Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 41 (1950)

Heft: 14

Erratum: "Zur Theorie der Dimension der physikalischen Grössen"

Autor: Landolt, M.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aus diesen Werten kann man bereits erkennen, dass eine Maschine, die aus grundsätzlichen Erwägungen mit normalen technischen Mitteln einen Wirkungsgrad von 3 bis 6% nie überschreiten kann, kaum technische Bedeutung haben wird. Selbst die Ausnützung der Abgaswärme von grösseren Wärmekraftwerken dürfte nur unter besondern Verhältnissen den Aufwand lohnen. Anders wird dies erst, wenn die Wärmeenergie sehr billig und reich vorhanden ist, oder aber wenn keine andere Energiequelle als die Sonnenstrahlung zur Verfügung steht.

Eine Möglichkeit, den Thermoumformer praktisch zu verwenden, liegt darin, ihn als Kühlmaschine arbeiten zu lassen. Schickt man nämlich bei Kühlung der Aussenfläche einen Strom hindurch, richtungsgleich dem bei normalem Betrieb fliessenden Strom, dann kühlen sich infolge des Peltiereffektes die inneren Lötstellen ab. Die Berechnung kann nach den gleichen Formeln durchgeführt werden. Extrem tiefe Temperaturen kann man allerdings auch nicht erreichen, weil gegen den absoluten Nullpunkt hin die Thermokräfte aller Metalle verschwinden, P_2 also null wird.

Adresse des Autors:

Dr. Ing. L. Geiling, 84 rue Maurice Berteaux, Palaiseau, Seine et Oise, France.

«Zur Theorie der Dimension der physikalischen Grössen»

Von M. Landolt, Winterthur Bull. SEV Bd. 41(1950), Nr. 12, S. 473...479)

Berichtigung

Auf Seite 475 sind in der Definition die Worte «einer oder aus mehreren» durch «mehreren gleich- oder» zu ersetzen. Im anschliessenden Absatz soll nach dem Strichpunkt «die Dimension» statt «sie» stehen.

Technische Mitteilungen — Communications de nature technique

Theorie und Praxis der Netzerdung über Resonanzspulen

621.315.053.22

[Nach Eric T. B. Gross: The Why and How of Resonant Neutral Grounding. Electric Light and Power, Bd. 25 (1947) Juli u. August.]

I. Theorie

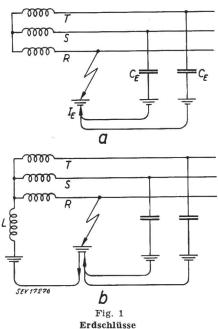
Beim Betrieb ausgedehnter Hochspannungsnetze zeigte es sich, dass der grösste Teil der Störungen durch einpolige Erdschlüsse entstand. Diese Fehlerquelle kann durch zwei Schutzmittel bekämpft werden: direkte Erdung des Nullpunktes und Erdung über Löschdrosselspulen. In Amerika wird hauptsächlich die direkte Erdung des Nullpunktes angewendet, in Europa mehr die Erdung über Löschspulen.

Der Erdschluss eines Drehstromsystems

Im ungestörten Betrieb wird der isolierte Sternpunkt eines auf eine Leitung geschalteten Transformators durch die als gleich gross angenommenen Erdkapazitäten C_E der drei Polleiter auf Erdpotential gehalten. Bei Erdschluss (Fig. 1a) wird der betreffende Leiter gegenüber der Erde spannungslos und das Spannungsdreieck um die negative Sternspannung U_Y des geerdeten Poles verschoben. Der Nullpunkt kommt dadurch auf Sternspannung und die beiden gesunden Polleiter auf verkettete Spannung gegen Erde. Der Erdschlussstrom I_E setzt sich aus den zwei Teilströmen zusammen, die von den ungestörten Polleitern über ihre Erdkapazitäten zur Erde und über die Fehlerstelle wieder ins Netz fliessen. Seine Grösse beträgt:

$$I_E = 3 U_Y \omega C_E$$

Für einfache Freileitungen von 66 kV Spannung oder weniger lässt sich der kapazitive Erdschlußstrom nach folgender Faustformel abschätzen:


$$I_E = -\frac{U \, l}{310}$$
 A

Dabei bedeuten U die verkettete Spannung in kV und l die Leitungslänge in km. Dreipolige Erdkabel sind mit 25facher, Einleiterkabel und Dreileiterkabel mit abgeschirmten Einzelleitern mit 75facher Länge in die Formel einzusetzen.

Die Erfahrung zeigte, dass in ungeschützten Netzen mit über 5 A Erdschlußstrom ein Erdschlussbogen nicht mehr löscht, sondern durch Rückzündungen zu Überspannungswellen Anlass gibt, die an andern Stellen Kurzschlüsse und Doppelerdschlüsse bewirken.

Nullpunkterdung über Resonanzspulen

W. Petersen schlug 1917 vor, zwischen den Nullpunkt eines Leistungstransformators und Erde eine auf die Erdkapazität des Netzes abgestimmte Induktivität zu schalten. Im Erdschlussfall (Fig. 1b) bleiben die Spannungsverhältnisse gleich wie beim Netz mit isoliertem Nullpunkt. Die Induktivität, auch Löschspule, Resonanzspule oder Petersen Spule genannt, erhält Sternspannung. Ihr Stromkreis schliesst sich über die Erdschlußstelle. Bei abgestimmter Spule ist ihr Strom von gleicher Grösse, aber entgegengesetztem Vorzei-

a nicht geerdetes Drehstromsystemb über Löschspule geerdetes System

chen wie die Summe der Erdströme der beiden gesunden Phasen. Der Gesamtstrom durch die Erdschlußstelle wird Null. Fand der Übergang durch einen Lichtbogen statt, so erlöscht dieser, und der Netzbetrieb geht ungestört weiter. Die Bedingung für die Induktivität L der abgestimmten Spule lautet:

$$\omega L = \frac{1}{3 \omega C_E}$$

In Wirklichkeit bleibt infolge der Ohmschen Widerstände und ungenauer Spulenabstimmung ein hauptsächlich Ohmscher Reststrom, der aber im Erdschlussbogen noch bei sehr