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41e année N° 14 Samedi, le 8 Juillet 1950

BULLETIN
DE L'ASSOCIATION SUISSE DES ELECTRICIENS

Moderne Methoden zur Behandlung nichtstationärer Vorgänge
in elektrischen Maschinen

Von Th. Laible, Zürich *)

Es werden einige methodische Hilfsmittel zur Behandlung
nichtstationärer Vorgänge in elektrischen Maschinen behandelt.
Die mathematische Erfassung dieser Vorgänge geschieht mit
Hilfe der Matrizenrechnung, mit der Laplace-Transformation
und mit numerischen und mechanischen Integrationsmethoden.
Anhand einiger Beispiele wird die Anwendung dieser
Hilfsmethoden erörtert. Ein reiches Literaturverzeichnis ergänzt die
Arbeit.

621.313.01

Exposé de quelques moyens méthodiques pour l'étude des

processus non stationnaires dans les machines électriques,
notamment du calcul matriciel, de la transformation de La-
place, ainsi que des méthodes d!intégration numériques et
mécaniques. L'emploi de ces diverses méthodes est illustré
par quelques exemples. Une bibliographie détaillée termine
cet exposé.

Einleitung
Das gesamte Gebiet der nichtstationären

Vorgänge in elektrischen Maschinen ist so gross, dass es
sich nur darum handeln kann, einen ganz skizzenhaften

Uberblick zu geben. Wie schon der Titel
andeutet, werden wir uns weniger um die Vorgänge
selbst als um die Hilfsmittel zu ihrer mathematischen

Erfassung kümmern. Die Beispiele dienen
nur zur Illustration und könnten fast beliebig
vermehrt werden.

Die wichtigsten methodischen Hilfsmittel sind:
1. Die Matrizenrechnung zur übersichtlichen Schreibweise

der Gleichungen und zur Vornahme der nötigen «Koordinaten
»-Transformationen.
2. Die Laplace-Transformation zur Behandlung der linearen

Probleme.
3. Numerische und mechanische Integrationsmethoden zur

Behandlung nichtlinearer Probleme.

Ich setze diese Methoden als mehr oder weniger
bekannt voraus und beschränke mich darauf, ihre
Anwendung auf das hier behandelte spezielle Gebiet
zu erörtern.

Matrizenrechnung
Von der Matrizenrechnung brauchen wir nur

einen verhältnismässig kleinen Teil, der repetitions-
weise hier kurz zusammengestellt sei.

Unter einer Matrix versteht man eine Zusammenfassung

von n • m Zahlen Oit in der Form

A

®11 ®12 * * • ®1

®9.1 &9.9. • • • ®9!

®ni • • • &n;

II ««II
i 1...71

k l...m (1)

Die Matrix A enthält n Zeilen und m Kolonnen
(Spalten), Als besonders wichtig seien die quadra-

*) Vortrag, gehalten im Kolloquium für Ingenieure über
moderne Probleme der Elektrotechnik an der ETH am
3. Dezember 1949.

tischen Matrizen (m n), die Kolonnenmatrizen
(m 1) und die Zeilenmatrizen (n 1) erwähnt.
Unter der transponierten Matrix A' || an ||

versteht man diejenige, die aus A durch Vertauschen
der Zeilen und Kolonnen hervorgeht. Die Transponierte

einer Kolonnenmatrix ist eine Zeilenmatrix.
Das Produkt zweier Matrizen A || au, || und
B II bik II ist eine neue Matrix C, definiert durch

Cik — Yj a" ' (2)

Die Kolonnenzahl des ersten Faktors A muss
gleich der Zeilenzahl des zweiten Faktors B sein.
Auch wenn das Produkt B A existiert ist es im
allgemeinen ungleich mit A • B. Das kommutative
Gesetz gilt für die Multiplikation der Matrizen nicht,
wohl aber das assoziative, d. h.

(A B) • C A (B C) A B C (3)

Ferner folgt aus A B C

B> A' C' (4)

Eine spezielle quadratische Matrix ist die
Einheitsmatrix

100 0

0 1 0 0

001 0E

0 0 I)

(5)

Sie ist mit allen Matrizen (gleicher Zeilen- bzw.
Kolonnenzahl) vertauschbar :

E A A • E A (6)

Ist die Determinante | A | | au \ einer quadratischen

Matrix von Null verschieden, so existiert
auch die inverse Matrix

525
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I Dt 0)

Darin bedeuten die Dki die Unterdeterminanten der
Elemente von A. Es ist stets

A - A-1 A-1 A E (8)

Die Elemente einer Matrix brauchen nicht
gewöhnliche Zahlen zu sein, sondern können selbst
wieder Matrizen sein. Solche Untermatrizen erhält
man, indem man zwischen den Zeilen und Kolonnen
einer Matrix einige waagrechte und senkrechte
Trennlinen zieht und alle so entstehenden Rechtecke

als einzelne Matrizen auffasst.

Transformationen

Sämtliche Ströme in den Zweigen eines
Netzwerks lassen sich zu einer Kolonnenmatrix ||i||
zusammenfassen und ebenso sämtliche Spannungen
(z. B. die Spannungen aller Knotenpunkte gegen
einen bestimmten Bezugspunkt) zu einer Spannungsmatrix

y u II. Sie sind untereinander durch eine
quadratische Matrix Z, die Impedanzmatrix, bzw.
die Admittanzmatrix Y Z_1 verknüpft. Die Ströme
und Spannungen einer Schaltung können mit
denjenigen einer andern in eindeutiger und umkehrbarer

Weise verknüpft sein. Eine solche Verknüpfung
wird dargestellt durch eine quadratische

Transformationsmatrix C. Die eine Schaltung stellt
eine Ersatzschaltung für die andere dar. Die
Matrizenrechnung ermöglicht für jede Etappe der
Rechnung den bequemen Ubergang auf diejenige
Schaltung, in der die Rechnung am einfachsten
durchführbar ist.

Unter allen möglichen Transformationen
beschränken wir uns willkürlich auf eine Auswahl
durch die Forderung nach «Leistungsinvarianz»
und «Impedanzinvarianz». Die erste Forderung
bedeutet, dass die Leistung

p= ll«ir - Hill (9)

unverändert bleiben soll, die zweite, dass für ein
symmetrisches Netz ohne Kopplungen die spezielle
Impedanzmatrix

Z z • E (10)

unverändert bleiben soll. Beide Forderungen
zusammen ergeben, dass die Transformationen orthogonal

sein müssen, d. h. dass die Matrix C der
Bedingung

C' C E oder C'= C"1 (H)

genügen muss. Ein in der Starkstromtechnik viel
gebrauchtes Beispiel einer solchen Transformation
ist der Übergang auf symmetrische Komponenten.
In einem m-phasen-Netz erhält man die
symmetrischen Komponenten der Spannung "aus

Cilc

]/m

it'll C

2n\
I 1

e
1 j (^)-(i-U-(fe-l)

« V m /

(12)

(13)

Die Komponente u/ ist die Nullspannung, it2' die
Mitspannung und um' die Gegenspannung.
Entsprechendes gilt für den Strom.

«Park»-Koordinaten
® Bei der Anwendung auf rotierende Maschinen
ist eine wesentliche Aufgabe der Transformationen,
durch Ubergang auf geeignete Koordinaten die zeitlich

variablen Induktivitäten zwischen bewegten
Wicklungen zu eliminieren. Wir beschränken uns
hier der Einfachheit halber auf kollektorlose
Maschinen, da diesen die grösste praktische Bedeutung
zukommt. Der allgemeinste Vertreter dieser
Gattung ist die Synchronmaschine mit ausgeprägten
Polen und Dämpferwicklung. Fig. 1 zeigt das zwei-

a-flc.ise

c-fichse

Fig. 1

Zweipoliges Ersatzbild der Synchronmaschine
a, b, c wirkliche Statorwicklung

d, q Ersatzwicklungen für die Statorwicklung a, b, c
D, Q Ersatzwicklungen für die Dämpferwicklung

1 Feldwicklung

polige Schema einer solchen Maschine. Die Polachse
oder Längsachse wird als d-Achse (französisch:
axe directe, englisch: direct axis) bezeichnet, die
darauf senkrechte als Querachse (französisch: axe
transversale, englisch: quadrature axis). Den Übergang

von den Strangströmen ia, ü, ic auf die d,
q-Komponenten erhält man durch die «Park»-
Transformation. Park hat sie 1929 zum erstenmal
systematisch angewandt [21]1). Dreyfus [14] und
Blondel [16] haben schon früher, aber in etwas
versteckter Form dasselbe gemacht, id und iq sind bis
auf ein Übersetzungsverhältnis k durch die Bedingung

gegeben, dass sie in jedem Augenblick dasselbe
Luftspaltfeld wie ia, n, ic erregen müssen,' also :

id k a
2 Jt\ /. 2 7C\

la • COS# + 16 • COS I V — I -j- Ic ' COS f#+ I

(14)

Dasselbe gilt für iq mit -j- statt #. Die dritte

Komponente soll keinen Beitrag zur Grundharmo-

siehe Literatur am Schluss der Arbeit.
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nischen des Luftspaltfeldes geben. Diese Bedingung
erfüllt der Nullstrom der symmetrischen Komponenten.

Aus der Orthogonalitätsbedingung O C=E
folgt k -ft-—. Park wählte seinerzeit von einem

anderen Gesichtspunkt aus k 2/3. Wir haben
daher die Transformationsmatrix

ft
1/V2

COS (#) cos

1/1/2 l/l 2

(*_t) cos (#+T)

—sin($) —sin^ß—

(15)
und ihre Inverse

c-; c>p

ft
1/1/2

1/|2

1/1/2

cos (&) - sin (&)

e-T) -Kf)
(^+.y) —sin^ +

2 7l\

L3"/

(i6:
Parksche Gleichungen

Das Induktionsgesetz gibt für irgendeinen Statorstrang

die Gleichung

~ (17)
df

Ua — " H l/d

Wa ist die gesamte Flussverkettung dieses Stranges.
Die entsprechenden Gleichungen aller Stränge zu-
sammengefasst ergeben die Matrizengleichung

Ä 11*1
dll^ll

dt
(18)

Wir drücken die Spannungen, Ströme und Fluss-
verkettungen durch ihre Park-Komponenten u0,
m, uq usw. aus:

r-1 — R- c-p\
d (Cp • h y Ii

dt
(19)

Nun multiplizieren wir vorn mit der Matrix Cp :

i¥"nr_|u'|| — Ä ||i'|

d il y— R
dt

dt
d r-1

d t
(20)

In Cp ist nur •& von der Zeit abhängig, d #/ d t co

ist die momentane Winkelgeschwindigkeit der

Maschine. Daher wird

^ dC;'

dt
c d Cp

— co Lp —
d#

— co

0 0 0
CO 0 0 1 —coK

0-10 (21)

Da die mit co multiplizierte Matrix noch öfters
vorkommt, schreiben wir für sie zur Abkürzung K. Die
Spannungsgleichungen der Synchronmaschine lauten

also in Matrizenform

lu'II —R dllf'l
dt + üjK \\W'\\ (22)

oder in Komponenten ausgeschrieben:

«o — Rio'

Ud Rid

dy,
dt

d Yd

R ia

dt
d WQ

dt

+ O) Wq

coWd

(23)

In der Form von Gl. (23) wurden sie von Park
gegeben.

Es fehlen noch die Beziehungen zwischen den
Flussverkettungen und den Strömen. Wenn wir von
Sättigungserscheinungen absehen sind sie linear.
Man verwendet daher zu ihrer Herleitung mit Vorteil

die Methode der Laplace-Transformation.

Laplaee-Transformation

Defmitionsgemäss wird einer [Funktion F(t) eine
Funktion f(s) zugeordnet durch

f (s) j'e~" ' F (f) d t (24)

Von Doetsch [7] wurde dafür die symbolische
Schreibweise

f(s) F (t) (25)

vorgeschlagen. Die bisher in der mathematischen
Literatur üblichen Unterscheidungsmethoden
zwischen Originalfunktionen und Bildfunktionen eignen
sich nicht für die Elektrotechnik. Ich benutze daher
folgende Schreibweise 2)

Ud o—• ud ; id °—• id ; % • Wd usw. (26)

Im folgenden sind nur diejenigen Sätze und Formeln
der Laplace-Transformation kurz zusammengestellt,

die wir für unsere Zwecke brauchen. Es sind
dies die Differentiationsregel

dF (l)

dt
o # s { (s) — F (0)

der_Verschiebungssatz

e*«' F (t) o—• f (s -f- a)

(27)

(28)

') Nachträglich habe ich gefunden, dass E. E. I. Pilcher
genau die gleiche Bezeichnungsart vorschlägt [The Metro-
politan-Vickers Gaz. Bd. 23 (1949), Nr. 374, S. 101].
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der Faltungssatz
00

Fi (0 * F2 (t) Jf, (t- z) F2 (z) dz

/Fj (z) • F2 (t — z) dz o • (s) • f2 (s) (29)

und die Beziehungen zwischen den Grenzwerten
(falls die Grenzwerte rechts existieren)

lim [s • f (s)] lim [F (t)]
S—*0 t—+OO

lim [s • f (s)] lim [F (t)]
(30)

ferner eine kleine Auswahl an Entsprechungen
zwischen speziellen Funktionen:

1 o—«
1 1

s -j~~ oc

COS (Vt) O-«

e"a'cos (vt) o-

s2 + v2

s -j- cc

("*)'
S2 -f V2

(31)

(s +a)2+ 5,2
sin(rt)o

(s 4" oc)2-\-v2

Nach dieser kurzen Abschweifung kehren wir zur
Synchronmaschine zurück.

Flussverkettungen der Längsachse

Da die Querachse und die Längsachse aufeinander
senkrecht stehen, beeinflussen sie sich nicht. Man
kann jede für sich behandeln. Die d-Achse hat drei
Wicklungen: die Ersatzwicklung d für den Stator,
die Ersatzwicklung D für die Dämpferwicklung und
die Feldwicklung/. Die Beziehungen zwischen den
Strömen und den Flussverkettungen dieser drei
Wicklungen sind in der Matrizengleichung

Ldd LdD Ldf U

LDIJ LDD ED/ • in (32)

Lfd L/d Lff if
zusammengefasst. Die Dämpferwicklung ist immer
kurzgeschlossen. Daher gilt für sie

Rd in — (33)

Yd

Yd

Yf

0

oder im Bildbereich

0 —RD in

dt

sYD + Ydo (34)

Ydo ist der Anfangswert der Flussverkettung Yd-
Für die Feldwicklung haben wir die entsprechenden
Gleichungen

uf=-Rfif-à^L (35)
d t

uf — R/ if — s Wf -j- Yfo (36)

Transformiert man Gl. (32) auch in den Bildbereich
und setzt Yd aus Gl. (34) und Yf aus Gl. (36) darin
ein, so erhält man

Ldd LdD Ldf

Lad Ldd + —
S

Ld/

Lfd L/d L// +^

u

io

(37

Daraus kann man die Untermatrix bestehend aus
den beiden uns nicht interessierenden id und if
eliminieren. Man erhält

Yd (L,«—]|LdD Fif\\

HLud

Lfd

Ydo/s

(Yf,-ùf)ls

id-1- II L,jd Ld/||

Ldd+Rd/s Ld/ -1

L/d Lff+Rf/s
Ldd-^-Rd/s Lof
L/d Lff+R//s\

(38)

Wir führen als Abkürzungen die Streukoeffizienten
ein:

LdD Ldd
<*if 1

Ld/Lfd
Ldd Lff

OfD 1

OdD 1 "

L/d Ld/

L dd Lr
(39)

Lff Ldd

ferner die Zeitkonstanten:

Ldd rr, Lff
TD

Rd lf R,
und

die beiden Wurzeln ocd2 > Oidl der quadratischen
Gleichung

afD • Tf Td • oc2d — (Tf -\- Td) xd + l 0 (41)

und die beiden Zahlen Adi und Ad2, die man aus dem
Gleichungspaar

o/D (Adl-\-Ad2)

2 — Odf—OdD—2 ]/ (1 — Od/) (1 —Odo) (1 —OfD)

Ii Ii \ (1 Gif)
I

(1 Gdü)
OfD (^4<il OCd2 + Ad2 rxdl) 1

Td Tf

(42)

erhält. Die Werte Ydo und Yf o drücken wir ausserdem

durch die Anfangswerte der Ströme Ido, Ido und
Ifo aus. Dann erhalten wir nach ausmultiplizieren
von Gl. (38)

Yd-
Ydo

id—Ld(s

— — LdnD(s)
s

Die Funktion Ld (s) hat die Form

Ld (s) Ldd Ad i
S OCdl S + a.d2_

(43)

(44)



Bull. Ass. suisse électr. t. 41(1950), n° 14 529

Der Vergleich mit Gl. (31) zeigt folgende Beziehung
zum Originalbereich

Ms)
i-o Lui 1 Adi e

-Oidlt
-Ad2 • e

- 0id2t\

Daraus lässt sich leicht ablesen:

lim Li (s) lim 1 i (t) Lu
S—*0 t-foo

limLd(s) =limld(t) Lu (1—Au—Au) L"u
s-*-oo f-*0

ld(t)
(45)

(46)

Für stationäre Vorgänge und angenähert auch für
alle langsam verlaufenden hat die Funktion Ld (s)
den Wert Ldd, für rasch verlaufende Vorgänge
hingegen den Wert L"u. Mit Hilfe der Wurzeln ßu > ßdi
der quadratischen Gleichung

L"dd

La
ojd Tf TDß2d — (aif T/ -j- ado[Td) ßd + 1 0 (47)

kann man auch schreiben

L"h (s + ßdi) • (s -f- ßdi)
Li s

und
(s + adi) • (s + ocdi)

(48)

1

Li (s) Lh

/ 1 1

t-; a.

1
La s -|- ßdi

+

+ (-i—i.1 L'n L'jd S -f- ßdi

mit der weitern Abkürzung

L'a L"d,

Aus Gl. (49) folgt

ßdi ßdi

(49)

(50)

OCdl -f- <Xd2 ßd
<Xdl <Xd2

ßdi

1

.-O— +
s • Li (s) La

+

&
1 1 \

l L 'dt L 'a

Ldd

d2 f

-ßdlt
+

Xd (t) (51)

Die Funktion G (s) kommt meistens nur in der
Kombination G (s)/Ld (s) vor. Für diese erhalten wir mit
praktisch genügender Annäherung

G (s) ßdi ßdi ßdit,
—I-?- fa •—o — e
Ld (s) Ldd (s + ßdi) La

(52)

Genau genommen käme noch ein zweites Glied von
ähnlichem Aufbau hinzu, das aber mit den in der
Praxis vorkommenden Zahlenwerten vernachlässigt

werden darf.
Auf die Funktion D (s) gehen wir nicht näher ein.

Im stationären synchronen Betrieb fliesst in der
Dämpferwicklung kein Strom. Ido ist nur dann von
Null verschieden, wenn unmittelbar vor dem
untersuchten Ausgleichvorgang ein anderer stattgefunden
hat, der noch nicht abgeklungen ist. Da solche
Probleme veihältnismässig selten sind, lassen wir
für das Folgende das Glied mit Ido in Gl. (43) weg.

Ihre Auflösung nach id ergibt dann

id=^+ G(s)
Ld(s)
(53)

Mit Hilfe des Faltungssatzes kann man diese
Gleichung sofort auch im Originalbereich schreiben

dWd
» ,,,/«/, r \ Ldf -ßnt

H Ido H t— * Ad (t) -f- 1^— + I/oJ *-—ßdie
dt Ldd (54)

Querfeld
Für die q-Achse geht die Rechnung ganz

entsprechend. Sie wird nur einfacher, weil man nur
zwei Wicklungen q und Q hat. Entsprechend dem
Operator Ld (s) erhält man einen^Operator Lq (s) :

L (s) —
L'A (oj s + <Xq) J L"w (s + ßq)

j

oder
s S Xq

—=—+(4——)
iq (sj -Lqq \ L qq Lqq J SS + ßq

(56)

und daher

hrri+(-k-à)*"v-JiW (57)
S Lq (s)

und

i - I |H — 70 i :
d t

Xq(t) (58)

Nullsystem
Für das Nullsystem kann man genügend genau

mit einer konstanten Induktivität L0 rechnen und
erhält daher einfach

Zo
L„

(59)

Es spielt übrigens selten eine Rolle.

Bewegungsgleichung

Mit den Gleichungen (54), (58) und (59), die i0,
ii, iq durch W0, Wd, Wq ausdrücken, werden die
Gleichungen (22) bzw. (23) zu einem System von
Integrodifferentialgleichungen für W0, Wd, Wq. Ist
die Geschwindigkeit m gegeben oder konstant, so
genügt dieses Gleichungssystem zur Bestimmung
der Lösung. Im andern Fall ist als weitere Gleichung
die Bewegungsgleichung der Maschine erforderlich.
Zur Bestimmung des Drehmoments bilden wir die
Leistungsbilanz. Wir bilden die Transponierte der
Gl. (22) und multiplizieren sie hinten mit der
Strommatrix II i' II :

t d

~dt-Älli'ir II i'll —

+ œ\\W'\\'-K>-

(Am.) ï 11 +

(60)

Links haben wir die ins Netz abgegebene Leistung.
Das erste Glied rechts stellt die Jouleschen Verluste
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in der Statorwicklung, das zweite die zur Änderung
der magnetischen Energie benötigte Leistung, das
dritte die mechanische Leistung dar. Diese ist gleich
a>lp (mechanische Winkelgeschwindigkeit!) mal das
Drehmoment. Dieses ist daher

p\\W'\\<-K'-\\i'\\ =p{Wqu-Wdiq) (61)

Setzen wir den Ausdruck in die Bewegungsgleichung
ein und dividieren noch durch die Polpaarzahl p so
haben wir schliesslich

J d

dt + (V, U — Wd iq)
Äfanlriefr

(62)

Klassifizierung der Probleme

Nachdem wir die allgemeinen Grundlagen haben,
lassen sich die Probleme einigermassen übersehen.
Sie gliedern sich vom mathematischen Standpunkt
aus in drei Klassen.

1. Die erste Klasse umfasst die Probleme, bei
denen die Geschwindigkeit konstant bleibt oder
wenigstens mit genügender Näherung als konstant
betrachtet werden kann. In diesem Falle sind die
Gleichungen linear. Man geht dann mit Vorteil auch
mit Gl. (22) in den Bildbereich über:

«0 i-o s 0 0 •Uoo

Ud — R- id — 0 s -co Pd + WdO

uq iq 0 co s %
(63)

Die Bewegungsgleichung braucht man nicht. In
diese Klasse fallen z. B. Kurzschlussvorgänge,
Spannungs- und Winkelfehler beim Synchronisieren,
Spannungsänderungen bei Belastungsstössen mit
oder ohne Einwirkung von Spannungsreglern.

2. Die zweite Klasse umfasst solche Vorgänge,
bei denen co zwar veränderlich ist, bei denen aber
alle Grössen nur um kleine Beträge von einem
stationären Zustand abweichen. Man kann dann, indem
man diese Abweichungen (Störungen) als neue
Variable einführt, in bekannter Weise die Gleichungen

für den stationären Zustand abspalten und den
Rest durch Vernachlässigung der Produkte von
Störungsgliedern linearisieren. Typische Beispiele
für diese Klasse sind : Kleine Pendelungen unter dem
Einlluss von periodisch schwankendem Antriebs-
(Dieselgeneratoren) oder Lastmoment (Kolbenkompressoren),

Reguliervorgänge unter dem Einfiuss des

Kraftmaschinenreglers und Stabilitätsuntersuchungen.

3. Die dritte Klasse bilden solche Probleme, bei
denen wesentliche Geschwindigkeitsänderungen
vorkommen. Das Gleichungssystem ist dann wegen den
Gliedern a> W in den Spannungsgleichungen und W i
in der Bewegungsgleichung nichtlinear. Geschlossene
mathematische Lösungen für Probleme dieser Klasse
sind mir nicht bekannt. Man ist auf numerische und
mechanische Methoden (Bush-Maschinen)
angewiesen. Einige Beispiele sind : Anlaufvorgänge,
Synchronisieren mit grossem Frequenzfehler, In-
Tritt-ziehen von Synchronmotoren.

Zur Illustration soll ein ausgewähltes Beispiel aus
jeder der drei Klassen behandelt werden.

Dreisträngiger Kurzschluss
Als Beispiel für ein Problem der ersten Klasse

wählen wir den dreisträngigen Kurzschluss der
Synchronmaschine ausgehend von einer beliebigen
Vorbelastung. Dieses Problem ist zwar altbekannt
und oft behandelt worden, hat aber den Vorteil,
dass es nicht nur als Beispiel dient, sondern auch
einen guten Einblick in die Bedeutung der
verschiedenen Konstanten gibt, die eine Maschine
kennzeichnen.

Der bessern Ubersicht halber führen wir von
Anfang an eine Vereinfachung ein. Der
Statorwiderstand ist praktisch stets klein. Das Glied
R • y i' II spielt nur die Rolle einer kleinen Korrektur.
Zur Berechnung von id und iq in diesen Gliedern
benutzen wir daher nicht die genauen Ausdrücke,
sondern eine konstante Induktivität 2 L"u • L"„/
(L"a + L"m). Mit der Abkürzung

cur
R (L"dd + L"„)

2 L"<id L",
(64)

99

haben wir dann statt (63) die Gleichungen:

R
u0 s + — 0 0 •Uoo

L0
Ud — 0 S-f-CCR —ft)

*

Wd + Wdo

uq 0 co % o

(65)

Im Kurzschluss ist ||u|| 0. Gl. (65) lässt sich nach
den W auflösen. Bei symmetrischer Vorbelastung
ist W00 0. Daher wird auch W0 0 und i0 0.
Der Rest gibt

Wdo~Pd S -\- OCR -co

% co s ocr qo

(s ocr)2 4- <y2

s + OCR CO

-co S + /XR

»—o e
-OLRt COS (œt)

-sin (cot)

Vor dem Kurzschluss war

ud U0\3 • sind0=coVgo; u,

also wird
UoJ/3 -OCRt

sin (cot)

cos (cot)

VdO

Wqo

WdO

(66)

-u0y3 • cos<50=—coWdo
(67)

Vi

Wq

cos (cot-\- <50)

tU 3 OCR t
e • sin (co t + oo)

(68)

Darin ist ô0 der der Vorbelastung entsprechende
Polradwinkel. Durch Einsetzen in Gl. (54) und (58)
erhalten wir die Komponenten des Kurzschlussstroms
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id Ido -j- Uo y3 JL+/J _1\
e

ßdlt
+

Xd \xd XdJ

x"d x'd

x"d

nMt-z)

— ßdz^
cos <30 —

-OiRt
e cos (co t -f d0)

-ßdlZ
e • da+*-£/P

o

|_ A/q \ A/ q A/q j

(69)

-ßqt
sin ô0 4-

+ U°}, 3
e

aR
• sin (co t + <50) (70)

X q

Die Gleichungen sind bereits ein wenig vereinfacht
unter Berücksichtigung der Tatsache, dass unter
den praktisch vorkommenden Verhältnissen alle oc

und ß klein gegen co sind. An Stelle der Induktivitäten

haben wir die Reaktanzen eingeführt:

co Ldd Xd; co L'dd x'd ; co L"<m x"d ;

CO Lqq •—- Xq ; CO L qq X q (71)

Das letzte Glied von Gl. (69) gestattet das Eingreifen
eines Spannungsreglers oder besonderer Schnell-

erregungs- oder Entregungs-Einrichtungen zu
berücksichtigen. Sind keine solchen vorhanden, so
bleibt uf — Rf I/o konstant und dieses Glied
verschwindet.

Den im Stator auftretenden wirklichen Strom
finden wir mit Hilfe der inversen Park-Transformation

(72)

Wir können uns auf einen beliebigen Strang z. B.
a beschränken, da sich die andern nur durch den
Schaltwinkel #0 unterscheiden :

ia Y2/3 • (id cos#—iq sin#)

V2/3 [idcos (cot~f-#0)—i,sin(a)t-(-#„)]

70|/2cos (cot—cp + -+ #0—<50) +
•2

ia 0

ib — r -i.— L<p id

lc iq

+ U,
f xd

sin2 d0
co t + #0 —

+ U{0)2(4- 1)
\Xd Xd]

arctg [ —
%q

-ßdit

(Xi Tw7\
U,gN. +

cos ô0 e •cos(a)f + #0)4-

+ v'^]l(h~k 1 1 \2
cos2d0+ —j sin2i

~ ßdi t
e • cos

1

a>t + #o—arctg I
1

x'd

tg^O

-v-1\{k + k;)
— QLjt t

e • cos (#0 — <50)

-oiRt
cos (2coi+ #0 + d0)

(73)

Der Strom ia besteht aus fünf Gliedern. Das erste
Glied bildet den stationären Kurzschlußstrom (zu
dem auch der Vorbelastungsstrom gehört). Er
bleibt nach genügend langer Zeit allein übrig. Das
zweite Glied ist ein Wechselstrom der gleichen
Frequenz, dessen Amplitude aber mit einer
Zeitkonstanten T'd 1 / ßdi exponentiell abnimmt. Man
nennt dieses Glied den «transienten» Anteil des
Kurzschlußstroms, T'd die «transiente» Zeitkonstante.

Das dritte Glied hat den gleichen Charakter,
nur ist seine Zeitkonstante T"d 1 / ßdi bedeutend
kürzer. Man nennt es den « subtransienten» Anteil,
T"d die «subtransiente» Zeitkonstante. In der
deutschen Literatur findet man gelegentlich die
Bezeichnung «Stoss»-Kurzschlußstrom für den zweiten

und «flüchtiger Stoss»-Kurzschlußstrom für den
dritten Anteil. Das vorletzte (vierte) Glied von
Gl. (73) ist ein abklingender Gleichstrom, das letzte
ein Wechselstrom doppelter Frequenz. Beide haben
die gleiche Zeitkonstante Tr= 1/xr. Die Grösse
der einzelnen Glieder ist ausser durch die
Vorbelastung hauptsächlich durch die verschiedenen
Reaktanzen bestimmt. Xd und xq, die für die Grösse
des stationären Kurzschlußstroms und auch sonst
für den stationären, also synchronen Betrieb
massgebend sind, heissen die synchronen Reaktanzen.
Nach den Gliedern, auf die sie hauptsächlich Ein-
fluss haben, heissen x'd die «transienten», x"d und
x"q die «subtransienten» Reaktanzen. Das
Gleichstromglied ist zum Unterschied von allen andern
in seiner Grösse auch vom Schaltwinkel #„ abhängig.
Die Spannung am betrachteten Strang war unmittelbar

vor dem Kurzschluss

UaO — t/o j/2^ • sin (#o — <5o) (74)

Das Gleichstromglied ist am grössten, wenn diese
Spannung gleich 0 war (Kurzschlussmoment grösster
Asymmetrie; Fig. 2a). In diesem Fall tritt auch die
zweite Harmonische entsprechend dem letzten
Glied am deutlichsten hervor. Wenn die Spannung
Uao ihren Maximalwert erreicht hat, verschwindet
das Gleichstromglied (symmetrischer Kurzschlussmoment;

Fig. 2 b). Hier ist die zweite Harmonische
fast nicht zu erkennen, trotzdem ihre Amplitude
gleich geblieben ist. Sie hat ihre Maxima in Nähe
des Nulldurchgangs der Hauptkomponenten.

Typische Werte der Konstanten. An dieser Stelle
ist es vielleicht nützlich, eine kleine Zusammen-
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Charakteristische Konstanten von Drehstrom-Maschinen Tabelle I

*d x'd x"d

1

otdi
~

I'd0
S „

H&I II i=T"ä
Pdi

5 s

xi
xd

* 1

x"d

H
kWs
kVA

Turbogeneratoren 2,0...2,3 0,25...0,30 0,15-0,20 4-7 0,6-1 0,02-0,04 0,10-0,25 0,8-0,9 1 5-7
Wasserkraftgeneratoren

Ohne Dämpferwicklung
0,9...1,6 0,3...0,4 0,25-0,35 3-7 0,8...2 0,01 0,4-0,6 0,55-0,70 2-3 2...4

Polgitter 0,9...1,6 0,3...0,4 0,25-0,30 3...7 0,8-2 0,03-0,08 0,2-0,4 0,55-0,70 2,5-3,5 2-4
Vollständige

Dämpferwicklung 0,9...1,6 0,3-0,4 0,20-0,25 3-7 0,8-2 0,03-0,08 0,15-0,30 0,55-0,70 0,9-1,3 2-4
Massive Pole 0,9...1,6 0,3-0,4 0,20-0,30 3—7 0,8-2 0,04 0,2-0,4 0,55-0,70 1,2-1,5 2-4

Synchronmotoren 1,0...1,5 0,25-0,50 0,15...0,35 2-3 0,5-1,5 0,01-0,02 0,02...0,10 0,6-0,8 1 0,5-1,5
Asynchronmotoren 3...5 — 0,20-0,40 — — 0,01-0,05 0,01-0,1 1 1 0,05-1,5

Stellung der Konstanten verschiedener Maschinenarten

zu geben (Tab. I). Die Reaktanzen sind im
sog. «per-Unit»-System ausgedrückt, d. h. die
Werte in Ohm sind mit dem Nennstrom multipliziert

und durch die Nennspannung dividiert. Diese
Art der Darstellung hat den Vorteil, dass die Zahlen
für bestimmte Maschinenarten nur in mässigen

Fig. 2

Kurzschlussoszillogramme des Statorstroms einer Synchron¬
maschine mit Polgittern

a Kurzschlussmoment grösster Asymmetrie
b symmetrischer Kurzschlussmoment

Grenzen schwanken und für Maschinen beliebiger
Spannung und Leistung vergleichbar sind. Die Zahlen

beziehen sich auf schweizerische Maschinen. In
der Literatur findet man bis jetzt solche Tabellen
fast nur amerikanischer Herkunft, die für unsere
Verhältnisse nicht ohne weiteres zutreffen. Es wäre
erwünscht, wenn solche Daten in vermehrtem Masse

publiziert würden, z. B. bei der Beschreibung neuer
Kraftwerke.

Synchronisierfehler. Die Resultate für den drei-
strängigen Kurzschluss lassen sich leicht auf den
Fall einer ungenauen Synchronisierung übertragen,
wenigstens sofern es sich um Spannungs- und
Winkelfehler handelt. Für einen reinen Spannungsfehler

hat man d0 0, für einen reinen Winkel-
Jl IWÉP"1* ***"*»•>•

fehler d0 — Statt U0 bat man die (geometrische)
2

Differenz zwischen Maschinenspannung und
Netzspannung einzusetzen.

Stabilitätsproblem

Als Beispiel für ein Problem der zweiten Klasse
werde ich den Rechnungsgang einer
Stabilitätsuntersuchung skizzieren. Eine Maschine sei über
eine Leitung mit dem Widerstand R und eine
Seriekapazität c an ein starres Netz angeschlossen
(Fig. 3). Die Aufgabe besteht darin, den Bereich der
R- und c-Werte abzugrenzen, bei denen die Maschine

Fig. 3

Stabilität eines Generators mit Seriekapazität
nach Concordia & Carter

xd 1,0; x'j 0,30; x"d — 0,22; x^ 0,6;

x", 0,31 T', 0,8 s; T"A 0,029 s; 2T 0,021 s
q ' a'd ' 9

nung an den Maschinenklemmen, id2' ist die feste
Netzspannung. Der innere Widerstand der
Maschine sei vernachlässigt oder mit R zusammen-
gefasst. Die Gleichung der Maschine kennen wir
in Park-Koordinaten:

Die Gleichung der restlichen Schaltung lässt sich
hingegen einfacher in Strangspannungen und
Linienströmen schreiben. Wir bezeichnen die Ladung des
Seriekondensators mit Q. Dann ist

II «O H R- 11*11 + ' II 0 II + IIu(2) II (76)

oder
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(i + Rw) T«»(" "(2) Il (77)

Damit wir diese Gleichung mit (75) kombinieren
können, setzen wir in (77) Park-Komponenten ein:

II itt1) '
H Cp • II uO) II ; ||i'II

||u(2>'|| Cp • y u(2) II

(t+"4)

U} 3 • sin à

U] 3 • cos <5

(78)

Cp-^WÏ ~ dt Lp H B(i)'_u(î)'||
(79)

Hierin ersetzt man ||u0)'|| durch Gl. (75) und
multipliziert vorn mit Cp

M
-t

»K~ir)
_d_)[([cK-A\ |,!P'|| — H»W|,'

(80)
Diese Gleichung gilt noch für beliebige Vorgänge,
ist aber nicht linear bei veränderlichem w. Nun
führen wir die kleinen Störungen e für den Polradwinkel,

II Ai II für den Strom und || A^ll für die
Flussverkettungen ein. Die stationären Werte werden

durch den Index 0 gekennzeichnet. Wir haben
also

de
' — "0 + : <^0 + dt

\\uW'\\=(l + eK)-\\u'0\\

II i' II II I'o II + II Ai II ; .11V" II II Voll + 11 AST

(81)

I u'oH [/) 3

0

sin c

cos <

I Voll

0

Ido

IqO

mu
0

V0

V,o

(81a)

Nach dem Einsetzen in Gl. (80) und ausmultiplizieren
können wir den stationären Teil

(xc — R K) • II I'0II -|- w0 K2 • H V0|| =2+ (82)

abspalten. Darin haben wir die kapazitive Reaktanz

xc eingeführt. Als Rest bleiben bei
wnc

Vernachlässigung der Produkte kleiner Grössen
lineare Integro-Differentialgleichungen. Wir schreiben

direkt die entsprechende Matrizengleichung im
Bildbereich an:

Xc+
R :

CO

K

0

2s2

CO,

<)RK • y Ai 11+ — (s—w0K)2- II AV||

;2 l R
- • II V0||+s — H/'„II
0

+ K y u'0

2K H V0||) +

(83)

L0 *0

AV|| m0 U(s) • II A»ll Xd (s)

M») Xq (s)

Bei konstanter Spannung des Erregers hat man

•II Ai II

(84)

Setzt man das ein, so erhält man aus Gl. (83) A id

und Aiq als Funktionen von e Aio wird Null). Die
Bewegungsgleichung wird nach Abspaltung des
stationären Teils

Js2 e + — {[wo V,o —[ IqO Xd (s)] A id —
w0

— [wo Vo — Ido Xq (s)] Aig} 0 (85)

Setzt man darin f\ii und A iq ein und bringt auf
gleichen Nenner, so erhält man eine Gleichung von
der Form

F„ (s) • e (aos"+ oi s""1 + ...an.î s -|- an) s 0 (86)

Das Polynom Fn (s) ist vom 7. Grad für Maschinen
ohne, und vom 9. für Maschinen mit Dämpferwicklung.

F„ (s) 0 ist die charakteristische Gleichung
des Problems. Stabilität bedeutet, dass keine
exponentiel! anwachsenden Schwingungen unter den
Lösungen sind, dass also alle 7 bzw. 9 Wurzeln der
Gleichung F„ (s) 0 negativen Realteil haben.
Das ist dann der Fall, wenn bei a0 > 0 alle Hurwitz-
schen Determinanten positiv sind:

Dv

a0 0 0

ßo a9

Cl2v-\ (l2v-2 &2«-3

0

dv

> 0 v 1,2, ...7i

(87)

Schon die Koeffizienten av selbst sind zum Teil
ziemlich lange Ausdrücke. Die Determinanten Dt,
besonders die höherer Ordnung, sind explizite kaum
anschreibbar. In unserem und in manchen
ähnlichen Fällen hilft aber oft ein kleiner Trick. Eine
notwendige, wenn auch nicht hinreichende Bedingung

dafür, dass die Realteile der Wurzeln negativ
werden ist, dass die Koeffizienten a„ selbst alle
positiv sind. Das ist immerhin schon viel einfacher
zu kontrollieren. Man zeichnet also die Kurven
civ 0 in Funktion derjenigen Parameter, deren
Einfluss auf die Stabilität untersucht werden soll.
Die labilen Zonen, die sich so ergeben sind auf alle
Fälle zu vermeiden. Zur Kontrolle der Sicherheitsmarge,

die man darüber hinaus braucht, genügt es
meistens für einen einzigen ausserhalb liegenden
passend gewählten Punkt festzustellen ob er stabil
sei. Das ist aber viel einfacher, da dazu nur noch
eine Gleichung mit bestimmten numerischen
Koeffizienten gelöst werden muss, wofür ja viele praktische
Methoden bekannt sind. Für die hier behandelte
Aufgabe zeigt Fig. 3 ein solches Diagramm. Es ist
einer Arbeit von Concordia und Carter [33]
entnommen. Die Parameter sind hier R und xc. Es zeigt
sich, dass das Nullsetzen von ae und a7 labile Zonen
gibt. Eine Kontrolle ergab, dass der Punkt R 0,1 ;

xc 0,6 noch knapp stabil ist, dass sich also offen-
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bar bei grösseren xc die wirkliche Stabilitätsgrenze
sehr eng der durch a6 0 und o7 0 bestimmten
Kontur anschmiegt.

In andern Fällen ist es praktischer die Methode
der kleinen Schwingungen anzuwenden und die
Frequenzgangkurven in der komplexen Zahlenebene

nach einem der bekannten Stabilitätskriterien
(Nyquist, Leonhard) zu untersuchen. Der Übergang

von den Gleichungen im Bildbereich der
Laplace-Transformation zum Freqneuzgang ist sehr
einfach infolge der Beziehung

F (jA) [s - f (,)]„ u (88)

Anlauf eines Asynchronmotors
Als Abschluss soll noch ein Beispiel aus der dritten

Klasse gezeigt werden. Je nach der angewandten
Integrationsmethode müssen die Gleichungen zuerst
in eine passende Gestalt gebracht werden. Zur
numerischen Integration ohne mechanische
Hilfsmittel ist das Verfahren von Runge-Kutta praktisch,
da es bei genügender Genauigkeit die Wahl von
grossen Intervallen erlaubt. Zu seiner Anwendung
müssen die Gleichungen als System simultaner
Differentialgleichungen erster Ordnung geschrieben
werden. Für die einfache Differentialgleichung

d x

zeigt Tabelle II das Schema.

(89)

Schema von Runge-Kutta zur numerischen Integration
Tabelle II

* y H*.y) k

% yo fi fcl=f1 h

h
*0+2

h

I
^1

yo+Y
Je

f, lc,=f2 • h
fc= l(fe1+2fe2+2fe3+fe1)

»
*o+2 yo+Y fo k,=t3- h

*o+h yo+K f. k^iq-h

*i=*o+h yi=y«+h

Dieses lässt sich ohne Mühe auf den Fall mehrerer
Variablen erweitern.

Die Spannungsgleichungen für Wd und Wq und die
Bewegungsgleichung für co haben bereits die
passende Form. Es ist nur noch eine geeignete Umformung

der Beziehungen zwischen den W und den i
nötig. Der Asynchronmotor, der uns hier als
Beispiel dient, ist ein Spezialfall der Synchronmaschine.
Die Feldwicklung fehlt und die Konstanten der
Längs- und Querachse sind gleich. Daher ist

" L +Li (s) tL, (s)

Also gilt für die Ströme

(f-T) s+ ß

— (£Ht+£"T) -ßt

(90)

(91)

v d,q
Differenziert man (91) nach t und addiert die mit ß

multiplizierte ursprüngliche Gleichung dazu, so hat
man bereits die gewünschte Form:

_1_

~L
dy„\
dt
(92)

Wir haben also das folgende System von fünf
Differentialgleichungen nach dem Runge-Kutta Schema
zu behandeln:

dVd

dt
dWq

dt
di<j

dt
d iq

~dt

dw
~d7

m — R — ii coWq

Uq R iq CO Vi

ß ^IdO — i,

ß (l,0 i,

Wio—Wi
+1L"

1 d Wd

dt
fV—¥V +

(Wq

L" dt

E-(Wiiq— Wqii)

(93)

Die Rechnung wurde durchgeführt für den
Leeranlauf eines Käfigankermotors. Dabei dient das

ganze Drehmoment zur Beschleunigung des Rotors.
Die Geschwindigkeitsänderung und ihr Einfluss auf
den Vorgang werden daher sehr gross. Die Zahlenwerte

der Konstanten sind

Xi coL 3,57 ; x"d eoL" 0,218 ; R 0,032 ;

1
T"d= — 0,0186 s

ß

H :
J co''

syn.

2 P„
0,046 kWs/kVA

Fig. 4 zeigt das Ergebnis der Rechnung. Links (4 a)
ist das Drehmoment als Funktion der Geschwindigkeit,

rechts die Geschwindigkeit als Funktion der
Zeit aufgetragen. Zum Vergleich ist in 4 a auch das

I,

/A "\

/ À

^

\

A

0 " 0,if 0, 6 0'(
Ar,

SEVf728(e

/ \

/ t

/
1V

y
0 •*-

0,02
^

0,09 0,06 0,08 0,10 qf2s

a b
Fig. 4

Leeranlauf eines Asynchronmotors
a Drehmoment-Drehzahl-Charakteristik

I Drehmoment beim Leeranlauf
II stationäres Drehmoment

b Drehzahl-Zeit-Charakteristik

stationäre Drehmoment, wie es aus dem
Kreisdiagramm erhalten werden kann eingezeichnet. Je
mehr man den Anlauf verlangsamt, z. B. durch
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Ankuppeln zusätzlicher Schwungmassen oder durch
Belastung an der Welle, desto mehr nähert sich das
Drehmoment diesen stationären Werten.
Bemerkenswert an den in Fig. 4 gezeigten Ergebnissen
sind vor allem folgende drei Tatsachen:

1. Der Verlauf und die Grösse des Drehmoments bei sehr
raschem Anlauf sind vom stationären Drehmoment völlig
verschieden.

2. Es treten am Anfang sehr hohe, rasch pulsierende
Drehmomente auf.

3. Der Endzustand wird nicht stetig, sondern in Form einer
gedämpften Schwingung erreicht. Die synchrone Geschwindigkeit

wird vorübergehend überschritten.

Alle diese Erscheinungen sind auch schon
experimentell festgestellt worden (z. B. R. Schiz, E.u.M.
Bd. 59(1941) S. 553). Besonders die Aufnahme der
raschen Drehmomentschwankungen bietet aber
beträchtliche messtechnische Schwierigkeiten. Die
erste Spitze des Drehmomentes kann mit guter
Näherung berechnet werden, indem man den Motor
als stillstehend annimmt. Das ist dann eine Aufgabe
der ersten Klasse. Im Beispiel liefert diese Rechnung
als erste Spitze 2,86 statt dem genauen Wert 2,82.
Frequenz und Dämpfung der Schwingung am
Schluss können ebenfalls annähernd berechnet werden.

Man führt das Problem auf ein solches der
zweiten Klasse zurück, indem man sowohl den
Schlupf wie auch die Abweichungen des Stromes
und der Flussverkettung von den stationären
Leerlaufwerten als klein annimmt. Bei Vernachlässigung
des Statorwiderstandes erhält man so die charakteristische

Gleichung

»(S + ffl + (A-~)~g-0 (94)
\x d XdJ 2 H

Literatur
Zur Ergänzung der etwas knappen Darstellung soll hier

noch die wichtigste Literatur angeführt werden, einerseits
solche, die ein gründlicheres Studium der Methoden ermöglicht,
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Das Thermoelement als Energieumformer
Von L. Geiling,

Unter vereinfachenden Annahmen wird untersucht, wie hoch
der Wirkungsgrad eines aus Thermoelementen gebildeten
Umformers sein kann. Der theoretische Grenzwert wird zu 662lz%
gefunden, was höher ist, als man bisher annahm (50%), und
durch die Eigenart des Thermoumformers bedingt ist, in dem ein
Teil der Jouleschen Wärme wieder in elektrische Energie

übergeführt wird. Der praktisch erreichbare Wirkungsgrad liegt
wesentlich niedriger und hängt im wesentlichen von der Kühlung
der kalten Lötstellen ab, er liegt unter 6%. Praktisch kann der
Thermoumformer etwa zur Verwertung der Abgaswärme von
Kraftwerken oder auch als Thermokühlmaschine Verwendung
finden. Der Materialaufwand ist.gross.

Palaiseau, France
621.362

Les recherches sur le rendement d'une thermopile comme
transformateur seront faites à partie d'hypothèses simplificatrices.

La limite théorique du rendement a été trouvée de 662lf/0
ce qui est une valeur plus élevée que ce qui a été admis jusqu'ici
(50%) et qui est conditionnée par les propriétés du transformateur

thermoélectrique, dans lequel une partie de l'effet Joule est
réutilisée sous forme d'énergie électrique. Le rendement pratique
que l'on peut atteindre est essentiellement plus bas et dépend du
refroidissement des soudures froides, il est en dessous de 6%. En
pratique, le transformateur thermoélectrique peut utiliser les gaz
d'évacuation des usines ou peut servir de machine réfrigérante.
La quantité de matière première est importante.

Das Thermoelement ist die einfachste Maschine
zur Umformung von Wärme in elektrische Energie.
Es hat keine bewegten Teile, wenig Verschleiss,
braucht fast keine Wartung und wäre demnach
vorzüglich geeignet, auch im grossen als
Energieumformer eingesetzt zu werden. Als Energiequellen
kommen in erster Linie die Brennstoffe in Frage,
die Abwärme von Kraftwerken, aber auch Sonnenenergie

oder die Wärme von heissen Quellen usw.
Die direkte Erzeugung elektrischer Energie aus
Brennstoffen kann auch in der «Brennstoffkette»
geschehen1), die durch hohen Wirkungsgrad
ausgezeichnet ist (60%), in ihrer praktischen Ausführung
jedoch sehr kompliziert und teuer ist, weshalb sie
bis heute keine praktische Anwendung gefunden
hat. Zur Verwertung von «Abfallwärme» oder
Strahlungswärme ist das Thermoelement allein
geeignet.

Die Patentliteratur ist reich an Vorschlägen für
die Herstellung solcher Thermoumformer ; trotzdem
hat noch keiner bis heute praktische Bedeutung
erlangt. Der Grund ist der schlechte Wirkungsgrad,
der allen Thermoumformern anhaftet. In der
vorliegenden Arbeit soll nun der Wirkungsgrad eines
Thermoumformers errechnet werden.

Einer genaueren Berechnung stehen Schwierigkeiten

entgegen, die in der Temperaturabhängigkeit
der Materialeigenschaften liegen. Exakt könnte die
Rechnung nur für ein ganz bestimmtes Metallpaar
durchgeführt werden, dessen Kennwerte für den

ganzen betrachteten Temperaturbereich bekannt
sein müssen. Da es hier aber darauf ankommt, eine
Übersicht über das Verhalten der Metalle zu erhal-

') siehe E. Baur : Über das Problem der elektrotechnischen
Verbrennung der Brennstoffe. Bulletin SEV, Bd. 30(1939),
Nr. 17, S. 478...481.

ten, müssen, um zu verhältnismässig einfachen und
übersichtlichen Formeln zu kommen, vereinfachende

und verallgemeinernde Annahmen gemacht
werden.

Kurz seien noch die thermoelektrischen Effekte
in Erinnerung gebracht.

Der Seebeck-Effekt : Im Jahre 1821 entdeckte
Th. J. Seebeck, dass in einem geschlossenen Stromkreis,

der aus zwei verschiedenen Metallen besteht,
die an zwei Stellen, den sogenannten «Lötstellen»,
verlötet sind, ein Strom fliesst, wenn die eine dieser
Lötstellen erwärmt wird.

Sind die Temperaturen der Lötstellen und
t2, so ist die den Strom I hervorbringende
elektromotorische Kraft E

E — u{Tl — T2) V (1)

Der Proportionalitätsfaktor u (V/ Grad) wird als
«Thermokraft» oder «Seebeckkoeffizient» bezeichnet.

Der Peltier-Effekt : Schickt man einen elektrischen

Strom durch die Verbindungsstelle
(Lötstelle) zweier Metalle, so wird ausser der Jouleschen
Wärme auch eine positive oder negative Wärme
entwickelt, die mit der Stromrichtung ihr Zeichen
umkehrt (entdeckt 1834 von J. C. Peltier). Die
erzeugte Wärmemenge Q ist proportional der Stromwärme

I und der Dauer t des Stromdurchflusses.

Q n- I- f T cal (2)

Zwischen dem Peltierkoeffizienten und dem
Seebeckkoeffizienten besteht ein Zusammenhang der
Form:

n= T- — (3)
dT
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