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Samedi, le 10 Juin 1950

BULLETIN

DE I’ASSOCIATION SUISSE DES ELECTRICIENS

Zur Theorie der Dimension der physikalischen Gréssen

Von M. Landolt, Winterthur

Der Autor untersucht verschiedene Definitionen des Begriffs
der Dimension. Da sich diese nicht decken, und da sie nicht alle
den gegenwirtigen Anforderungen geniigen, schligt er eine neue
Variante vor. Diese beruht auf dem Grissenkalkiil, setzt aber
die Ideen Fouriers fort und iibernimmt die Auffassung von
Helmholtz. Die neue Definitionsvariante gestattet eine bequeme
Handhabung der Dimensionen mit mathematischen Mitteln.
Zum Schluss nimmt der Autor Stellung gegen die Vorschlige, die
darauf abzielen, den Winkeln und axialen Grissen eine besondere
Dimension zuzuschreiben.

1. Vom Ursprung des Begriffs der Dimension

einer physikalischen Grisse

Die beiden verwandten Begriffe Dimension und
Dimensionsexponent hat der franzésische Mathema-
tiker Jean-Baptiste Joseph Fourier [1, Art.157...
162] 1) geschaffen. Der Artikel 160 seiner «Théo-
rie analytique de la chaleur», die erstmals im Jahr
1822 in der endgiiltigen Fassung erschienen ist, hat
folgenden Wortlaut:

11 faut maintenant remarquer que chaque grandeur indé-
terminée ou constante a une dimension qui lui est propre et
que les termes d'une méme équation ne pourraient pas étre
comparés, s’ils n’avaient point le méme exposant de dimension.
Nous avons introduit cette considération dans la Théorie de
la chaleur pour rendre nos définitions plus fixes et servir a
vérifier le calcul; c’est pour cette raison que, dans la Géomé-
trie et dans la Mécanique, elle équivaut aux lemmes fonda-
mentaux que les Grecs nous ont laissés sans démonstration.

Wie dieser Text zeigt, verzichtet Fourier darauf,
seine beiden neuen Begriffe explizit zu definieren.
Wie sie anzuwenden sind, zeigt er aber in den beiden
folgenden Artikeln.

In Art. 161 erldutert er den Einfluss der Dimen-
sion auf die Anderung der Masszahl einer Grisse
beim Lbergang auf neue Einheiten. Von einer
Grosse X, die eine Linge darstellt, sagt er, sie habe
beziiglich der Langeneinheit die Dimension 1; er
braucht also offensichtlich das Wort « Dimension»
im Sinne von «Dimensionsexponent». Dasselbe ist
der Fall, wenn er anschliessend erklirt: die Winkel,
die Sinus- und andere trigonometrische Funktio-
nen, die Logarithmen oder Potenzexponenten seien
reine Zahlen, die mit der Lingeneinheit nicht #n-
derten; fiir sie miisste man daher die Dimension 0
finden. Auch in Art. 162 braucht er « Dimension»
synonym mit « Dimensionsexponent».

Maxwell [2, S.2] zitiert Fourier bei der Dar-
legung des Dimensionsbegriffs. Trotzdem deckt sich
seine Auffassung nicht genau mit derjenigen Fou-

1) siche Literaturverzeichnis am Schluss.

53.081.5

L’auteur passe en revue diverses définitions de la notion de
dimension. Vu qu’elles différent entre elles et qu’elles ne répondent
pas toutes aux besoins actuels, il avance une nouvelle variante qui,
en continuant les idées de Fourier et en s’inspirant des concep-
tions de Helmholiz, se base sur le calcul aux grand,
variante de définition permet de manier facilement les dimen-
sions par des moyens mathématiques. Enfin, I’auteur prend posi-
tion contre des propositions visant d’attribuer une dimension
spéciale aux angles et grandeurs axiales.

rs. La lle

riers ; iiberdies sind seine Darlegungen nicht streng
emdeutlg Maxwell 12, S. 1 u. 2] schreibt:

The formulae at which we arrive must be such that a per-
son of any nation, by substituting for the different symbols
the numerical values of the quantities as measured by his own
national units, would arrive at a true result.

Hence, in all scientific studies it is of greatest importance
to employ units belonging to a properly defined system, and
to know the relations of these units to the fundamental units,
so that we may be able at once to transform our results from
one system to another.

This ist most conveniently done by ascertaining the dimen-
sions of every unit in terms of the three fundamental units.
When a given unit varies as the nth power of one of these
units, it is said to be of n dimensions as regards that unit.

Bei der Definition Maxwells, die im letzten Ab-
satz steht, handelt es sich um Dimensionen (Mehr-
zahl) einer Einheit, wogegen man nach Fourier von
Dimensionsexponenten oder von der Dimension
(in Einzahl) einer Grésse — worunter Fourier nur die
Masszahl versteht — sprechen miisste. Spater geht
Maxwell noch deutlicher eigene Wege.

Maxwell erklirt [2, S. 3], dass er bei der Behand-
lung der Dimensionen von Einheiten die Einheit der
Lange mit [L], die Einheit der Zeit mit [T] und die
Einheit der Masse mit [M] bezeichne; spiter
[2, S. 5] setzt er dann fin die Dimensionen der Ein-
heit der Geschwindigkeit [L T-1], fiir die Dimensio-
nen der Einheit der Arbeit [ML2T-2] usw. Der
Leser weiss nun nicht, ob die Dimensionen aus-
schliesslich durch die Exponenten wiedergegeben
werden, oder ob die eckigen Klammern auch zum
Dimensionsausdruck gehdéren. Wahrscheinlich sol-
len die eckigen Klammern nur ausdriicken, dass es
sich um die Einheit einer Grosse handelt, die mit den
Grundgréssen in einem entsprechenden Zusammen-
hang steht. Wihrend die Dimensionsexponenten
bei Fourier eindeutig nur in Gleichungen vorkom-
men, die zwischen den Masszahlen physikalischer
Grossen bestehen, scheinen sie bei Maxwell in Aus-
driicken aufzutreten, welche Beziehungen zwischen
den physikalischen Gréssen selbst wiedergeben.
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In dieser Weise scheint Helmholtz die Dimensions-
ausdriicke Maxwells verstanden zu haben; er lehrt
[3, S. 32], nachdem er dargelegt hat, dass die neuen
Grossen jeweils durch Gleichungen-definiert wer-
den, in denen ausser diesen nur die drei Grundgrés-
sen in verschiedenen Kombinationen stehen:

. Da nun auf diese Weise im Fortschritt der Untersu-
chungen verhiltniBmissig complizirte Zusammensetzungen
der urspriinglichen GriBenarten auftreten und man sehr
hiiufig das Bediirfnis hat, fiir eine Grée, die auf einem ver-
wickelten Wege durch Heranziehung von Sitzen aus verschie-
denen Kapiteln der Physik gefunden ist, die Art der charak-
teristischen Gruppirung zu bezeichnen, so bildet man Glei-
chungen, welche nicht den Zahlenwert der zu messenden Grife
geben sollen, sondern die Art der Zusammensetzung aus den
grundlegenden GréBen Masse, Linge, Zeit anzeigen. Man
schliesst, um an diesen besondern Sinn solcher Gleichungen zu
erinnern, nach Maxwells Vorgang zweckmiifig die Ausdriicke
in eckige Klammern ein und bezeichnet, ohne sich an be-
stimmte Maasseinheiten zu binden, eine Masse durch M, eine
Liinge durch L und eine Zeit durch T; oft findet man in sol-
chen Angaben das Auftreten von Bruchstrichen dadurch ver-
mieden, dal man negative Exponenten anwendet und dann
stets ein Product irgendwelcher Potenzen von M, L, T erhilt.
Diesen fiir den in Frage stehenden neyen physikalischen Be-
griff zustande kommenden Complex dieser Griflen nennt
man die Dimension desselben.

. Nach Helmholtz schildert also die Dimension einer

Griosse «die Art der Zusammensetzung aus den
grundlegenden GroBen», es wird ein Zusammen-
hang zwischen phy51kahschen Grossen, micht nur
zwischen Masszahlen, angedeutet; hiebei hat der
Umstand, dass die in den Dimensionsausdriicken
verwendeten Symbole bei Helmholiz offensichtlich
Masszahlen darstellen, nichts zu bedeuten.

Einige Jahre frither behandelte Helmholiz das
Operieren mit benannten Zahlen — also mit physi-
kahschen Grossen nach heutigem Sprachgebrauch —
in.einem erkenntnistheoretischen Aufsatz [4, S. 84].
Er bezeichnete dabei «die besondere Art der Ein-
heiten», die eine benannte Zahl zusammenfasst, als
Benennung der Zahl.

Auf einer ganz andern Anschauung beruhen die
Erklirungen, die Bruhat [5, S. 255] fir die Dimen-
sionsausdriicke gibt. Er schreibt:

Prenons par exemple la loi fondamentale de la Dynamique,
qui sert a définir 'unité de force comme une unité dérivée,
Par convention, cette loi sexpnme par la méme formule
f—-my dans les deux systémes: si pour une certaine expé-
rience, les nombres qui mesurent la force, la masse et I'aceélé-
ration sont'f;, m,, y, dans le premier systéme d’unités et f,,
mg,:ys dans le second, ces deux séries de nombres satisfont
aux relations:

fi=myp, Sfo=mays,
et 'on a:
’ S m o
fe my 7
" Le rapport des nombres qui mesurent une méme grandeur
avec deux unités différentes est égal a l'inverse du rapport
de ces deux unités: les rapports F, M, /" des unités du
systéme 2 aux unités correspondantes du systéme 1 sont égaux
respectivement aux rapports fy/fs, m;/ms, ¥1/y,, et sont liés
par la relation:
-F=MI.

Cette relation est dite 'équation de dimensions de la force:
chacune des q'uantxtes E,M, T y représente le rapport de deux
grandeurs de méme espéce, c’est-a-dire un certain nombre,
et elle permet par exemple de calculer le rapport des unités
de force lorsqu’on connait les rapports des unités de masse et
d’accélération. Il est essentiel de remarquer que I’équation de
dimensions d’une grandeur ne nous renseigne pas sur la nature

physique de cette grandeur, mais qu’elle ne fait que traduire
les conventions faites pour définir son unité par un choix
arbitraire de formules.

-Den Begriff der Dimension selbst umschreibt
Bruhat [5, S.256] in folgender Weise:

En dehors des changements d’unités, on peut aussi employer
les équations de dimensions & vérifier I’homogénéité d’une for-
mule. Une formule est I'expression d’une relation numérique
entre les nombres qui mesurent diverses grandeurs; cette
relation doit étre conservée si I'on mesure les grandeurs avec
un autre systéme d’unités, tout en conservant les relations de
définitions des unités dérivées a partir des unités fondamen-
tales. Les expressions qui figurent dans les deux membres de
la formule doivent étre multipliés par le méme rapport, elles
doivent avoir mémes dimensions.

Aus diesen Erklirungen kann man entnehmen,
dass nach Bruhat die Dimension einer Grosse ihr
allgemein fiir zwei Maflsysteme bestehendes Einhei-
tenverhiltnis ist; es kann aus den Einheitenverhilt-
nissen von Bezugsgrﬁssen zusammengesetzt sein.
Dabei ist die Dimension auf alle Fille eine reine
Zahl,

Die Tatsache, dass Fourier auf eine explizite Defi-
nition der von ihm eingefiihrten Begriffe « Dimen-
sion» und «Dimensionsexponent» veérzichtet hat,
ist wohl die Hauptursache dafiir, dass uns kein
einheitlicher Dimensionsbegriff iiberliefert ist. Fi-
scher [6, S. 122 u. 123] hat dargelegt, dass mehrere
Bedeutungen des Begriffs «Dimension» neben-
einander bestehen.

2. Definition der Dimension

Von den genannten Autoren gibt einzig Bruhat
eine eindeutige und erschépfende Definition des Be-
griffs der Dimension, allerdings nur in Form einer
Umschreibung. Diese Definition kann aber diejeni-
gen nicht befriedigen, die im Sinne der Auffassung
von Helmholtz und wohl auch von Maxwell von der
Dimension einer Giésse eine mehr oder weniger
vollstindige Darstellung der besondern Art dieser
Grosse verlangen. In diesem Sinne stellt auch
Hiaberli [7, S. 344] Forderungen an ein Dimensions-
system.

Es scheint aber, dass bis heute eine diesen An-
spriichen geniigende, explizite, eindeutige und er-
schopfende Definition noch nicht vorliegt. Aus die-
sem Grund wird im folgenden der Versuch unter-
nommen, eine solche Definition anzugeben. Sie
wird durch drei Zusitze erginzt.

Den Weg zur Losung der Aufgabe bietet der von
Wallot [8; 9], Landolt [10; 11], Hochrainer [12],
Roth-Desmeules [13] und andern Autoren dargelegte
Grassenkalkiil.

Bei gegebenem System der Deﬁmtlonen der ver-
schiedenen physikalischen Gréssen ist man ohne Ver-
wendung des Grissenkalkiils gezwungen, einerseits
das System der Masszahlengleichungen und ander-
seits ein kohirentes Mafsystem 2) nebeneinander zu
behandeln. Uberdies muss das Axiom anerkannt
werden, dass bei der Verwendung verschiedener
Maf@lsysteme die Masszahlen einer Grésse den ver-

2) Unter einem kohiirenten MaBsystem versteht man eine
Gesamtheit von Einheiten aller verschiedenartigen Grissen,
wobei die verschiedenen Einheiten so gewihlt sind, dass
zwischen ihnen Eins-zu-Eins-Beziehungen bestehen.
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wendeten Einheiten umgekehrt proportional sind.
Bei gegebenem System der Definitionen vereinigt
man im Gréssenkalkiil das System der Masszahlen-
gleichungen und das Maflsystem; man versteht
unter jedem Buchstabensymbol unmittelbar die
physikalische Grosse, d. h. das Produkt aus Mass-
zahl und Einheit. Eine physikalische Grosse ist na-
tiirlich nicht die Naturerscheinung an sich, sondern
lediglich das physikalisch-mathematische Modell,
das man sich von dieser macht.

Es folgt nun die Definition der Dimension mit den
drei Zusitzen, und zwar je mit Erlduterungen.

Definition:

Die Dimension einer skalaren Grisse ist eine gleichartige
Vergleichsgrosse; diese kann ihrerseits aus einer oder -aus
mehreren ungleichartigen Vergleichsgréssen zusammengesetzt
sein

Diese Definition beschrinkt sich auf skalare
Grossen. Gleichartige Grossen unterscheiden sich
in diesem Fall nur durch einen Faktor, der eine
reine Zahl ist. Die Dimension eines Volumens ist
irgendein Vergleichsvolumen., Man kann eine Ver-
gleichsgrosse immer als Einheit ansprechen; sie ist
lediglich eine im Ausmass noch nicht festgelegte
Einheit.

Die Vergleichsgrisse kann ihrerseits zusammen-
gesetzt sein; vorzugsweise wird man hiezu die so-
genannten Grundgrissen, also Linge, Masse, Zeit
und elektrische Ladung verwenden.

Erster Zusatz:

Bei nichtskalaren Grissen bezieht sich die Dimension ledig-
lich auf die bei Nichtbeachtung der riumlichen Richtungen
verbleibenden skalaren Bestandteile.

Dieser Zusatz hat zur Folge, dass die Gesamtheit
der Dimensionen nicht dieselbe Mannigfaltigkeit
aufweist wie die Gesamtheit der Grossen. Ob eine
Grosse ein Skalar, ein Vektor oder ein Tensor ist,
kann man an der Dimension nicht erkennen. So
haben zum Beispiel die Arbeit, die eine skalare
Grosse ist, und das Drehmoment, das ein schief-
symmetrischer Tensor ist, aber hiiufig als Vektor
dargestellt wird, dieselbe Dimension.

Zweiter Zusatzs

Grossen, die fiir verschiedene Definitionssysteme dieselbe
Naturerscheinung wiedergeben, kénnen verschiedene Dimen-
sionen haben.

Definiert man Grossen, welche dieselbe Natur-
erscheinung wiedergeben, auf verschiedene Weise,
so kann es nicht iiberraschen, dass sich fiir diese
Grossen verschiedene Dimensionen ergeben. Es lie-
gen dann tatsichlich verschiedene Gréssen vor, ob-
wohl sie alle denselben Namen haben und hiufig
auch durch dasselbe Buchstabensymbol dargestellt
werden. Drei wichtigen Maflsystemen, nimlich dem
Giorgi-System, dem elektrostatischen CGS-System
und dem elektromagnetischen CGS-System, liegen
verschiedene Definitionssysteme zugrunde. Das
Definitionssystem, an das sich das Giorgi-System
anschliesst, kennt vier voneinander unabhingige,
nicht ineinander iiberfithrbare Grossen, z. B. die
Linge, die Masse, die Zeit und die elektrische La-

dung. Bei den Definitionssystemen, an welche die

CGS-Systeme anschliessen, gibt es (dagegen drei
solche unabhiingige Grossen; zudem sind die beiden
Definitionssysteme noch verschieden. Die Folge ist,
dass die elektrischen und die magnetischen Grossen
in den drei MaBsystemen je eine andere Dimension
aufweisen. )

Dritter Zusatz:

Verschiedenartige Grissen kénnen dieselbe Dimension
haben. . :

Der dritte Zusatz ist nur zum Teil eine Folge des
ersten und zweiten Zusatzes.

Ein erstes Beispiel stellen die Grossen «Arbeit»
und «Drehmoment» dar, die schon in den Erldute-
rungen zum ersten Zusatz erwihnt sind. Ein zwei-
tes Beispiel bilden die «elektrische Feldstiarke» im
elektrostatischen und die « magnetische Feldstirke»
im elektromagnetischen CGS-System. Als drittes
Beispiel sei noch erwiihnt, dass im elektromagneti-
schen CGS-System der «elektrische Widerstand»
und die «Geschwindigkeit» dieselbe Dimension
haben.

Um Missverstindnisse auszuschliessen, sei noch

.ausdriicklich festgestellt, dass hier unter der Be-

zeichnung «CGS-System» die klassischen, drei-
dimensionalen CGS-Systeme verstanden werden,
nicht die in den letzten Jahren gelegentlich erwihn-
ten, auf vier Grunddimensionen ausgebauten «Neo-

CGS-Systemen.

3. Mathematische Erfassung der Dimension

Die folgenden Darlegungen bedienen sich des
Grossenkalkiils. Uber diesen wurden in Abschnitt 2
einige Angaben gemacht.

Driickt man ein und dieselbe Grosse durch ver-
schiedene als Einheiten bezeichnete Vergleichs-
grossen aus, so erhilt man fiir diese Grisse ver-
schiedene Masszahlen. So gilt z. B. fiir eine Energie
von 1800 Kilojoule die Umformung

W = 1800 kJ = 1800000 J = 30 000 Wmin —
500 Wh = 0,5 kWh. (1)

Allgemein setzen wir analog fiir eine skalare Grosse

X = (X} [X]s = { X} [X]o = {X]5 [X]s = - (2)

Dabei bezeichnen wir mit [X];, [X], [X]s ver-
schiedene Einheiten von X und mit {X},, {X},,
(X3, die zugehorigen Masszahlen.

Nun soll [X] (ohne Index) die Dimension von X
nach der in Abschnitt 2 gegebenen Definition, also
eine der Grosse gleichartige Vergleichsgrisse dar-
stellen 3). Uber das Ausmass dieser Vergleichs-
grosse ist nichts festgelegt, auch wenn die Griosse X
selbst genau bekannt ist. Verwendet man die Ver-
gleichsgrosse [X] als Einheit, so ergibt sich fiir X
eine in ihrem Wert unbestimmte Masszahl {X]}
(ohne Index). Damit wird

X = (X} [X].
X _
[X]

3) Der Ausdruck «[X]» ist «Dimension von X» zu lesen.

; 3)
Hieraus folgt

(X} )
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Durch Gl. (3) und (4) wird lediglich ausgedriickt,
dass die Griosse X ein reines Vielfaches der Ver-
gleichsgriosse [X] ist, und dass der Quotient der
Grosse X und der Vergleichsgrisse [X] eine reine
Zahl ist; deren Wert ist unbekannt.

Indem wir fiir bestimmte Einheiten die eckige
Klammer mit Index, fiir die Dimension dagegen die
eckige Klammer ohne Index verwenden, bringen
wir deutlich zum Ausdruck, dass die Dimension
einer Grosse lediglich eine verallgemeinerte Einheit
dieser Grosse ist.

4. Dimensionsgleichungen
und Dimensionsexponenten

Es ist heute vielfach iiblich, die Dimensionen der
vier Grundgrossen Linge I, Masse m, Zeit t, elek-
trische Ladung Q durch L, M, T, Q wiederzugeben.
Nach der in Abschnitt 3 eingefithrten Schreibweise
mit eckigen Klammern gilt demnach:

1] =1L (5a)
[m] = M, (5b)
(] =T, (5¢)
[Q] = Q. (5d)

Driickt man nun die vier Grundgrdssen nach
Gl. (3) je als Produkt der Dimension und der zuge-
hérigen unbestimmten Masszahl aus, so wird

P = L (6a)
m = {m} M, (6b)
t = {t} T, (6¢c)
Q = {0 Q (6d)

Ein Definitionssystem, das auf n nicht durch
einander ausdriickbaren, also unabhiingigen Grund-
grossen und damit auch mit n Grunddimensionen
aufgebaut ist, bezeichnen wir kurz als n-dimensional.

Im Groéssenkalkill kénnen die physikalischen
Grossen als Potenzprodukte der Grundgrissen dar-
gestellt werden. Fiir ein vierdimensionales Defini-
tionssystem gilt demnach fiir eine beliebige skalare
Grosse X der allgemeine Ansatz

X =« Is mB ey QF (7)

Dabei ist « eine konstante reine Zahl, beispielsweise
1, ¥, 2n. Ersetzt man nun I, m, ¢t und  nach
Gl (6a...d), so erhilt man

X — {1} {m) [t)7 Q)¢ L* MOTY Q7.

(8)

Die Grosse X erscheint damit als das Produkt einer
unbestimmten reinen Zahl, die selbst in der Form
eines Potenzproduktes auftritt, und eines Potenz-
produkts von Dimensionen. Die reine Zahl ist die
unbestimmte Masszahl der Grosse X:

(X} = x (U} {m}# {t)r {Q}°. (9)

Das Potenzprodukt der Dimensionen der Grund-
grossen stellt, wenn man die Grésse X nach Gl. (3)
ausdriickt, die Dimension von X dar. Es ist also

[X] = L= M6 T7 Q¢ (10)

Gleichungen der Art von Gl. (10) nennt man
Dimensionsgleichungen ; Ausdriicke der Art der
rechten Seite von Gl. (10) sind Dimensionsaus-
driicke. Die in diesen vorkommenden Exponenten
sind die Dimensionsexponenten.

Fiir die elektrische Spannung gilt beispielsweise
U] =12MT-#%Q-L (11)

Von den Dimensionsgleichungen kommt man auf
die Einheitengleichungen eines kohirenten MaB-
systems, wenn es auf demselben Definitionssystem
beruht wie die Dimensionsgleichungen, indem man
fiir jede Dimension die entsprechende Einheit setzt.
Handelt es sich zum Beispiel um das Giorgi-
System %), das wir durch den Index ¢ kennzeichnen
wollen, so geht die Dimensionsgleichung (10) in
folgende Einheitengleichung iiber:

[Xe = [I]* 1m]® [1]7 [Q1* (12)

Hier wird deutlich, dass unsere Dimensionsgleichun-
gen lediglich verallgemeinerte Einheitengleichun-
gen sind. Betrachtet man wieder die elektrische
Spannung als Beispiel, so wird, da der Meter, das
Kilogramm, die Sekunde, das Coulomb die Giorgi-
Einheiten der Linge, der Masse, der Zeit und der
elektrischen Ladung sind:

'Ule = m2kgs-2C-2. (13)

Man kann die Einheitengleichungen auch direkt
aus den Grossengleichungen ableiten. Gl. (7) stellt
eine solche Grissengleichung dar. Man hat darin
lediglich fiir x den Wert 1 zu beniitzen und fiir die
Grossen die Einheiten zu setzen.

In einer Dimensionsgleichung kann die Dimension
einer Grosse auch durch die Dimensionen von
Grossen ausgedriickt werden, die nicht Grund-
grossen sind. So erhilt man z. B. aus der Gleichung

P

die den Zusammenhang der elektrischen Spannung
U mit der Leistung P und der elektrischen Strom-
stirke I ausdriickt, :

(U] = [PI[1]* (15)

Da das Volt, das Watt und das Ampére die Giorgi-
Einheiten der Spannung, der Leistung und der
Stromstirke sind, geht Gl. (15) fiir das Giorgi-
System in folgende Einheitengleichung tiber:

W

V=1 (16)

Analog wie man fiir reine Zahlen setzt, definiert
man im Gréssenkalkiil fiir physikalische Grossen

X'=1 (17)
Nach Gl. (3) folgt daraus
(Xpe[x]° = 1. (18)

1) siche Bull. SEV Bd. 40(1949), Nr. 15, S. 462...474 (Son-
derabdruck erhiltlich). '
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Fiir die unbestimmte Masszahl, die eine reine Zahl
ist, gilt bekanntlich, wenn man unendlich grosse
Werte ausschliesst,

. X =1." (19)
Aus Gl. (18) und (19) folgt somit
Xp—1]. (20)

Die Grossen der Mechanik setzt man aus den
Grundgréssen Linge, Masse und Zeit zusammen.
Bezeichnen wir eine solche mechanische Grosse

mit Y, so gilt analog Gl. (10)
[Y]= LsMATv. (21)
Wiinscht man den Ansatz vierdimensional zu

schreiben, so rechtfertigt Gl. (20) die folgende
Schreibweise :

[Y] = Le M8 7 Qo. (22)

Als Beispiel einer mechanischen Grésse betrach-
ten wir die Arbeit 4. Fiir ihre Dimension gilt be-
kanntlich

- [A] = L:MT-2 (23)

Fiir das Giorgi-System erhilt man damit die Ein-
heitengleichung

[4]lc = m?kgs-2, (24a)

oder, da das Joule die Arbeitseinheit im Giorgi-
System ist,
(24b)

J =m?kgs-2
Analog erhilt man fir das CGS-System
[A]ces = cm? gs-2, (25a)
oder, da das Erg die CGS-Einheit der Arbeit ist,
(25Db)

Wir betrachten nun eine Grosse £, die insofern
degeneriert ist, als alle vier Dimensionsexponenten
null sind. Nach Gl. (20) findet man dann fiir die

Dimension dieser Grésse
[] = LoMeTo Q.

erg = cm?2gs-2,

(26)

Man bezeichnet solche Grossen als dimensionslos.
Alle reinen Zahlen sind dimensionslos.

Die zu 1 gewordene Dimension der reinen Zahlen
nimmt insofern eine Sonderstellung ein, als sie eine
im Ausmass bestimmte Einheit darstellt. Diese Son-
derstellung entspricht dem Umstand, dass in allen
Mafisystemen iibereinstimmend 1 die Einheit der
reinen Zahlen ist.

5. Verwendung der Dimensionsexponenten

fiir die Umrechnung auf andere Einheiten

Verwendet man fiir ein und dieselbe Grosse zwei
verschiedene Einheiten, so verhalten sich bekannt-
lich die beiden zugehérigen Masszahlen umgekehrt
wie die Einheiten. Zu diesem Gesetz kommt man
sofort, wenn aus Gl. (2) der Quotient der Masszah-
len gebildet wird:

(X) _ (X,
(X XL

Wihlt man fiir jede der vier Grundgréssen zwei
verschiedene Einheiten, wobei wir je die eine durch
den Index ,, die andere durch den Index , kenn-
zeichnen, so ergeben sich nach Gl. (12) fiir die bei-
den kohirenten Einheiten von X die beiden folgen-
den Einheitengleichungen:

27)

[X], = [A [m]? [y [Q) - (28a)
[X]. = [1z [m]? [ 1OV . (28b)
Nach Gl. (27) folgt hieraus
X0 _ [\ (I ? (a7 (101 ¢ |
o~ ) (o) (i) i) | @

Man ersieht hieraus die bekannte Tatsache, dass
fiir das Verhiltnis der beiden Masszahlen neben den
Verhiltnissen der Einheiten der Grundgriéssen noch
die Dimensionsexponenten eine Rolle spielen.

Betrachtet man als Beispiel die Masszahl einer
bestimmten Arbeit fiir das Giorgi- und das CGS-
System, so findet man nach Gl. (27) unter Beach-
tung von Gl. (24a) und (25a):

Tl

{Adlces; \m
6. Die Dimension der Winkel
Unter dem (ebenen) Winkel versteht man iibli-
cherweise das Verhilinis des aus einem Kreis her-
ausgeschnittenen Bogens zum Radius:

S
r

o= (31)

Um die Dimension des Winkels zu ermitteln, er-
setzt man hier jede Griosse nach Gl. (3) durch das
Produkt ihrer Dimension und einer unbestimmten

Masszahl:

o ia] — SHls] 32
| e = (2
Hieraus folgt
I
(2] = (33)
Da s und r Lingen sind, folgt nach Gl. (5a)
L 0
[] = 0 = L°. (34)
Nach GIl. (20) wird schliesslich
] = 1. (35)

Der Winkel ist also dimensionslos, er ist eine reine
Zahl! Schon Fourier [1, Art. 161, 162] und Helm-
holiz [3, S. 321] haben dies festgestellt.

Die Tatsache, dass fiir Winkel verschiedene Ein-
heiten méglich und iiblich sind, ist kein ausreichen-
der Grund dafiir, dass dem Winkel eine besondere
Dimension zugeschrieben werden muss., Man kann
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auch reine Zahlen in verschiedenen Einheiten aus-
driicken. So kann man beispielsweise statt 0,1 auch
109, oder 1009, schreiben. Trotzdem sieht man sich
nicht veranlasst, der reinen Zahl eine besondere
Grunddimension zuzuordnen. Die Winkeleinheit

«Grad» gehort zur Familie der Sondereinheiten
[10, S. 265 11, S. 30]. Es gilt
; 1

10 = 36

57.3 %)

" Einen Raumwinkel definiert man als das Ver-
hiltnis der auf einer Kugel ausgeschnittenen Ka-
lotte zum Quadrat des Radius:

(37)

Analog wie beim (ebenen) Winkel ergibt sich
[0] = 1. (38)

Auch der Raumwinkel ist dimensionslos, auch er
ist eine reine Zahl.

Im Lauf der Zeit wurde mehrfach versucht, fiir
den Winkel eine besondere Dimension einzufiihren,
so von Thomson [14], Williams [15], Hadamard
[16], Wennerberg [17, S.11], Lartigue [18], Bryl-
sinkt [19], Hdberli [7, S.345]. Die Ursache dieser
Vorstosse ist wohl darin zu suchen, dass man eine
reine Zahl als Quotient gleichartiger Grissen an-
sieht. Zur Gleichartigkeit gehért auch gleicher Zu-
sammenhang mit den riumlichen Richtungen. Nun
stehen aber beim Winkel das Bogenelement und der
Radius senkrecht aufeinander; man empﬁndet es
dann als stossend, dass der Quotient eine reine Zahl
sein soll. Beim Dighmonzent spielt nur jene Kom-
ponente der Kraft eine Rolle, die zum Hebelarm
(Léange) senkrecht steht, wogegen bei der Arbeit nur
diejenige Komponente der Kraft massgebend ist,
die in die Richtung des Weges (Linge) fillt. Bei
einigen Grossen tritt eine Axialitit in Erscheinung,
bei andern nicht. Man wollte deshalb die Axialitit
bei der Winkelgeschwindigkeit, beim Drehmoment
und iiberhaupt bei allen achsialen Vektoren durch
eine besondere ' Grunddimension zum Ausdruck
bringen.

Gegen ein solches Vorgehen ist folgendes einzu-
wenden: Es ist bekannt, dass die sog. achsialen
Vektoren eigentlich keine Vektoren, sondern schief-
symmetrische Tensoren zweiter Stufe sind. Hierauf
ist schon verschiedentlich hingewiesen worden, so
z. B. von Weyl [20, S.40 wu.41], Bouthillon [21,
S. 47], Brillouin [22, S. 13 u. 54]. Auch jener Dreh-
winkel, der um einen rechten Winkel dreht, ist ein
schiefsymmetrischer Tensor zweiter Stufe °). Wenn
man aber dem schiefsymmetrischen Tensor zweiter
Stufe eine eigene Dimension zuordnen wollte,
miisste man konsequenterweise auch dem symme-
trischen Tensor zweiter Stufe, ja allgemein den

%) Eine diesbeziigliche Studie des Verfassers wird in
Heft 5, (1950) der Zeitschrift «Elemente der Mathematik» er-
scheinen unter dem Titel «Die Tensorkoordinaten des Dreh-
winkels». Darin wird auch der Tensorcharakter des vekto-
riellen Produkts und der sogenannten achsialen Vektoren
dargelegt.

Bull. schweiz. elektrotechn. Ver. Bd. 41(1950), Nr. 12

zweistufigen Tensoren und schliesslich den Tenso-
ren beliebiger Stufenzahl je eine besondere Dimen-
sion zuordnen. Von praktischer Bedeutung wiren
dabei insbesondere die Tensoren erster Stufe, die
man allgemein als Vektoren bezeichnet, und die
Tensoren nullter Stufe, das heisst die Skalare. Die
Einfiihrung dieser neuen Dimensionen wiirde dar-
auf herauskommen, den Begriff der Dimension neu
zu definieren; inshesondere miisste der erste Zusatz
von Abschnitt 2 wegfallen. Der Begriff der Dimen-
sion wiirde dadurch wesentlich geindert und be-
reichert werden. Er wiirde dann auch das einschlies-
sen, was man als Charakter einer Grisse bezeichnet.
Die Dimension einer Grésse wiirde wohl identisch
mit dem Begriff «Art einer Grésse». Durch eine
solche Wandlung wiirde aber die «Dimension»
viel komplizierter werden, als sie heute ist; sie
wiirde zu einem recht unhandlichen Gebilde. Mit
dem Verlust der Einfachheit miisste sie auch ihre
praktische Bedeutung einbiissen.

Es ist viel zweckmissiger, die Art einer Grosse
teils durch die Dimension, teils durch den Cha-
rakter darzustellen. Die Eigenschaft einer Grésse,
dass sie Skalar, Vektor, zwei- oder héherstufiger
Tensor und als mehrstufiger Tensor noch symme-
trisch oder schiefsymmetrisch sein kann, driickt
dann der Charakter aus.

Die vorangehenden Darlegungen lassen es als
gerechtfertigt erscheinen, den Winkel weiterhin im
Sinne von Fourier als dimensionslose Grosse zu
betrachten.
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Moderne Verfahren zur elektrischen Lelstungsverstarkung

Von M. Strutt, Ziirich 1)

Nach einer Erorterung des Begriffes der Leistungsverstir-
kung in der Elektrotechnik wird der Gewinn definiert als
Verhiltnis der verfiigbaren Leistung am Ausgang zu jener
am Eingang eines Verstirkers. Dieser Gewinn hingt bei
linearen Verstirkern von den Matrixelementen ab und wird
fiir einen einfachen Vierpol angegeben. Als erste Anwendung
werden Elektronenrohrenverstirker behandelt, als zweite An-
wendung Verstirker ohne Elektronenréhren und zwar mit
Halbleitern, ferner magnetische Verstirker und Maschinen-
verstirker.

1. Begriff der Leistungsverstirkung

Bei der Neuausriistung des Elektrotechnischen
Institutes der Eidgendssischen Technischen Hoch-
schule (ETH), welche jetzt den Anfang genommen
hat, wird den Gebieten der elektrischenMesstechnik,
der Gasentladungen, der Elektronik, der elektri-
schen Maschinen und der Hochspannungstechnik
besondere Aufmerksamkeit gewidmet. Hier méch-
ten wir ein Leitmotiv hervorheben, das geeignet er-
scheint, viele der genannten Arbeiten unter einheit-
lichen Gesichtspunkten zu betrachten, und zwar
den Begriff der Leistungsverstirkung in der Elek-
trotechnik. Diese Leistungsverstirkung benutzt im-
mer eine Hauptleistungsquelle, deren abgegebene
Leistung (Speiseleistung) nach gebiihrender Um-
formung von einer Nebenleistungsquelle (Eingangs-
quelle) gesteuert wird. Man kann die Wirkung der
Anlage so beschreiben, dass die Ausgangsleistung
ein nach gegebenem Muster geformtes Bild der Ein-
gangsleistung ist. Weil die Ausgangsleistung in vie-
len Fillen bedeutend grosser ist als die Eingangs-
leistung, kann man sagen, es finde eine Leistungs-
verstirkung vom Eingang zum Ausgang statt.

6, f G, S

SEVI7216

Fig. 1
Schema eines Leistungsverstirkers

G1 Nebenleistungsquelle; G: Verstirker mit Hauptleistungs-
quelle; P; Eingangsleistung; P:; Ausgangsleistung

In besonderen Fillen kann die Hauptleistungs-
quelle fortfallen. Dann findet im Verstirker infolge
der Verluste der Schaltung eine Schwiichung der
Eingangsleistung statt, welche als Verstirkung < 1

!) Antrittsvorlesung, gehalten an der Eidgendssischen
Technischen Hochschule am 2. Juli 1949.

621.396.54

Aprés une discussion de la notion d’amplszatwn de puts
sance, le gam est défini comme quotient de la puzssance
disponible & la sortie et de la puissance disponible'a enttsé
d’in étage amplificateur, Ce gain dépend des éléments de la
matrice de Uamplificateur et il est calculé pour un quadripole
simple. Ces définitions sont alors appliquées aux amplifica:
teurs comportant des tubes électroniques. Des amplificatéurs
sans tubes électroniques des types suivants sont discutés: les
amplificateurs & semi-conducteurs, les amplificateurs magné-
tiques et les amplificateurs i machines électriques.

bezeichnet werden kann. Damit fallen alle Leistungs-
iibertrager (z. B. Leitungen, Transformatoren) unter
den Begriff der Leistungsverstirker.

In den einfachsten Fillen der Verstirkung sind
die Strome und Spannungen am Ausgang propor-
tional zu den Strémen und Spannungen am Eingang.
Solche Verstirker sind linear oder fast linear. Mei-
stens gilt dies fiir einen beschrinkten Strom- und
Spannungshereich. Ein linearer Verstirker kann
n Eingangsklemmen und m Ausgangsklemmen ha-
ben. In einfachen Fillen ist m = n und das Verhal-
ten des Verstirkers wird dann im linearen Falle
durch eine quadratische Matrix mit n Zeilen und
Spalten beschrieben. Die Matrlxelementg sind von
den Stromen und Spannungen unabhingig: Die
Strome und Spannungen am Ausgang kénnen auch
bei linearen Verstirkern von den entsprechenden
Eingangsgrossen abweichende Frequenzen haben.
Die Matrizenrechnung bildet zur Behandlung aller
solcher Verstirker ein bequemes Hilfsmittel. Es
empfiehlt sich, bei linearen Leistungsvérstarkern
den Begriff der verfiigbaren Leistung einer Quelle
einzufiihren. Dies ist die maximale Leistung, welche
einer Quelle entnommen werden kann. Das Ver-
hiltnis der verfiigbaren Leistung am Ausgang zu
jener am Eingang eines Verstirkers ist der Gewinn
g, (v = verfiighar). Wenn die Emgangsquelle ihre
ganze verfiighare Leistung an den’ Verstirker ab-
gibt, wird der Gewinn maximal. Man kann den Ge-
winn aus der Verstirkermatrix im linearen Fall be-
rechnen.

Als einfaches Beispiel wihlen wir einen Vierpol-
verstirker mit zwei Eingangs- und zwei Ausgangs-
klemmen. Die entsprechende Admittanzmatrix lau-

tet:
D Y2
Y1 Yoo

Wenn 9,, = 0 ist, haben wir einen Richtvierpol
vor uns, bei dem der Gewinn vom Eingang zum Aus-
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