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Also nicht nur dimensionell, sondern auch quantitativ
sind die Lichtgeschwindigkeit und die Ein-

heitskugel als Ganzheiten (Naturkonstante,
Gestaltfaktor) im 3'Faktor konserviert, aber in einer
Form, die nur bei Systemwechsel quantitativen
Ausdruck findet.

Diese Bemerkungen haben ihren Zweck erfüllt,
wenn sie im einen oder anderen die Überzeugung
wecken, dass ein Formalismus, der sich auf eine
synthetische und eine praktische Abart des zunächst

nicht scharf umrissenen Grössenbegriffes stützt, in
mancherlei Hinsicht klärend und ordnend wirken
kann.
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Probleme und Methoden der nichtlinearen Mechanik
Von Hans Schaffner, Urbana, III., USA

Manche Probleme der Schwingungserzeugung können mit den
gewöhnlichen linearen Methoden der Elektrotechnik nicht gelöst
werden. Mathematisch führen diese Probleme auf nichtlineare
Differentialgleichungen. Die Methoden zu ihrer Bearbeitung sind
in der «nichtlinearen Mechanik» zusammengefasst. Imfolgenden
wird eine dieser Methoden, die sich besonders gutfür den
Elektroingenieur eignet, an einem einfachen Beispiel erläutert.

534.01 :538.56

Maints problèmes relatifs aux oscillations ne peuvent pas
être résolus par les méthodes linéaires utilisées iTordinaire
en électrotechnique, car ils conduisent à des équations
différentielles non linéaires. Considérant un cas simple, à titre
d'exemple, l'auteur expose l'une des méthodes de mécanique
ondulatoire, qui convient particulièrement aux ingénieurs
électriciens.

1. Allgemeines
Die nichtlineare Mechanik und insbesondere ihre

Anwendung auf die Elektrotechnik ist noch sehr
jung. Besonders in den letzten 15 Jahren wurden
aber eine grosse Anzahl Arbeiten veröffentlicht, die
Probleme der Schwingungserzeugung auf
nichtlinearer Grundlage behandeln. Leider ist der Grossteil

dieser Arbeiten sehr mathematisch und abstrakt
gehalten, oder dann beschränken sich diese auf rein
qualitative Beschreibungen. Manche bedeutende
Arbeiten sind zudem in russischen Zeitschriften
veröffentlicht worden und sind darum nur schwer
zugänglich.

Erst vor kurzem ist es gelungen, die nichtlineare
Mechanik von einem komplizierten mathematischen
Apparat zu befreien und so zu vereinfachen, dass
ein durchschnittlicher Ingenieur sie verstehen und
anwenden kann. Besonders erwähnenswert sind in
dieser Hinsicht die Arbeiten der beiden russischen
Physiker Kryloff und Bogoliuboff und ihre Theorie
der «gleichwertigen Linearisierung» (equivalent
linearisation) [2]1). Für den Elektroingenieur ist diese
Theorie besonders wertvoll, da sie sehr anschaulich
ist und die nichtlinearen Probleme auf einfache
Weise auf bereits bekannte lineare zurückführt.

Im folgenden sollen zur Einführung drei
Probleme der nichtlinearen Mechanik erwähnt werden.
Diese können mit den klassischen linearen Methoden

nicht quantitativ gelöst werden.

a) Der Dynatron-Oszillator
Fig. 1 zeigt das bekannte Schema eines Dyna-

tron-Oszillators. Infolge der Sekundäremission weist

1) siehe Literaturverzeichnis am Schluss.

die statische Anodenstrom-Anodenspannungs-Cha-
rakteristik des Dynatrons bei konstanter Schirm-

Fig. 1

Schema des Dynatron-Oszillators

gitterSpannung die in Fig. 2 gezeigte Form auf.
Wenn die Anode gegenüber dem Schirmgitter negativ

ist und jedes auf die Anode auftreffende Elektron

mehrere Sekundärelektronen auslöst, kann sich
die Richtung des Anodenstroms umkehren. Der
fallende Teil der Kennlinie kann nun zur Erzeugung

Fig. 2

Die Anodenstrom-Anoden-
spannungs-CharakterisÜk

des Dynatrons

von Schwingungen benutzt werden. Es erhebt sich
nun die Frage nach den Amplituden der möglichen
Schwingungen des Dynatron-Oszillators. Eine
Lösung auf linearer Grundlage ist nicht möglich. Die
erste analytische Methode zur Lösung wurde 1921

von B. Van der Pol veröffentlicht [4]. Neben den
analytischen Methoden existieren aber auch
graphische.
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Im folgenden wird für den «nichtlinearen
Widerstand», das heisst für alle links vom Schwingkreis
liegenden Teile des Oszillators der Fig. 1, das Symbol

-00 eingeführt. Die Fig. 4 zeigt die

Fig. 3

Vereinfachter Dynatron-Oszillator
—I NL t— nichtlineares Element

Kennlinie eines solchen nichtlinearen Widerstandes.

Fig. 3 zeigt den Dynatron-Oszillator unter
Verwendung dieses Symbols. Die Kennlinie der Fig. 4
lässt sich z. B. in eine Potenzreihe entwickeln:

--ZaxU*
x=i

(1)

Fig. 4

Kennlinie eines nichtlinearen Widerstandes

Beliebige Oszillatoren mit nur einem Schwingkreis
können auf die^in Fig. 3 gezeigte Form zurückgeführt

werden.

b) Die gleichzeitige Erzeugung
mehrerer Schwingungen [5, 6]

Unter bestimmten Umständen kann ein Oszillator

mit zwei oder mehreren Schwingkreisen, die auf
verschiedene Frequenzen abgestimmt sind, gleichzeitig

verschiedene Frequenzen erzeugen (Fig. 5). Diese

Fig. 5

Oszillator mit mehreren

Schwingkreisen

gleichzeitigen Schwingungen treten besonders bei
Generatoren für sehr hohe Frequenzen auf
(Reflexklystron) und sind dort sehr unerwünscht. Es stellt
sich nun folgendes Problem: Welches sind die
Bedingungen dafür, dass ein Oszillator auf zwei oder
mehreren Frequenzen gleichzeitig schwingt, und
welches sind die Amplituden dieser Schwingungen
Die Lösung wurde erst in neuester Zeit gefunden.
Es ist interessant, festzustellen, dass der Grossteil
der Lehrbücher die Möglichkeit der gleichzeitigen
Schwingungen überhaupt verneint.

c) Synchronisation eines Oszillators
durch eine äussere Wechselspannung [7,'8]

In einer Schaltung, wie sie in Fig. 6 gezeigt wird,
kann experimentell beobachtet werden, dass die
Frequenz der freien Schwingungen die Tendenz hat,
einen Wert

(2)P
a> — ft)»

anzunehmen, wobei cos die Frequenz der äusseren
Wechselspannung ist und p und^qr ganze Zahlen

sind. Dieses Verhältnis bleibt auch bei einer kleinen
Änderung von co, besteben. Die maximale Änderung
von (Wj, bei der dieses Verhältnis erhalten bleibt,
nennt man die «Synchronisations-Bandbreite». Das

J7
X.

Fig. 6

Schwingkreis mit äusserer
Wechselspannung

nichtlineare Problem lautet nun : Berechne die
Synchronisations-Bandbreite für einen bestimmten
nichtlinearen Widerstand und bestimmte Werte
vonp und q.

Mathematisch führt dieses Problem wie die
vorhergehenden auf nichtlineare Differentialgleichungen,

so zum Beispiel der Dynatron-Oszillator auf die
sogenannte «Van der Polsche Gleichung»:

x e (1 ckx ßx2 x x — 0 (3)

Nichtlineare Differentialgleichungen sind aber sehr
schwierig zu behandeln, und nur in Ausnahmefällen
ist es möglich, die Lösung in geschlossener Form
darzustellen. Meist gibt man sich denn auch mit
einer guten Näherungslösung zufrieden.

Von allen Lösungen einer nichtlinearen
Differentialgleichung sind die periodischen besonders wichtig.

Ist T die Periodendauer, dann gilt für die
periodischen Lösungen F(t) :

F(t) =]F{t + T) (4)

Die periodischen Lösungen entsprechen den
möglichen Schwingzuständen eines Oszillators, wobei
dann allerdings noch die Prüfung nötig ist, ob diese
Zustände auch stabil sind, d. h. ob sich nach einer
kleinen Störung der ursprüngliche Betriebszustand
wieder einstellt.

Diese drei Beispiele zeigen, dass sich die
nichtlineare Mechanik hauptsächlich mit Schwingvorgängen

beschäftigt, bei denen nichtlineare
Elemente beteiligt sind. Diese Nichtlinearität kann
somit ebensogut in der Induktivität (Eisenkern)
enthalten sein als im Widerstand.

2. Historisches

Die nichtlineare Mechanik hat sich"in dreLEtap-
pen entwickelt. Der hauptsächlichste Vertreter der
ersten Etappe war der französische Physiker und
Mathematiker Henri Poincaré (1854...1912), der
nichtlineare Probleme der Astronomie behandelte.
Seine Arbeiten sind grundlegend, aber seine Methoden

lassen sich leider nur auf Vorgänge anwenden,
die sich relativ langsam abspielen; sie versagen
bei den hohen Frequenzen der Elektrotechnik. Die
zweite Etappe dauerte von 1921...1930, ihr
Hauptvertreter war Balthasar Van der Pol. In ihr wurden
mit relativ einfachen mathematischen Mitteln
Probleme, ähnlich den in unsern drei Beispielen gezeigten,

behandelt und oft erfolgreich gelöst. In der dritten

Etappe (1932...1940) versuchten einige Russen,
besonders L. Mandelstam und N. Papalexi, mit
grossem matbematischem Aufwand tiefer in die
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Probleme einzudringen, wobei sie denn auch einige
sehr interessante Entdeckungen machten.

In neuester Zeit ist das Schwergewicht der
Entwicklung nach Amerika gerückt. An mehreren
amerikanischen Universitäten werden Vorlesungen über
nichtlineare Schwingungsprobleme speziell für
Elektroingenieure gehalten. Es fällt jedoch bei der
Durchsicht der Literatur auf, dass relativ nur sehr
wenig Experimente gemacht wurden, und dass bis
heute eine sorgfältige experimentelle Untermauerung

der theoretischen Ergebnisse fehlt. Den heutigen

Zustand der nichtlinearen Mechanik kann man
als eine «Sammlung von Näherungsmethoden»
charakterisieren. So kann die oben angeführte Van
der Polsche Gleichung (3) in guter Näherung gelöst
werden, wenn der Parameter e entweder sehr klein
oder sehr gross ist. Wenn man e als sehr klein
annimmt, erhält man eine annähernd sinusförmige
Schwingung, für ein grosses e eine Kippschwingung
(Kg- 7).

WW '"ï' Fig. 7

Periodische Lösungen der
£ "10' ^an der Polscllen Gleichung

SCVtVtrs

Sinusförmige Schwingungen und Kippschwingungen
können somit auf die gleiche Differentialgleichung

zurückgeführt werden. Im folgenden werden
ausschliesslich annähernd sinusförmige Schwingungen

behandelt (e klein). Insbesondere soll das
Beispiel«^, der Dynatron-Oszillator, berechnet werden;
dazu soll aber die schon erwähnte Methode der
gleichwertigen Linearisierung von N. Kryloff und
N. Bogoliuboff benützt werden [2]. Aus diesem
Beispiel werden die Grundgedanken der Methode
sogleich klar.

3. Der Dynatron-Oszillator
InFig. 3 bedeutet -ÖO- das nichtlineare Element.

Der Schwingkreis besteht aus der Induktivität L,
der Kapazität C und dem Leitwert G„, wobei die
Verluste in Gv zusammengefasst seien. Wie schon
oben bemerkt, kann der Zusammenhang zwischen
den Momentanwerten von Strom I und Spannung U
durch die Potenzreihe Gl. (1) dargestellt werden.
Wenn der Gütefaktor Q des Schwingkreises nun
nicht zu klein ist, so ist die Spannimg U annähernd
sinusförmig. Man kann deshalb die Annahme

U û cos cd0 t (5)

machen, wobei co0 die Eigenfrequenz des Resonanzkreises

ist.
Gleichgewicht herrscht nun, wenn die von aussen

her durch das nichtlineare Element an den Schwingkreis

gelieferte mittlere Leistung gleich der mittleren

im Schwingkreis verbrauchten Leistung ist.
Diese ist bekanntlich :

IX2

Pv iL Gv
2

(6)

Die mittlere an den Schwingkreis abgegebene
Leistung ist :

2K 2jt

P — f i u • d (w01) — fi cos oJq t ' d (co01)
2tiJ 2 7t J

o o (<)

P hängt in komplizierter Weise von û ab. Dabei soll
das Vorzeichen v«n P so festgelegt werden, dass
einem negativen P eine an den Schwingkreis abge-
gegebene Leistung entspricht. Die Bedingung für
Gleichgewicht ist somit:

P + Pv 0 (8)

Die Abhängigkeit der Funktion P + Pv) von der
Schwingungsamplitude û kann graphisch darge-

Fig. 8

Der Leistungsttberschuss des
Dynatron-Oszillators als

Funktion der Spannungsam¬
plitude û

stellt werden und ergebe z. B. den in Fig. 8 gezeichneten

Verlauf. Alle Werte der Schwingungsamplitude
m, für die (P -f- Pv) 0, d. h. für die im

nichtlinearen Element gleichviel mittlere Leistung
erzeugt wird, wie der Schwingkreis verbraucht,
entsprechen Gleichgewichtszuständen. Diese Werte
werden nachstehend mit û0 bezeichnet. Es wird später

noch nötig sein, zu kontrollieren, ob diese
Gleichgewichtszustände stabil oder labil sind. Dabei

werden sich im Betrieb die stabilen Zustände
von selbst einstellen.

Fig. 9

£ Der linearisierte Dynatron-
Oszillator

G linearisierter Leitwert

Man führt nun den «linearisierten Leitwert» G
ein. Dieser entspricht einem gewöhnlichen linearen
Leitwert, der die gleiche mittlere Leistung an den
Schwingkreis abgeben würde wie der nichthneare
Widerstand. Die gleiche Konvention wie für P gilt
auch für das Vorzeichen von G; wenn Leistung
abgegeben wird, ist G negativ. Es gilt :

|2 P
2 7T

U 71 J
i cos ey01 • d (<w„ t) (9)

Mit Hilfe dieses linearisierten Leitwertes kann das
Schaltbild der Fig. 3 auf dasjenige der Fig. 9 reduziert

werden.
Für die Gleichgewichtslage gilt (8) :

j)2 j» 2 [jj2
P + Pv G — + Gv — (G + Gv) — 0 (10)

2 2 2

oder für den nichttrivialen Fall û 4= 0:

G + Gv 0 (11)

Die Leitwerte G und GP heben sich somit gegenseitig
auf und der Schwingkreis verhält sich so, wie wenn
er nur aus der Induktivität L und der Kapazität C
bestehen würde.
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G kann mit Hilfe der Formel (9) aus Gl. (1)
berechnet werden. Für die Potenzreihenentwicklung
gilt z. B. :

— 03 û2 -f" — as û4 +
4 8

G ai + (12)

Die Gleichgewichtsbedingung ist somit:

G» + ai + — as û2 + — as û4 -)- — =0 (13)
4 8

d. h. die möglichen Schwingungsamplituden sind
Lösungen der Gleichung (13). Wenn die
Gleichgewichtslage des Systems stabil ist, wird die
Schwingungsamplitude automatisch einen Wert annehmen,

der die Gleichung (13) befriedigt.

WA

-Wr-

Fig. 10

Schaltbild zur Messung des
linearislerten Leitwertes G

WA Wellenanalysator

Für einen gegebenen nichtlinearen Widerstand
kann der linearisierte Leitwert auch auf einfache
Weise gemessen werden (Fig. 10). Wenn I0 die
Komponente des Stromes I mit der Frequenz coa ist,
dann gilt für G:

G —

Dies geht aus der Gleichung (9) hervor, denn

2 7T

n J
— Ii cos a>01 • d (co01) Io

(14)

(15)

ist ja nach Fourier gerade die Komponente mit der
Frequenz <w0. Es ist also nur mit dem Wellen-
Analysator der Anteil I0 zu messen und durch den
Scheitelwert der Spannung zu dividieren.

4. Stabilität

Wie erwähnt, sind nun nicht alle diese
Gleichgewichtslagen stabil. Um zu prüfen, ob eine
Gleichgewichtslage stabil oder unstabil ist, verfährt man
ähnlich wie in der klassischen Mechanik: man stört
das System; kehrt es nun in seine ursprüngliche
Lage zurück, nennt man es stabil, sonst unstabil.
So wird der in Fig. IIa gezeigte Körper nach einer

Fig. 11

Stabile (a) und unstabile (b)
Gleichgewichtslage

kleinen Störung in seine ursprüngliche Lage zurückkehren,

nicht aber jener in Fig. IIb. Die
Gleichgewichtslage der Fig. IIa ist somit stabil, die der
Fig. IIb unstabil.

Im Falle des Dynatron-Oszillators stört man das

Gleichgewicht, indem man die der Gleichgewichtslage
entsprechende Spannungsamplitude û0 um den

kleinen Betrag 8û vergrössert; û hat dann den Wert
û û0 + 8û. Für diesen Wert ist nun das System
nicht mehr im Gleichgewicht. Vorerst stellen wir
fest, dass die gesamte im Schwingkreis aufgespei-

C C
cherte Energie von — û02 auf — (û0 + S û)2 ange-

2 2
wachsen ist. Damit sich der ursprüngliche Zustand
wieder einstellt, muss diese Energie wieder abnehmen,

d. h. es muss mehr Leistung im Schwingkreis
verbraucht werden, als das nichtlineare Element
erzeugt. Die Summe (P + P») muss also positiv werden.

Die in Fig. 12 gezeigte Gleichgewichtslage ist
nach dieser Bedingung stabil.

Fig. 12

Stabile Gleichgewichtslage Äo

Eine Gleichgewichtslage ist also stabil, wenn :

d (P+Pb)
du > 0

Aus Fig. 8 kann man erkennen, dass stabile und
unstabile Gleichgewichtslagen abwechseln.

Im folgenden sollen diese Überlegungen noch
etwas präzisiert werden. Dies ist besonders deshalb
notwendig, weil in komplizierteren Fällen, wie etwa
bei der Behandlung gleichzeitiger Schwingungen,
qualitative Überlegungen der obigen Art zur
Lösung nicht genügen. Diese sollen deshalb
nachstehend mathematisch formuliert werden.

Die erste Ableitung der im Schwingkreis
aufgespeicherten Energie nach der Zeit ist gleich der
Differenz der von aussen her dem Schwingkreis
zugeführten und der im Schwingkreis selbst verbrauchten

mittleren Leistung. Also gilt, unter Berücksichtigung

des Vorzeichens :

— -û2 — (P+ Pb)
dt 2

(16)

In der Umgebung eines Gleichgewichtspunktes
(û û0 -)- 8û) kann man die rechte Seite der
Gleichung (16) in eine Taylorsche Reihe entwickeln:

^ ^(û0+8û)2
dt 2

(P + Pv)û û0

8û
d (P+Pb)

dû
(17)

Für û û0 ist (P + Pb) 0. Im folgenden soll û0
als eine Konstante und 8û als eine Variable betrachtet

werden. Für stabiles Gleichgewicht ist es
notwendig, dass sich û dem Werte û0 nähert, dass also
8û mit zunehmender Zeit kleiner wird. Vernachlässigt

man alle höheren Potenzen von 8û, so erhält
man die lineare Differentialgleichung :

C û, jü —sa d(f + p,)
(18)

dt dû
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Die Lösung der Gleichung (18) ist:

8û A eßt, wobei [X

1 d (P+Po)
Cû0 dû

(19)

Wenn 8û mit zunehmender Zeit kleiner werden soll,
muss [x negativ sein. Damit erhält man als Bedingung

für Stabilität einer Gleichgewichtslage wieder :

d(P+ Po)

dû
>0 (20)

Wie man sich leicht überzeugen kann, gilt für den
Fall û 0 auch die Bedingung:

d (G + G-)

dû dû
(21)

Wir hoffen, mit diesem einfachen Beispiel die
Methoden der gleichwertigen Linearisierung genügend
klargemacht zu haben. Mit ähnlichen Überlegungen

und etwas grösserem Aufwand können auch die
in den Beispielen b) und c) erwähnten Probleme der
gleichzeitigen Schwingungen und der Synchronisation

behandelt werden.
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Über zusätzliche Verluste beim Parallelbetrieb von Leitungen
Von F. Schär, Ölten 621.3.017.29:621.315.0X6.32

Am Beispiel je einer durch einen Transformator parallel
geschalteten 150-kV- und 50-kV-Leitung wird gezeigt, wie
sich das Minimum der zusätzlichen Verluste leicht berechnen
lässt, und es wird das Ergebnis diskutiert.

L'auteur montre, à l'aide de l'exemple de deux lignes à
150 et 40 kV couplées en parallèle par un transformateur,
qu'il est facile de calculer le minimum des pertes additionnelles.

Il procède ensuite à la discussion des résultats.

Die heutigen Anforderungen an die
Elektrizitätsversorgungsunternehmen bedingen oft, insbesondere

im Hinblick auf die Betriebssicherheit, dass

grössere Netzteile als Maschennetze betrieben werden

müssen. Dabei kann es vorkommen, dass

Leitungen von verschiedener Nennspannung an beiden
Leitungsenden über Transformatoren parallel
geschaltet sind und derselben Energieübertragung
dienen.

Je nach der Belastung der Knotenpunkte und,
wenn die Transformatoren mit Stufenschaltern
ausgerüstet sind, je nach deren Einstellung, verteilt
sich die Last auf die beiden Leitungen. Mit Rücksicht

auf die Übertragungsverluste ist es jedoch
nicht gleichgültig, wie sich der Strom auf die beiden

Pfade verteilt. Die Verhältnisse lassen sich am
besten an Hand eines Beispiels etwa nach Fig. 1

überblicken.

; - 200a 150 kV /,
~~~p #, 6R

sevt7*71 128 1}

Fig. 1

Teil eines vermaschten Netzes
Energietransport von A nach B

Hi, Hi Ohmsche Widerstände der Übertragungsleitungen
Ri, Ri auf die 150-kV-Seite bezogene Ohmsche Widerstände

der Transformatoren

Die im Knotenpunkt A zufliessende Energie
(U 150 kV, / 200 A) sei nach dem Knotenpunkt

B zu übertragen, wobei der Einfachheit halber

die Belastungen durch die Zweige a und b
unberücksichtigt bleiben sollen.

Die günstigste Verteilung des Stromes von 200 A
auf die beiden Leitungen ist offenbar dann vorhanden,

wenn die Übertragungsverluste ein Minimum
sind. Die totalen Verluste zwischen den beiden
Knotenpunkten A und B betragen, wenn man von den
Eisenverlusten der Transformatoren, der Ableitung
und den Koronaverlusten absieht:

Pvt Pvl + P„2 3 [Ii2 (Ri + R*) + I22 (R2 + Ra')]
(1)

In dieser Gleichung bedeuten:
Pvi die totalen Leitungsverluste,
Pol die Verluste über den 150-kV-Strang ein¬

schliesslich Kupferverluste im Transformator,
Po 2 die Verluste über den 50-kV-Strang ein¬

schliesslich Kupferverluste im Transformator,
R3' den auf die 50-kV-Seite bezogenen Ohmschen

Widerstand des 25-MVA-Transformators.

Die Bedeutung der übrigen Symbole geht aus Fig. 1

hervor.
Drückt man noch den Strom I2 durch /a aus,

wobei die Transformatorübersetzung an beiden
Transformatoren der Einfachheit halber gleich an-
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