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41¢ année

Ne 14

Samedi, le 8 Juillet 1950

BULLETIN

DE I’ASSOCIATION SUISSE DES ELECTRICIENS

Moderne Methoden zur Behandlung nichtstationiirer Vorginge
in elektrischen Maschinen

Yon Th. Laible, Ziirich *)

Es werden einige methodische Hilfsmittel zur Behandlung
nichistationdrer Vorgéiinge in elekirischen Maschinen behandelt.
Die mathematische Erfassung dieser Vorginge geschieht mit
Hilfe der Matrizenrechnung, mit der Laplace-Transformation
und mit numerischen und mechanischen Integrationsmethoden.
Anhand einiger Beispiele wird die Anwendung dieser Hilfs-
methoden erériert. Ein reiches Literaturverzeichnis erginzt die

Arbeit.

Einleitung

Das gesamte Gebiet der nichtstationdren Vor-
ginge in elektrischen Maschinen ist so gross, dass es
sich nur darum handeln kann, einen ganz skizzen-
haften Uberblick zu geben. Wie schon der Titel an-
deutet, werden wir uns weniger um die Vorginge
selbst als um die Hilfsmittel zu ihrer mathema-
tischen Erfassung kiimmern. Die Beispiele dienen
nur zur Illustration und konnten fast beliebig ver-
mehrt werden.

Die wichtigsten methodischen Hilfsmittel sind:

1. Die Matrizenrechnung zur iibersichtlichen Schreibweise
der Gleichungen und zur Vornahme der nétigen «Koordina-
ten»-Transformationen.

2. Die Laplace-Transformation zur Behandlung der linea-
ren Probleme.

3. Numerische und mechanische Integrationsmethoden zur
Behandlung nichtlinearer Probleme.

Ich setze diese Methoden als mehr oder weniger
bekannt voraus und beschrinke mich darauf, ihre
Anwendung auf das hier behandelte spezielle Gebiet
zu erortern.

Matrizenrechnung

Von der Matrizenrechnung brauchen wir nur
einen verhiltnismissig kleinen Teil, der repetitions-
weise hier kurz zusammengestellt sel.

Unter einer Matrix versteht man eine Zusammen-
fassung von n - m Zahlen ay in der Form

A1 Qyp ¢« o Ogm
A9y Ag9 « v« Aom l == 1...n

A e ene = lleall g —1..m (1)
Any Qny Qnm

Die Matrix A enthélt n Zeilen und m Kolonnen
(Spalten). Als besonders wichtig seien die quadra-

*) Vortrag, gehalten im Kolloquium fiir Ingenieure iiber
moderne Probleme der Elektrotechnik an der ETH am
3. Dezember 1949,

621.313.01

Exposé de quelques moyens méthodiques pour U'étude des
processus non stationnaires dans les machines électriques,
notamment du calcul matriciel, de la transformation de La-
place, ainsi que des méthodes d’intégration numériques et
mécaniques. L’emploi de ces diverses méthodes est illustré
par quelques exemples. Une bibliographie détaillée termine
cet exposé.

tischen Matrizen (m = n), die Kolonnenmatrizen
(m = 1) und die Zeilenmatrizen (n = 1) erwihnt.
Unter der transponierten Matrix A' = |lax:| ver-
steht man diejenige, die aus 4 durch Vertauschen
der Zeilen und Kolonnen hervorgeht. Die Transpo-
nierte einer Kolonnenmatrix ist eine Zeilenmatrix.
Das Produkt zweier Matrizen 4 = |lai| wund
B = ||bi|| ist eine neue Matrix C, definiert durch

Cik, = Z Air * brk (2)
r=1

Die Kolonnenzahl des ersten Faktors 4 muss
gleich der Zeilenzahl des zweiten Faktors B sein.
Auch wenn das Produkt B - A4 existiert ist es im
allgemeinen ungleich mit 4 - B. Das kommutative
Gesetz gilt fiir die Multiplikation der Matrizen nicht,
wohl aber das assoziative, d. h.

(A-B)-C=A-(B-C)=A-B-C (3
A-B=C
B - A = C (4)

Ferner folgt aus

Eine spezielle quadratische Matrix ist die Ein-
heitsmatrix

100...0
010...0

E=(001...0 (5)
000 ...1

Sie ist mit allen Matrizen (gleicher Zeilen- bzw.
Kolonnenzahl) vertauschbar:

E-A=A-E=4 (6)

Ist die Determinante |A|=|a| einer quadra-
tischen Matrix von Null verschieden, so existiert
auch die inverse Matrix

525
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41=_L1 by
4]

Darin bedeuten die Dj; die Unterdeterminanten der
Elemente von 4. Es ist stets

A-A1=A1-A=E 8)

Die Elemente einer Matrix brauchen nicht ge-
wohnliche Zahlen zu sein, sondern konnen selbst
wieder Matrizen sein. Solche Untermatrizen erhilt
man, indem man zwischen den Zeilen und Kolonnen
einer Matrix einige waagrechte und senkrechte
Trennlinen zieht und alle so entstehenden Recht-
ecke als einzelne Matrizen auffasst.

(7)

Transformationen

Samtliche Stréme in den Zweigen eines Netz-
werks lassen sich zu einer Kolonnenmatrix [|i]]
zusammenfassen und ebenso simtliche Spannungen
(z. B. die Spannungen aller Knotenpunkte gegen
einen bestimmten Bezugspunkt) zu einer Spannungs-
matrix ||u||. Sie sind untereinander durch eine
quadratische Matrix Z, die Impedanzmatrix, bzw.
die Admittanzmatrix Y = Z-! verkniipft. Die Stréome
und Spannungen einer Schaltung kénnen mit den-
jenigen einer andern in eindeutiger und umkehr-
barer Weise verkniipft sein. Eine solche Verkniip-
fung wird dargestellt durch eine quadratische
Transformationsmatrix C. Die eine Schaltung stellt
eine FErsatzschaltung fiir die andere dar. Die
Matrizenrechnung erméglicht fiir jede Etappe der
Rechnung den bequemen Ubergang auf diejenige

Schaltung, in der die Rechnung am einfachsten
durchfihrbar ist.

Unter allen méglichen Transformationen be-
schrinken wir uns willkiirlich auf eine Auswahl
durch die Forderung nach «Leistungsinvarianz»
und «Impedanzinvarianz». Die erste Forderung
bedeutet, dass die Leistung

P = Jlul’- i 9)

unverindert bleiben soll, die zweite, dass fiir ein
symmetrisches Netz ohne Kopplungen die spezielle
Impedanzmatrix

Z=3zE (10)

unverdndert bleiben soll. Beide Forderungen zu-
sammen ergeben, dass die Transformationen ortho-
gonal sein miissen, d.h. dass die Matrix C der

Bedingung

C'-C=E oder C'= C-! (11)
geniigen muss. Ein in der Starkstromtechnik viel
gebrauchtes Beispiel einer solchen Transformation
ist der Ubergang auf symmetrische Komponenten
In einem m-phasen-Netz erhilt man 'die symme-
trischen Komponenten der Spannung "aus

jul
RIS RN

I’ = C- (12)

wo Cik =

(13)

5!“

Die Komponente u,” ist die Nullspannung, u,” die
Mitspannung und un’ die Gegenspannung. Ent-
sprechendes gilt fiir den Strom.

«Park»-Koordinaten

Z Bei der Anwendung auf rotierende Maschinen
ist eine wesentliche Aufgabe der Transformationen,
durch Ubergang auf geeignete Koordinaten die zeit-
lich variablen Induktivititen zwischen bewegten
Wicklungen zu eliminieren. Wir beschrinken uns
hier der Einfachheit halber auf kollektorlose Ma-
schinen, da diesen die grosste praktische Bedeutung
zukommt. Der allgemeinste Vertreter dieser Gat-
tung ist die Synchronmaschine mit ausgepriigten
Polen und Dampferwicklung. Fig. 1 zeigt das zwei-

a-Achse

d-Achse

“c-Achse

SEVt7281

Fig. 1
Zweipoliges Ersatzbild der Synchronmaschine
b, ¢ wirkliche Statorwicklung .
d, q Ersatzwicklungen fiir die Statorwicklung a, b, ¢
D, @ Ersatzwicklungen fiir die Dampferwicklung
f Feldwicklung

a,

polige Schema einer solchen Maschine. Die Polachse
oder Lingsachse wird als d-Achse (franzésisch:
axe directe, englisch: direct axis) bezeichnet, die
darauf senkrechte als Querachse (franzdsisch: axe
transversale, englisch: quadrature axis). Den Uber-
gang von den Strangstromen i,, i, i. auf die d,
¢-Komponenten erhilt man durch die «Park»-
Transformation. Park hat sie 1929 zum erstenmal
systematisch angewandt [21]!). Dreyfus [14] und
Blondel [16] haben schon friiher, aber in etwas ver-
steckter Form dasselbe gemacht. i; und i, sind bis
auf ein Ubersetzungsverhaltms k durch die Bedin-
gung gegeben, dass sie in jedem Augenblick dasselbe
Luftspaltfeld wie 4, 15, . erregen miissen,’ also:

. 2 2
=k [ia -cos? + 15 - cos (0———;) +ic- cos(19—1— ?n)]
(14)
Dasselbe gilt fiir i, mit (0 -+ g) statt ¢. Die dritte

Komponente soll keinen Beitrag zur Grundharmo-

1) siehe Literatur am Schluss der Arbeit.
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nischen des Luftspaltfeldes geben. Diese Bedingung
erfilllt der Nullstrom der symmetrischen Kompo-
nenten. Aus der Orthogonalititsbedingung C* - C=E

folgt k = l/% Park wihlte seinerzeit von einem

anderen Gesichtspunkt aus k = 2/3. Wir haben
daher die Transformationsmatrix

Co =
1/y2 1/)2

) e
—sin(9) —sin(ﬁ—%”) —-—sin(ﬁ_l_z_;f) \
(15)

/)2

2
3 || cos ()

und ihre Inverse

Cl=C =
1/V2
1/)2

cos (9) —sin (9)

cos (0_2_7!) —sin (ﬁ—z—n)
3 3

cos (19 -}—'.23—71) —sin (t9 -+ f?n)
(16

a
3

1/y2

Parksche Gleichungen

Das Induktionsgesetz gibt fiir irgendeinen Stator-
strang die Gleichung

d¥,
dz

Y, ist die gesamte Flussverkettung dieses Stranges.
Die entsprechenden Gleichungen aller Stringe zu-
sammengefasst ergeben die Matrizengleichung

d| ¥
dt

(17)

Usg = — Ris—

flull=— R il — (18)

Wir driicken die Spannungen, Strome und Fluss-
verkettungen durch ihre Park-Komponenten u,,
Ud, Ug USW. AUS:

, . d (G|
G w) = —R- ¢ ir) — -G IEN g
di
Nun multiplizieren wir vorn mit der Matrix C,:
, ., d (G 11
||u “ — —R ",, ||_Cp° M =
de
., d(|¥’ d C! ,
— Ry — 2D dE gy (o)
de de

In C;' ist nur & von der Zeit abhingig. d ¢/dt = w
ist die momentane Winkelgeschwindigkeit der Ma-

schine. Daher wird '
|
-1 -1
dé' _ G, a6
de ds

G

Da die mit @ multiplizierte Matrix noch éfters vor-
kommt, schreiben wir fiir sie zur Abkiirzung K. Die
Spannungsgleichungen der Synchronmaschine lau-
ten also in Matrizenform

A

lw'll = —R |Ii’ + o K|¥| (22)
de
oder in Komponenten ausgeschrieben:
. d¥
up=—Ri,— 1 to
ud=—Rid—ﬂ‘!~-{—w¥’, (23)
de
ug =—Ri, — L 5y — o ¥
de )

In der Form von Gl. (23) wurden sie von Park ge-
geben.

Es fehlen noch die Beziehungen zwischen den
Flussverkettungen und den Strémen. Wenn wir von
Sittigungserscheinungen absehen sind sie linear.
Man verwendet daher zu ihrer Herleitung mit Vor-
teil die Methode der Laplace-Transformation.

Laplace-Transformation

Definitionsgemiss wird einer Funktion F(¢) eine
Funktion f(s) zugeordnet durch

oo

£ (s) =fe-"-F(t)dt

0

(24)

Von Doetsch [7] wurde dafiir die symbolische
Schreibweise

f(s) e F (1) (25)
vorgeschlagen. Die bisher in der mathematischen
Literatur iblichen Unterscheidungsmethoden zwi-
schen Originalfunktionen und Bildfunktionen eignen
sich nicht fiir die Elektrotechnik. Ich benutze daher
folgende Schreibweise 2)

Uug o—e Ua; ia 0—e1a; Y o—e ¥, usw. (26)
Im folgenden sind nur diejenigen Sitze und Formeln
der Laplace-Transformation kurz zusammenge-
stellt, die wir fiir unsere Zwecke brauchen. Es sind
dies die Differentiationsregel

dF (1)

o—es-f(s) —F (0) 27
de ;
der_Verschiebungssatz
e F (t) o—e f (s + ) (28)

?) Nachtriiglich habe ich gefunden, dass E. E. I. Pilcher
genau die gleiche Bezeichnungsart vorschligt [The Metro-
politan-Vickers Gaz. Bd. 23 (1949), Nr. 374, S. 101].
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der Fal-tungssatz

Fi ()

Jraos

und die Beziehungen zwischen den Grenzwerten
(falls die Grenzwerte rechts existieren)

o0

Rm=fﬂa—ﬂiuﬂh=

0

(t—3) dz o—e £, (s) - £, (s) (29)

lim [s - f (s)] = Lim [F (t)]
s-—> t—.>oo (30)
lim [s £ (5] = lim [F (1)

ferner eine kleine Auswahl an Entsprechungen
zwischen speziellen Funktionen:

1 o-0 — ex o—¢ 1
s s+a
cos (vt) o—e e sin (vt) o—e PR (31)
e>cos (vt) o—e s—i_—(x; e sin(vt)o—o—v—
(s+oa)2+2? (s+ )2 402

Nach dieser kurzen Abschweifung kehren wir zur
Synchronmaschine zuriick.

Flussverkettungen der Liingsachse

Da die Querachse und die Lingsachse aufeinander
senkrecht stehen, beeinflussen sie sich nicht. Man
kann jede fiir sich behandeln. Die d-Achse hat drei
Wicklungen: die Ersatzwicklung d fiir den Stator,
die Ersatzwicklung D fiir die Dampferwicklung und
die Feldwicklung f. Die Beziechungen zwischen den
Stromen und den Flussverkettungen dieser drei
Wicklungen sind in der Matrizengleichung

Yy | Laa Lap Lag|| | da
¥p Lps Lop Loy ip (32)
’ Yrll |Lu Lp Ly i

zusammengefasst. Die Dampferwicklung ist immer
kurzgeschlossen. Daher gilt fiir sie

d ¥
dt

0 = —Rpip— (33)

oder im Bildbereich
0= —RD 1:1) — S8 ?ﬁD —I—- gjpo (34«)

Ypo ist der Anfangswert der Flussverkettung Yp.
Fiir die Feldwicklung haben wir die entsprechenden
Gleichungen

d ¥

T (35)

up=—Ryis—s ¥+ ¥po (36)

Transformiert man GL (32) auch in den Bildbereich
und setzt ¥p aus Gl (34) und ¥ aus Gl. (36) darin

ein, so erhilt man

¥y La Laip Ly id
L4 -
SDO — || Lipa Lpop+ — Loy ip
VYo—u ; R 8
ﬁ;ﬂ Lya : Lsp Lff+—sf if
(37)

Daraus kann man die Untermatrix bestehend aus

den beiden uns nicht interessierenden ip und iy eli-
minieren. Man erhilt

. -1
¥, — (de_“LdD Las| ' Lop+Rpfs Loy
Lsp Lir+ Ry/s,
L v L -1
H P * ta+ || Lap Lay|| I po+Rofs Loy
Lsp Ly + Ry/s
'y
H Dol (38)
(Pro— uf

Wir fithren als Abkiirzungen die Streukoeffizienten
ein:

g = 11— Laf' Ly i — 1 — Lap Lpa

de Lff Ld:i LDD 39)
L

g et 1 —
Lyy Lop

ferner die Zeitkonstanten:
Tp — 122 Tr— 7 na
Ro Ry

die beiden Wurzeln g2 > xq41 der quadratischen
Gleichung
om Ty Tp i —(Tr+ To) xa+1=0 (41)

und die beiden Zahlen 441 und A,s, die man aus dem
Gleichungspaar

orp (Ant+Aa) =
=2— g4y—0ip—2 ]/(1— oir) (].—0’.11)) (1

—m) {49

(I —ou4)  (1—oun)
T

ofp (Aar xaz + Aaz xa1) =

erhilt. Die Werte Wpo und ¥yo driicken wir ausser-
dem durch die Anfangswerte der Strome Iao, Ipo und
Iso aus. Dann erhalten wir nach ausmultiplizieren

von Gl. (38)
5 Wa (- I us | I
P = (zd_f) La(s)— (‘1% + %) LisG(s)—

IDO

E=——— Ldz) D (S) (43)

~ Die Funktion Lq (s) hat die Form

_Ad2

4(s) = Laa [1 — Aa ] (44)

s+ ad1 S 4+ aaz
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Der Vergleich mit Gl. (31) zeigt folgende Beziehung

zum Originalbereich

L—d(s—)—o—o de(l e Adl : e—adlt—Adz . e_ad2t) = ld(t)
$ (45)
Daraus lisst sich leicht ablesen:
lim L.{ (S) = lim 1,1 (t) = L,id
s—0 1—00 (46)

lim L, (s) =limly (t) =L (1——A.;1——Adz) =L"4
t—0

=00

Fiir stationire Vorginge und angenihert auch fiir
alle langsam verlaufenden hat die Funktion Lq (s)
den Wert Las, fiir rasch verlaufende Vorginge hin-
gegen den Wert L"¢. Mit Hilfe der Wurzeln Bi2 > fa1
der quadratischen Gleichung

IL"“ o Ty Tp fi— (o Ty + oan,To) fa+ 1 =0 (47)

dd

kann man auch schreiben

L (s + Par) (S + Baz)

Li(s) = (48)
(s + ada1) * (s + aa2)
und
1 1 1 1 '
e
La(s) Laa L'aa  La/ s+ pa
o =)o )
L dd L dd/ S + ﬂdz
mit der weitern Abkiirzung
L= L% ﬂ'ﬂ - ﬂ'“ (50)
i+ iz B — Xd1 &d2
faz
Aus Gl. (49) folgt
1 .o 1 n (1___1_) e—ﬁdxt+
s-La(s) Laa L'as L
1 1 —Pgst
Hpo—o)e M=ne ey
4d L'

Die Funktion G (s) kommt meistens nur in der Kom-
bination G (s)/La (s) vor. Fiir diese erhalten wir mit
praktisch geniigender Anniherung

G(s) B P e—ﬁdik

La (s) " Lua (s+ par) e Laa

Genau genommen kime noch ein zweites Glied von
dhnlichem Aufbau hinzu, das aber mit den in der
Praxic vorkommenden Zahlenwerten vernachlis-
sigt werden darf.

Auf die Funktion D (s) gehen wir nicht niher ein.
Im stationdren synchronen Betrieb fliesst in der
Dampferwicklung kein Strom. Ipo ist nur dann von
Null verschieden, wenn unmittelbar vor dem unter-
suchten Ausgleichvorgang ein anderer stattgefunden
hat, der noch nicht abgeklungen ist. Da solche
Probleme verhiltnismissig selten sind, lassen wir
fiir das Folgende das Glied mit Ipe in Gl (43) weg.

(52)

Ihre Auflésung nach ia ergibt dann

T Ido L _ﬁ 1 ,llf Ifo) G(s)
‘“——s‘+(‘*"“ s )L.,(s) +(E+T Lars)
(53)

Mit Hilfe des Faltungssatzes kann man diese Glei-
chung sofort auch im Originalbereich schreiben

d¥, —Bat
dt (54)

ta= Tqo+

Querfeld
Fiir die g-Achse geht die Rechnung ganz ent-
sprechend. Sie wird nur einfacher, weil man nur
zwei Wicklungen ¢ und @ hat. Entsprechend dem
Operator Lq (s) erhilt man einen Operator L, (s):

L.I (s) = L‘I‘I (6‘1 s + 0“1) =' L”‘H (S + ﬁ'l) (55)

$ 4 oy S 4 g
oder
SRSV S R B
L, (s) Lgq L7 Ly / s+ B4
und daher
1 -

e g (L_i) e V=1, 67
s Ly (s) | L' |
und

; d ¥

ig= I + 1« q () (58)

di
Nullsystem

Fiir das Nullsystem kann man geniigend genau
mit einer konstanten Induktivitit L, rechnen und
erhillt daher einfach

¥,
Lo

= To (39)

Es spielt iibrigens selten eine Rolle.

Bewegungsgleichung

Mit den Gleichungen (54), (58) und (59), die i,,
g, g durch ¥, ¥y, ¥, ausdriicken, werden die
Gleichungen (22) bzw. (23) zu einem System von
Integrodifferentialgleichungen fiir ¥, i, ¥, Ist
die Geschwindigkeit w gegeben oder konstant, so
geniigt dieses Gleichungssystem zur Bestimmung
der Lésung. Im andern Fall ist als weitere Gleichung
die Bewegungsgleichung der Maschine erforderlich.
Zur Bestimmung des Drehmoments bilden wir die
Leistungsbilanz. Wir bilden die Transponierte der
Gl. (22) und multiplizieren sie hinten mit der Strom-
matrix |[z'] :

I s/ =) * 1 /d 7 o)
lw' |- 11 )|=—RJ"|* || i II—(— (k2 II’) i+
dt

+o | ¥ K (60)

Links haben wir die ins Netz abgegebene Leistung.
Das erste Glied rechts stellt die Jouleschen Verluste
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in der Statorwicklung, das zweite die zur Anderung
der magnetischen Energie bendtigte Leistung, das
dritte die mechanische Leistung dar. Diese ist gleich
w/p (mechanische Winkelgeschwindigkeit!) mal das
Drehmoment. Dieses ist daher

It K- (i) = p (Weia — Waiy)  (61)

Setzen wir den Ausdruck in die Bewegungsgleichung
ein und dividieren noch durch die Polpaarzahl p so
haben wir schliesslich

J d . .
?'d—?‘f'(lpq“_y’“q):

Manlrieb

(62)

Klassifizierung der Probleme

Nachdem wir die allgemeinen Grundlagen haben,
lassen sich die Probleme einigermassen iibersehen.
Sie gliedern sich vom mathematischen Standpunkt
aus in drei Klassen.

1. Die erste Klasse umfasst die Probleme, bei
denen die Geschwindigkeit konstant bleibt oder
wenigstens mit geniigender Niherung als konstant
betrachtet werden kann. In diesem Falle sind die
Gleichungen linear. Man geht dann mit Vorteil auch
mit Gl (22) in den Bildbereich iiber:

~ 1 o~

i, | o s0 0 ?i/o Yis

4 =—R'| || —10 s-o|-| P —+ || Pao
\ ~

ug || g 0w s| |¥ Z,,

(6

Die Bewegungsgleichung braucht man nicht. In
diese Klasse fallen z. B. Kurzschlussvorginge,
Spannungs- und Winkelfehler beim Synchronisieren,
Spannungsinderungen bei Belastungsstossen mit
oder ohne Einwirkung von Spannungsreglern.

2. Die zweite Klasse umfasst solche Vorginge,
bei denen w zwar verinderlich ist, bei denen aber
alle Griossen nur um kleine Betrige von einem sta-
tioniren Zustand abweichen. Man kann dann, indem
man diese Abweichungen (Stérungen) als neue
Variable einfiihrt, in bekannter Weise die Gleichun-
gen fir den stationiren Zustand abspalten und den
Rest durch Vernachlissigung der Produkte von
Stérungsgliedern linearisieren. Typische Beispiele
fiir diese Klasse sind : Kleine Pendelungen unter dem
Einfluss von periodisch schwankendem Antriebs-
(Dieselgeneratoren) oder Lastmoment (Kolbenkom-
pressoren), Reguliervorginge unter dem Einfluss des
Kraftmaschinenreglers und Stabilititsuntersuchun-
gen.

3. Die dritte Klasse bilden solche Probleme, bei
denen wesentliche Geschwindigkeitsinderungen vor-
kommen. Das Gleichungssystem ist dann wegen den
Gliedern w ¥ in den Spannungsgleichungen und ¥ ¢
in der Bewegungsgleichung nichtlinear. Geschlossene
mathematische Losungen fiir Probleme dieser Klasse
sind mir nicht bekannt. Man ist auf numerische und
mechanische Methoden (Bush-Maschinen) ange-
wiesen. KEinige Beispiele sind: Anlaufvorginge,
Synchronisieren mit grossem Frequenzfehler, In-
Tritt-ziehen von Synchronmotoren.

Zur Illustration soll ein ausgewihltes Beispiel aus
jeder der drei Klassen behandelt werden.

Dreistringiger Kurzschluss

Als Beispiel fiir ein Problem der ersten Klasse
wihlen wir den dreistringigen Kurzschluss der
Synchronmaschine ausgehend von einer beliebigen
Vorbelastung. Dieses Problem ist zwar altbekannt
und oft behandelt worden, hat aber den Vorteil,
dass es nicht nur als Beispiel dient, sondern auch
einen guten Einblick in die Bedeutung der ver-
schiedenen Konstanten gibt, die eine Maschine
kennzeichnen.

Der bessern Ubersicht halber fithren wir von
Anfang an eine Vereinfachung ein. Der Stator-
widerstand ist praktisch stets klein. Das Glied
R - ||7'|| spielt nur die Rolle einer kleinen Korrektur.
Zur Berechnung von i; und i; in diesen Gliedern
benutzen wir daher nicht die genauen Ausdriicke,
sondern eine konstante Induktivitdt 2 L7 - L/
(L"3a + L"4). Mit der Abkiirzung

R (L"a + L)

XR = (64)
2 L4 L7
haben wir dann statt (63) die Gleichungen:
u, 54 Ry 0 ¥, Yo
~ o 0 -~
wll = 0 sdar -—w || 1 || P
U 0 o s+or| || W40
(65)

Im Kurzschluss ist |jul|= 0. Gl (65) lisst sich nach
den ¥ auflésen. Bei symmetrischer Vorbelastung
ist ¥y, = 0. Daher wird auch ¥; = 0 und i, = 0.
Der Rest gibt

, B s+ or —o |t || WP
¥, N ® s+ ar .)‘qu|=
1 s+ ar ol ||¥ao
T (st oar)t —w  s+or . Yo o
— e—omt. cos (wt) sin(w?) ‘ | Pao (66)
|| ~sin (wt) cos (wt) Y

VYor dem Kurzschluss war

ug="U, V3 - sindy=wWp; u;="U,}3 - cosdy=—aWio

(67)
also wird
V= _ﬂa}/_3 e . cos (wt+ )
_ (68)
¥, = Uowl'S g o sin (wt -+ do)

Darin ist 0, der der Vorbelastung entsprechende
Polradwinkel. Durch Einsetzen in Gl. (54) und (58)
erhalten wir die Komponenten des Kurzschluss-
stroms
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. =01 1 1 — Bt - 2 2
ta=In+ U J/3 [— + (—7——) e 4 4+ U,)2 V( 1,, —1—,) cos?d, ( 1,, —i) sin2d,

Xd X4 Xd X d X d X q Xq
1 1 —Bat 1 1
B S 3
Xe X e -cos| wt+dy—arctg 1 i tgdy | |—
3 -grt A IR
_.U°,}/3e Rcos(wt—{-éo)—}— e we
e I (1 , 1)\ -agt
—U, 5 xT"f‘x”) € * cos (§g— &) —
. L t— ~Ban ¢ e
+hn Ldf/[uf(R Z)+If°] ¢ d (69 T/(1 1) -art
e 4 —U,,Vz— (x_”d_;cT) e cos (2wt + P+ dp)
! (73)

_ -8
ig= Io—Us}3 [i+( ! ——i) e th sin §, -

”
Xq X q Xq

x”q

4 “.sin(we 1 8 (70)

Die Gleichungen sind bereits ein wenig vereinfacht
unter Beriicksichtigung der Tatsache, dass unter
den praktisch vorkommenden Verhiltnissen alle «
und g klein gegen w sind. An Stelle der Induktivi-
titen haben wir die Reaktanzen eingefiihrt:

” o,
w L’ = a3

(71)

o La = %35 L'y =24

oLy =x35 oL"q=2x"
Das letzte Glied von Gl. (69) gestattet das Eingrei-
fen eines Spannungsreglers oder besonderer Schnell-
erregungs- oder Entregungs-Einrichtungen zu be-
riicksichtigen. Sind keine solchen vorhanden, so
bleibt us = — Ry Iy konstant und dieses Glied ver-
schwindet. '

Den im Stator auftretenden wirklichen Strom
finden wir mit Hilfe der inversen Park-Transforma-
tion

ta 0
|| = Cpl-| ia (72)
ic iy

Wir kénnen uns auf einen beliebigen Strang z. B.
a beschrinken, da sich die andern nur durch den
Schaltwinkel }, unterscheiden:

ia = )/2[3 + (ia cos?—i,sind) =
= J/2/3 [ia cos (wt + D) —igsin (wt +Pg)] =

=I,}2 cos (wt —¢ + g + Bo—06¢) +

—1/cos?§ sin? §
+U0"’2V xﬁo—l— 20

xq‘

e (2] +
q

- cos [wt-|—190—

a iy
+U,)2 (xl—'d_;l,;) cos by - e ’ t-cos(wt—l—ﬂo)—}—

Der Strom i, besteht aus finf Gliedern. Das erste
Glied bildet den stationiren KurzschluBstrom (zu
dem auch der Vorbelastungsstrom gehort). Er
bleibt nach geniigend langer Zeit allein iibrig. Das
zweite Glied ist ein Wechselstrom der gleichen Fre-
quenz, dessen Amplitude aber mit einer Zeit-
konstanten T’y = 1/ f41 exponentiell abnimmt. Man
nennt dieses Glied den «transienten» Anteil des
KurzschluBlstroms, 7T’y die «transiente» Zeitkon-
stante. Das dritte Glied hat den gleichen Charakter,
nur ist seine Zeitkonstante T"; = 1/ fs2 bedeutend
kiirzer. Man nennt es den «subtransienten» Anteil,
T"; die «subtransiente» Zeitkonstante. In der
deutschen Literatur findet man gelegentlich die Be-
zeichnung «Stoss»-KurzschluBlstrom fiir den zwei-
ten und «fliichtiger Stoss»-Kurzschluflstrom fiir den
dritten Anteil. Das vorletzte (vierte) Glied von
Gl. (73) ist ein abklingender Gleichstrom, das letzte
ein Wechselstrom doppelter Frequenz. Beide haben
die gleiche Zeitkonstante Tgr = 1/xgr. Die Grosse
der einzelnen Glieder ist ausser durch die Vorbe-
lastung hauptsdchlich durch die verschiedenen
Reaktanzen bestimmt. x; und x,, die fiir die Grisse
des stationiiren KurzschluBstroms und auch sonst
fiir den stationiren, also synchronen Betrieb mass-
gebend sind, heissen die synchronen Reaktanzen.
Nach den Gliedern, auf die sie hauptsiéchlich Ein-
fluss haben, heissen x'; die «transienten», x”; und
x"q die «subtransienten» Reaktanzen. Das Gleich-
stromglied ist zum Unterschied von allen andern
in seiner Grosse auch vom Schaltwinkel {, abhiingig.
Die Spannung am betrachteten Strang war unmittel-
bar vor dem Kurzschluss

Ug) — — Uo V§ sin (190 —_— 60) (74)
Das Gleichstromglied ist am gréssten, wenn diese
Spannung gleich 0 war (Kurzschlussmoment grisster
Asymmetrie; Fig. 2a). In diesem Fall tritt auch die
zweite Harmonische entsprechend dem letzten
Glied am deutlichsten hervor. Wenn die Spannung
uq ihren Maximalwert erreicht hat, verschwindet
das Gleichstromglied (symmetrischer Kurzschluss-
moment; Fig. 2b). Hier ist die zweite Harmonische
fast nicht zu erkennen, trotzdem ihre Amplitude
gleich geblieben ist. Sie hat ihre Maxima in Nihe
des Nulldurchgangs der Hauptkomponenten.

Typische Werte der Konstanten. An dieser Stelle
ist es vielleicht niitzlich. eine kleine Zusammen-
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Charakteristische Konstanten von Drehstrom-Maschinen Tabelle I
T[], | =
xq xld x"d gy Bay — = T”d -l—':TR ﬁ # kWs
T 4 T’y |Baz ®R x4 X4 VA
8 8 B 8
Turbogeneratoren 2,0...2,3/0,25...0,30/0,15...0,20| 4...7 | 0,6...1 |0,02...0,04(0,10...0,25| 0,8...0,9 1 DT
Wasserkraftgeneratoren
Ohne Dimpferwick-
lung : 0,9...1,6] 0,3...0,4 |0,25...0,35| 3...7 0,8...2 0,01 0,4...0,6 10,55...0,70 2...3 2.4
Polgitter 0,9...1,6] 0,3...0.4 |0,25...0,30] 3...7 0,8...2 {0,03...0,08] 0,2...0,4 |0,55...0,70(2,5...3,5 2%
Vollstiindige Dimp-
ferwicklung - 10,9...1,6/ 0,3...0,4 |0,20...0,25| 3...7 0,8...2 0,03...0,080,15...0,30/0,55...0,70( 0,9...1,3 2...4
Massive Pole 0,9...1,6| 0,3...0,4 |0,20...0,30| 3...7 0,8...2 0,04 0,2...0:4 10,55...0,7011,2.,,.1,5 2.4
Synchronmotoren 1,0...1,5/0,25...0,50/0,15...0,35 2...3 |0,5...1,5/0,01...0,02|0,02...0,10{ 0,6...0,8 1 0,5...1,5
Asynchronmotoren B — 0,20...0,40, — —  0,01...0,05|0,01...0,1 1 1 0,05...1,5
stellung der Konstanten verschiedener Maschinen- Stabilititsproblem

arten zu geben (Tab. I). Die Reaktanzen sind im
sog. «per-Unit»-System ausgedriickt, d.h. die
Werte in Ohm sind mit dem Nennstrom multipli-
ziert und durch die Nennspannung dividiert, Diese
Art der Darstellung hat den Vorteil, dass die Zahlen
fiir bestimmte Maschinenarten nur in missigen

Fig. 2
Kurzschlussoszillogramme des Statorstroms einer Synchron-
maschine mit Polgittern

a Kurzschlussmoment grisster Asymmetrie
b symmetrischer Kurzschlussmoment

Grenzen schwanken und fiir Maschinen beliebiger
Spannung und Leistung vergleichbar sind. Die Zah-
len beziehen sich auf schweizerische Maschinen. In
der Literatur findet man his jetzt solche Tabellen
fast nur amerikanischer Herkunft, die fiir unsere
Verhiiltnisse nicht ohne weiteres zutreffen. Es wiire
erwiinscht, wenn solche Daten in vermehrtem Masse
publiziert wiirden, z. B. bei der Beschreibung neuer
Kraftwerke.

Synchronisierfehler. Die Resultate fur den drei-
stringigen Kurzschluss lassen sich leicht auf den
Fall einer ungenauen Synchronisierung iibertragen,
wenigstens sofern es sich um Spannungs- und
Winkelfehler handelt. Fiir einen reinen Spannungs-
fehler hat man §, = 0, fiir einen reinen Winkel-

n . N e
fehler ¢, = > Statt U, hat man die (geometrische)

Differenz zwischen Maschinenspannung und Netz-
spannung einzusetzen.

Als Beispiel fir ein Problem der zweiten Klasse
werde ich den Rechnungsgang einer Stabilitiits-
untersuchung skizzieren. Eine Maschine sei iiber
eine Leitung mit dem Widerstand R und eine Serie-
kapazitit ¢ an ein starres Netz angeschlossen
(Fig. 3). Die Aufgabe besteht darin, den Bereich der
R- und ¢-Werte abzugrenzen, bei denen die Maschine
stabil, d. h. ohne zu pendeln, liuft. u®) ist die Span-

10
AN

R c
OfMAHHe

o8 NANNASE
' NNV

¥ anstakil f)g'enaueSfabiliffifsgrenz'e
TOZ

Stabil

SE'"VI??EJ 0'05._. R o a5 020

Fig. 3
Stabilitit eines Generators mit Seriekapazitit
nach Concordia & Carter
zg =105 x, =030; z27; =0,22; a:q = 0,6;
w”q =031 I';=08s; I7;,=0,029s; T”q = 0,021 s

nung an den Maschinenklemmen, u(® ist die feste
Netzspannung. Der innere Widerstand der Ma-
schine sei vernachlissigt oder mit R zusammen-
gefasst. Die Gleichung der Maschine kennen wir
in Park-Koordinaten:

d
u) | = (cu K— -) v (75)
de

Die Gleichung der restlichen Schaltung lisst sich
hingegen einfacher in Strangspannungen und Linien-
stromen schreiben. Wir bezeichnen die Ladung des
Seriekondensators mit (). Dann ist

1
I [= R-llil +—- 1QU+1u®]  (76)

oder

0,25
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1 -d
(~+ R dt) il = - W0 —ue | (7)

Damit wir diese Gleichung mit (75) kombinieren
konnen, setzen wir in (77) Park-Komponenten ein:

[u®’ ] = Cp - |u]| 5 |Ii'] = G - 3]l

0 8
(1w || = Cp - |u® || = ||U}3 -sin 8| { ()
U)3 -cos o

(% + B %) G| = % Gt - [ u®’ —u®’|

(79)
Hierin ersetzt man ||u(’|| durch Gl. (75) und multi-
pliziert vorn mit Cp

a4 -

d d
o -y

(80)
Diese Gleichung gilt noch fiir beliebige Vorginge,
ist aber nicht linear bei veridnderlichem w. Nun
fithren wir die kleinen Stérungen ¢ fiir den Polrad-
winkel, || Ai|| fir den Strom und | AY¥| fir die
Flussverkettungen ein. Die stationiren Werte wer-
den durch den Index 0 gekennzeichnet. Wir haben
also

de
0= 0y+ ¢; w:w°+d—t
[u®] = (14 eK) - u/y]] (81)
13 =1L+ 1 Adlls 1 U=+ AP
0 0
[uel|=U] 3 -| sin &, 1Tl =|| Lao
coS 60 ‘ Iqo
1l = || Pao
Py |

Nach dem Einsetzen in Gl (80) und ausmultiplizie-
ren konnen wir den stationéiren Teil

(xe—RK) - [ I'g]l + o K2+ | #'sll = K - ||us]] (82)
abspalten. Darin haben wir die kapazitive Reak-
tanz x. = oo eingefithrt. Als Rest bleiben bei

Vernachliissiggmg der Produkte kleiner Gréssen
lineare Integro-Differentialgleichungen. Wir schrei-
ben direkt die entsprechende Matrizengleichung im
Bildbereich an:

(xc_|_1j7s——RK) I Alll+ (s—woK)2 I AP =

0
252 ’ ’ ’
—K[ ik H—l‘s(—llloll*—zKll-Woll)—i-

+ K| u'on] E (83)

Bei konstanter Spannung des Erregers hat man

L, || ED
| A= w,||La(s)| - I ATl = ||%a ()] || Adll
| Lq (s) Xq (s) (84)

Setzt man das ein, so erhalt man aus Gl. (83) Aiq

und A1, als Funktionen von & ( A, wird Null). Die
Bewegungsgleichung wird nach Abspaltung des

stationidren Teils

Jste —]— {[wo Tq0 x4 (5)] Ata —

— [wo Pao— Lao x4 (5)] Alg)=0 (85)
Setzt man darin Al; und Al ein und bringt auf
gleichen Nenner, so erhilt man eine Glelchung von
der Form

Fu(s) - &= (aos"+ a1 s"' +ottn1 5 +an) =0 (86)

Das Polynom F, (s) ist vom 7. Grad fiir Maschinen
ohne, und vom 9. fiir Maschinen mit Dampferwick-
lung. F, (s) = 0 ist die charakteristische Gleichung
des Problems. Stabilitit bedeutet, dass keine expo-
nentiell anwachsenden Schwingungen unter den
Loésungen sind, dass also alle 7 bzw. 9 Wurzeln der
Gleichung F,(s) = 0 negativen Realteil haben.
Das ist dann der Fall, wenn bei a, > 0 alle Hurwitz-
schen Determinanten positiv sind:

a, a 0 s 0
D, =|% ay a e - 0 >0 v=12,..n
87
agp-1 A20-2 A2p-3 ... ay ( )

Schon die Koeffizienten a, selbst sind zum Teil
ziemlich lange Ausdriicke. Die Determinanten D.,
besonders die htherer Ordnung, sind explizite kaum
anschreibbar. In unserem und in manchen #hn-
lichen Fillen hilft aber oft ein kleiner Trick. Eine
notwendige, wenn auch nicht hinreichende Bedin-
gung dafiir, dass die Realteile der Wurzeln negativ
werden ist, dass die Koeflizienten a, selbst alle
positiv sind. Das ist immerhin schon viel einfacher
zu kontrollieren. Man zeichnet also die Kurven
@, = 0 in Funktion derjenigen Parameter, deren
Einfluss auf die Stabilitit untersucht werden soll.
Die labilen Zonen, die sich so ergeben sind auf alle
Fille zu vermeiden. Zur Kontrolle der Sicherheits-
marge, die man dariiber hinaus braucht, geniigt es
meistens fiir einen einzigen ausserhalb liegenden
passend gewidhlten Punkt festzustellen ob er stabil
sei. Das ist aber viel einfacher, da dazu nur noch
eine Gleichung mit bestimmten numerischen Koeffi-
zienten gelost werden muss, wofiir ja viele praktische
Methoden bekannt sind. Fiir die hier behandelte
Aufgabe zeigt Fig. 3 ein solches Diagramm. Es ist
einer Arbeit von Concordia und Carter [33] ent-
nommen. Die Parameter sind hier R und x.. Es zeigt
sich, dass das Nullsetzen von a; und a, labile Zonen
gibt. Eine Kontrolle ergab, dass der Punkt R = 0,1;
xe = 0,6 noch knapp stabil ist, dass sich also offen-
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bar bei grosseren x. die wirkliche Stabilititsgrenze
sehr eng der durch a4 = 0 und @; = 0 bestimmten
Kontur anschmiegt.

In andern Fillen ist es praktischer die Methode
der kleinen Schwingungen anzuwenden und die
Frequenzgangkurven in der komplexen Zahlen-
ebene nach einem der bekannten Stabilititskrite-
rien (Nyquist, Leonhard) zu untersuchen. Der Uber-
gang von den Gleichungen im Bildbereich der
Laplace-Transformation zum Frequenzgang ist sehr

einfach infolge der Beziehung
F(j2) = [s - £ ()]s

Anlauf eines Asynchronmotors

Als Abschluss soll noch ein Beispiel aus der dritten
Klasse gezeigt werden. Je nach der angewandten
Integrationsmethode miissen die Gleichungen zuerst
in eine passende Gestalt gebracht werden. Zur nu-
merischen Integration ohne mechanische Hilfs-
mittel ist das Verfahren von Runge-Kutta praktisch,
da es bei geniigender Genauigkeit die Wahl von
grossen Intervallen erlaubt. Zu seiner Anwendung
miissen die Gleichungen als System simultaner
Differentialgleichungen erster Ordnung geschrieben
werden. Fiir die einfache Differentialgleichung

(88)

dy
—_— =f o
- (%, ¥)

zeigt Tabelle II das Schema.

(89)

Schema von Runge-Kuita zur numerischen Integration

Tabelle 11
x ¥y f(x.y) k
%o Yo £, |(b=fi-h
h k
%o+ 2 Yot ?l fy |kg=fy-h 1
L Ik k= E(k1+2k:+ 2ks-+Fy)
%+ Yot - f; |ky=fy-h
2 2
%o+h Yotbks | £3 |ke=f-h
xy=%+h |yi=yotk|....| ...

Dieses lisst sich ohne Miihe auf den Fall mehrerer
Variablen erweitern.

Die Spannungsgleichungen fiir ¥; und ¥, und die
Bewegungsgleichung fiir w haben bereits die pas-
sende Form. Es ist nur noch eine geeignete Umfor-
mung der Beziehungen zwischen den ¥ und den i
nitig. Der Asynchronmotor, der uns hier als Bei-
spiel dient, ist ein Spezialfall der Synchronmaschine.
Die Feldwicklung fehlt und die Konstanten der
Liangs- und Querachse sind gleich. Daher ist

1 _ 1 =L+(_1__i 8
Li(s) Lg(s) L ' \L L)s+,3

Also gilt fiir die Strome:

o= I+ ((:;I:") * [i -+ (i —l) e_ﬁ'] (91)

(90)

L L L
v=d,q
Differenziert man (91) nach ¢ und addiert die mit §

multiplizierte urspriingliche Gleichung dazu, so hat
man bereits die gewiinschte Form:

Bi, + d"’ ﬂ(vo——!lf.,o)Jr(i +Li d:;")
(92)

Wir haben also das folgende System von fiinf Diffe-
rentialgleichungen nach dem Runge-Kutta Schema
zu behandeln:

%=—ud—R—id+ 0 ¥,

d:f,: =—uq—_Ri.,—a)'I’d

‘3’: ﬁ(Ido—ld— = T“’) + L,, '% (93)
ddi: (I’°_i’ quL Tq) T 'dd—Y:q

% _ %2(% i Wia)

Die Rechnung wurde durchgefiihrt fiir den Leer-
anlauf eines Kifigankermotors. Dabei dient das
ganze Drehmoment zur Beschleunigung des Rotors.
Die Geschwindigkeitsinderung und ihr Einfluss auf
den Vorgang werden daher sehr gross. Die Zahlen-
werte der Konstanten sind

xg = owL=23,57;: x"a=owlL"=0218; R=0,032;

T:= 2 = 0,0186 s

B
2
H=T %% _ 0046 kWs/KkVA
2P

Fig. 4 zeigt das Ergebnis der Rechnung. Links (4 a)
ist das Drehmoment als Funktion der Geschwindig-
keit, rechts die Geschwindigkeit als Funktion der
Zeit aufgetragen. Zum Vergleich ist in 4a auch das

/\

3 ¥

b

L/

2T\ 08

2N
L L

N
—
\

T N —
| =T
@
Dsyn o
\
=]

0(-) as 08 )
p—— 0

syn 0 22’,0,0‘4 006 008 010
a b
Fig. 4
Leeranlauf eines Asynchronmotors
a Drehmoment-Drehzahl-Charakteristik -
I Drehmoment beim Leeranlauf

II stationdres Drehmoment
b Drehzahl-Zeit-Charakteristik

SEVI72846

stationire Drehmoment, wie es aus dem Kreis-
diagramm erhalten werden kann eingezeichnet. Je
mehr man den Anlauf verlangsamt, z. B. durch

gr2s
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Ankuppeln zusitzlicher Schwungmassen oder durch
Belastung an der Welle, desto mehr nihert sich das
Drehmoment diesen stationiren Werten. Bemer-
kenswert an den in Fig. 4 gezeigten Ergebnissen
sind vor allem folgende drei Tatsachen:

1. Der Verlauf und die Grésse des Drehmoments bei sehr
raschem Anlauf sind vom stationiren Drehmoment villig ver-
schieden.

2. Es treten am Anfang sehr hohe, rasch pulsierende Dreh-
momente auf.

3. Der Endzustand wird nicht stetig, sondern in Form einer
gedimpften Schwingung erreicht. Die synchrone Geschwindig-
keit wird voriibergehend iiberschritten.

Alle diese Erscheinungen sind auch schon experi-
mentell festgestellt worden (z. B. R. Schiz, E.u.M.
Bd. 59(1941) S.553). Besonders die Aufnahme der
raschen Drehmomentschwankungen bietet aber
betrichtliche messtechnische Schwierigkeiten. Die
erste Spitze des Drehmomentes kann mit guter
Niherung berechnet werden, indem man den Motor
als stillstehend annimmt. Das ist dann eine Aufgabe
der ersten Klasse. Im Beispiel liefert diese Rechnung
als erste Spitze 2,86 statt dem genauen Wert 2,82.
Frequenz und Dimpfung der Schwingung am
Schluss konnen ebenfalls anndhernd berechnet wer-
den. Man fithrt das Problem auf ein solches der
zweiten Klasse zuriick, indem man sowohl den
Schlupf wie auch die Abweichungen des Stromes
und der Flussverkettung von den stationiren Leer-
laufwerten als klein annimmt. Bei Vernachlissigung
des Statorwiderstandes erhilt man so die charakte-
ristische Gleichung

S(s+ﬂ)+(1” i)-

X d Xd

Wsyn. —0
2H

(94)

Literatur

Zur Erginzung der etwas knappen Darstellung soll hier
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Das Thermoelement
Von L. Geiling,

Unter vereinfachenden Annahmen wird untersucht, wie hoch
der Wirkungsgrad eines aus Thermoelementen gebildeten Um-
formers sein kann. Der theoretische Grenzwert wird zu 66%{,%,
gefunden, was héher ist, als man bisher annahm (509%,), und
durch die Eigenart des Thermoumformers bedingt ist, in dem ein
Teil der Jouleschen Wirme wieder in elektrische Energie iiber-
gefiihrt wird. Der praktisch erreichbare Wirkungsgrad liegt we-
sentlich niedriger und hingt im wesentlichen von der Kiihlung
der kalten Létstellen ab, er liegt unter 69,. Praktisch kann der
T hermoumformer etwa zur Verwertung der Abgaswédrme von
Kraftwerken oder auch als Thermokiihlmaschine Verwendung
finden. Der Materialaufwand ist gross.

Das Thermoelement ist die einfachste Maschine
zur Umformung von Wirme in elektrische Energie.
Es hat keine bewegten Teile, wenig Verschleiss,
braucht fast keine Wartung und wire demnach
vorziiglich geeignet, auch im grossen als Energie-
umformer eingesetzt zu werden. Als Energiequellen
kommen in erster Linie die Brennstoffe in Frage,
die Abwirme von Kraftwerken, aber auch Sonnen-
energie oder die Wirme von heissen Quellen usw.
Die direkte Erzeugung elektrischer Energie aus
Brennstoffen kann auch in der «Brennstoffkette»
geschehen?), die durch hohen Wirkungsgrad ausge-
zeichnet ist (609,), in ihrer praktischen Ausfithrung
jedoch sehr kompliziert und teuer ist, weshalb sie
bis heute keine praktische Anwendung gefunden
hat. Zur Verwertung von «Abfallwirme» oder
Strahlungswirme ist das Thermoelement allein
geeignet.

Die Patentliteratur ist reich an Vorschligen fiir
die Herstellung solcher Thermoumformer; trotzdem
hat noch keiner bis heute praktische Bedeutung er-
langt. Der Grund ist der schlechte Wirkungsgrad,
der allen Thermoumformern anhaftet. In der vor-
liegenden Arbeit soll nun der Wirkungsgrad eines
Thermoumformers errechnet werden.

Einer genaueren Berechnung stehen Schwierig-
keiten entgegen, die in der Temperaturabhingigkeit
der Materialeigenschaften liegen. Exakt konnte die
Rechnung nur fiir ein ganz bestimmtes Metallpaar
durchgefithrt werden, dessen Kennwerte fir den
ganzen betrachteten Temperaturbereich bekannt
sein miissen. Da es hier aber darauf ankommt, eine
Ubersicht iiber das Verhalten der Metalle zu erhal-
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621.362
Les recherches sur le rendement d’une thermopile comme
transformateur seront faites & partie d’hypothéses simplifica-
trices. La limite théorique du rendement a été trouvée de 662/,
ce qui est une valeur plus élevée que ce qui a été admis jusqu’ici
(50%) et qui est conditionnée par les propriétés du transforma-
teur thermoélectrique, dans lequel une partie de Ueffet Joule est
réutilisée sous forme d’énergie électrique. Le rendement pratique
que l'on peut atteindre est essentiellement plus bas et dépend du
refroidissement des soudures froides, il est en dessous de 69%,. En
pratique, le transformateur thermoélectrique peut utiliser les gaz
d’évacuation des usines ou peut servir de machine réfrigéranie.
La quantité de matiére premiére est importante.

ten, miissen, um zu verhiltnismissig einfachen und
iibersichtlichen Formeln zu kommen, vereinfa-
chende und verallgemeinernde Annahmen gemacht
werden.

Kurz seien noch die thermoelektrischen Effekte
in Erinnerung gebracht.

Der Seebeck-Effekt: Im Jahre 1821 entdeckte
Th. J. Seebeck, dass in einem geschlossenen Strom-
kreis, der aus zwei verschiedenen Metallen besteht,
die an zwei Stellen, den sogenannten «Lotstellen»,
verlotet sind, ein Strom fliesst, wenn die eine dieser
Lotstellen erwiarmt wird.

Sind die Temperaturen der Liotstellen 7 und
T,, so ist die den Strom I hervorbringende elektro-
motorische Kraft E

E=u(T,—T,) V (1)

Der Proportionalititsfaktor u (V/Grad) wird als
«Thermokraft» oder «Seebeckkoeffizient» bezeich-
net.

Der Peliier-Effekt : Schickt man einen elektri-
schen Strom durch die Verbindungsstelle (Lot-
stelle) zweier Metalle, so wird ausser der Jouleschen
Wirme auch eine positive oder negative Wirme
entwickelt, die mit der Stromrichtung ihr Zeichen
umkehrt (entdeckt 1834 von J. C. Peltier). Die er-
zeugte Wirmemenge ( ist proportional der Strom-
wirme I und der Dauer ¢ des Stromdurchflusses.

. Q=1I-I-t-T cal (2)

Zwischen dem Peltierkoeffizienten und dem See-
beckkoeffizienten besteht ein Zusammenhang der
Form:

7 . 9w

i (3)
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