos \gamma$$

wobei y den Einfallwinkel bedeutet. Dies trifft für jede Art Lichtquelle zu. Durch die neuere Verwendung von Fluoreszenzröhrenleuchten mit durchlaufenden Linien (z. B. in grossen Räumen, Fabriken, Läden usw.) muss darauf Rücksicht genommen werden, dass ein grosser Teil der Beleuchtungsstärke an einem bestimmten Punkt, horizontal gemessen, unter grossen Winkeln kommt, d. h. von Lichtquellen, die sich in beträchtlicher Entfernung von diesem Punkt befinden. Ferner ist die Messung von Streiflicht oft von grosser Wichtigkeit, z. B. bei Messung von Tageslicht in Räumen, die nur von der Fensterseite her Lichteinfall haben, bei Messung von Strassenbeleuchtungen, von Spielplatzbeleuchtun-

Es wurde schon vor einiger Zeit festgestellt [10], dass die standardlichtempfindliche Zelle nicht im Einklang mit dem Cosinusgesetz von Lambert arbeitet. Während der Fehler für Lichtstrahlen, die innerhalb eines Kegels von 30° auf die Zelle auftreffen, nur einige Prozent betragen, kann dieser Fehler leicht 40 % für Lichtstrahlen erreichen, die unter 70° auftreffen, und über 75 % für solche, die unter 80° auftreffen. Fig. 3 zeigt die Winkelempfindlichkeit des Luxmeters

Relative Winkelempfindlichkeit des Luxmeters in Funktion des Einfallwinkels

- theoretische Cosinus-Empfindlichkeit
- Winkelempfindlichkeit der glassbedeckten Selenzelle Winkelempfindlichkeit der mit Glasfiltern farbkorrigierten Zelle relative Empfindlichkeit Einfallwinkel

mit glasbedeckter Selenzelle und der durch Glasfilter farbkorrigierten Standardzelle verglichen mit der theoretischen Cosinus-Empfindlichkeit.

Die Kurven zeigen deutlich, dass die Abweichungen grösser werden, je grösser der Winkel wird. In vielen Fällen ist der Hauptlichteinfall senkrecht zur Werkebene. Das Bestreben, eine möglichst gleichmässige Aufhellung der Räume zu erlangen, setzt sich aber immer mehr durch. Aus diesem Grunde kommt dem Lichteinfall unter grossen Winkeln vermehrte Bedeutung zu. Die Flächen, welche mitwirken, den Lichtstrom zu einer horizontalen Fläche zu bringen, wachsen, je grösser der Einfallwinkel wird. Die Prüfung ergibt, dass für einen gleichmässig aufgehellten Raum der Zellen-Fehler bei 70...80° Lichteinfall 10mal grösser ist als bei 0...10° Lichteinfall. Andererseits gibt es Situationen, bei welchen das Streiflicht keinerlei Luxwerte (horizontal gemessen), erzeugt, infolge der Entfernung der Lichtquellen vom Messpunkt. Die Strassenbeleuchtung ist ein Beispiel, bei welchem Licht bei einem Einfallwinkel über 60° oder 70° eine relativ geringe Horizontalbeleuchtung erzeugt und trotzdem eine wirksame Leuchtdichte auf dem Pflaster aufweist.

Es wurden zunächst Schritte unternommen, um dem Cosinusgesetz durch Winkel-Korrektur zu entsprechen. Das bekannte Luxmeter mit diffundierender farbkorrigierter Mehrzellen-Platte (Fig. 4), wurde entwickelt [10] und in den letzten Jahren vielfach verwendet. Zu den 90 % Lichtverlust infolge Farbkorrektur durch Filter, kommt jedoch für die

verbleibenden 10 % ein weiterer Verlust von 70 % dazu, um eine Cosinuskorrektur zu erreichen, die der von Macbeth hergestellten Testplatte gleichkommt. Dadurch verbleiben

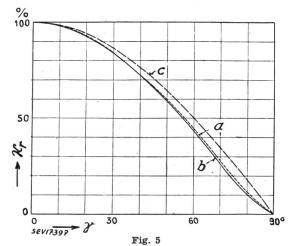
Luxmeter mit diffundierender, farbkorrigierter Mehrzellen-Platte

nur mehr 3 % Empfindlichkeit gegenüber der nicht korrigierten Zelle (siehe Tab. II). Um die Empfindlichkeit zu heben, war es nötig, selbst bei höchstempfindlichen Luxmetern für allgemeinen Gebrauch verschiedene Standardzellen parallel

Relative Empfindlichkeit verschiedener Zellen Tabelle II

Туре	Konstruktion	Lichteinfall winkel				
		0 °	40°	80°		
Nackte Zelle		100	73	7,0		
Standard Luxmeter .	glasabgedeckte Zelle	92	66	4,1		
Farbkorrigierte Zelle	Gelb- und Blaufilter	9	5	0,1		
Diffundierende farb- korrigierte Mehr- zellen-Platte	diffundierendes pla- stisches Material, Gelb- und Blaufil- ter über der Zelle	3	2,2	0,3		

zu schalten, um eine genügende Ausbeute zu erhalten und hohe Beleuchtungsstärken messen zu können. Der niedrigste Messbereich des Mehrzellen-Instrumentes beträgt 500 lx bei vollem Ausschlag. Trotz der Kompliziertheit, Empfindlichkeit und daher der hohen Kosten des Instrumentes, die seine Verwendbarkeit beschränken sollten, ist die Nachfrage dafür stets gewachsen.


Es werden zur Zeit verschiedene Sorten von Luxmetern benötigt. Während es in jedem Fall wünschenswert ist, ein Maximum an Empfindlichkeit, Stabilität und Handlichkeit bei geringsten Kosten zu erhalten, scheint es, dass die optischen Anforderungen für die verschiedenen Typen variieren:

- 1. Das dringendst benötigte, allgemein verwendbare Instrument ist ein Taschenluxmeter, korrigiert für die Farben und den Einfallwinkel, mit einem Messbereich von 0...1000 lx, für den täglichen allgemeinen Gebrauch ohne Rücksichtnahme auf die Farbe der Lichtquelle oder die geometrische Verteilung der Lampenstellen.
- 2. Es scheint, dass ständige Nachfrage vorhanden ist für ein Präzisionsinstrument mit verschiedenen Messbereichen, farb- und winkelkorrigiert, mit einem unteren Messbereich von 0...100 lx, für Laboratoriumszwecke und zum allgemeinen Gebeucht.
- brauch.

 3. Für einige spezielle aber wichtige Verwendungszwecke, z.B. Strassenbeleuchtung, benötigt man ein Instrument mit Höchstempfindlichkeit, vielleicht mit einer Skala bis zu 10 lx, und einer sehr guten Winkelkorrektur, während die Farbkorrektur mit einem entsprechenden Faktor berechnet werden
- 4. Im weiteren benötigt man hauptsächlich in Laboratorien Instrumente, die fest aufgestellt, mit einer besonders guten farbkorrigierten Zelle ausgestattet sind, bei welcher aber die Winkelkorrektur keine Rolle spielt.

 5. Es verbleibt ein weites Feld für einfache Zellen ohne
- Korrektur.

Kürzlich wurden Versuche gemacht, um die optischen Charakteristiken der vorhandenen Zellen und Luxmeter zu ermitteln. In Tab. II sind die Ablesungen eingetragen, die

Relative Winkelempfindlichkeit des Luxmeters mit diffundie-render farbkorrigierter Mehrzellen-Platte und der Macbeth-Testplatte, verglichen mit der theoretischen Cosinus-Empfindlichkeit

a Macbeth-Testplatte b farbkorrigierte Mehrzellen-Platte c Cosinus-Empfindlichkeit Weitere Legenden siehe Fig. 3

für folgende Ausführungen gemacht worden sind, wobei die Beleuchtungsstärke während der ganzen Versuche den gleichen Wert aufwies und das Licht senkrecht zur Oberfläche der Zelle einfiel. Die Werte für die anderen Winkel wurden nach den Kurven Fig. 3 und 5 berechnet. Untersucht wurden:

- 1. die nackte Zelle,

- die nackte Zelle,
 ein Standard-Luxmeter mit glasabgedeckter Zelle,
 eine mit Gelb- und Blaufilter farbkorrigierte Zelle,
 die mit beiden Farbfiltern und einem diffundierenden Abschluss aus plastischem Material abgedeckte Zelle.

Es ist allgemein bekannt, dass die Oberflächenreflexion mit dem Einfallwinkel des Lichtes wächst, so dass die meisten Oberflächen bei Streiflicht sich wie Spiegel verhalten. Theorie und Experimente haben die Faktoren festgestellt, welche die Reflexion des einfallenden Lichts beeinflussen, die an der Grenzfläche zwischen 2 Medien verschiedener Brechungszahl entstehen. Die Reflexionskraft oder das Verhältnis der durchfallenden zur einfallenden Intensität hängt vom Polarisationszustand des Lichtes ab, dem Einfallwinkel und den Brechungszahlen der 2 Medien. Die Fresnel-Gleichung für die Reflexionsvermögen lautet für senkrecht zur Einfallfläche polarisiertes Licht:

$$V_1 = rac{I_e}{I_0} = rac{\sin^2{(i-i')}}{\sin^2{(i+i')}}$$

wo i der Einfallwinkel ist, und i' der Brechungswinkel, und für parallel zur Einfallfläche polarisiertes Licht:

$$V=rac{I_e}{I_0}=rac{ ext{tg}^2\left(i-i'
ight)}{ ext{tg}^2\left(i+i'
ight)}$$

so dass für unpolarisiertes Licht, welches als halbpolarisiert in jeder der beiden Ebenen betrachtet werden kann, die Gleichung lautet:

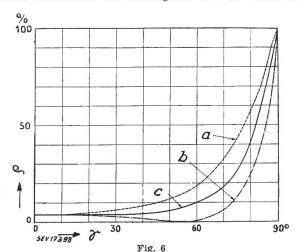
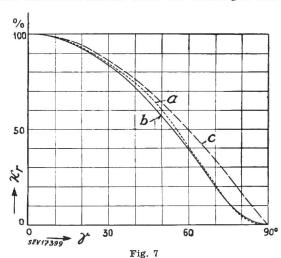

$$V_u = rac{I_e}{I_0} = rac{1}{2} \, rac{\sin^2{(i-i')}}{\sin^2{(i+i')}} + rac{1}{2} \, rac{ ext{tg}^2{\,(i-i')}}{ ext{tg}^2{\,(i+i')}}$$

Fig. 6 zeigt die Veränderung der Reflexionskraft mit dem Einfallwinkel für polarisiertes und unpolarisiertes Licht an der Grenzfläche zwischen Luft und Glas, plastischem, oder anderem Material, mit einer Brechungszahl von 1490. Bei senkrechtem Lichteinfall ist: $n = \frac{i}{i'}$. Die Gleichung lautet

dann

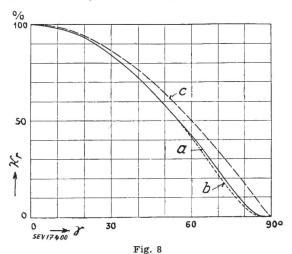
$$V = \frac{I}{I_0} = \frac{(n-1)^2}{(n+1)^2}$$


Durch Auflösung der Gleichung findet man den bekannten 4 %-Reflexionsverlust an der ersten Oberfläche, so dass die beiden Oberflächen des Abdeckglases für 8 % Verlust ver-

Relative Reflexion von polarisiertem und unpolarisiertem Licht unter verschiedenen Einfallwinkeln (Brechungszahl des Materials = 1490)

- polarisiert, vertikal polarisiert, parallel
- unpolarisiert Einfallwinkel
- Reflexion

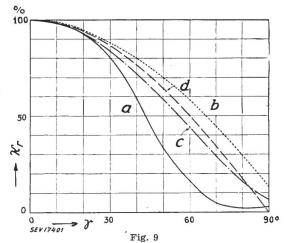
antwortlich sind. Das ergibt laut Tab. II eine senkrechte optische Ausbeute von 92 % für die mit einem Standardglas abgedeckte Zelle. Fig. 7 gibt die errechnete Kurve der Spektralempfindlichkeit wieder, für die mit Standardglas abgedeckte Zelle, verglichen mit einer gemessenen Kurve. Zu diesen Reflexionsverlusten durch das Abdeckglas tritt bei


Winkelempfindlichkeit einer glasabgedeckten Zelle

- berechnete Werte gemessene Werte theoretische Cosinus-Empfindlichkeit Weitere Legenden siehe Fig. 3

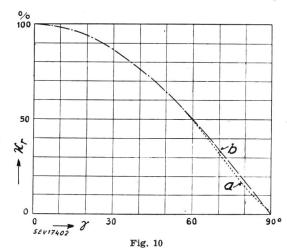
grossem Lichteinfallwinkel die Abschattung eines Teiles der Zelle durch deren Einfassung, wodurch eine weitere Verringerung der Gesamtempfindlichkeit eintritt. Dieser Effekt tritt bei Winkeln unter 60° nicht auf, ihm kommt aber erhöhte Bedeutung bei grösseren Einfallwinkeln zu.

Wie aus Fig. 6 ersichtlich ist, wächst der Reflexionsverlust mit zunehmendem Einfallwinkel, und zwar von 10 % bei 60° auf über 40 % bei 80° per Oberfläche. Es ist selbstverständlich, dass je grösser die Zahl der Oberflächen ist, desto grösser der Reflexionsverlust und der Cosinusfehler bei grösseren Einfallwinkeln wird. Der Gedanke, dass durch Ausschaltung von Oberflächen die Winkelempfindlichkeit erhöht würde, ist experimentell nachgewiesen worden.


Auf Grund dieser Betrachtungen wurden Zellen hergestellt, indem man verschiedene Schichten von Klar- und Trübglas oder plastischem Material mit Zementen von brauchbarer Brechungszahl auf die Zelle aufklebte, um die Reflexion der inneren Oberflächen zu reduzieren. Bemerkenswerte Erhöhungen der Winkelempfindlichkeit wurden festgestellt. Es ergaben sich jedoch verschiedene Komplikationen, die überwunden werden mussten, bevor ein Modell als gut angesprochen werden konnte. Theorie und Versuche zeigten, dass die Reflexion der nackten Zelle mit dem Einfallwinkel des Lichtes variiert, und dass daher die Zelle selbst dem Cosinusgesetz nicht folgt (Fig. 8), wenngleich sie

Winkelempfindlichkeit einer nackten Selenphotozelle vor der Montage (a) und nach der Montage (b) verglichen mit der theoretischen Cosinus-Empfindlichkeit (c) Weitere Legenden siehe Fig. 3

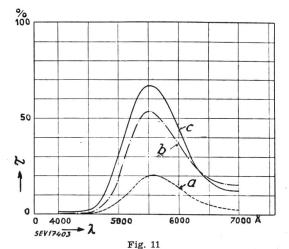
den glasbedeckten Zellen gegenüber leicht überlegen ist (Fig. 3). Wie andere Grenzflächen, hat die Luft-Zelle-Zwischenfläche eine Reflexionscharakteristik ähnlich der in Fig. 6 gezeigten. Wie ferner in Tab. II gezeigt wird, erhöht die Verwendung von diffundierendem Material die relative Empfindlichkeit bei kleinen Winkeln, reduziert aber die allgemeine Empfindlichkeit infolge des reflektierten und absorbierten Lichtes.


Es wurden Linsen berechnet, um die Abweichung der Zellen vom Cosinusgesetz zu kompensieren. Da diese Linsen

Winkelempfindlichkeit einer Zelle

- bedeckt mit einer dicken Linse
- mit aufzementierter Linse mit einem zwischen Linse und Zelle zementierten Farbfilter
- theoretische Cosinus-Empfindlichkeit Weitere Legenden siehe Fig. 3

klar waren, hatten sie wenige Reflexions- und Absorptions-Verluste, und die Innen-Zwischenflächen wurden durch die Zementierung optisch zum Verschwinden gebracht. Fig. 9 veranschaulicht die Wirksamkeit der Reduktion dieser Oberflächen-Reflexion. Kurve a wurde erhalten mit einer der ersten Linsen, die auf die Zelle aufgesetzt wurde; Kurve b betrifft die gleiche Linse, jedoch auf die Zelle aufzementiert. Diese Schichtenzelle war offensichtlich überkorrigiert für alle Winkel des Lichteinfalles, so dass neuerliche Entwürfe studiert werden mussten, bis endlich das Resultat nach Fig. 10 mit einer dünnen Linse erreicht wurde. Eine andere Schwierigkeit erwuchs aus der Tatsache, dass die gewöhnliche, in Luxmetern verwendete lichtempfindliche Zelle asymmetrisch in der Form ist. Um nun eine Linsenoberfläche von kontinuierlichem Umriss zu erhalten (leichte Herstellung und



Winkelempfindlichkeit von dünnen, flachen Linsen, aufzemen-tiert auf eine rechtwinklige Standard-Selenphotozelle Mittel zwischen Längs- und Querebene (a) verglichen mit der theoretischen Cosinus-Empfindlichkeit (b) Weitere Legenden siehe Fig. 3

leichte Pflege), war es nötig, in einer Ebene leicht überzukompensieren, und in der anderen Ebene leicht unterzukompensieren, um die beste mittlere Empfindlichkeit zu erreichen. Diese kleinen Differenzen machen sich nicht mehr bemerkbar, sobald diffuses Licht gemessen wird, oder Licht, das von verschiedenen Seiten einfällt. Wenn beim Messen eines Punktlichts maximale Präzision verlangt wird, kann die Zelle jeweils um 90° gedreht, und der Mittelwert aus beiden Ablesungen ermittelt werden. Ferner kann man den Einfallwinkel messen und der vorliegenden Kurve den Korrekturfaktor entnehmen. Es stellte sich jetzt heraus, dass die Cosinus-Empfindlichkeit ohne Verlust der Zellempfindlichkeit erreicht worden war, da die Schichtenzelle sogar eine etwas grössere Empfindlichkeit als die Standard-Zelle hat.

Das Endziel war jedoch die Schaffung einer farb- und winkelkorrigierten Zelle, so dass noch ein Filter mit dem System vereinigt werden musste. Obgleich der Verlust infolge Oberflächenreflexion des Filters durch Zementierung verringert werden konnte, variiert die Durchlässigkeit des Filters sowohl mit dessen Dicke, als auch mit dem Einfallwinkel. Dieser Mangel musste durch eine andere Formgebung der Linsen kompensiert werden. Die asymmetrische Form der Zelle vergrösserte die Schwierigkeiten, eine gute Winkelempfindlichkeit in den zwei Ebenen mit einer kontinuierlichen Linsenoberfläche zu erhalten.

Filter aus Glas, Gelatine und plastischem Material wurden auf ihre Eignung hin untersucht. Die Muster aus Gelatine und plastischem Material wurden als die am besten herstellbaren und als die mit der höchsten Durchlässigkeit für einen bestimmten Grad der Farbkorrektur ausgewählt (Fig. 11). Soviel steht fest, dass die Durchlässigkeit von Gelatine und plastischem Material ungefähr 3...4mal höher ist, als die des Glasfilters. Dies ermöglicht einen erheblichen Gewinn an Zellempfindlichkeit, welcher für manche Zwecke so nötig war. Der kritische Vergleich der spektralen Durchlässigkeit der 3-Filter-Typen zeigt, dass für gewöhnliche, kontinuierliche Lichtquellen alle befriedigende Resultate ergeben, obgleich, sofern sie mit Glühlampenlicht kalibriert wurden, die eine etwas überlegen ist für die Strahlung der Quecksilberdampflampen, und die andere für die der Natriumdampflampen. Sowohl die Gelatine-, als auch die Glasfilter wurden mehrere hunderttausend Luxstunden dem natürlichen Tageslicht ausgesetzt und zeigten nur geringe messbare, aber nicht

Spektrale Durchlässigkeit für Farbfilter

- Glas Plastic
- Gelatine Wellenlänge Durchlässigkeit

ernsthafte Veränderungen in der Durchlässigkeitscharakteristik. Verschiedene Studien werden z. Z. mit dem plastischen Material gemacht.

Neues Taschenluxmeter

Während der letzten 2 Jahre wurden mehrere Hundert Variationen der Zellschichttechnik studiert. Fig. 12 zeigt ein farb- und winkelkorrigiertes Taschenluxmeter. Der Fehler der Winkelempfindlichkeit ist in Fig. 13 dargestellt. Die punktierten Linien sind die Ablesungen in der Längs-richtung und Querrichtung und die volle Linie ist das

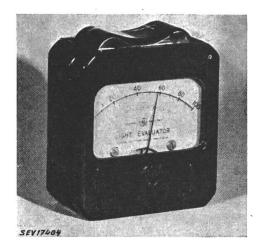
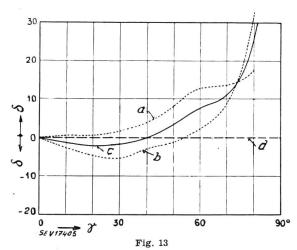
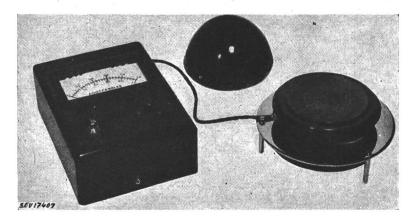



Fig. 12 Neues farb- und winkelkorrigiertes Taschenluxmeter

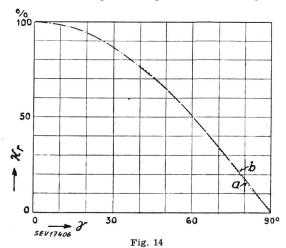
Mittel der beiden Ablesungen. Obgleich dieses Luxmeter einige Prozent zu hoch bei kleinen Einfallwinkeln und bei grossen Einfallwinkeln einige Prozent zu tief zeigt, halten sich diese Fehler in den meisten Fällen innerhalb der Grenzen der Genauigkeit und der Kalibrierung. Ferner kann festgestellt werden, dass diese Fehler die Tendenz haben, sich gegenseitig aufzuheben, sobald das Licht von mehreren Seiten einfällt. Die Cosinuskorrektur ist ohne zusätzlichen optischen Verlust erreicht, wodurch lediglich die Filterdurchlässigkeit die Zellempfindlichkeit vermindert. Die «senkrechte optische Ausbeute» wurde mit 42 % festgestellt, d. h. 14mal höher als bei früheren Instrumenten mit farbund winkelkorrigierter Zelle (Tab. II). Die Farbkorrektur kann man mindestens als so gut bezeichnen, und die Winkelkorrektur wesentlich besser als die vorher erreichte.

Fehler der Winkelempfindlichkeit für das neue Luxmeter in Fig. 12

- in Längsrichtung


- in Querrichtung im Durchschnitt theoretische Cosinus-Empfindlichkeit
- Fehler
- Einfallwinkel

Damit wurde die Herstellung von verbesserten Instrumenten, die den unter Punkt 2 und 3 als erstrebenswert angeführten Modellen entsprachen, möglich und zwar, indem man die geeigneten cosinuskorrigierten, oder cosinus- und farbkorrigierten geschichteten Zellen parallel verband. Solche Zwischenprodukte mit diesen Charakteristiken wurden auch praktisch ausgeführt. Die entschieden höhere Lichtdurchlässigkeit des Gelatinefilters gegenüber dem Glasfilter (ca. 400%) kommt in der Hauptsache den unter Punkt 4 erwähnten Anforderungen entgegen.


Präzisionsluxmeter mit niedrigem Messbereich

Der Fortschritt in der Herstellung von Schichtenzellen rechtfertigte die Entwicklung einer grossen symmetrischen Zelle, die vor allem eine bessere Korrektur des Cosinusgesetzes und eine grössere Empfindlichkeit für ein Instrument mit niedrigem Messbereich ermöglichte. Man begann damit, eine kreisförmige Zelle von 2" Durchmesser herzustellen und Versuchslinsen für die Farb- und Winkelkorrektur anzufertigen.

Zu diesem Zeitpunkt ergab die Fühlungnahme mit Strassenbeleuchtungs-Spezialisten, dass ein Instrument benötigt wurde, dessen Skala nicht über 10 lx reicht, so dass selbst die Minimalwerte der von der American Standard Practice for Street and Highway Lighting [13] vorgeschriebenen Helligkeiten gemessen werden können. Überschlägige Berechnungen führten zu einer Zelle von 4" Durchmesser. Die erhaltene Kombination zeigte eine fast einwandfreie Winkel-

empfindlichkeit, wie aus Fig. 14 ersichtlich. Wenn ein halbkugelförmiger Filter über dieses Modell gestülpt wird, zeigt sich keine oder wenig Änderung in der Winkelempfindlich-

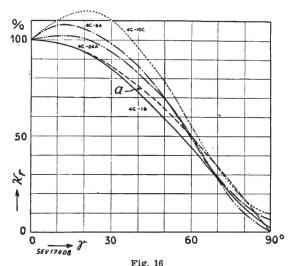
Winkelempfindlichkeit einer dünnen, flachen Linse, aufzementiert auf eine neue, kreisförmige 4"-Selenzelle (a), verglichen mit der theoretischen Cosinus-Empfindlichkeit (b) Weitere Legenden siehe Fig. 3

keit. Der Ablesefehler von rund 1 % Streulicht bei 90° wird durch einen sehr niedrigen Raster beseitigt, der diesen Fehler registriert.

Für die Messung von Strassenbeleuchtung wird die Schichtenzelle nach Fig. 14 in einem Gestell befestigt, das automatisch die horizontale Lage der Zelle sichert. Die Zelle ist mit einem empfindlichen Mikroampèremeter verbunden (Fig. 15). Obgleich mit dieser Zelle und einem Standard-Mikroampèremeter eine Skala bis zu max. 5 1x erreicht wurde, ergab die Erfahrung, dass ein stabileres Instrument mit einer Reichweite bis 10 lx sich für die allgemeine Verwendung im Aussendienst besser eignet. Eine zusätzliche Skala von 0...50 lx ist mittels Umschaltung vorgesehen. Ausser der Umschaltung auf die gewünschte Skala ist eine Vorrichtung vorhanden, die es verhindert, dass das empfindliche Mikroampèremeter mit der Zelle in Verbindung kommt, wenn sie zu hohen Lichtstärken ausgesetzt ist. Die Kalibrierung dieses Präzisionsluxmeters mit niedrigen Messbereich erfolgt ohne Farbfilter; es ist aber ein aufsetzbares halbkugelförmiges Filter vorgesehen, auf welchem der Filterfaktor vermerkt ist, so dass die Skalenablesungen in die richtigen Luxwerte umgerechnet werden können. Für manche Zwecke, z. B. Strassenbeleuchtung, können die Korrekturfaktoren der Tabelle II verwendet werden. Das Filter sollte dann benützt werden, wenn das Licht verschiedenartiger Lichtquellen gemischt wird.

Präzisionsluxmeter mit mehreren Messbereichen

Die Schichtenzelle nach Fig. 14 wird auch bei «Präzisionsluxmetern mit mehreren Messbereichen» verwendet. In diesem Fall ist das halbkugelförmige Filter fest auf der Zelle montiert und das Luxmeter kalibriert für 100.


1000 und 10 000 lx bei vollem Ausschlag und bei aufgesetztem Filter. Ein stabileres Mikroampèremeter ist eingebaut, da eine Maximal-Empfindlichkeit nicht verlangt wird.

Bei diesem Messinstrument wurde eine Reihe von Linsen- und Filter-Schichtungen geprüft. Fig. 16 gibt einige der besten wieder. Diese Linsen mit einer Dicke von 0,25...1,75" befriedigen die Wünsche bezüglich des Cosinusfaktors nicht ganz, obgleich die Fehler in manchen Fällen geringer sind, als bei der früheren Aus-

Fig. 15

Präzisionsluxmeter mit niedrigem Messbereich und mit einem Halter zur automatischen Sicherung der Horizontallage für Strassenbeleuchtungszwecke

führung, und sich bei Messungen von diffuser Beleuchtung, oder Beleuchtung von mehreren Lichtquellen, ausgleichen.

Winkelempfindlichkeit kreisförmiger 4"-Zellen mit aufzementierten dünnen Gelatinefiltern und Linsen von 0,25"...1,75" Dicke

a theoretische Cosinus-Empfindlichkeit
Weitere Legenden siehe Fig. 3

Es ist zu erwarten, dass die endgültige Ausführung der Schichtenzellen grössere Stabilität und grössere Widerstandsfähigkeit auch gegenüber den Wettereinflüssen und der Korrosion bieten wird. Über die Lebensdauer konnte bisher noch kein endgültiger Versuch durchgeführt werden. Abgesehen von wenigen speziellen Verwendungszwecken, ist die Lebensdauer der Zelle nur von akademischem Interesse, denn unter normalen Arbeitsbedingungen hat das Luxmeter eine lange Lebensdauer.

Schlussbemerkung

Es hat sich erwiesen, dass die Schichttechnik, d. h. die Zementierung einfacher Linsen auf die Oberfläche von photoelektrischen Zellen (Sperrschichtphotozellen), die Winkelempfindlichkeit solcher Zellen bedeutend verbessert. Mit Hilfe von neuem Filtermaterial grösserer Lichtdurchlässigkeit konnten genauere Luxmeter entwickelt werden.

Literatur

- [1] Goodwin, W. N.: The Photromic Illumination Meter. Trans". Illum. Engng. Soc. Bd. 27(1932), Nr. 10, S. 828.
- [2] Dows, C. L. u. C. J. Allen: The Light Meter and its Uses. Trans". Illum. Engng. Soc. Bd. 31(1936), Nr. 7, S. 675
- [3] Judd, D. B.: The 1931 I. C. C. Standard Observer and Coordinate System for Colorimetry. J. opt. Soc. Amer. Bd. 23(1933), S. 359.
- [4] Farnham, R. E. u. R. E. Worstell: Color of Light of Incandescent Lamps. J. Soc. Mot. Pict. Engr. Bd. 27 (1936), Nr. 3.
- [5] Forsythe, W. E., E. Q. Adams u. P. D. Cargill: Some Factors affecting the Operation of Incandescent Lamps. Denison Univ. Bull. Bd. 24(1939).
- [6] Weitz, C. E. u. R. F. Cissell: Spectral Analysis of Radiant Energy. Trans". Illum. Engng. Soc. Bd. 34(1939), Nr. 5, S. 495.
- [7] Oetting, R. L. u. C. L. Amick: Interpretation of Spectral Distribution Data in Practical Color Applications. Illum. Engng. Bd. 36(1941), Nr. 10, S. 1369.
- [8] Forsythe, W. E., B. T. Barnes u. E. G. Adams: Fluorescence and Fluorescent Lamps. Denison Univ. Bull. Bd. 36(1941).
- [9] Buck, G. B. II u. R. N. Thayer: Color Technology of Fluorescent Lamps. Illum. Engng. Bd. 42(1947), Nr. 4, S. 415
- [10] Dows, C. L.: Illumination Measurements with Light Sensitive Cells. Illum. Engng. Bd. 37(1942), Nr. 2, S. 103.

- [11] I. E. S. Lighting Handbook. Baltimore, Illum. Engng. Soc., 1947.
- [12] Sears, F. W.: An Introduction to Optics. Cummings, 1938.
- [13] American Standard Practice for Street and Highway Lighting. Illum. Engng. Bd. 41(1946), Nr. 2, S. 105. E. Schneider, Basel

Das neue elektrotechnische Laboratorium in Fontenay-aux-Roses (Frankreich)

621.317.2(44)

[Nach L. Sartre: Le Laboratoire central d'Electricité 1882—1949; Le nouveau Laboratoire de Fontenay-aux-Roses. Rev. gén. Electr. Bd. 34(1950), Nr. 1, S. 5...22.]

Im Jahre 1882 wurde in Frankreich das «Laboratoire central d'Electricité» formell gegründet als staatliche Institution unter dem Ministerium für Post und Telegraph. Seine praktische Tätigkeit konnte allerdings erst im Jahre 1893 beginnen, als die an der Rue de Staël in Paris errichteten Gebäude zur Verfügung standen, in welchen das Laboratorium schliesslich bis zum Herbst 1948 blieb. Eine umfassende Statutenrevision im Jahre 1942 stellte das Institut direkt unter die Autorität der elektrotechnischen Industrie, die schon in früheren Jahren, besonders nach dem ersten Weltkrieg, jeweilen mehr als die Hälfte der Jahreskosten durch Subventionen aufgebracht hatte. In der neuen industriellen Periode, die 1942 einsetzte, erscheint das Prüfamt unter dem Namen «Laboratoire central des Industries électriques». Dabei behielt es seine frühere Funktion als Hüterin der für die Elektrotechnik grundlegenden Eichnormale (z. B. für die Einheit des Widerstandes oder der elektromotorischen Kraft) bei und übte auch weiterhin seine Studien- und Forschungstätigkeit aus. Für die Arbeiten, die im Auftrag der Industrie auszuführen waren, mussten auch industrielle Methoden zur Anwendung gelangen.

Dieses vielseitige Programm konnte allerdings nicht bewältigt werden ohne eine gründliche Erneuerung der Einrichtungen des Laboratoriums. Bald musste man einsehen, dass die Lösung, die nur in einer Modernisierung der vorhandenen Anlagen an der Rue de Staël bestand, auf die Dauer nicht befriedigen konnte. Diese Lösung hätte nämlich einen mehrjährigen Unterbruch der Forschungsarbeiten bewirkt und einer späteren Entwicklung und Erweiterung des Instituts sehr enge Grenzen gesetzt.

Die Wahl eines neuen Standortes, die allerdings mühevoll war, konnte hier den richtigen Ausweg bringen. Da ein geeigneter Platz in der Stadt Paris unerschwingliche Kosten erfordert hätte, war man froh, etwas ausserhalb der Stadt, in Fontenay, ein Grundstück von 3,5 ha zu finden, auf dem ein seit 1932 unvollendeter Eisenbetonbau stand, der in seinen Hauptteilen noch gut erhalten war. Der umbaute Raum war allerdings etwas grösser als man ihn im Falle eines Neubaues errichtet hätte. Der Kauf kam im Jahre 1945 zu günstigem Preis zustande, und sofort wurde mit der Ausgestaltung für die besonderen Zwecke des Laboratoriums begonnen (Fig. 1). Die hiefür benötigten Kredite haben die interessierten Industriekreise (Syndicat général de la Construction électrique und Electricité de France) zur Verfügung gestellt.

Die im Originalartikel folgende Beschreibung der Laboratoriumseinrichtungen behandelt: Maschinensaal, Akkumulatorenraum, Eichstationen für Messinstrumente und Zähler, Prüfverfahren für Isolierstoffe, Kabel, Drähte, Schalter und Sicherungen. Besondere Erwähnung verdient die Spezialabteilung für Radiologie, die sich mit der Materialprüfung durch Röntgenstrahlen und der sicherheitstechnischen Kontrolle und Begutachtung von Apparaten befasst, die der Anwendung von Röntgenstrahlen für medizinische oder industrielle Zwecke dienen. Eine andere Abteilung führt Prüfungen, Messungen und Forschungen auf dem Gebiete der Hochfrequenztechnik aus. Im Nordflügel sind 8 Räume mit einer gesamten Grundfläche von 500 m² den Untersuchungen reserviert, die Apparate und Bordinstrumente für Flugzeuge im Hinblick auf ihre Beständigkeit gegenüber der Beanspruchung durch Kälte (bis -60 °C), Hitze, Stösse und Feuchtigkeit beurteilen lassen.

Dank der wohlwollenden Unterstützung durch die Electricité de France und durch die Industrie konnte sich das neue Laboratorium in günstiger Weise entwickeln, so dass es mit modernen Apparaten, Messeinrichtungen und Prüfverfahren, die von qualifiziertem Personal betreut und angewendet werden, den ständig steigenden Ansprüchen genügen kann.

Gz

Fig. 1

Der Neubau des Laboratoire central des Industries électriques in Fontenay-aux-Roses

L'installation électrique du 31° Comptoir Suisse 621.34:381.12 (494.45)

Cette année, le 31° Comptoir Suisse tient ses assises du 9 au 24 septembre. Une fois de plus, de tous les points du pays, les visiteurs se pressent à Lausanne où sont exposés, en 16 halles permanentes ou volantes, les multiples produits de l'activité économique suisse. Des attractions en rehaussent l'intérêt: d'abord sa nouvelle halle permanente sur la galerie de laquelle se tient une exposition nationale de viticulture, sous le patronage de l'Office Central de propagande pour les produits de l'agriculture; une halle scientifique du lait, présentant à la fois tous les produits de l'industrie du lait et de ses dérivés et une démonstration du procédé de pasteurisation du lait et de la crème; une halle des textiles extrêmement originale; puis, en deux pavillons indépendants, une exposition économique officielle de l'Italie et, à l'enseigne des Ateliers du Goût, de Paris, un pavillon de l'artisanat d'art français.

L'agencement de cette foire qui couvre une surface totale de 82 000 m², abrite plus de 2000 exposants et reçoit 600 000 visiteurs, pose de nombreux problèmes dont l'un est celui de l'éclairage et de l'installation électrique des halles et des stands. Nous avons pu obtenir de l'entreprise d'électricité à qui fut confié l'équipement de la nouvelle halle, d'intéressantes précisions.

Le Comptoir Suisse comporte deux sortes d'installations, soit un corps de bâtiments permanents et des halles volantes. Les halles volantes consistent en deux constructions principales, deux pavillons spéciaux et en quelques installations complémentaires. Elles sont édifiées pour chacune des manifestations du Comptoir Suisse et démolies après la foire. Elles sont faites d'une charpente de bois et sont recouvertes d'une bâche translucide. Leur installation électrique s'exécute chaque année; elle consiste en lignes provisoires montées sur poulies. L'amenée des halles volantes est faite par basse tension (380/220 V), reliée sur le réseau du Service de l'électricité de la Ville de Lausanne, dont les installations sont contrôlées par deux compteurs généraux, totalisant en moyenne une consommation d'environ 70 000 kWh pendant la durée de la foire.

L'architecture des halles volantes nécessite un éclairage intense de l'ordre de 125 kW réalisé avec 550 lampes. Les lignes d'alimentation des stands des exposants sont également montées sur des poulies et représentent une longueur d'environ 7000 m. Les coupe-circuit de chaque stand sont posés sur des plaques en éternit, en raison des dangers d'incendie que présentent les matières entreposées et facilement inflam-

mables. Les raccordements des stands ainsi que leurs installations intérieures s'effectuent également avec des conduites provisoires sous tube isolé. Cette année, le nombre de raccordement des stands des halles volantes s'élève à 1750 sur 2000 exposants. Les raccordements de plus de 2000 W reçoivent un compteur de décompte.

Les bâtiments fixes sont dotés cette année d'une nouvelle halle permanente d'environ 7300 m². Ils sont alimentés par 18 câbles de 95 mm², d'une sous-station du Service de l'électricité de la Ville de Lausanne comprenant deux transformateurs de 500 kVA chacun (6400/380/220 V). Ces câbles partent du compteur général et d'un local renfermant tous les coupe-circuit des halles d'exposition de meubles, dégustations, vins, industrie textile, arts et métiers, restaurant. Dans chaque halle sont installés des tableaux divisionnaires pour l'éclairage et les stands des exposants, lesquels sont raccordés chaque année au moyen de conduites provisoires sous tube isolé.

Par contre, la nouvelle halle est alimentée par 4 câbles de 95 mm², soit un pour l'éclairage général d'une puissance d'environ 76 kW, réalisé par des réflecteurs anodisés, d'une part et par des modèles du type encastré d'autre part, pour la galerie. Les 3 autres câbles alimentent les 20 tableaux divisionnaires pour les stands, tableaux qui sont situés dans un dégagement de service et dans les armoires placées à l'extérieur. Ils sont ainsi isolés du public, ce qui est une sage précaution et une sécurité de plus. Ces tableaux sont posés en face des caniveaux latéraux dans lesquels sont placées les conduites aboutissant aux prises des exposants. Les raccordements de ces derniers se font au moyen de cordons renforcés, branchés sur des prises du type 15 A, 3 pôles, logés également dans les caniveaux.

L'installation de la nouvelle halle a nécessité le travail de 18 installateurs électriciens pendant 92 jours.

L'ensemble des installations électriques du Comptoir Suisse est surveillée en permanence par une équipe d'électriciens; ces hommes sont centralisés dans un local du bâtiment permanent et, alertés par téléphone, ils peuvent intervenir à toute heure.

La consommation d'énergie électrique de toutes les installations provisoires ainsi que les raccordements pour les 2000 exposants s'élève, pendant la durée de la foire, à environ 200 000 kWh. Les installations commencent en général 4 semaines avant l'ouverture du Comptoir et sont exécutées par des monteurs électriciens de différentes entreprises concessionnaires de la place de Lausanne.

Nachrichten- und Hochfrequenztechnik — Télécommunications et haute fréquence

Die Schweizerische Rundspruchgesellschaft im Jahre 1949 621.396.97(494)

Dem 19. Jahresbericht der Schweizerischen Rundspruchgesellschaft (SRG) entnehmen wir die folgenden Angaben:

Die technische Entwicklung

Das technische Erneuerungs- und Ausbauprogramm im Schweizerischen Rundspruch wurde auch 1949 konsequent weitergeführt. So konnte am 1. Juli die neue, im Bereich 100...200 kW beliebig einstellbare Sendeanlage in Beromünster definitiv dem Betrieb übergeben werden. Die Arbeiten an der neuen 100...200-kW-Sendeanlage in Sottens sind so weit gediehen, dass die Fertigstellung auf den 15. März 1950, das ist das vorgesehene Datum des Inkrafttretens der neuen europäischen Wellenverteilung, nicht mehr in Zweifel steht. Besondere Anstrengungen wurden unternommen, um auch die Anlage Monte Ceneri dem neuen, grösseren Maßstab des Planes von Kopenhagen anzupassen. Auch die rechtzeitige Bereitstellung dieser Anlage, die künftig mit 50 kW anstatt wie bisher mit 15 kW senden wird, ist gesichert.

Die Arbeiten an den beiden 100-kW-Programmsendern im schweizerischen Kurzwellensender Schwarzenburg konnten im Berichtsjahr beendet, und die Anlagen dem Betrieb übergeben werden. Schwierigkeiten stellten sich beim Landerwerb für die neuen grossen Flächenantennen ein, so dass die Erstellung dieser Anlagen eine Verzögerung erleidet.

Zur Verbesserung der Empfangsverhältnisse in der Gegend von Glarus und Schwanden wurde in Sool ein 100-W-Relaissender erstellt.

Die Betriebszeiten der schweizerischen Rundspruchsender waren im Jahre 1949 die folgenden:

Beromünster								4 519	Stunden
Sottens								4 611	Stunden
Monte Ceneri								3 939	Stunden
Schwarzenburg	g	(ohne	. '	Teleph	oni	e)	2	28 294	Stunden

Der technischen Weiterentwicklung der schweizerischen Rundspruchsender geht parallel eine solche der Studioeinrichtungen und Hilfsmittel. So ist heute das moderne Magnet-Ton-Aufnahme- und Wiedergabeverfahren in den schweizerischen Studios allgemein eingeführt.

Den Bedürfnissen der modernen Studiotechnik entsprechend sind im Berichtsjahr die Einrichtungen in Lausanne und Genf um je einen Übertragungskanal, d. h. im gesamten auf vier Kanäle, erweitert worden.

Vom Jahr 1950 erhofft man eine bessere Ordnung in den Wellenbändern dank der Einführung des Planes von Kopenhagen. Mit besonderem Interesse erwartet man die Resultate der in Deutschland verschiedenenorts einzuführenden frequenzmodulierten Sendungen. Auch die schweizerische PTT-Verwaltung führt in dieser Richtung seit einiger Zeit systematische Untersuchungen durch.

Finanzielles

Der Schweizerischen Rundspruchgesellschaft standen im Berichtsjahr an Konzessionsgebühren 12 500 000 Fr. zur Verfügung mit folgender Unterteilung:

													FT.
Genera	ldirektio	n	SRC	i u	nd	Ku	czw	elle	ndi	ens	t.	÷	2 368 000
Studio	Zürich												1 913 960.—
Studio	Bern				100								1 342 530.—
Studio	Basel										*		1 550 210.—
Studio	Lausann	e											1 534 395.—
Studio	Genf		4	٠.							*		1 859 825.—
Studio	Lugano												1 925 080.—
Ostschy	weizerisc	he	Rad	dio	ges	ellsc	haf	t					6 000.—
						- 6					Tot	al	12 500 000.—

Die Betriebsrechnung der Generaldirektion der SRG gestaltet sich folgendermassen:

Einnahmen: Anteil an Konzessionsgebühren	,		Fr. 2 368 000.—
Ausgaben			
Personal			624 762.90
Diensträume (Mietzinsen usw.)			48 990.99
Verwaltungskosten			179 775.72
Programm			1 294 981.12
Verschiedenes			22 330.—
	Tot	tal	2 170 840.73
Einnahmenüberschuss der Betriebsrechnung			197 159.27
•			2 368 000.—

Der Ertrag und die Verwendung der Radiohörgebühren im Jahre 1949 gestaltete sich folgendermassen:

Einnahmen						Fr.
Radiohörgebühren 1949 total	*	•	•	٠		20 146 798.75
Ausgaben	6	. / 6	D.C.		- \	13 541 110 15

Aufwendungen der PTT		Fr.	Fr.
Personal		2 486 548.24 215 074.34	
Betriebsanlagen (Unter- halt usw.)		5 269 743.45	
Verwaltungskosten .		469 643.90	8 441 009.93
Betriebsergebnis			— 1 835 321.33 Schi.

Communications de nature économique

Données économiques suisses

(Extraits de «La Vie économique» et du «Bulletin mensuel Banque Nationale Suisse»)

	«Bulletin mensuel Banque Nati	ionale Suis	se»)
		Jui	illet
Nº	B	1949	1950
1.	Importations)	278,5	366,2
	(2	(2243,8)	(2152,8)
	Exportations en 106 frs	290,1	319,8
	(janvier-juillet)		
		(1927,5)	(1963,4)
2.	Marché du travail: demandes		
	de places	4 853	4 487
3.	de places	. 161	158
li			
	gros*))=100(206	199
	Prix-courant de détail*):		
	(moyenne du pays)		
	(août 1939 = 100)		
	Eclairage électrique cts/kWh	33 (92)	32 (89)
	Cuisine électrique cts/kWh	6,5 (100)	6,5 (100)
	Gaz cts/m ³	28 (117)	28 (117)
	Coke d'usine à gaz frs/100 kg		14,54 (187)
4.		1.,01 (220)	11,01 (101)
4.	Permis délivrés pour logements	1005	1200
	à construire dans 33 villes	1265	1329
ا ہا	(janvier-juillet)	(8874)	(9980)
5.	Taux d'escompte officiel . %	1,50	1,50
6.	Banque Nationale (p. ultimo)	4000	4000
	Billets en circulation 106 frs	4323	4282
	Autres engagements à vue 106 its	1892	2203
	Encaisse or et devises or 106178	6522	6508
	Couverture en or des billets		
	en circulation et des au-		
١,,	tres engagements à vue %	99,11	95,61
7.	Indices des bourses suisses (le		
	25 du mois)		
	Obligations	106	107
	Actions	234	243
	Actions industrielles	335	343
8.	Faillites	51	47
	(janvier-juillet)	(351)	(345)
	Concordats	9	21
	(janvier-juillet)	(85)	(160)
_			
9.	Statistique du tourisme		iin
	Occupation moyenne des lits	1949	1950
	existants, en %	31,9	27,6
		Ju	ıin
10.	Recettes d'exploitation des	1949	1950
	CFF seuls		
1	Marchandises	25 067	28 193
	(janvier-juin) en	(143 997)	(140 951)
	Voyageurs 1000 frs	24 664	23 160
	(janvier-juin)	(132 329)	(127 583)
	(James James)	(102 02))	(-2:2)
l	*> G (((.l annli

^{*)} Conformément au nouveau mode de calcul appliqué par le Département fédéral de l'économie publique pour déterminer l'index général, la base juin 1914 = 100 a été abandonnée et remplacée par la base août 1939 = 100.

«Die Elektrizitätsversorgung Argentiniens»

Bull. SEV Bd. 41(1950), Nr. 12, S. 487...489

Berichtigung

In der Legende von Fig. 1 sind irrtümlicherweise die Symbole der Leistung und der Energieproduktion vertauscht worden.

Extrait des rapports de gestion des centrales suisses d'électricité (Ces aperçus sont publiés en groupes de quatre au fur et à mesure de la parution des rapports de gestion et ne sont pas destinés à des comparaisons)

On peut s'abonner à des tirages à part de cette page

	Ville de I	vices Industriels de la Ville de Neuchâtel Service de l'électricité Städtische Werke Baden Licht- und Wasserwerke Zofingen					aubrunnen, astorf	
7	1948	1947	1949	1948	1949	1948	1949	1948
2. Achat d'énergie kWh 3. Energie distribuée kWh 4. Par rapp. à l'ex. préc % 5. Dont énergie à prix de	15 342 295	20 334 800 15 945 083 36 946 693 + 3,8	11 250 000	$13\ 580\ 000\\40\ 288\ 050\\+\ 21$	20 490 100 18 063 643 + 1,5		9 744 000 9 744 000 + 11,5	8 810 000 8 810 000 ?
11. Charge maximum kW 12. Puissance installée totale kW	7 870 - 143 170	7 650 —	1800 181101800000	9 870 66 139	4 262	4 260 19 025 42 610	? 24 250 45 219	? 22 550 43 883
13. Lampes	1 899 11 996	— 1 689	5 489 654	4 915 587	1 313 682	1 278 604 4 060	1 430 2 054 11 315	1 374 1 877 10 311
15. Chauffe-eau { nombre kW 16. Moteurs industricls . { nombre kW	2 860 4 686 3 700	4 272 3 400	4 204 7 616	7 350	1 762 1 990	1 200 1 562 2 003		877 752 3 102
21. Nombre d'abonnements 22. Recette moyenne par kWh cts.	10 070 17 500 7,68					2 253 5,25	7 881 4 165 8,47	7 221 4 136 8,67
Du bilan: 31. Capital social fr. 32. Emprunts à terme » 33. Fortune coopérative » 34. Capital de dotation » 35. Valeur comptable des inst. » 36. Portefeuille et participat. » 37. Fonds de renouvellement . »	8 938 739 8 938 739 — —			2 722 000	? 210 948 	. — — ? 122 168 —	50 800 	50 200 15 000 308 500 266 600
Du compte profits et pertes: 41. Recettes d'exploitation fr. 42. Revenu du portefeuille et des participations	3 079 678	112 063 385 168 6 052 733 137 899 490 479 942 336 675	116 881 42 850 51 706 299 052 294 086 465 337 503 564	2 181 079	702 810 100 000	1 084 036	269 228 9 066 6 670 7 078 84 348 121 596 536 326 65 295 3 034 6 20 000	248 068 8 967 5 640 — 21 918 82 513 121 955 501 154 29 151 3 012 6 20 000
62. Amortissements jusqu'à fin de l'exercice » 63. Valeur comptable » 64. Soit en % des investisse-	4 066 981 8 938 739	7 660 200	9 417 351 2 832 001	9 135 058 2 722 001	1 873 034 210 948	?	820 000 810 000 10 000	816 000 801 000 15 000
ments	68,7	66,1	23,12	22,95	10,1	?	1,22	1,84

Extrait des rapports de gestion des centrales suisses d'électricité

(Ces aperçus sont publiés en groupes de quatre au fur et à mesure de la parution des rapports de gestion et ne sont pas destinés à des comparaisons)

On peut s'abonner à des tirages à part de cette page

	Elektrizität	swerk Basel	Elektrizitätswerk der Stadt Biel Elektrizitätsversorgung Olten			Elektrizit Gren		
	1949	1948	1949	1948	1949	1948	1949	1948
	Ì							
1. Production d'énergie . kWh 2. Achat d'énergie kWh 3. Energie distribuée kWh 4. Par rapp. à l'ex. préc % 5. Dont énergie à prix de	270 694 740	155 746 000 340 087 170 455 448 790 + 14,8	42 594 630	42 522 030	35 250 000			
déchet kWh	33 210 600	91 008 770	?	?	630 000	1 765 000	?	?
11. Charge maximum kW 12. Puissance installée totale kW	97 500 488 008		10 020 82 885	10 020 77 738		7 600 53 471	3 644 23 354	3 663 —
13. Lampes $\begin{cases} nombre \\ kW \end{cases}$	935 391 42 923		196 011 7 426	190 605 7 102		104 508 6 400		61 842 2 973
14. Cuisinières $\begin{cases} nombre \\ kW \end{cases}$	12 678 94 062		2 551 16 979	2 231 14 777	2 370 11 700	2 308 11 270		852 5 368
15. Chauffe-eau and nombre kW	31 668 61 858	30 159	4 662	4 235	2 825	2 747 5 376	2 236	2 159 1 621
16. Moteurs industriels $\begin{cases} nombre \\ kW \end{cases}$	43 270 118 640	39 898		10 801 13 311	8 550	8 306 26 297		6 036 4 482
21. Nombre d'abonnements 22. Recette moyenne par kWh cts.	123 656 5,40	123 715 5,09	30 378 9,55	29 278 9,52	8 836 6,14	8 607 5,76	7 434 9,01	7 153 9,25
Du bilan:								
31. Capital social fr. 32. Emprunts à terme »		_	=	_	=	_	_	_
33. Fortune coopérative » 34. Capital de dotation »	5 875 106	A CONTRACTOR OF THE PROPERTY OF					900 000	900 000
35. Valeur comptable des inst. > 36. Portefeuille et participat. > 37. Fonds de renouvellement >		9 788 000 14 761 001 22 163 808		_		560 007 332 752	1 077 000 — —	945 000 — —
Du Compte Profits et Pertes:								
41. Recettes d'exploitation . fr. 42. Revenu du portefeuille et		23 530 632		4 035 958	2 510 131	2 722 861	1 345 378	1 370 801
des participations » 43. Autres recettes » 44. Intérêts débiteurs »	620 498 908 365 29 383	701 776	10 709 161 849			15 082		32 062
45. Charges fiscales » 46. Frais d'administration . » 47. Frais d'exploitation »	494 348	4 103 390	552 004		303 202	`	204 940 72 022	$\begin{array}{c c} 100 \\ 214 981 \\ 71 428 \end{array}$
47. Frais d'exploitation	2 974 993 6 266 393 2 666 334	6 547 240	1 281 836	1 274 834	1 031 900			
50. Dividende								_
52. Versements aux caisses publiques fr.	5 500 000	6 000 000	1 077 725	1 187 806	346 559	316 394	35 000	35 000
Investissements et amortissements:								
61. Investissements jusqu'à fin de l'exercice fr.	71 773 428	70 752 236	10 614 898	10 098 765	/	/	2 937 158	2 600 003
62. Amortissement: jusqu'à fin de l'exercice > 63. Valeur comptable >		60 964 236 9 788 000			/	560 007	1 842 158 1 077 000	1 655 003 945 000
64. Soit en % des investisse-	1							

Prix moyens (sans garantie)

le 20 du mois

Métaux

		Août	Mois précédent	Année précédente
Cuivre (fils, barres) 1).	fr.s./100 kg	238.—	231.—	178.15
Etain (Banka, Billiton)2)	fr.s./100 kg	990.—	885.—	991.—
Plomb 1)	fr.s./100 kg	119	114.50	148.35
Zinc 1)	fr.s./100 kg	173.—	156.—	99.60
Fer (barres, profilés) 3)	fr.s./100 kg	45.50	42.—	57.—
Tôles de 5 mm ³)	fr.s./100 kg	49.50	46.—	67.—

1) Prix franco Bâle, marchandise dédouanée, chargée sur wagon, par quantité d'au moins 50 t
2) Prix franco Bâle, marchandise dédouanée, chargée sur wagon, par quantité d'au moins 5 t
3) Prix franco frontière, marchandise dédouanée, par

quantité d'au moins 20 t

Combustibles et carburants liquides

		Août	Mois précédent	Année précédente
Benzine pure / Benzine ethylée 1) Mélange-benzine, carbu-	fr.s./100 kg	65.80	65.80	71.05
rants indigènes in- clus 1)	fr s./100 kg	63.80	63.80	_
Carburant Diesel pour véhicules à moteur 1)	fr.s./100 kg	47.25	47.25	50.60
	fr.s./100 kg	19.40	16.40	20.40
Huile combustible lé-	fr.s./100 kg	17.90	14.90	19.10
Huile combustible in- dustrielle (III) ²)	fr.s./100 kg	10.55	10.55	16.30

dustrielle (III) 2) . . | II.\$/1004 | 10.55 | 10.50 | 10.50 |

1) Prix-citerne pour consommateurs, franco frontière suisse, dédouané, ICHA non compris, par commande d'au moins 1 wagon-citerne d'environ 15 t.

2) Prix-citerne pour consommateurs, franco frontière suisse Bâle, Chiasso, Iselle et Pino, dédouané, ICHA et taxe de compensation du crédit charbon (fr.s. —.65/100 kg) non compris, par commande d'au moins 1 wagon-citerne d'environ 15 t. Pour livraisons à Genève et à St-Margrethen les prix doivent être majorés de fr.s. 1.—/100 kg resp. fr.s. —.60/100 kg.

L'huile combustible spéciale et l'huile combustible légère ne sont pas seulement utilisées pour le chauffage, mais aussi pour la production d'énergie électrique des moteurs stationnaires Diesel en tenant compte de la position douanière correspondante.

Charbons

P		Août	Mois précédent	Année précédente		
Coke de la Ruhr I/II/III Charbons gras belges pour l'industrie	fr.s./t	100.—	100.—	128.—		
Noix II	fr.s./t	88.—	88.—	122.—		
Noix III	fr.s./t	83.50	83.50	117.60		
Noix IV	fr.s./t	82.50	82.50	113.20		
Fines flambantes de la						
Sarre	fr.s./t	72.50	72.50	85.—		
Coke de la Sarre	fr.s./t	95.—	95.—	117.90		
Coke métallurgique						
français	fr.s./t	100.—	100.—	123.—		
Coke fonderie français	fr.s./t	97.—	97.—	126.—		
Charbons flambants po-						
lonais						
Noix I/II	fr.s./t	84.50	84.50	112.—		
Noix III	fr.s./t	79.50	79.50	112.—		
Noix IV	fr.s./t	78.50	78.50	106.—		
m- 1						

Tous les prix s'entendent franco Bâle, marchandise dédouanée, pour livraison par wagons entiers à l'in-dustrie, par quantité d'au moins 15 t.

Kraftwerk Handeck II

621.311.21 (494.246.1)

Wie uns aus Innertkirchen mitgeteilt wird, ist der Bau des Kraftwerkes Handeck II der Kraftwerke Oberhasli A.-G. (KWO) praktisch beendet 1). Die neue 84 m hohe und 430 m lange Staumauer Räterichsboden ist fertig betoniert, und es bleiben nur noch einige Abschlussarbeiten an der Krone auszuführen. Der neue Stausee Räterichsboden von 27 Millionen m³ Nutzinhalt ist beinahe gefüllt, nachdem mit dem Aufstau bereits Mitte Mai dieses Jahres begonnen wurde. Das kleine Staubecken von 2 Millionen m3 Inhalt auf der Mattenalp im Urbachtal ist ebenfalls fertig erstellt.

Im neuen, modern eingerichteten unterirdischen Maschinenhaus Handeck II, das sich übrigens in der Nähe des bestehenden Maschinenhauses Handeck I befindet, ist vor einigen Tagen die zweite 40 000-kVA-Maschinengruppe in Betrieb genommen worden. Die Energieproduktion des neuen Werkes beträgt 245 GWh pro Jahr, wovon 95 GWh im Winter. Seit der Inbetriebnahme der ersten Maschinengruppe im Mai dieses Jahres wurden im Kraftwerk Handeck II bis heute 45 GWh erzeugt.

Mit der Erstellung und Inbetriebnahme des Kraftwerkes Handeck II ist im Oberhasli eine weitere Etappe in der Ausnützung der Wasserkräfte zurückgelegt worden. Die offizielle Kollaudation des Kraftwerkes Handeck II wird im Frühjahr 1951 stattfinden.

Miscellanea

In memoriam

Felix Gugler †. Am 25. Mai 1950 starb in Ennetbaden im Ruhestand Dr. h. c. Felix Gugler, ehemaliger Vorstand der Bauabteilung der Motor-Columbus A.-G., Baden, Mitglied des SEV seit 1922. Die folgenden Aufzeichnungen sind zur Hauptsache einem im «Badener Tagblatt» erschienenen Nachruf entnommen.

Felix Gugler wurde geboren und verbrachte seine Jugend in Choindez im Berner Jura, wo sein Vater eine leitende Stellung in den L. von Roll'schen Eisenwerken innehatte. Nach der Maturität am Gymnasium Basel studierte er am Eidg. Polytechnikum Bauingenieurwesen und diplomierte

Felix Gugler 1875-1950

dort 1897. Unmittelbar nach dem Diplom trat er in die Praxis über, der er sein ganzes Leben verhaftet blieb, und die ihm reiche Erfahrungen als Kraftwerkbauer eintrug. Er wirkte zu Beginn seiner Tätigkeit an der Wasserkraftanlage an der Goldach mit, trat dann für fünf Jahre ins Ingenieurbüro Kürsteiner in St. Gallen ein, wo er mit dem späteren Professor für Wasserbau an der ETH und nachmaligen polni-

¹⁾ siehe W. T. Moll: Ausbau der Wasserkräfte im Oberhasli. Bull. SEV Bd. 37(1946), Nr. 10, S. 271...274.

schen Staatspräsidenten Narutowicz zusammentraf. Diese begegnung wurde für seine Laufbahn wegleitend. Nach einer kurzen Tätigkeit beim Bau der Bodensee-Toggenburg-Bahn leitete Felix Gugler 1906 bis 1910 den Bau des Albulawerkes der Stadt Zürich, um nachher als Sektionsingenieur für den Diepoldsauer Durchstich zur Rheinbauleitung überzutreten. 1912 folgte er dem Ruf von Oberingenieur Bener und wirkte an den Vorarbeiten zum Bau der Chur-Arosa-Bahn mit, von wo er 1913 als Bauleiter zum Plessurwerk der Stadt Chur übertrat, das die Energie für die Chur-Arosa-Bahn zu liefern hatte. 1915 übernahm er die örtliche Bauleitung des Kraftwerkes Eglisau der Nordostschweizerischen Kraftwerke A.G., die ihn 1917 zum Vorsteher ihrer Bau- und Studienabteilung nach Baden beriefen. Zu dieser Zeit hielt er an der ETH, in Vertretung von Prof. Narutowicz, vorübergehend Vorlesungen über Wasserbau. (Als später das Wasserbaulaboratorium an der ETH gegründet werden sollte, setzte er sich mit seiner ganzen Persönlichkeit für dessen Zustandekommen ein.) Als jedoch die Frage an ihn herantrat, ob er eine Kandidatur für den durch die Rückkehr Narutowicz' nach Polen verwaisten Lehrstuhl annehmen sollte, entschied er sich für das Verbleiben in der Praxis. Er wurde Direktor der Bauabteilung der NOK, schuf das Projekt für das Kraftwerk Wäggital und leitete später die Ausführung des baulichen Teils. 1926 trat er als Direktor des örtlichen Baubüros für das damals grösste Rheinkraftwerk Ryburg-Schwörstadt in den Dienst der Motor-Columbus A.-G., Baden. Nach der Vollendung dieses Werkes (1931) stellte er seine grosse Bauerfahrung dem Geschäftssitz zur Verfügung. In den Vorstand der Bauabteilung berufen, hatte er Gelegenheit, an vielen Kraftwerkprojekten und anderen Bauaufgaben massgebend mitzuwirken. Zum letztenmal versah er die Stelle eines Bauleiters beim Bau des Kraftwerkes Reckingen am Rhein (1938 bis 1941). Im Alter von 70 Jahren trat er in den Ruhestand, wurde aber immer wieder in Fragen des Kraftwerkbaues zu Rate gezogen.

Während mehr als 50 Jahren diente so Felix Gugler treu und unermüdlich dem schweizerischen Kraftwerkbau, wofür ihm der Dank des Landes gebührt. Die ETH gab diesem Dank Ausdruck, indem sie ihn schon 1930 zum Doktor der technischen Wissenschaften ehrenhalber promovierte.

Neben seinem Beruf, doch nicht ohne Zusammenhang damit, widmete sich Felix Gugler dem Alpinismus. Schon im letzten Dezennium des vergangenen Jahrhunderts war er an den Jurahängen als einer der ersten Skifahrer zu treffen. Er gehörte auch zu den Gründern des Akademischen Alpenclubs Zürich. 1931 übernahm die Sektion Baden für drei Jahre das Zentralkomitee des SAC, und Felix Gugler wurde zum Zentralpräsidenten gewählt, in welchem Amt er sich die uneingeschränkte Anerkennung der alpinistischen Kreise erwarb, die ihren Ausdruck in der 1935 ausgesprochenen Ernennung zum Ehrenmitglied der Sektion Lägern fand.

Zahlreich sind diejenigen, die mit Felix Gugler in Berührung kamen. Sie alle, Unternehmer, Vorgesetzte, Mitarbeiter und Untergebene, schätzten und ehrten in ihm den einzigartigen Fachmann mit treffendem, klarem Urteil und bescheidenen, aufrechten Menschen, der die Sachlichkeit vor alle anderen Überlegungen stellte und unbeirrt seinen geraden Weg ging. Sein Andenken wird in dankbarer Erinnerung bleiben.

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

W. Dübi, Präsident des Verwaltungsrates der Kabelwerke Brugg A.G., Mitglied des CES, feierte am 1. September 1950 seinen 70. Geburtstag.

H. Jäcklin, Direktor des Elektrizitätswerkes der Stadt Bern, Mitglied des Vorstandes des SEV, feierte am 31. August 1950 seinen 60. Geburtstag.

Elektra Birseck, Münchenstein. A. Dürr wurde zum Mitglied der Betriebsdirektion gewählt.

50 Jahre H. Meidinger & Cie., Basel. Die Elektromotorenfabrik H. Meidinger & Cie., Basel, konnte kürzlich die Feier ihres 50jährigen Bestehens begehen.

Kleine Mitteilungen

Schweizerische Radio-Ausstellung 1950. Vom 21. bis 26. September 1950 findet im Kongresshaus Zürich die Schweizerische Radio-Ausstellung statt, die über die Fortschritte und den heutigen Stand der schweizerischen Radioindustrie Zeugnis ablegen wird.

Vom Trolleybus in St. Gallen 1). Dem Geschäftsbericht des Stadtrates von St. Gallen über das Amtsjahr 1949 lässt sich folgendes entnehmen: Das neue Trolleybus-Autobus-Depot wurde auf Jahresende fertiggestellt. Die im Vorjahre in Auftrag gegebenen 18 Trolleybusse sind in den Saurer-Werkstätten in Arbon in Ausführung begriffen. Im November 1949 wurde durch die A.-G. Brown, Boveri & Cie., Baden, mit dem Einbau der elektrischen Ausrüstung im neuen Depot St. Gallen begonnen. Für die Erstellung der Trolleybus-Fahrleitung durch die Firma Kummler & Matter wurden in der Teufener Strasse die erforderlichen Masten und Haken angebracht, wobei auf der Gemeinschaftsstrecke Hochwacht-Nest mit der elektrischen Bahn St. Gallen-Gais-Appenzell und mit dem Elektrizitätswerk ein gemeinsames Tragwerk für die Fahrleitungen und die Aufhängung der Strassenbeleuchtung vorgesehen wurde.

Kurse über Ausdruck und Verhandlung in St. Gallen und Rüti (ZH). Kurse über Ausdruck und Verhandlung in den Beziehungen mit Gruppen und mit der Öffentlichkeit von Dr. F. Bernet beginnen am 22. September 1950 in St. Gallen und am 25. September 1950 in Rüti im Zürcher Oberland. Der Kurs in St. Gallen umfasst zehn Freitagabende, der Kurs in Rüti zehn Montagabende. An diesen Kursen gelangen eine Reihe von Fragen zur Behandlung, die in den kommenden Zeiten für grosse und kleine Firmen von hoher Bedeutung sein dürften, z. B. Förderung der Arbeitsfreude und des Sinnes für das Geschäftsinteresse bei allen Betriebsangehörigen, Leitung von Diskussionen, Durchführung von Vorträgen, Wirken mit dem gedruckten Wort und Zusammenarbeit mit der Tages- und Fachpresse.

Programme für den einen oder anderen Kurs können bezogen werden beim Kursleiter, Dr. F. Bernet, Postfach 118, Zürich 24.

Einführungskurs in die Arbeitsanalyse. Das Betriebswissenschaftliche Institut an der ETH führt dieses Jahr wiederum seinen Einführungskurs in die Arbeitsanalyse durch, der unter der Leitung von Privat-Dozent Ingenieur P. F. Fornallaz steht. Der Kurs wendet sich an alle Betriebsleute, die sich mit dem Problem der wirtschaftlichen Gestaltung der Arbeitsverfahren und der Entlöhnung zu befassen haben; er vermittelt zudem die unerlässlichen Vorkenntnisse für die Teilnahme an weiteren Spezialkursen (Leistungsgradschätzung usw.).

Das Programm behandelt die folgenden Hauptprobleme:

Technik der Zeitstudie, mit Übung; Bestgestaltung des Arbeitsplatzes; Aufklärung von Kadern und Arbeitern, Zusammenarbeit; Ausarbeitung eines homogenen Akkordtarifes; Leistungs- und Lohnkostenkontrolle.

Um den Wünschen der Kursteilnehmer nach Möglichkeit entgegenzukommen, wird der Kurs, der 12 Doppelstunden umfasst, erstmals in 2 Varianten durchgeführt:

Kurs A: 18. September—26. Oktober 1950
 Jeden Montag- und Donnerstagabend.
 Kurs B: 31. Oktober—24. November 1950 (mit 1 Woche Pause)
 Jeden Dienstag- und Freitagnachmittag und -abend (16—21 Uhr)

Anmeldungen und genaues Programm sind erhältlich beim Betriebswissenschaftlichen Institut an der ETH, Zürich, Tel. (051) 32 73 30.

Kurse über Arbeits- und Zeitstudien. Das Betriebswissenschaftliche Institut an der ETH wird im Wintersemester

¹⁾ Betr. Kreditbewilligung siehe Bull. SEV Bd. 39(1948), Nr. 12, S. 408.

1950/51 folgende Kurse unter der Leitung von Privat-Dozent, Ingenieur P. F. Fornallaz durchführen:

September...November 1950 in Zürich

Einführungskurs in die Arbeitsanalyse Kurs A: Abendkurs (19...21 Uhr) Kurs B: Nachmittags- und Abendkurs (16...21 Uhr)

Oktober...November in Olten

Einführungskurs in die Arbeitsanalyse Nachmittags- und Abendkurs

Dezember 1950 in Zürich und Olten

Übungen über Leistungsgradschätzung Nachmittags- und Abendkurs

Februar...März 1951 in Zürich

Arbeitsvereinfachung (Work Simplification) $Kurs\ A$: Abendkurs $Kurs\ B$: Nachmittags- und Abendkurs

April 1951 in Olten

Arbeitsvereinfachung (Work Simplification) Nachmittags- und Abendkurs

Detaillierte Programme zu den einzelnen Kursen können beim Betriebswissenschaftlichen Institut an der ETH, Zürich, Tel. (051) 32 73 30, verlangt werden.

Königlich-Niederländische Messe in Utrecht. Die diesjährige, internationale Königlich-Niederländische Messe in Utrecht findet vom 5. bis 14. September 1950 statt. Der 5. und 6. September sind den ausländischen Geschäftsleuten reserviert. Für Auskunft in der Schweiz wende man sich an den Generalvertreter George W. Dink, Seefeldstrasse 251, Zürich 8.

Freifachvorlesungen an der Eidgenössischen Technischen Hochschule. An der Allgemeinen Abteilung für Freifächer der ETH in Zürich werden während des kommenden Wintersemesters u. a. folgende öffentliche Vorlesungen gehalten, auf die wir unsere Leser besonders aufmerksam

Sprachen

Prof. Dr. J. H. Wild: The English Scientific and Technical Vocabulary I (Di. 17—18 Uhr, 3c).

Betriebswirtschaft und Recht

Betriebswirtschaft und Recht

Prof. Dr. B. Bauer: Grundzüge der Elektrizitätswirtschaft (Do. 17—19 Uhr, ML. III).

Prof. Dr. E. Böhler: Einführung in das Verständnis des schweizerischen Finanzwesens und der Finanzwissenschaft (Mo. 17—18 Uhr, 3d).

Prof. Dr. E. Böhler: Besprechung aktueller Wirtschaftsprobleme (Mo. 18—19 Uhr, 3d).

Prof. Dr. E Gerwig: Finanzielle Führung der Unternehmung (mit Übungen) (Mi. 17—19 Uhr, 3d).

Prof. Dr. E. Grandjean: Arbeitsphysiologie und Betriebshygiene (Mo. 17—19 Uhr, NW. 21d).

Prof. Dr. W. Hug: Technisches Recht (Wasser- und Elektrizitätsrecht) (Do. 18—19 Uhr, 40c).

Naturwissenschaften

Prof. Dr. G. Busch: Einführung in die Metallelektronik (Mi. 10—12 Uhr, Ph. 6c). Prof. Dr. P. Preiswerk: Aufbau der Materie (Di. 8—10 Uhr, Ph. 6c)

Prof. Dr. P. Pretswerk: Aufbau der Materie (Di. 5-16 cm., Ph. 6c).
P.-D. Dr. M. Verde: Stossprobleme in der Quantenmechanik (nach Venreinbarung, Ph.).
Prof. Dr. H. Wäffler: Die experimentellen Arbeitsmethoden der Kernphysik (Do. 10-12 Uhr, Ph. 6c).

Technik

Technik

Prof. Dr. K. Berger: Überspannungen, Überspannungsschutz und Koordination der Isolationen (Mo. 11—12 Uhr, Ph. 15c).

Prof. W. Furrer: Theoretische Elektroakustik (Fr. 17—19 Uhr, Ph. 17c).

P.-D. E. Gerecke: Elektrische Ventile und Stromrichter (Di. 8—10 Uhr, Ph. 15c).

Pn. 17c).

P.-D. E. Gerecke: Elektrische Ventile und Stromrichter (Di. 8-10 Uhr, Ph. 15c).

Ing. Dr. C. G. Keel: Grundlagen der Schweisstechnik (Mo. 17-18 Uhr, 30b).

Ing. Dr. C. G. Keel: Übungen (in Gruppen) (Mo. 16-17, 18-19 Uhr, 49a).

P.-D. Dr. F. J. 1861. 1862-1864.

Uhr, 49a).
P.-D. Dr. F. Lüdi: Modulationsarten der Hochfrequenztechnik (mit besonderer Berücksichtigung der Mikrowellen) (Mi. 18—19 Uhr, Ph. 17c).
P.-D. Dr. K. Oehler: Eisenbahnsicherungseinrichtungen (gratis) (Mo. 17—19 Uhr, ML.IV).
P.-D. Dr. E. Offermann: Ausgewählte Kapitel der elektrischen Messtechnik (Fr. 8—10 Uhr, Ph. 15c).
Dir. P. Schild: Automatische Fernsprechanlagen I (Mo. 11—12 Uhr, Ph. 17c).

Dir. P. Schila: Automatische Ferisprechantagen 2 (1922)
Uhr, Ph. 17c).
P.-D. H. W. Schuler: Elektrische Installationen und Anwendungen der Elektrizität in modernen Bauten [Do. 10—12 Uhr (alle 14 Tage), 30b].

Prof. Dr. M. Strutt und andere: Vortragsreihe aus dem Gebiet der Licht- und Beleuchtungstechnik (gratis) (Fr. 17—19

Uhr, Ph. 15c).

Prof. Dr. A. von Zeerleder: Elektrometallurgie I (Metallgewinnung durch Elektrolyse) (Fr. 17—18 Uhr, ML.III).

Der Besuch der Vorlesungen der Allgemeinen Abteilung für Freifächer der ETH ist jedermann, der das 18. Altersjahr zurückgelegt hat, gestattet.

Die Vorlesungen beginnen am 17. Oktober 1950 und schliessen am 24. Februar 1951 (Ausnahmen siehe Anschläge der Dozenten am schwarzen Brett). Die Einschreibung der Freifachhörer hat bis zum 14. November 1950 bei der Kasse der ETH (Hauptgebäude, Zimmer 37c) zu erfolgen. Es gilt dies auch für Vorlesungen, die als gratis angekündigt sind. Die Hörergebühr beträgt Fr. 8.- für die Wochenstunde im Semester.

Jubiläumsfonds ETH 1930

378.3 (494)

Dem Jahresbericht 1949 1) des Jubiläumsfonds ETH 1930 entnehmen wir, dass im Berichtsjahr 7 Subventionsgesuche behandelt wurden. Davon wurde 6 Beitragsgesuchen entsprochen, während ein Gesuch zur weiteren Abklärung zurückgestellt wurde.

Von den bewilligten Beitragsgesuchen heben wir dasjenige von Prof. E. Dünner, o. Professor für Elektromaschinenbau an der ETH, hervor. Prof. Dünner hat vor mehreren Jahren an dem unter seiner Leitung stehenden Institut Forschungen über Geräuschbildung an elektrischen Maschinen durchgeführt und dabei einen sinterlegierten nutlosen Rotor für Asynchronmotoren entwickelt. Die in den letzten Jahren erfolgten Verbesserungen der Sinterlegierungen machten eine Wiederaufnahme der Versuche an sinterlegierten nutlosen Rotoren wünschbar. Für die Mitwirkung bei den theoretischen und experimentellen Arbeiten konnte Prof. Dr. H. Moser gewonnen werden. Das Kuratorium des Fonds hat für diese Arbeiten einen Kredit von Fr. 3000.- bewilligt.

Es dürfte unsere Leser auch interessieren, dass das Kuratorium Prof. Dr. E. Stiefel, Vorstand des Institutes für angewandte Mathematik, für die mietweise Übernahme von einer programmgesteuerten elektrischen Rechenmaschine²⁾ für die Dauer von 5 Jahren 40 % der Mietsumme in der Höhe von Fr. 20 000 übernommen hat.

Die Sonderfonds für Abt. Mathematik und Physik ferner für vegetabilische Öle und Fette wurden im Berichtsjahr nicht beansprucht.

Im weiteren behandelt der Bericht die ausgeführten, vom Jubiläumsfonds unterstützten Arbeiten.

Das Fondskapital betrug am 31. 12. 49 wie im Vorjahr:

Fr. 1 384 647.75 Fr. 32 126.25 Fr. 30 078.70

Die Betriebsfonds weisen nach der Jahresrechnung die folgenden Änderungen auf:

am 1.1.49 am 31, 12, 49 Fr. 14 243.94 Fr. 144.54 Fr. 6 338.33 Fr. 7 309.59 Fr. 1 053.84 Fr. 7 364.58 Allgemeiner Fonds .

Die Kapitalzinsen betrugen im Berichtsjahr Fr. 44 788.45 (Vorjahr 47 353.60). Bezogen auf das angelegte Kapital macht die Verzinsung 2,91 % (Vorjahr 3,235 %) aus. Schenkungen sind im Berichtsjahr keine zu verzeichnen.

Ausstellung der tschechoslowakischen Industrie in Zürich

Vom 21. bis 28. August 1950 fand im Kongresshaus Zürich die 1. Ausstellung tschechoslowakischer Industrieprodukte statt. Zweck dieser Ausstellung war, die Handelsbeziehungen zwischen der Schweiz und der Tschechoslowakei zu vertiefen.

Die Ausstellung war mit grossem Geschmack und Geschick angeordnet, und sie legte von den hervorragenden Erzeugnissen der tschechoslowakischen Industrie ein beredtes Zeugnis ab. Aus Raumgründen war es der Schwerindustrie nicht möglich, ihre Produkte vorzuführen. Wir wissen aber,

¹⁾ Bericht über das Vorjahr siehe Bull. SEV Bd. 40(1949), Nr. 18, S. 733.
2) s. Bull. SEV Bd. 41(1950), Nr. 16, S. 607.

welche bedeutende Rolle beispielsweise die Lieferungen der tschechischen Stahlwerke für die schweizerische Elektrizitätsindustrie spielen; es sei nur an die schwierigen Schmiedestücke für Turborotoren erinnert (Bull. SEV 1949, Nr. 24, S. 943). Auf dem Gebiete der Elektrotechnik waren jedoch die Produkte der Draht- und Kabelindustrie, der kerami-

schen Industrie (Isolatoren, Steatit) und der Radioindustrie ausgestellt, ferner elektrische Zubehör für Motorfahrzeuge, alles in überzeugender Ausführung. Motorräder und Automobile, Werkzeugmaschinen, Kinoausrüstungen, Kristallwaren, Musikinstrumente, Lederwaren, Zahnarzteinrichtungen usw. erfreuten sich besonderer Aufmerksamkeit.

Literatur — Bibliographie

621.318.2 Nr. 513 015 Abriss der Dauermagnetkunde. Von Johannes Fischer. Berlin, Springer, 1949; 4°, VII, 240 S., Fig., Tab. — Preis:

geb. DM 39.-, brosch. DM 36.-

Die Verwendung von neuen Magnetwerkstoffen sowie deren günstigste Ausnützung bedingen auch verfeinerte Berechnungsmethoden. Die möglichst genaue Vorausberechnung von Dauermagneten erfordert meist einen ziemlich grossen Aufwand (z. B. elektromagnetische Modellversuche). Der Verfasser behandelt in diesem Werke eingehend die genaue Berechnung von Dauermagnetkreisen, z. T. an Hand von

Beispielen.

Der erste Teil bringt eine Einführung in die Grundlagen und Begriffsbestimmungen der magnetischen Kreise. Die Messung der magnetischen Grössen wird ebenfalls in einem Unterabschnitt kurz besprochen. Der zweite Teil behandelt das magnetische Verhalten der Werkstoffe. Hysteresiserscheinungen, reversible und permanente Zustände, sowie deren mikrophysikalische Deutung, werden in theoretisch sauberer Form dargestellt. Der dritte Teil ist betitelt mit: «Beschreibende Theorie und Vorausberechnung von Dauermagneten». In diesem Kapitel wird sehr anschaulich an Hand von Beispielen die Berechnung von Dauermagnetkreisen erläutert. Überaus wertvoll erweisen sich die vielen Hinweise für die Praxis, sowie die im vierten Teil vorhandenen Zahlenwerte und Hysteresiskurven für die heute gebräuchlichsten Dauermagnetwerkstoffe. Der vierte Teil ist der Technologie der Dauermagnete gewidmet. Die Theorie der mikrophysikalischen Vorgänge wird kurz gestreift, um wenigstens eine Vorstellung vom Aufbau und der Wirkungsweise der Magnet-legierungen zu geben. Viele Zahlenwerte und Kurventafeln, sowie einige Anwendungsbeispiele aus der Praxis schliessen die Ausführungen.

Dem Ingenieur wie dem Techniker, der sich mit der Berechnung und Konstruktion von Permanentmagneten beschäftigt, kann dieses Buch sehr empfohlen werden. Dank dem sauberen Aufbau ist es auch dem mathematisch weniger Geübten möglich, den Darlegungen ohne Mühe zu folgen. Der Druck des Buches ist gut; sehr sauber sind die sorgfältig ausgeführten Kurvenscharen. Leider lässt die Qualität des J. Buser

Papieres noch etwas zu wünschen übrig.

Nr. 20 149 061.75:621 (494) Fünfzig Jahre Schweizerische Wagons- und Aufzügefabrik A.-G. Schlieren-Zürich 1899-1949. Schlieren. Schweiz. Wagons- u. Aufzügefabrik, 1950; 4°, XII, 155 S.,

Wenn wir an Hand der Festschrift auf die 50jährige Entwicklung der Schweizerischen Wagons- und Aufzügefabrik Schlieren zurückblicken, so wird uns gegenwärtig, dass ihre Anfänge in die Zeit der Jahrhundertwende zurückgehen, als die Gleichstrom-Traktion für die Errichtung vieler Strassenund Überlandbahnen den Anreiz gab. Ferner ist zu beachten, dass die seit 1902 bestehenden Schweizerischen Bundesbahnen als grosser Besteller für das noch junge Unternehmen des Wagonsbaues belebend wirkten. Spätere Impulse wiederum erhielt diese Industrie im Zusammenhang mit der Elektrifikation der SBB und der Privatbahnen, die um 1920 als Folge des Weltkrieges überaus lebhaft einsetzte.

Die Darstellung des Wagonsbaues, neben den später der Bau von Aufzügen und einige Spezialgebiete traten, wird begonnen mit den Jahren der Entwicklung (1904...1913). Am Ende dieses Zeitabschnittes war für den Eisenbahnpersonenwagen, dessen Kasten aus Holz besteht und der auf einem eisernen Untergestell mit zwei oder drei Achsen ruht, die Entwicklung praktisch abgeschlossen. Die Zukunft gehörte dem Vierachser, und sie brachte die Verwendung von Stahl vorerst für das Kastengerippe sowie später die Ausführung von Stahlwagen (1925). Es darf hervorgehoben werden, dass in den dreissiger Jahren der entscheidende Impuls für die Leichtkonstruktion kam, als die Gegenüberstellung von 40...45 t schweren Eisenbahnpersonenwagen, welche je nach Klasse vierzig bis achtzig Reisenden Platz boten, mit den modernen Autocars zum Nachdenken und zum Handeln zwang. Das Resultat dieser Anstrengungen sind die modernen Leichtstahlwagen, die seit 1937 in den SBB-Schnellzügen eingeführt wurden.

Diese Jubiläumsschrift darf füglich als ein Prachtswerk gelten. Sie gibt nicht allein die Schilderung vom Aufstieg eines zürcherischen Industrieunternehmens 1), sondern sie stellt auch einen interessanten Beitrag zur schweizerischen

Verkehrsgeschichte der letzten Jahrzehnte dar.

654.9:622.01 Nr. 120003 + aFernmeldetechnik im Bergbau unter Tage. Von Andreas Lechner u. Bernhard Pieruschka. Halle (Saale), Knapp, 1949; 4°, 168 S., 210 Fig.; 2 S., 66 Taf. — Berg- und Aufbereitungstechnik II, 8 B, a. - Preis: brosch. DM 36.-.

Obschon wir keine Bergbauindustrie besitzen, ist es für Fachbearbeiter des Maschinen- und Apparatebaues wichtig, Kenntnis von den fernmeldetechnischen Einrichtungen der Bergwerkanlagen unter Tag zu besitzen, gewinnen doch diese Art von Einrichtungen wegen der Erhöhung der Fördermengen der Abbauprodukte immer mehr an Bedeutung. Fernmeldeanlagen sind es, welche einen einwandfreien organisatorischen und betriebstechnischen Ablauf der heute weitgehend mechanisierten Arbeitsvorgänge erreichen helfen. Deshalb ist es ein Verdienst der Verfasser, dem planenden Ingenieur und Betriebstechniker einen klar gegliederten Leitfaden über fernmeldetechnische Einrichtungen unter Tag in die Hand zu

In Band I sind neben den im Bergbau allgemein gebräuchlichen Fernmeldeschaltungen und Schaltmitteln Grundzüge der Energieversorgungs- und Leitungstechnik behandelt. Den Signal- und Blockierungsschaltungen für Betrieb im Abbau, Versatz, bei Streckenförderung mit Signalgabe und Weichenstellungen, der Sicherung der Seilfahrt, des Mannschafts- und Gütertransportes sind der Wichtigkeit wegen eigene Kapitel gewidmet. Auf die Verwendung und den Aufbau beweglicher und ortsfester Fernsprechapparate und zugehörenden Einrichtungen nebst Übertragungsanlagen ist mit reichlichen Unterlagen hingewiesen. Vermerkt sei die Ansicht der Autoren, wonach in Zukunft mehr Fernsprecheinrichtungen an Stelle der Signaleinrichtungen Verwendung finden müssen, besonders dann, wenn noch schwebende akustische Probleme gelöst werden. Mehr nur gestreift wird die Anwendung der drahtgebundenen und drahtlosen Trägerfrequenztechnik.

Was den Wert der Darstellungen noch erhöht, sind die vielen praktischen Hinweise darüber, wie man einerseits Geräte unter Tag zweckmässig gestaltet, damit sie den harten Betriebsanforderungen auf längere Zeit zu entsprechen vermögen, und wie anderseits Spezialisten für Unterhalt und Betriebsüberwachung in diesem rauhesten Betrieb erzogen werden sollen. Durch Beschreibungen konkreter Situationen und der Beigabe von ausgiebigem Bildermaterial erteilen die Autoren einen eigentlichen Anschauungsunterricht.

Im Band II sind mehrheitlich Stromlaufpläne von Apparaten dargestellt, deren Arbeitsweise im Band I beschrieben sind. Ihre Darstellung ist so gewählt, dass auch ein Nichtspezialist die Schemata mühelos lesen kann.

Als Dokumentation hat man das deutsche Schrifttum herangezogen. Diese an sich wertvolle Darstellung würde noch

¹⁾ Über das Jubiläum der Wagonsfabrik Schlieren wurde berichtet im Bull. SEV Bd.41(1950), Nr. 14, S. 547.

gewinnen, wenn bei einer nächsten Auflage die Technik anderer Industrieländer auch in die Beschreibung einbezogen würde. Sowohl für die Planung als auch für Betriebsfachleute ist das Buch ein wirklicher Helfer. Es ist klar gegliedert, kurz gefasst und der Sprache des Betriebsfachmannes vortrefflich angepasst. Seine Verwendung als Handbuch ist sehr zu empfehlen.

J. Müller-Strobel

679.5 Nr. 520 015

Im Zeitalter der Kunststoffe. Die Entstehung und Verwendung der Kunststoffe in Wirtschaft, Industrie und im täglichen Leben. Von Kurt Brandenburger. München, Hanser, 1950; 8°, 98 S., 36 Fig., 1 Tab. — Preis: brosch. DM 4.20.

«Kautschuk aus Sand», «Kunststoff aus Milch», «Biegsames Glas», «Vom Sprengstoff zum Radioknopf», «Werkstoff aus Gas»; diese Auswahl von Kapitelüberschriften, welche an Filmschlagzeilen oder Kreuzworträtsel erinnern, zeigt, dass hier ein Werk vorliegt, dessen Niveau einer anspruchslosen Leserschaft gerecht wird. Viele Photographien von Kunststoffanwendungen, die wahllose Verwendung von Markennamen und neutralen Materialbezeichnungen verleihen dem Buch den Charakter eines Kataloges mit amüsantem Text. Der Techniker würde gerne mehr Eigenschaftswerte, insbesondere Zahlen und Literaturangaben sehen und vermisst ein Schlagwortverzeichnis, welches die Verwendung des Buches als Nachschlagewerk ermöglichen würde. Zü.

620.22: 621.3

Nr. 10 684

Metallische Werkstoffe der Elektrotechnik. Von Alfred
Schulze. Berlin, Metall-Verlag, 1950; 8°, X, 403 S., 227 Fig.,
Tab. — Preis: geb. DM 24.—.

Der Verfasser ist bekannt durch viele mit höchster Sorgfalt und Genauigkeit ausgeführte physikalisch-technische Arbeiten, die in früheren Jahrgängen der Fachliteratur veröffentlicht sind. Er gibt im vorliegenden Werk einen umfassenden Überblick über die metallischen Werkstoffe der Elektrotechnik. Im ersten Hauptabschnitt werden die Leiterwerkstoffe, nämlich Kupfer, Aluminium, Zink, Eisen, und deren Legierungen behandelt. Der zweite Abschnitt beschreibt eingehend die metallischen Widerstandswerkstoffe, sowohl solche für Präzisionswiderstände, als auch Heizleiter, von denen einzelne bis zu recht hohen Temperaturen brauchbar sind. Der dritte Teil befasst sich mit der Temperaturmessung durch Thermoelemente und vermittelt Einzelheiten über die hiezu verwendeten und vorgeschlagenen Metalle und Legierungen.

Die Eigenschaften der Werkstoffe sind durchwegs in zahlreichen Tabellen und Abbildungen veranschaulicht, und die weitverzweigte, zum Thema gehörige Literatur ist übersichtlich zusammengestellt.

M. Hauser

621,396.62 Nr. 10 697
Radio Service Equipment. By E. J. G. Lewis. London,
Chapman & Hall, 1950; 8°, XII, 371 p., 194 fig., tab. —
Price: cloth £ —.25.—.

Das Werk richtet sich in erster Linie an angehende Radiotechniker und solche, die sich näher mit dem Service von Empfangsgeräten befassen möchten.

Nach einer für unsere Verhältnisse etwas weitgehenden Erläuterung der Grundlagen von elektrischen Strommessern geht der Autor zum grundsätzlichen Aufbau von Ampèreund Voltmeter über. Es wird dabei das Hauptgewicht auf Drehspulinstrumente gelegt, da ja im Radioservice meist nur hochempfindliche Geräte verwendet werden können. Einige Hinweise auf den Aufbau von Universalinstrumenten leiten über zu den «Analyzern», die, versehen mit Stecksockeln und Buchsen, gestatten, Ströme und Spannungen an verschiedenen Röhrenstufen von Empfängern im Betrieb ohne Zusatzgeräte zu messen.

Der weitere Ausbau der Analyzer führt zu den Röhrenprüfgeräten, deren verschiedene Typen eine eingehende Beschreibung erfahren. Immer wieder mit Selbstbauanleitungen gespickt, behandelt das Werk hierauf die Meßsender, eingehend die verschiedensten grundlegenden Oszillatorschaltungen erläuternd. Anhand von industriellen Geräten amerikanischer und britischer Herkunft werden die praktischen Anforderungen und Schwierigkeiten dieser wichtigsten Radioprüfgeräte erklärt und verschiedene Lösungsarten veranschaulicht.

Dem Outputmeter, dem Schallmessraum, sind weitere Abschnitte gewidmet, deren Reihe ihren Abschluss findet in Beschreibungen von Röhrenvoltmetern verschiedener Ausführungsarten, von Kathodenstrahloszillographen und von Wobblern. Die Tafeln und Berechnungstabellen des Anhangs wären sehr gut brauchbar, wenn sie nicht auf der Basis des britischen Maßsystems beruhten.

Das kleine Werk bietet sehr viele wertvolle Hinweise auf den Aufbau, die Funktionsweise und die Verwendungsmöglichkeiten der verschiedenen Geräte. Der Text liest sich flüssig und ist immer wieder durch kleine Werkstattkniffe aus der Erfahrung des Praktikers aufgelockert. Für unsere Begriffe scheint der Autor allerdings etwas zu viel praktisches Können vorauszusetzen — vielleicht liegt das an der Art der Ausbildung in seinem Heimatland. Etwas befremdend wirkt deshalb die stark hervortretende Tendenz, für praktisch alle Geräte Bauanleitungen zu geben. Für den Selbstbau solcher Apparate ist nebst den theoretischen eine gehörige Dosis praktischer Kenntnisse nötig!

Trotzdem ist das Werk all denen zu empfehlen, die sich näher mit dieser Gruppe von Messgeräten befassen und ihre Detailkenntnisse ausbauen möchten. — Wenn auch an unseren technischen Schulen viel Grundlegendes gelehrt wird, so sind Hinweise aus der Praxis und Industrie trotzdem immer sehr nützlich.

O. Stürzinger

621.38 Nr. 10 679

A Symposium on Electronics in Research and Industry. Papers read at the First Symposium on Electronics in Scientific Research and Industry 1948. Ed. by A. G. Peacock. Publ. in collaboration with the Scientific Instrument Manufacturers Association of Great Britain Ltd. (SIMA). London, Chapman & Hall, 1949; 8°, XIV, 199 p., fig. — Price: cloth £ —.16.—.

Es ist erfreulich, wenn das Resultat einer Tagung, und besonders jenes des ersten Symposiums der Elektrotechnischen und Elektronischen Sektion der SIMA, in einem schmucken Buch vollständig vorgelegt wird. Dieses Werk enthält nämlich nicht nur die gehaltenen Vorträge, sondern auch sämtliche Diskussionsbeiträge und sehr ausführliche Literaturangaben. Nachdem der Zweck dieser wohlgelungenen SIMA-Tagung darin bestand, alle Anwesenden, d. h. vor allem die Benützer von wissenschaftlichen Instrumenten, mit den neuesten Entwicklungen auf dem Gebiet der Anwendung von elektronischen Methoden für die Lösung von vielerlei Messproblemen bekanntzumachen, erfüllt nun dieses Buch dieselbe Aufgabe in einem weiteren Kreis. Tatsächlich ist es erstaunlich, wie vielen Problemen mit elektronischen Methoden beizukommen ist. Die schon ziemlich hohe Anforderungen an das technische Wissen stellende Sammlung gibt einen Überblick über elektronische Rechenmethoden und Frequenzmessungen, über die elektrische und elektronische Messung von kleinsten Abständen und Verschiebungen, über Vakuummessröhren und Radiosonden. Im zweiten Teil finden wir einige industrielle Anwendungen des Ultraschalles und der Metalldetektoren, gefolgt von der Darstellung der Elektronik in der Spektroskopie und der Bildübertragung. Dies sind jedoch nur einige Beispiele, welche die Vielfalt der besprochenen Anwendungen veranschaulichen

Der wissenschaftliche Gedankenaustausch, welcher sich besonders in der Form einer solchen Studientagung als überaus fruchtbar erweist, ist es wert, gepflegt zu werden, und die nicht unmittelbar teilnehmende Fachwelt begrüsst es, wenn ihr die Ergebnisse später in brauchbarer Form vorgelegt werden. In diesem Sinn mag das vorliegende Buch als Vorbild dienen:

J. T. Steiger

537 Nr. 10715 L'électricité. Par Heinz Schilt. Neuchâtel, Griffon, 1950; 8°, 255 p., fig., tab. — Bibliothèque scientifique, vol. 18 — Précis de physique générale, vol. 3 — Prix: broché fr. 18.—, rel. fr. 23.—.

Heinz Schilt vient de publier un traité d'électricité d'après les conceptions de la physique moderne. Ce livre rendra de grands services non seulement aux étudiants en physique et aux théoriciens, mais aussi à l'électrotechnicien, à l'homme

de la pratique qui cherche souvent à préciser ses connaissances théoriques et pour cela a besoin d'un bon traité, à la fois complet, condensé et relativement simple au point de vue mathématique. Ce but a été atteint par H. Schilt qui, remarquons-le, emploie autant que possible les notations inter-nationales admises par la CEI (donc en général celles qui sont également recommandées par l'ASE), ainsi que le système d'unités Giorgi.

Dans un premier chapitre concernant l'électrostatique, l'auteur développe les notions de charge et champ électriques, de potentiel, de tension, ainsi que la loi de Gauss et l'influence de la matière sur le champ électrique. Dans le 2e chapitre l'étude du champ électrique stationnaire amène les notions de courant électrique, des différents genres de forces électromotrices, de conductibilité et la loi d'Ohm. Un 3° chapitre concernant le champ magnétique stationnaire et quasi stationnaire conduit l'auteur à l'étude des phénomènes de l'induction, des lois de Faraday et de Biot-Savart. On y trouve encore un exposé des courants alternatifs mono- et polyphasés avec leur représentation par les nombres complexes et par les vecteurs, puis les principes des types les plus importants de machines électriques. Au 4° chapitre l'étude des champs rapidement variables nous conduit au circuit oscillant, aux ondes électromagnétiques et au principe de la radiotélégraphie. Un dernier chapitre enfin donne la forme différentielle des équations de Maxwell et une revue des différents systèmes d'unités.

Toutes ces notions sont examinées d'une façon très cohérente, avec la rigueur du mathématicien et à la lumière des dernières connaissances acquises en physique dans le domaine atomique, ce qui fait du livre de H. Schilt une œuvre du plus haut intérêt. Notons encore de nombreux exemples et problèmes bien choisis qui seront très utiles H. Poisat aux praticiens.

Nr. 10 699 621.316.7 Electric Power System Control. By H. P. Young. London, Chapman & Hall, 3rd ed., 1950; 8°, XVI, 456 p., 319 fig., tab. — Monographs on Electrical Engineering, Vol. XI — Price: cloth £ -.28.-.

In einfachen, klaren Ausführungen behandelt der Autor, unterstützt von zahlreichen, gut gewählten Diagrammen und Bildern, die wesentlichen Teile von elektrischen Anlagen, z. B. Generatoren, Transformatoren, Schalter und Relais.

Besondere Berücksichtigung finden Konstruktionen von Vickers und Brown Boveri. Darunter nehmen die gekapselten Anlagen einen breiten Raum ein, ebenso Relaissysteme mit Pilotverbindungen.

Interessant sind die Darlegungen betreffend Schalter und Schaltvorgänge, wobei der Autor zum Ergebnis gelangt, dass die wiederkehrende Spannung mit zunehmender Nennspannung prozentual abnimmt.

Besonders hervorgehoben sei die vom Autor konsequent angewendete Trennung der Kraft- und der Massen-Einheit, Newton und Kilogramm.

Von unserem Standpunkt aus hätten wir es aus physikalischen Gründen begrüsst, wenn der Autor den Vektor des Spannungsabfalles einen Winkel von 180° bilden liesse mit dem Vektor des Stromes, welcher sich einen Weg durch den Widerstand bahnt.

Bei der Behandlung der Stufen- und Reguliertransformatoren erwähnt der Autor beiläufig die Spannungs- und cosφ-Regulierung. Wir vermissen in diesem Zusammenhang die Blindleistungsregulierung, welche in neuerer Zeit beim Verbundbetrieb an Bedeutung gewinnt. Ch. Jean-Richard

Nr. 10 695 621.392.52 Siebschaltungen mit Schwingkristallen. Von Werner Herzog. Wiesbaden, Dieterich'sche Verlagsbuchhandlung, 1949; 8°, VIII, 361 S., 330 Fig., 3 Tab. — Preis: geb. DM 45.-

Das Buch von Herzog enthält eine umfangreiche Sammlung von Kristallfilter-Schaltungen mit den dazugehörigen Berechnungsgrundlagen. Bei der Anwendung von Kristallen wird der Verlauf des Wellenwiderstandes im allgemeinen komplizierter als dies z. B. bei Zobelfiltern der Fall ist. Eine Kettenschaltung mehrerer Kristallfilter kommt daher selten in Frage. Es ist deshalb sinngemäss, dass das Ziel der Berechnungen immer das Betriebsübertragungsmass ist, und dass Wellenwiderstand und Wellenübertragungsmass etwas in den Hintergrund treten. Da mit Kristallfiltern meistens nur schmale Frequenzbänder erfasst werden müssen, ergibt sich eine spezifische Vereinfachung der Formeln.

Die speziellen Filter-Berechnungen werden ergänzt durch einige allgemeine Betrachtungen, unter welchen hervorzuheben sind: Darstellung der Kreuzfilter-Theorie, Kompensation der Verluste bei X-, TT- und T-Gliedern, Unsymmetrisch angepasste Bandfilter (ohne Anpassungs-Übertrager), Regelbare Bandfilter, Rückgekoppelte Bandfilter, «Bandflanken», Phasendrehglieder. Zu bedauern ist, dass auf das Grundelement, den Kristall, praktisch nur in Form einer Literaturangabe eingegangen wird, und dass die Vor- und Nachteile von Kristallfilter-Schaltungen zu wenig übersichtlich herausgeschält werden.

Der Stoff wurde so gegliedert, dass allgemein gültige Theorien dort eingefügt wurden, wo sie für das Verständnis gerade nötig sind. Die Klarheit des Aufbaus hat darunter leider etwas gelitten. Die im allgemeinen sorgfältige und leichtfassliche Darstellung der Abschnitte würde noch gewinnen, wenn sie durch Zusammenstellungen der verwendeten Symbole ergänzt würde. Ferner würde eine Klassifikation der Filter nach dem Verlauf der Betriebsdämpfung dem Leser den Überblick erleichtern.

Zum Schluss sei noch festgestellt, dass das Werk in tadelloser Aufmachung erschienen ist. Der Verfasser hat durch seine Arbeit die Literatur über lineare Netzwerke um ein praktisch wichtiges Gebiet bereichert.

621.314.21 Nr. 20 146 Handbuch des Transformatorenbaus. Von Walter Kehse. Stuttgart, Enke, 1950; 4°, VIII, 380 S., 381 Fig., Tab. -Preis: brosch. DM 54.—, geb. DM 57.50.

Der in diesem Buch von 380 Seiten behandelte Stoff kann etwa in folgende Hauptgruppen unterteilt werden:

Entwurf von Transformatoren an Hand von Ausführungs-

Konstruktiver Aufbau der Transformatoren;
Berechnung der wichtigsten Garantiedaten;
Sonderausführungen von Transformatoren;
Fabrikation der Transformatoren und Fabrikationseinrich-

tungen; Ausführlich wird auf das elektrische Feld und die elek-trische Festigkeit von verschiedenen Isolationsanordnungen

Beim Entwurf der Transformatoren vermisst man einen eigentlichen klaren Berechnungsgang. Der wenig Erfahrene wird Mühe haben, sich zurecht zu finden, vielfach das Dargebotene rezeptartig, ohne Verständnis und Beurteilungsvermögen, übernehmen, was leicht zu Misserfolg führen kann. Der Erfahrene dagegen wird für den Entwurf andere Wege vorziehen, welche eingehender auf die verschiedenen beeinflussenden Faktoren eintreten. Erschwerend wirkt auch, dass Bezeichnungen ohne klare vorherige Definition eingeführt werden. Die Einteilung des Stoffes ist nicht besonders übersichtlich. So wird z. B. im Abschnitt 18 das Öl und dessen Aufbereitung behandelt. Darauf folgt unvermittelt der Abschnitt 19: «Transformatorreihe DIN 42 504 in Form von Tabellen» für Leistungen von 25 000 bis 10 000 kVA. Der anschliessende Abschnitt 20 behandelt das Trocknen und Tränken fester Isolierstoffe. Die Benennung «Handbuch» scheint etwas zu weit gefasst zu sein, da eine Reihe von wichtigen Fragen nur kurz gestreift werden oder überhaupt nicht zur Behandlung kommen, wie z. B. Transformatoren, deren Frequenz von 50 abweicht, Kurvenformen des Leerlaufstromes, Einschaltstromstoss, Geräusch der Transformatoren, Prüfen der Transformatoren. Im übrigen ist in dem Buch viel Wissenswertes, insbesondere die praktischen, fabrikatorischen Gebiete betreffend, zusammengestellt. Das reichlich vorhandene Bildmaterial vermag viele Anregungen zu bieten und gibt einen guten Einblick in die mannigfachen Fabrikations-H. Schneider probleme.

Nr. 520 016 Sammlung geometrischer Konstruktionen. 70 typische planimetrische Aufgaben. Von W. Farafonow. Schweiz. Druck- u. Verlagshaus, 1950; 8°, 104 S., Fig. - SDV Fachbücher — Preis: brosch. Fr. 3.50.

In knapper, aber überaus sauberer und gut verständlicher Ausführung werden im Buch 70 typische Konstruktionsaufgaben der Planimetrie, von der einfachsten Addition gegebener Strecken bis zur Konstruktion von Hypozykloiden wiedergegeben. Die Lösung der einzelnen Aufgaben dürfte infolge der Numerierung des Arbeitsganges, sowie der zu jedem Arbeitsschritt gehörenden kurzen Legenden den Studenten, oder denen, die das einst Gelernte auffrischen möchten, keine besondere Schwierigkeiten bereiten. Dies ist nicht zuletzt den grossen und vorbildlich gezeichneten Figuren zu verdanken.

Estampilles d'essai et procès-verbaux d'essai de l'ASE

I. Marque de qualité

B. Pour interrupteurs, prises de courant, coupecircuit à fusibles, boîtes de jonction, transformateurs de faible puissance, douilles de lampes, condensateurs.

pour conducteurs isolés.

Fiches

A partir du 15 juillet 1950.

Electro-Mica S. A., Mollis.

Marque de fabrique: (A)

Fiches 2 P + T pour 6 A 250 V.

Utilisation: dans des locaux secs.

Exécution: corps de fiche en matière isolante moulée noire.

Type $\frac{2}{2}$ Norme SNV 24 507. Nº 2345: Nº 2345/2a: Type 2a

Coupe-circuit

A partir du 1er août 1950.

Gardy S. A., Genève.

Marque de fabrique:

Socles de coupe-circuit à vis, bi- et tripolaires pour 25 A 500 V (filetage E 27).

Exécution: pour montage apparent. Couvercles en matière isolante moulée blanche.

Туре		N°			
BBF	32/A	1000202i	bipolaires,	sans	neutre
BBF	32/0A	1000202/0i	bipolaires,	avec	neutre
BBF	33/A	100203i	tripolaires,	sans	neutre
BBF	33/0A	100203/0i	tripolaires,	avec	neutre

A partir du 15 août 1950.

Gardy S. A., Genève.

Socles de coupe-circuit à vis, uni-, bi- et tripolaires pour 15 A 250 V (filetage SE 21).

Exécution: pour montage apparent. Couvercles en matière isolante moulée blanche.

Unipolaires:

Type BBE 11; BBEN 11 100101; 100111 sans couvercle, sans neutre BBE 11/0; BBEN 11/0 100101/0; 100111/0 sans couvercle, avec neutre

BBE 11/A; BBEN 11/A 100101 i; 100111 i avec couvercle, sans neutre

BBE 11/0A; BBEN 11/0A 100101/0i; 100111/0i avec couvercle, avec neutre

bipolaires:

BBE 12	100102	sans	couvercle,	sans	neutre
BBE $12/0$	100102/0	sans	couvercle,	avec	neutre
BBE 12/A	100102 i		couvercle,		
BBE 12/0A	100102/0i	avec	couvercle,	avec	neutre
tripolaires:					
BBE 13	100103	sans	couvercle,	sans	neutre
BBE 13/0	100103/0	sans	couvercle,	avec	neutre
BBE 13/A	100103 i		couvercle,		
BBE 13/0A	100103/0i	avec	couvercle,	avec	neutre

Coupe-circuit à fusible

A partir du 15 juillet 1950.

H. Schurter S. A., Lucerne.

Marque de fabrique:

Fusibles à action rapide, système D.
 Tension nominale 500 V. Courant nominal 80 et 100 A.

Fusibles à retardement, système D. Tension nominale 500 V. Courant nominal 6, 10, 15, 20 et 25 A.

Condensateurs

A partir du 15 juillet 1950.

Standard Téléphone & Radio S. A., Zurich.

Marque de fabrique:

Condensateur antiparasite.

Type ZM 233 454 0,1 μ F + 0,2 μ F + 2 × 0,0012 μ F \odot 270 V \sim max. 60 °C f₀ = 0,8 MHz.

Bobine en papier avec languettes de connexion dans cylindre en aluminium. Conducteurs souples, sortis de part et d'autre, à travers de rondelles de fermeture en caoutchouc et papier bakélisé.

Transformateurs de faible puissance

A partir du 1er août 1950.

Belmag S. A., Zurich.

Marque de fabrique:

Appareils auxiliaires pour lampes fluorescentes.

Utilisation: Montage à demeure dans des locaux secs ou

temporairement humides.

Exécution: Appareils auxiliaires surcompensés sans coupecircuit thermique. Enroulement en fil de cuivre émaillé. Bobine de réactance avec condensateur en série sur plaque de base commune en tôle. Couvercles en tôle. Pour montage dans des armatures en tôle, livrable aussi sans couvercle.

Pour lampe de 40 W. Tension 220 V 50 Hz.

Elektro-Apparatebau S.-A., Courtelary.

Marque de fabrique:

Transformateurs de faible puissance à haute tension.

Utilisation: Montage à demeure, dans des locaux secs. Transformateur d'allumage pour brûleurs à mazout.

Exécution: Transformateur monophasé, résistant aux courtscircuits, classe Ha, dans boîtier en tôle, avec masse de remplissage. Condensateur antiparasite monté sur le transformateur. Exécution normale avec bornes de traversée au secondaire, exécution spéciale avec bornes de secondaire à l'intérieur du transformateur.

Tensions: primaire 220 V; secondaire 14 000 V_{ampl} Puissance apparente en court-circuit: 170 VA.

H. Höhn, Fabrique de transformateurs, Zurich.

Marque de fabrique:

Hödyn

Transformateurs de faible puissance à basse tension.

Utilisation: Transportables, dans des locaux secs.

Exécution: Transformateur monophasé, non résistant aux courts-circuits, avec boîtier en tôle, classe 2b. Conducteur à gaine de caoutchouc avec fiche et commutateur de tension sur le côté primaire, prise de courant à deux alvéoles au secondaire. Exécution spéciale pour le service des dictaphones protégés par petits coupe-circuit 1 A. Puissance: 100 VA. Tensions: primaire 110, 125, 145, 220 V. Secondaire 110 V.

Interrupteurs

A partir du 1er août 1950.

Max Bertschinger & Cie., Lenzburg.

(Représentation de la maison «E. G. O.»-Elektro-Gerätebau, Blanc & Fischer, Oberderdingen/Württ.)

Marque de fabrique:

Interrupteurs rotatifs pour cuisinière, pour 250/380 V \sim 15/10 A.

Utilisation: pour montage encastré.

N° S 2015—R: interrupteur de réglage bipolaire. N° S 3015—R: interrupteur de réglage tripolaire.

Interrupteurs avec 3 positions de réglage et position «déclanché».

Prises de courant pour appareils

A partir du 1er août 1950.

Tschudin & Heid S. A., Bâle.

Marque de fabrique:

Prises de courant d'appareils pour 6 A 250 V.

Utilisation: dans des locaux secs.

Exécution: corps isolant en matière isolante moulée noire. N° 3100, ... F: 2 P

N° 3100, ... F: 2 P N° 3100 E, ... EF: 2 P + T Norme SNV 24549.

III. Signe «antiparasite» de l'ASE

Sur la base de l'épreuve d'admission, subie avec succès, selon le § 5 du Règlement pour l'octroi du signe «antiparasite» de l'ASE [voir Bull. ASE t. 25 (1934), N° 23, p. 635...639, et n° 26, p. 778], le droit à ce signe a été accordé:

A partir du 1 août 1950.

Nilfisk-Staubsauger S.-A., Zurich.

(Représentation de la Maison Fisker & Nielsen Ltd., Copenhague.)

Marque de fabrique:

Aspirateur de poussière «NILFISK». Type S 55. Tension 125/130 et 145 V. Puissance 375 W. Cireuse «NILFISK». Type BM.

Tension 220 V. Puissance 300 W.

IV. Procès-verbaux d'essai

[Voir Bull. ASE t. 29(1938), N° 16, p. 449.]

Valable jusqu'à fin juillet 1953.

P. N° 1295.

Objet:

Machine à café

Procès-verbal d'essai ASE: O. N° 25 034, du 28 juillet 1950. Commettant: Konrad Vogel, Ateliers de Constructions, Rorschach.

Inscriptions:

KONRAD VOGEL RORSCHACH Apparatebau

V 220 ~ W 2200 Fabr. No. 45

Description:

Machine à café, selon figure, avec parties sous tension qui sont normalement en contact avec l'eau. Le chauffage de l'eau s'opère dans un récipient isolé des autres parties métalliques et dans lequel pénètrent des électrodes. Interrupteur bipolaire accouplé mécaniquement à un robinet d'eau. Soupape de sûreté et lampe témoin. Cordon de raccordement à trois conducteurs sous gaine de caoutchouc, fixé à la machine, avec fiche 2 P + T.

Cette machine à café est conforme aux «Conditions tech-

niques auxquelles doivent satisfaire les chauffe-eau instantanés» (Publ. n° 133 f). Pour le branchement de machines à café à électrodes en contact direct avec l'eau, l'autorisation du fournisseur d'énergie est nécessaire.

Valable jusqu'à fin juillet 1953.

P. Nº 1296.

Objet:

Fer à repasser

Procès-verbal d'essai ASE: O. N° 24 627a, du 31 juillet 1950. Commettant: Brunold & Cie, Fabrique d'appareils électriques, Welschenrohr.

Inscriptions:

"Bruwa" 225 V 450 W 492

Description:

Fer à repasser de ménage, selon figure, nickelé, avec poignée en bois laqué. Résistance chauffante isolée au mica. Prise d'appareil à isolation en céramique. Poids 2,8 kg.

Ce fer à repasser est conforme aux «Prescriptions et règles pour les fers à repasser électriques et les corps

de chauffe pour fers à repasser» (Publ. $n^{\rm o}$ 140 f).

Valable jusqu'à fin août 1953.

P. N° 1297.

Objet:

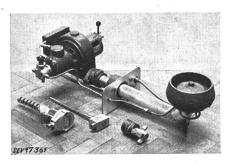
Brûleur à mazout

Procès-verbal d'essai ASE: O. Nº 24 600a, du 4 août 1950.

Commettant: Charles Richiger, mécanicien,

Steffisburg-Station.

Inscriptions:


Charles Richiger Steffisburg - Station

sur le moteur:

sur le couvercle protège-bornes: Wawatt, Hans Wasem Fabr. elektr. Apparate Steffisburg-Stat. Volt 220 No. 503 Typ W 3 Amp. 2,25 Watt 500 Vor wärmer

Description:

Brûleur à mazout, selon figure, avec soufflante et pompe mazout, entraînées par moteur triphasé à induit en courtcircuit. Résistance pour le réchauffage du mazout lors de la mise en service du brûleur. Admission du mazout et de l'air de combustion réglable à la main. Allumage à la main. Ma-

nœuvre par thermostat de cheminée «Richiger» et thermostat de chaudière «Sauter», qui actionnent un disjoncteur de protection du moteur «Sauter» télécommandé et une soupape à mazout «Knoll». Coffret avec bornes montées sur support en matière céramique.

Ce brûleur à mazout a subi avec succès les essais relatifs à la sécurité.

Valable jusqu'à fin juin 1953.

P. Nº 1298.

Objet: Fer à repasser à régulateur

 Procès-verbal d'essai ASE: O. N° 24 665, du 13 juin 1950.
 Commettant: RIAM S. A., Fabrique d'appareils électriques, Morges.

Inscriptions:

V 225 ~ W 750 No. 0A05

Type R II

Description:

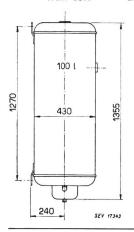
Fer à repasser de ménage, selon figure, avec régulateur de température. Résistance chauffante isolée au mica. Bornes de raccordement et lampe de signalisation diposées dans la poignée en matière isolante moulée. Cordon de raccordement

rond à trois conducteurs avec fiche 2 P + T, introduit latéralement dans la poignée et fixé à l'appareil. Ce fer à repasser est prévu pour être relevé verticalement. Poids 2,3 kg.

Ce fer à repasser est conforme aux «Prescriptions et règles pour les fers à repasser électriques et les corps de chauffe pour fers à repasser» (Publ. n° 140 f), ainsi qu'au «Règlement pour l'octroi du signe distinctif antiparasite» (Publ. n° 117 f). Utilisation: avec un support conforme aux prescriptions.

Valable jusqu'à fin août 1953.

P. Nº 1299.


Objet: Chauffe-eau à accumulation

Procès·verbal d'essai ASE: O. N° 25 118/I, du 2 août 1950. Commettant: S. A. Accum, Gossau (ZH). Inscriptions:

F. Nr. 171910 L. Inhalt 100 Volt 380 ~ Watt 1600

Accum Betriebsdru

Betriebsdruck, max 6 kg/cm²
Prüfdruck 12 kg/cm²
Material Fe
Datum 6.50

Description:

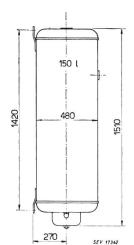
Chauffe-eau à accumulation pour montage mural, selon croquis. Réservoir cylindrique. Enveloppe extérieure rectangulaire, largeur 525 mm. Deux corps de chauffe, un régulateur de température avec dispositif de sûreté et un thermomètre à aiguille.

Ce chauffe-eau à accumulation est conforme aux «Prescriptions et Règles pour chauffe-eau électriques à accumulation» (Publ. n° 145 f).

Valable jusqu'à fin août 1953.

P. Nº 1300.

Objet: Chauffe-eau à accumulation


Procès-verbal d'essai ASE: O. N° 25 118/II, du 2 août 1950. Commettant: S. A. Accum, Gossau (ZH).

Inscriptions:

Accum

F. Nr. 171911 1
L. Inhalt 150 1
Volt 380 ~ 1
Watt 2400

Betriebsdruck, max. 6 kg/cm²
Prüfdruck 12 kg/cm²
Material Fe
Datum 6.50

Description:

Chauffe-eau à accumulation pour montage mural, selon croquis. Réservoir cylindrique. Enveloppe extérieure rectangulaire, largeur 560 mm. Deux corps de chauffe, un régulateur de température avec dispositif de sûreté et un thermomètre à aiguille.

Ce chauffe-eau à accumulation est conforme aux «Prescriptions et Règles pour chauffe-eau électriques à accumulation» (Publ. n° 145 f).

Valable jusqu'à fin juillet 1953.

P. N° 1301. Objet:

Machine à laver

Procès-verbal d'essai ASE: O. N° 23 982c, du 31 juillet 1950. Commettant: Ruesch & Suter, Tecknau (BL).

Inscriptions:

F. Ruesch Tecknau S T A W A Maschinenbau

Volt 220 Watt 200 ~ 50 Typ 40/45 R F. Nr. 1068

Description:

Machine à laver comportant une soufflante pour montage mural, selon figure, et une embouchure de soufflage à disposer dans le fond d'une lessiveuse. Ces deux parties sont reliées par un tuyau en caoutchouc de 1,3 m de longueur. Soufflante centrifuge à deux étages avec moteur monophasé série blindé, logés avec interposition d'un isolement dans un revêtement cylindrique en tôle de 140 mm de diamètre et 450 mm de longueur. Cordon de raccordement à trois conducteurs sous gaine de caoutchouc, fixé à la machine, avec fiche.

Cette machine à laver a subi avec succès les essais relatifs à la sécurité. Elle est conforme au «Règlement pour l'octroi du signe distinctif antiparasite»

(Publ. nº 117 f). Utilisation: dans des locaux humides.

Valable jusqu'à fin août 1953.

P. Nº 1302.

Boîte de développement Objet:

Procès-verbal d'essai ASE: O. Nº 24557, du 4 août 1950. Commettant: S. A. Ozalid, Flaschengasse 5, Zurich.

Inscriptions:

Ozalid AG Zürich Mod. EK 47 No. 51

Volt 220 Amp. 1,6 W 350

sur le moteur: Max Lüscher, Seon

No. 15674 Typ V 20 V 220

T/min 1400 Per. 50 PS 0.01 Phs. 1

Description:

Boîte en bois croisé, selon figure, pour le développement de tirages héliographiques, avec ventilateur. Dispositif de chauffage avec régulateur de température, logé dans un coffret en Eternit fixé sous la boîte. Couvercle en bois à charnières sur le devant de la boîte, pour l'introduction et la sortie des tirages héliographiques. L'ouverture du couvercle déclenche automatiquement le coffret de chauffage et enclenche le ventilateur. Coffret de manœuvre avec interrupteur et lampe de signalisation, fixé latéralement au coffret de chauffage. Cordon de raccordement à deux conducteurs, avec prise d'appareil et fiche.

Cette boîte de développement a

subi avec succès les essais relatifs à la sécurité.

Valable jusqu'à fin août 1953.

P. Nº 1303.

Ventilateur de table Objet:

Procès-verbal d'essai ASE: Nº 25 079 du 4 août 1950.

Commettant: Carl Geisser & Co., Kasinostrasse 12, Zurich 7.

Inscriptions:

CALOR

50 **~** 25 W 0.16 A 225 V Cat. No. 940 4-50 Débit 13 m³

Description:

Ventilateur de table, selon figure. Commande par moteur monophasé auto-démarreur, à induit en court-circuit. Diamètre de l'hélice 160 mm. Moteur monté sur socle articulé en matière isolante moulée. Cordon de raccordement, type léger, à deux conducteurs sous gaine de caoutchouc, fixé à l'appareil, avec fiche 2 P.

Ce ventilateur de table a subi avec succès les essais relatifs à la sécurité.

Valable jusqu'à fin août 1953.

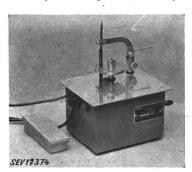
P. Nº 1304.

Objet: Appareil à souder

Procès-verbal d'essai ASE: O. Nº 24 463, du 5 août 1950. Commettant: Spring, Fabrique d'appareils électriques,

Wettingen.

Inscriptions:


SPRING

Fabr. elektr. Apparate Wettingen (Schweiz) Löt- und Schweissapparat Appareil de soudure Soldering and welding apparatus Syst. BROWN BOVERI

Fab. No. 4089 220 V 6 Amp. primär f = 50100-700 Amp. Schweißstrom N₁ max 2100 VA

Description:

Appareil à souder, selon figure. Transformateur à enroulements séparés, logé dans un coffret en tôle de 280 imes 220 imes180 mm. Réglage de l'intensité du courant secondaire par déplacement d'un noyau de dispersion, au moyen d'une mani-

velle. Deux porte-électrodes peuvent être enfilés sur des boulons de connexión. Cordon de raccordement à trois conducteurs sous double gaine isolante, avec fiche 2 P + T. Circuit primaire commandé par interrupteur à pédale ou par boutonpoussoir incorporé. Poids du transformateur sans les accessoires 16,2 kg.

Cet appareil à souder a subi avec succès les essais relatifs à la sécurité.

Valable jusqu'à fin août 1953.

P. Nº 1305.

Objets: Trois supports pour fers à repasser

Procès-verbal d'essai ASE: O. Nº 22 963, du 7 août 1950.

Commettant: Hermann Lanz S. A., Murgenthal.

Inscription:

Aucune

Description:

Supports pour fers à repasser, selon figure, en tôle de fer galvanisée.

Support n° 1: pour fers à repasser d'enfants. Support n° 2: pour fers à repasser de voyage. Support n° 3: pour fers à repasser professionnels. Supports n° 2 et 3: avec tôle intermédiaire.

Support no		1	2	3
Surface d'appui	mm	$93 \times 84 \times 3$	$137\times89\times4$	$223\times135\times5$
Matière		Amiante	Amiante	Eternit
Hauteur de la surface				
d'appui au-dessus de				
la table	mm	27/50	29/65	55/97
Poids	kg	0,13	0,34	0,97

Ces supports pour fers à repasser sont conformes aux «Prescriptions et règles pour les supports de fers à repasser» (Publ. n° 128 f).

Valable jusqu'au 31 août 1953.

P. Nº 1306.

Objet:

Réfrigérateur

Procès-verbal d'essai ASE: O. N° 24560b du 7 août 1950. Commettant: Usine Decker S. A., Bellevue 4, Neuchâtel.

Inscriptions:

Decker

+ Pat. ang. No. 1 S Volt 220 Watt 120 Kältemittel NH3 Intertherm A. G. Zürich 1

Réfrigérateur, selon figure. Groupe réfrigérant à absorption fonctionnant en permanence, à refroidissement naturel par air. Evaporateur avec tiroir à glace disposé latéralement, en haut de l'enceinte. Cuiseur logé dans un carter en tôle. Cordon de raccordement rond à trois conducteur, fixé, avec fiche 2 P + T. Dimensions: enceinte 420 \times 360 \times 300 mm; réfrigérateur 685 \times 570 \times 570 mm. Contenance utile 40 dm³. Poids 51 kg.

Ce réfrigérateur est conforme aux «Conditions techniques auxquelles doivent satisfaire les armoires frigorifiques de ménage» (publ. N° 136 f).

Valable jusqu'à fin août 1953.

P. Nº 1307.

Objet:

Marmite à vapeur

Procès-verbal d'essai ASE: O. Nº 25 129, du 7 août 1950.

Commettant: Alnico S. A., Zurich.

Inscription:

QUICK

Description:

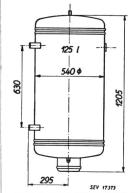
Marmite à vapeur en métal léger, selon figure, pour réchauds et cuisinières électriques. Dispositifs de sûreté dans le couvercle. Poignées en matière isolante moulée.

Dimensions: Diamètre du fond plan 186 mm; Diamètre intérieur maximum 230 mm; Hauteur, sans le couvercle 181 mm; Epais-

seur du fond 9 mm; Epaisseur de la paroi (en haut) 4 mm; Contenance, jusqu'à 20 mm du bord 5,5 1; Poids, sans le couvercle 2,25 kg; Poids, avec le couvercle 3,2 kg.

Lors de l'essai de résistance aux déformations, le fond ne s'est que très légèrement déformé. Ces marmites à vapeur sont en conséquence utilisables sur des foyers de cuisson électriques.

Valable jusqu'à fin août 1953.


P. Nº 1308.

Objet: Chauffe-eau à accumulation

Procès-verbal d'essai ASE: O. N° 25 064, du 8 août 1950. Commettant: Herm. Pieren, Construction d'appareils, Konolfingen.

Inscriptions:

H. P. K.
Hermann Pieren, Konolfingen
Lit. 125 Prüfdruck 12
Volt 1 × 380 Max. Betr. Druck 6
Watt 1500 Jahr 1950
Mat. Fe

Description:

Chauffe-eau à accumulation pour montage mural, selon croquis. Un corps de chauffe, un régulateur de température avec dispositif de sûreté et un thermomètre à aiguille. Ce chauffe-eau à accumulation est conforme aux «Prescriptions et règles pour chauffe-eau électriques à accumulation» (Publ. n° 145 f).

Valable jusqu'à fin août 1953.

P. Nº 1309.

Objet: Raccord isolant pour citernes

Procès-verbal d'essai ASE: O. N° 25 226, du 10 août 1950.
 Commettant: Brevo S. A. pour la protection contre les explosions et les incendies, Horgen.

Description:

Raccord isolant, selon figure, constitué par deux brides filetées 2" +GF+, interposition avec d'une pièce de distancement en verre (passage d'environ 45 mm) et d'une bague en caoutchouc souple blanc. Les deux brides sont reliées par quatre boulons ½" isolés par des manchons en Isodur, protégés contre la rouille, et isolées de part et

d'autre par des pièces de distancement à gorges en Canevasit f. Poids du raccord isolant complet: env. 7,3 kg.

Ce racord isolant a subi avec succès l'essai prescrit dans les Directives pour installations de citernes, établies par l'Office fédéral des transports, à Berne. Utilisation: dans les installations de citernes, pour empêcher l'entrée de courants vagabonds.

Valable jusqu'à fin août 1953.

P. Nº 1310.

Objet: Raccord isolant pour citernes

Procès-verbal d'essai ASE: O. N° 25 255, du 10 août 1950.
 Commettant: Brevo S. A. pour la protection contre les explosions et les incendies, Horgen.

Description:

Raccord isolant, selon figure, constitué par deux brides filetées 2" +GF+, avec interposition d'une pièce de distancement en verre (passage d'environ 45 mm) et d'une bague en caoutchoue souple blanc. Les deux brides sont reliées par quatre boulons ½" isolés par des manchons en Isodur, protégés contre la rouille, et isolées de part et d'autre par des pièces de

distancement à gorges en Resocel 100 (brun foncé). Poids

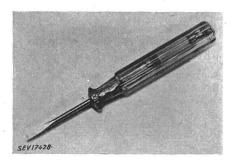
du raccord isolant complet: env. 7,3 kg.

Ce raccord isolant a subi avec succès l'essai prescrit dans les Directives pour installations de citernes, établies par l'Office fédéral des transports, à Berne. Utilisation: dans les installations de citernes, pour empêcher l'entrée de courants vagabonds.

Valable jusqu'à fin août 1953.

P. Nº 1311.

Objet: Tournevis à indicateur de tension


Procès-verbal d'essai ASE: O. Nº 25 194, du 10 août 1950. Commettant: P. Baumann, Fabrication d'articles en métal, Wasen i. E.

Inscription:

P-B Spannungsprüfer 90—500 Volt geprüft SEV

Description:

Tournevis, selon figure. Le manche en matière isolante transparente renferme un indicateur de tension, constitué par une petite lampe et une résistance de protection. Electrode en métal vissée à l'autre extrémité du manche. La longueur

du manche est de 100 mm et celle de la lame de 50 mm. Ce tournevis a subi avec succès les essais relatifs à la sécurité. Utilisation: pour des travaux dans des installations à basse tension, où les mesures de sécurité nécessaires ont été prises pour les travaux à des appareils sous tension.

Valable jusqu'à fin août 1953.

P. Nº 1312.

Objet:

Réfrigérateur

Procès-verbal d'essai ASE: O. N° 25 104, du 15 août 1950. Commettant: G. Burkhardt, Schaffhauserstr. 262, Glattbrugg. Inscriptions:

NORDIS Watt 45/70/115 No. 1040 Kältemittel NH3

Volt 220

Description:

Réfrigérateur, selon figure. Groupe réfrigérant à absorption fonctionnant en permanence, à refroidissement naturel par air. Evaporateur avec tiroir à glace disposé latéralement, en haut de l'enceinte. Cuiseur logé dans un carter en tôle. Interrupteur à bascule pour le réglage de la température à l'intérieur de l'armoire. Cordon de raccordement à trois conducteurs, fixé à l'appareil, avec fiche 2 P + Dimensions intérieures T.

 $435 \times 385 \times 275$ mm, extérieures $825 \times 580 \times 560$ mm. Con-

tenance utile 41 dm3. Poids 56 kg.

Ce réfrigérateur est conforme aux «Conditions techniques auxquelles doivent satisfaire les armoires frigorifiques de ménage» (Publ. n° 136 f).

Valable jusqu'à fin août 1953.

P. Nº 1313.

Objet:

Cuvette chauffante

Procès-verbal d'essai ASE: O. Nº 25 269, du 11 août 1950.

Commettant: Dr. R. Maag S. A., Dielsdorf.

Inscriptions:

HEXAVAP
Maag
220 V 25 W
Cerberus GmbH

Description:

Cuvette chauffante, selon figure, pour la vaporisation de tablettes Hexa-Vap destinées à la destruction des insectes nuisibles dans les locaux d'habitation et les entrepôts. Résistance chauffante isolée au mica, fixée par rivets sous une

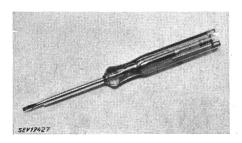
cuvette en tôle de 70 mm de diamètre. Socle en matière isolante moulée. Cordon de raccordement méplat fixé à la cuvette, avec fiche 2 P.

Cette cuvette chauffante a subi avec succès les essais relatifs à la sécurité.

Valable jusqu'à fin août 1953.

P. Nº 1314.

Objet: Tournevis à indicateur de tension


Procès-verbal d'essai ASE: O. Nº 25 141, du 10 août 1950. Commettant: F. Keller & Cie, Grossmünsterplatz 2, Zurich.

Inscriptions:

ELGA Schwenteck — Wuppertal 0.5 Chrom Vanadium

Description:

Tournevis, selon figure. Le manche en matière isolante transparente renferme un indicateur de tension, constitué par

une petite lampe et une résistance de protection. Electrode en métal moulée dans l'autre extrémité du manche. La longueur du manche est de 130 mm et celle de la lame de 90 mm. La lame est enrobée de matière isolante sur une longueur de 70 mm.

Ce tournevis a subi avec succès les essais relatifs à la sécurité. Utilisation: pour des travaux dans des installations à basse tension, où les mesures de sécurité nécessaires ont été prises pour les travaux à des appareils sous tension.

Communications des organes des Associations

Les articles paraissant sous cette rubrique sont, sauf indication contraire, des communiqués officiels des organes de l'ASE et de l'UCS

Le poste de secrétaire de l'ASE est à repourvoir

Le délai pour la candidature au poste de secrétaire de l'ASE expire le 9 septembre 1950. L'annonce est publiée à nouveau sur la dernière page blanche d'insertion de ce numéro.

Toxicité des lampes fluorescentes brisées «Poison dans la lumière froide»

Tirage à part

Des tirés à part, en français et en allemand, de cet article sont de nouveau disponibles, au prix de fr. 1.— (fr. —.50 pour les membres) par exemplaire, rabais par quantité. Adresser les commandes à l'Administration commune de l'ASE et de l'UCS, Seefeldstrasse 301, Zurich 8.

Vocabulaire Electrotechnique International

Des exemplaires du Vocabulaire Electrotechnique International sont de nouveau disponibles, au prix net de fr. 15.—

+ 4% ICHA et frais d'expédition. Le prix est le même pour les membres que pour les autres personnes. Adresser les commandes à l'Administration commune de l'ASE et de l'UCS, Seefeldstrasse 301, Zurich 8.

Recommandations pour l'emploi de condensateurs de grande puissance destinés à améliorer le facteur de puissance d'installations à basse tension

Compléments

A la demande du CES, le Comité de l'ASE a publié dans le Bulletin de l'ASE 1950, n° 9, un projet de Recommandations pour l'emploi de condensateurs de grande puissance destinés à améliorer le facteur de puissance d'installations à basse tension. Quelques observations ont été formulées à ce sujet et ont motivé les compléments ci-après, conformément aux propositions du CT 33 du CES, de

même que quelques rectifications d'ordre purement rédactionnel.

Les membres de l'ASE sont invités à examiner ces compléments et à adresser leurs observations éventuelles, par écrit, en deux exemplaires, au Secrétariat de l'ASE, jusqu'au 15 septembre 1950. S'il n'est plus formulé d'objections, le Comité procèdera à l'homologation et à la mise en vigueur du projet paru dans le Bull. ASE 1950, nº 9, avec les compléments ci-après, en vertu de la décision de l'Assemblée générale de l'ASE de 1950.

Projet

Compléments au projet publié dans le Bull. ASE 1950, n° 9, p. 365...368

Chiffre 6a. Nouveau texte faisant suite au premier alinéa:
«L'augmentation de la tension produite par l'enclenchement d'un condensateur à l'extrémité d'une ligne de distribution dont la tension est maintenue constante au début se calcule d'après la formule:

 $arepsilon_L \, = \, rac{x \, l \; P_C}{10 \; U_n^{\; 2}} \; {}^0/_{0}$

où

 ε_L augmentation de la tension à l'extrémité de la ligne en %

P_C puissance nominale du condensateur en kVar

 U_n tension nominale du condensateur en kV

l longueur de la ligne en km

x réactance unitaire de la ligne en Ω/km

Pour des lignes à 380 V et à 50 Hz il est en général suffisamment exact de prendre pour x la valeur de 0,333 Ω/km de sorte que la formule prend la forme:

$$arepsilon_L = rac{l \ P_C}{30 \ U_n^2} \, {}^0/_{\! 0}$$
 »

Le chiffre 7a est complété par le nouvel alinéa:

«Une autre possibilité en rapport avec le démarrage étoiletriangle d'un moteur consiste à enclencher et à déclencher en même temps que le moteur un condensateur au moyen d'un contacteur séparé muni de résistances de décharge. La puissance du condensateur, prévue pour la marche du moteur en service normal, est enclenchée avec cette méthode en même temps que le moteur branché en étoile. Ainsi le condensateur décharge la ligne d'amenée de toute sa puissance déjà au démarrage.»

Bulletin de l'Association Suisse des Electriciens, édité par l'Association Suisse des Electriciens comme organe commun de l'Association Suisse des Electriciens et de l'Union des Centrales Suisses d'électricité. — Rédaction: Secrétariat de l'Association Suisse des Electriciens, 301, Seefeldstrasse, Zurich 8, téléphone (051) 34 12 12, compte de chèques postaux VIII 6133, adresse télégraphique Elektroverein Zurich. — La reproduction du texte ou des figures n'est autorisée que d'entente avec la Rédaction et avec l'indication de la source. — Le Bulletin de l'ASE paraît toutes les 2 semaines en allemand et en français; en outre, un «annuaire» paraît au début de chaque année. — Les communications concernant le texte sont à adresser à la Rédaction, celles concernant les annonces à l'Administration. — Administration: case postale Hauptpost, Zurich 1 (Adresse: S. A. Fachschriften-Verlag & Buchdruckerei, Stauffacherquai 36/40, Zurich 4), téléphone (051) 23 77 44, compte de chèques postaux VIII 8481. — Abonnement: Tous les membres reçoivent gratuitement un exemplaire du Bulletin de l'ASE (renseignements auprès du Secrétariat de l'ASE). Prix de l'abonnement pour non-membres en Suisse fr. 40.— par an, fr. 25.— pour six mois, à l'étranger fr. 50.— par an, fr. 30.— pour six mois. Adresser les commandes d'abonnements à l'Administration. Prix de numéros isolés en Suisse fr. 3.—, à l'étranger fr. 3.50.