Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 40 (1949)

Heft: 14

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Das Aletschwerk wird für eine Betriebswassermenge von 3 m³/s ausgebaut, die im Mittel während 5 Sommermonaten zur Verfügung steht. Die maximale Leistung des Werkes in Übertragungsspannung wird rund 15 000 kW betragen, die mittlere jährliche Energieerzeugung rund 80 GWh, wovon 55 im Sommer- und 25 im Winterhalbjahr. Die erzeugte Energie wird in das Netz der Lonza, Elektrizitätswerke und Chemische Fabriken A.-G., abgegeben.

Das Aletschwerk ist ein Laufwerk; die Ausnützung des im Riederhorn- und im Zuleitungsstollen gespeicherten Wassers wird jedoch auch die Deckung von Leistungsspitzen ermöglichen. Während der Zeit, da die Wasserführung der Rhone geringer ist als die Ausbauwassermenge des Kraftwerkes Massaboden der SBB, wird auch die Energieproduktion dieses Werkes infolge der durch das Aletschwerk bewirkten Umleitung der Massa erhöht.

Das Aletschwerk wird von der Aletsch A.-G., einer Tochtergesellschaft der Lonza A.-G., Basel, erstellt. Die Projektierung und Bauleitung wurde der Motor-Columbus A.-G., Baden, übertragen. Mit den Bauarbeiten für das Werk wurde im Frühjahr 1948 begonnen. Die Inbetriebnahme der ersten Maschinengruppe soll im Frühjahr 1950, diejenige der zweiten Gruppe spätestens im Frühjahr 1951 erfolgen.

Adresse des Autors:

Fritz Bolliger, Ingenieur der Motor Columbus A.-G., Verenastrasse 7, Baden (AG).

Technische Mitteilungen - Communications de nature technique

Netzmodelle

621.316.313

[Nach G. H. Marchal: Tables de calcul électriques. Bull. Soc. Belge des Electr. Bd. 64(1948), Nr. 3, S. 85...92.]

I. Einführung

Die Umgestaltung elektrischer Netze durch Verbindung der Kraftwerke und Vermaschung der Verteilnetze erfolgt im Hinblick auf eine wirtschaftliche Produktion und kontinuierliche Lieferung elektrischer Energie. In vermaschten Netzen wird jeder Netzzweig die Spannung an den Knotenpunkten beeinflussen, so dass die Untersuchung der Betriebsbedingungen immer schwieriger wird. Die rechnerischen Methoden erlauben zwar, die gestellte Aufgabe mit der erforderlichen Genauigkeit zu lösen; sie beanspruchen jedoch ausserordentlich viel Zeit. Bei manchen Problemen liefert das Resultat lediglich eine erste Annäherung oder zeigt, dass eine Änderung der Konfiguration bzw. einzelner Zweigdaten vorgenommen werden muss. Die ganze Rechnung muss dann Schritt für Schritt wiederholt werden.

Das Prinzip der Ähnlichkeit, das sich für die verschiedensten Zweige der Wissenschaft und Technik als so fruchtbar erwiesen hat, ermöglicht die Verwendung eines leistungsfähigen Hilfsmittels. Das Netzmodell ist nichts anderes als ein Instrument zur Erleichterung der Lösung des Problems und zur Verringerung des Zeitaufwandes. Es liefert eine automatische und gleichzeitige Auflösung des das Netz charakterisierenden linearen Gleichungssystems einer Vielzahl von Unbekannten und komplexen Koeffizienten.

Die Wechselstrom-Netzmodelle bestehen aus einer grossen Zahl einstellbarer Ohmscher, induktiver und kapazitiver Widerstände, mehreren Autotransformatoren mit variablem Übersetzungsverhältnis und den in der Grösse und Phasenlage der Spannungen einstellbaren Einspeisungen (Generatoren). Die Abbildung eines beliebig gestalteten Netzes erfolgt derart, dass jedem Netzzweig ein in seinem Widerstand (Ohmisch, induktiv, kapazitiv) ihm proportionaler Modellzweig zugeordnet und alle diese Elemente gemäss der Netzkonfiguration miteinander verknüpft werden. Diesem Netzabbild werden den Generatorspannungen proportionale Speisespannungen zugeführt, deren gegenseitige Phasenlagen den Einspeisungen des Originalnetzes entsprechen. Die in diesem Miniaturnetz bestehenden Ströme und Spannungen sind den zugeordneten Grössen im Originalnetz proportional. Ein besonderer Instrumentensatz gestattet, Grösse und Phasenlage der Spannungen und Ströme in einem beliebigen Netzpunkt oder Netzzweig zu erfassen. Solche Wechselstromnetzmodelle gestatten eine eingehende Untersuchung der Betriebsbedingungen der Netze. Sie erweisen sich ausserordentlich wertvoll bei der Auswahl der in den Kraft- und Unterwerken einzubauenden Apparate. Die von Störungen (Kurzschluss, unrichtige Schaltmanöver) hervorgerufenen Auswirkungen auf das statische und dynamische Verhalten können auch geprüft werden. Es sei besonders auf das Stabilitätsproblem und auf die Vorgänge bei der Schnellwiedereinschaltung hingewiesen.

Soll das Netzmodell vor allem zur Bestimmung von Kurzschlußströmen in vermaschten Netzen dienen, so rechtfertigt sich oft eine Vereinfachung seiner Ausführung durch Ausserachtlassung der Kapazitäten. Die bei der Vernachlässigung der Ohmschen Widerstände sich ergebenden Kurzschlußströme sind eher grösser als die tatsächlichen Werte, was oft erwünscht ist (grössere Sicherheit). Bei der Annahme, dass die Spannungen der Generatoren gleiche Grösse und Phasenlage aufweisen, genügt eine einzige Spannungsquelle. So kommt man dazu, das Modell aus variablen Ohmschen Elementen als Ersatz für die Reaktanzen aufzubauen und für die Speisung eine Gleichspannungsquelle zu verwenden (Gleichstromnetzmodell)¹).

II. Die Entwicklung der Netzmodelle

Gleichstromnetzmodelle

Das erste Gleichstromnetzmodell wurde im Jahr 1916 von der amerikanischen General Electric Co. konstruiert. In den heute üblichen Ausführungen stellen solche Modelle mit Rücksicht auf die Anwendungsmöglichkeiten ein billiges Instrument dar, mit welchem die Abschaltleistungen der Schalter mit praktisch genügender Genauigkeit ermittelt werden können. Gleichstromnetzmodelle begegneten vor allem bei amerikanischen Gesellschaften regem Interesse für die Untersuchung der Hochspannungs- und Verteilnetze. In Europa bauten die folgenden Firmen und Institute ein Gleichstromnetzmodell: Société Alsthom, Compagnie pour la fabrication des compteurs; Siemens-Schuckert-Werke; AEG; Central Electricity Board (London); SEV; A.-G. Brown Boveri; Faculté des Sciences appliquées de l'Université Libre de Bruxelles. Besonders erwähnt sei das Gleichstromnetzmodell der Société Nationale «Electricité de France», welches zur raschen Bestimmung der Wirklastverteilung und von Fehlern dient.

We chsel stromnetz modelle

Parallel zu dieser Entwicklung erfolgte der Bau von Wechselstromnetzmodellen. Das erste Modell (1917) der General Electric Co. arbeitete mit Maschinen beträchtlicher Leistung. Im Jahr 1922 verwendete diese Firma ein dreiphasiges Miniaturmodell mit Generatoren von 3,75 kVA, welches vor allem für qualitative Untersuchungen diente. Die Anwendung der Methode der symmetrischen Komponenten ermöglichte, dreiphasige, von einem unsymmetrischen Fehler betroffene Netze durch einphasige Netze abzubilden. Von Spencer und Hazen des Massachusetts-Instituts (MIT) stammt die Idee, die in Grösse und Phasenlage regulierbaren Spannungsquellen mit Hilfe von Induktionsreglern darzustellen. Auf diesem Prinzip beruhen die einphasigen Wechselstromnetzmodelle des MIT; und der Westinghouse Electric and Manufacturing Co.

und der Westinghouse Electric and Manufacturing Co.
Von den seit 1929 in den Vereinigten Staaten gebauten
Modellen (etwa 20 an der Zahl) sei besonders das Modell der
General Electric Co. in Schenectady erwähnt, auf welchem

¹⁾ z. B. das SEV-Modell, s. Bull. SEV Bd. 18(1927), Nr. 11, S. 713, das immer noch gute Dienste leistet und von den Elektrizitätswerken häufig und mit Erfolg beansprucht wird.

über 300 Netze untersucht und über 50 Spezialprobleme behandelt wurden, sowie das Modell des Iowa State College in Ames.

Auf dem europäischen Festland wurde das erste Wechselstromnetzmodell von den Siemens-Schuckert Werken gebaut. Im Jahr 1947 entstand das nach den neuesten Gesichtspunkten gebaute Modell der Associated Electrical Industries Ltd. und im Jahr 1948 das Modell der Société Nationale «Electricité de France».

III. Anwendungsgebiet von Wechselstromnetzmodellen

Die Probleme, welche mittels Wechselstromnetzmodellen gelöst werden, können in 4 Gruppen eingeteilt werden¹):

- 1. Untersuchung von Netzen im normalen Betrieb.
- 2. Einfluss von Störungen im Netz.
- Stabilität von Netzen.
- 4. Sonderprobleme.

Am häufigsten treten die Probleme der ersten Gruppe auf. Sie interessieren Ingenieure, die sich mit der Energieverteilung sowie mit dem weiteren Ausbau der Netze befassen.

Die Probleme der zweiten Gruppe können im allgemeinen mit Hilfe eines Gleichstromnetzmodells gelöst werden. In zahlreichen Fällen jedoch genügt die hiemit erreichbare Genauigkeit nicht, so dass die Verwendung eines Wechselstromnetzmodells erforderlich ist.

IV. Beschreibung einiger Wechselstromnetzmodelle

A. Modelle für Frequenzen von 50 und 60 Hz

1. Modell des Massachusetts Institute of Technology in Cambridge, USA (1929). Frequenz 60 Hz. Das Modell hat je 100 einstellbare Ohmsche und induktive Widerstände zur Darstellung von 60 Leitungen und 40 Belastungen, 16 Phasenschieber, 32 einstellbare Kapazitäten und 4 Autotransformatoren. Die induktiven Widerstände haben naturgemäss auch einen Ohmschen Anteil, doch ist derselbe sehr gering (etwa 2...3,5%), und die Änderung der Induktivität ist kleiner als 2%, wenn der Strom vom Wert 1 bis auf 20 ansteigt. Gemessen werden die Spannung, der Strom und die Leistung, sowie mit Hilfe eines Nullinstrumentes die Phasenlagen von Strom und Spannung bezüglich eines Bezugsvektors.
Dieses Modell dient hauptsächlich zu Unterrichtszwecken,

wird jedoch ebenso zur Lösung von Problemen der Industrie herangezogen.

2. Modell der Siemens-Schuckert Werke in Berlin (1939). Frequenz 50 Hz. Diese Tafel ist für 192 Knotenpunkte ausgelegt mit 4 Zweigen pro Knoten. Die Speisung erfolgt mit Hilfe zweier Transformatoren, deren Phasenlagen um 120° versetzt sind. Zur Abbildung eines Netzzweiges werden die Ohmschen, induktiven und kapazitiven Elemente auf einem Brett montiert. Jedes Element besteht seinerseits aus «Bauelementen», die nach dem Prinzip der Gewichtsteine gestuft

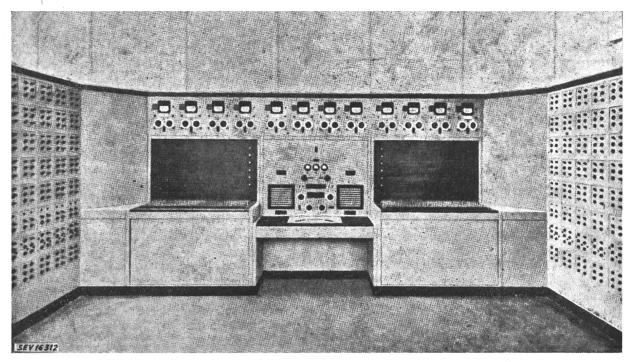


Fig. 1 Wechselstromnetzmodell der Associated Electrical Industries Ltd., London

Zur dritten Gruppe gehören Untersuchungen über die Stabilität im stationären Betrieb (statische Stabilität) sowie die Pendelerscheinungen der Generatoren und Lasten bei plötzlichen Störungen und Schaltungen im Netz (dynamische Stabilität). Die Ausgleichsvorgänge werden freilich nicht in ihrem kontinuierlichen Ablauf, sondern gleichsam durch die An-einanderreihung unmittelbar zeitlich aufeinanderfolgender sta-

tionärer Zustände erfasst²) (Schritt-für-Schritt-Methode). In die vierte Gruppe fallen Untersuchungen nichtelektrischer Vorgänge mit Hilfe der Abbildung des analogen elektrischen Schwingungskreises. So können die kritischen Drehzahlen rotierender Massen mit Hilfe des Wechselstromnetzmodells ermittelt werden. In ähnlicher Weise wurden neuerdings Festigkeitsprobleme und Molekularschwingungen untersucht. Wechselstromnetzmodelle wurden sogar zum Studieren der Atomstruktur benutzt (Gleichung von Schrödinger).

sind. Diese Arbeitsweise gestattet eine Ersparnis an Material, allerdings auf Kosten der zur Netzabbildung aufzuwendenden Zeit. Die niedere Frequenz gestattet die Verwendung von Gleichstrominstrumenten unter Zwischenschaltung von Vibrationsgleichrichtern.

B. Modelle für Frequenzen von 400...500 Hz

Die Erhöhung der Frequenz ergibt eine Verbilligung der induktiven und kapazitiven Elemente des Netzes (die für den Preis des Modells eine grosse Rolle spielen), da der induk-tive Widerstand und der kapazitive Leitwert der Frequenz proportional sind.

 Modell der General Electric Co., Schenectady, USA (1937). Dieses Modell hat 12 Generatoren (mit zugehörigem Watt-Varmeter), deren Spannungen in Grösse und Phasenlage einstellbar sind, 200 einstellbare Ohmisch-induktive Elemente für 150 Leitungen und 50 Verbraucher, 15 gegenseitige Induktivitäten, sowie eine grössere Zahl einstellbarer Kapazitäten

siehe Anhang I.
 siehe Anhang II.

und Autotransformatoren. Die Nennspannung ist 50 V, der Nennstrom 50 mA. Der zentrale Instrumentensatz besteht aus einem Voltmeter, einem Milliampèremeter und einem Watt-Varmeter (Lichtzeigerinstrumente), deren Leistungs-aufnahme durch Verwendung gegengekoppelter elektronischer Verstärker klein gehalten wird.

2. Im mittleren Frequenzbereich arbeitet auch das Modell der Westinghouse Electric and Manufacturing Co., Pittsburgh, USA, und der Associated Electrical Industries Ltd., London, welches einen ganz ähnlichen Aufbau aufweist wie dasjenige der General Electric Co. (Fig. 1).

C. Modell des Iowa State College Ames, USA, für eine Frequenz von 10 kHz

Bei einer Frequenz von 10 kHz können die induktiven Elemente ohne magnetischen Kern ausgebildet werden. Anderseits muss der gegenseitigen Beeinflussung der Elemente durch Anordnung von Abschirmungen entgegengewirkt

Die Frequenz von 10 kHz wird von einem 100-kHz-Oszillator via Frequenzverteiler erzeugt. Die gewünschten Spannungen einstellbarer Grösse und Phasenlagen werden mit Hilfe von ausserordentlich sorgfältig ausgebildeten elektro-nischen Verstärkern erhalten. Beim Aufbau der Leitungszweige fanden neue Gesichtspunkte Berücksichtigung. Nach Ansicht der Erbauer sind Modelle dieser Frequenz 40...50% billiger als Modelle mittlerer Frequenz.

V. Die Interessenten an der Erstellung eines Wechselstromnetzmodells

Die Erstellung eines Wechselstromnetzmodells interessiert

- 1. die Energieproduzenten, in Fragen der Produktion und des Transportes elektrischer Energie und der Koordination im regionalen und nationalen Rahmen sowie des Importes und Exportes elektrischer Energie.
- 2. die Konstrukteure elektrischer Maschinen, Apparate und elektrischen Materials (Generatoren, Transformatoren, Leistungsschalter, Relais für Selektivschutz, Leistungsbau),
- 3. die Telephon- und Telegraphen-Verwaltungen (Beeinflussung der Verbindungsleitungen),
- 4. den Unterricht an einigen Fakultäten der technischen Hochschulen (Forschungen auf dem Gebiet der Stabilität elektrischer Netze, gewisse Gebiete der Mechanik, Widerstandsfähigkeit von Materialien, Stabilität von Konstruktionen und akustische Probleme).

Anhang I

Anwendungsmöglichkeiten von Netzmodellen

- A. Untersuchung der Netze im normalen Betrieb. Verteilung der Wirk- und Blindlast; Spannungen in einem beliebigen Netzpunkt; Einfluss von Phasenschiebern und Kondensa-toren; der Variation des Übersetzungsverhältnisses von Transformatoren, von Umschaltungen im Netz, von Laständerungen, Abschaltung von Generatoreinheiten und Leitungssträngen. Der günstigste Aufstellungsort neuer Generatoreinheiten; Einfluss von Umschaltungen und Vergrösserungen der Netze sowie von Änderungen der Nennspannungen und der Leiterdimensionen; Möglichkeit der Verkleinerung der Verluste in den Netzen.
- B. Untersuchung der Netze bei Störungen. Bestimmung der Abschaltleistungen von Schaltern; Strom- und Spannungsverhältnisse am Fehlerort und an beliebigen Stellen des Netzes (Selektivschutz, Telephonieanlagen); Methoden der Erdung; Bestimmung unsymmetrischer Fehler an einer oder gleichzeitig an mehreren Stellen.
- C. Studien über Stabilität. Statische und dynamische Stabilität; erforderliche Abschaltzeiten bei Fehlern an verschiedenen Punkten; Schnellwiedereinschaltung der Schalter; Beeinflussung durch das Trägheitsmoment der rotierenden Maschinen, durch die Dämpfung der Maschinen und die Schnellregler.
- D. Apparate und Stromkreise. Anlaufvorgänge grosser Maschinen, Ersatz von komplizierten Netzkonfigurationen durch äquivalente Netze; Spannungen und Ströme bei unsymmetrischen Lasten; Einfluss von Oberwellen.
- E. Lösung nichtelektrischer Vorgänge durch Analogie. Spannungszustände und Deformationen; Vibrieren der Achsen;

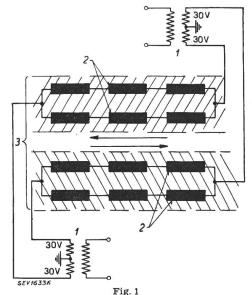
Bestimmung von kritischen Drehzahlen; Dämpfung vibrierender Systeme; Lösung gewisser Differentialgleichungen.

Anhang II

Bestimmung der dynamischen Stabilität

Zur Bestimmung des Schwingungsvorganges der Maschinen wird die Differenz der Drehmomente festgestellt, die unmittelbar vor und nach Eintreten des Fehlers bestehen. Es wird angenommen, dass diese Differenz während eines gewissen Zeitintervalles (etwa 0,05 s) konstant bleibt. Man bebestimmt die im Verlaufe dieses Intervalles sich einstellende Winkelverschiebung der Maschinen, die von den betreffenden Trägheitsmomenten und Winkelgeschwindigkeiten abhängen. Die Phasenlagen der Einspeisungen des Modells werden in diesem Sinne korrigiert und die für die nächsten 0,05 s massgebende Drehmomentendifferenz bestimmt. In diesem Sinne fährt man fort, bis der Nachweis erbracht ist, dass die Maschinen imtritt bleiben oder aussertritt fallen. Naturgemäss ist der Ablauf der Vorgänge in hohem Masse davon abhängig, in welcher Zeit der Fehler durch die Schalter abgeschaltet wird.

E. Fässler.


Elektrische Strassenheizung

621.364.9 : 625.7

[Nach Wall, Harold F.: Ice on Highways Prevented by Electric Heat. Electr. Wld. Bd. 131(1949), Nr. 19, S. 67.]

Das Problem der elektrisch beheizten Strasse ist nicht neu, sondern wurde schon verschiedentlich vorgeschlagen. Besonders aber die Heizung von Flugzeugpisten versprach grosse Vorteile. Die Erfahrung lehrt, dass bestimmte Strassenstücke sehr leicht vereisen und dadurch Grund zu Unfällen geben. An solchen Stellen lässt sich eine Enteisungsanlage möglicherweise verantworten.

Im Winter 1948/49 wurden von der Detroiter Stadtverwaltung grosszügige Versuche in Musteranlagen durchgeführt. Auf Grund weniger Grundgesetze lassen sich Energieverbrauch und Wirtschaftlichkeit angenähert errechnen. Interessant aber ist hier, dass bereits Erfahrungswerte vorliegen.

Prinzipschema der elektrischen Strassenheizung (City of Detroit Public Lighting Commission)

- Transformatoren 50 kVA, 2×30 V, mit geerdetem Mittelpunkt Heizelemente
- Strasse für beide Fahrrichtungen

Als Ausgangsbasis für die vorgenommenen Versuche wurde mit einer spezifischen Leistung von 500 Watt pro m² gerechnet. Die Gesamtoberfläche betrug 300 m² bei einer Länge von 160 m, die total installierte Leistung 175 kW. Die Anordnung wurde folgendermassen getroffen:

Die beiden Einbahnfahrwege wurden in 30 m lange Teilstücke eingeteilt, die Heizelemente von dieser Länge und 0,45 m Breite je zwei nebeneinander direkt in die Piste

eingelassen. Die Heizelemente bestehen aus galvanisiertem Eisendraht; in Serieschaltung fliesst ein Strom von 245 A. Die Heizschlangen wurden 3,4...5 cm unterhalb der Strassenoberfläche verlegt. Die erzeugte Wärme wird direkt an den

Beton- oder Asphaltbelag abgegeben.

Die Totalspannung für drei Heizelemente beträgt 60 V Wechselspannung; es resultiert dabei eine Schrittspannung von 1 V/m. Das Mess- und Kontrollsystem wurde zwischen Heizschlange und Strassenoberfläche verlegt. Sobald Frostgefahr besteht, wird der Hauptschalter eingeschaltet, und zwar eine Stunde vor der Zeit, auf welche der Wetterdienst den Frosteinfall oder Schneefall meldet. Die automatische Regulierung ist so eingestellt, dass bei + 2,5 °C eingeschaltet, bei + 3,5 °C ausgeschaltet wird.

Der Hauptschalter wird erst ausgeschaltet, wenn die Frostgefahr, bzw. der Schneefall vorüber ist. Von besonderer

Bedeutung an diesen Detroiter Versuchen ist das Resultat der benötigten Energie, muss man sich doch auch auf diesem Gebiet zu einem Kompromiss zwischen installierter Leistung und Heizdauer entschliessen. Nach den Erfahrungen konnte die Fahrbahn bei Neuschneefall bis 10 cm Höhe ohne weiteres schneefrei gehalten werden.

Die Betriebskosten für die 160 m lange Fahrbahn errechnen sich folgendermassen:

> Energieverbrauch: Energiepreis:

40 kWh pro Stunde 2,5 c/kWh = 10 Rp./kWh 1 \$ \sim 4 Fr./h

Heizkosten:

Nach den Angaben des Autors gehen die Versuche weiter, wobei in erster Linie am Weiterausbau der Automatisierung gearbeitet wird. Jean Stieger

Nachrichten- und Hochfrequenztechnik — Télécommunications et haute fréquence

Der Ausbau des Landessenders Beromünster

621.396.712 (494) Am 1. Juli 1949, nachmittags 16.30 Uhr, hat Dr. F. Hess, Generaldirektor der Post-, Telegraphen- und Telephonverwaltung, in Anwesenheit der Behörde, prominenter Fachleute und der Presse den ausgebauten Landessender Beromünster offiziell dem Betrieb übergeben. Aus den Ansprachen von Dr. sc. techn. E. Metzler, Chef des Radio- und Telegraphendienstes, und von H. Affolter, Dienstchef der Sektion Radio der Generaldirektion PTT, sei folgendes festgehalten:

Als vor 20 Jahren durch Bundesbeschluss der schweizerische Rundspruch auf nationaler Grundlage organisiert wurde, hätte kaum jemand die heutige Bedeutung dieser

Großsendergebiet alles daran gesetzt, die schweizerischen Sender auf der Höhe der Entwicklung zu halten. Wir dürfen, ohne unbescheiden zu sein, behaupten, dass unsere Anlagen heute zu den modernsten in Europa gehören. Die neue Anlage des Landessenders Beromünster gestattet uns mit der verfügbaren Leistung und den Wellen-Umstellmöglichkeiten die technische Entwicklung nach dem Inkrafttreten des Kopenhagener Wellenplans ruhig abzuwarten. Die notwendigen finanziellen Aufwendungen für die technische Entwicklung sind hoch. Die heutige Besichtigung soll auch in bezug auf Verwendung der finanziellen Mittel, welche der Ver-

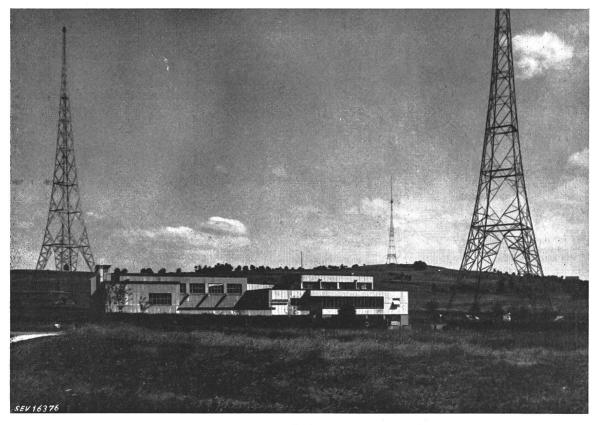


Fig. 1 Ansicht des erweiterten Sendegebäudes

Einrichtung vorauszusagen gewagt. Die PTT-Verwaltung wurde damals mit den technischen Aufgaben betraut. Die technische Entwicklung hat während dieser langen Jahre nie aufgehört, sie ist auch heute noch in vollem Fluss. Die Verwaltung hat in steter Berücksichtigung der technischen Verbesserungen und Neuerungen besonders auch auf dem waltung zur Erfüllung ihrer Pflichten auf dem Radiogebiet aus den Konzessionsgeldern zukommen, aufklärend wirken.

Während des letzten Weltkrieges wurden, infolge Personal- und Materialmangels einerseits und unsicherer politischer Lage anderseits, alle sich aufdrängenden Erweiterunger in den schweizerischen Landessendern zurückgestellt.

Nach Kriegsende wurden durch die PTT die notwendigen Vorarbeiten getroffen, um das während des Krieges Versäumte nachzuholen und unsere Landessender mit neuen, dem heutigen Stand der Technik angepassten Anlagen auszurüsten.

Als die PTT-Verwaltung im Jahre 1930 den Betrieb der in privater Hand befindlichen Radiostationen übernahm, wurde der Auftrag zum Bau der Sendestation Beromünster, die mit einer Antennenleistung von 60 kW zu arbeiten hatte, der englischen Marconi Company erteilt. Die Anlage wurde 1931 dem Betrieb übergeben. Die Verstärkung von 60 auf 100 kW in den Jahren 1934...35 brachte eine Verbesserung des Empfangs. Einen weiteren Fortschritt brachte der Bau der nahschwundmindernden Antenne auf dem Blosenberg in den Jahren 1937...38. Da Schwierigkeiten in der Lieferung von ausländischen Senderöhren entstanden, wurden Versuche

abgeführt, im Winter jedoch zur Heizung der Senderäume und der Dienstwohnungen des Personals herangezogen.

Im Erdgeschoss ist der eigentliche Sender in einem grossen geräumigen Saal untergebracht. Er besteht aus 3 Hauptteilen:

Die Hochfrequenz-Vorstufe
 Die Niederfrequenzstufe
 Die modulierte Endstufe
 10 kW
 160 kW
 100...200 kW

Alle 3 Stufen, die in einzelnen Kästen montiert sind, bilden zusammen ein harmonisches Ganzes (Fig. 2). In der Mitte ist ein Kommandopult plaziert, von wo aus der Sendebeamte die ganze Anlage in Betrieb setzen und überwachen kann. Alle hauptsächlichen Mess- und Kontrollinstrumente sind in diesem Pult untergebracht, so dass von hier aus eine gute zentrale Überwachung gewährleistet ist.

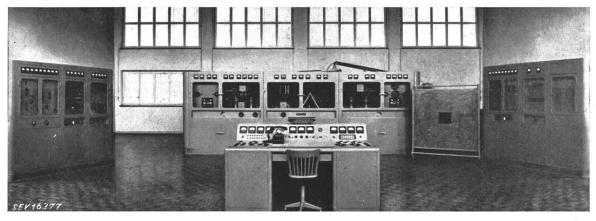


Fig. 2 Der neue Senderaum

mit in der Schweiz hergestellten, demontierbaren Senderöhren unternommen, mit dem Erfolg, dass mit diesen während 2 Jahren der Sendebetrieb aufrechterhalten werden konnte. Allerdings mussten einige Störungen mit in Kauf genommen werden. Diese Anlage musste in einem für andere Zwecke bestimmten Raum untergebracht werden.

Im Jahre 1946 hat die Generaldirektion PTT, in Verbindung mit der eidgenössischen Baudirektion und der Firma Brown, Boveri & Cie., Baden, die Pläne und Vorarbeiten für eine neue 100...200-kW-Sendeanlage geschaffen, die nun in Zukunft die Emissionen des Landessenders Beromünster ausstrahlen wird. Die alte bestehende Anlage wird als Reserve in Störungsfällen dienen. Störungen im Sendebetrieb sollten durch Umschalten auf die alte Anlage innert kürzester Frist behoben werden können. Die Erfahrung im Bau von Sendeanlagen hat gezeigt, dass früher immer zu kleine Räumlichkeiten geschaffen wurden. Die Entwicklung im Senderbau brachte es mit sich, dass diese Anlagen, kaum erbaut, wieder vergrössert werden mussten.

Dieser Erkenntnis Rechnung tragend wurde nun ein Werk geschaffen, das kommenden Ansprüchen voll genügen sollte (Fig. 1). Die Gebäulichkeiten wurden gross genug und die Räume so gestaltet, dass sie ohne grosse Änderungen allen weiteren Bedürfnissen entsprechend umgebaut werden können. Da die Sendestation viel besucht wird, wurde vor dem Gebäude eine kleine Parkanlage mit Bäumen, die sehr gut in die ländliche Gegend passt, angelegt.

Wir wollen nun versuchen, in Kürze die neu geschaffenen Apparaturen zu skizzieren. Bei einer Radioanlage müssen wir grundsätzlich zwischen dem energieliefernden Teil, Hochspannungs- und Gleichrichteranlage und dem eigentlichen Senderteil, der Hochfrequenzanlage unterscheiden.

Im Untergeschoss sind die Gleichrichteranlagen, die die Anodenspannung von 20 kV für die Endstufen liefern, untergebracht. In einem besonderen Lokal befinden sich Hochspannungsumschaltvorrichtungen und Ölschalter.

Zur Abführung der beträchtlichen Verlustwärme der Senderöhren sind ausgedehnte Kühlwasser-Einrichtungen notwendig. Im Sommer wird diese Wärme durch grosse Ventilatoren

In den anschliessenden Räumen ist noch Platz für die Aufbewahrung von Reserve-Senderöhren und Material. Da alle Reparaturen meistens innert kürzester Zeit ausgeführt werden müssen und die Sendestation weit von den Industriezentren entfernt ist, wurde Wert auf eine gut ausgebaute Werkstatt gelegt.

Die neue Anlage ist ein Werk, das in Zusammenarbeit der PTT mit der Schweizer Industrie entstanden ist, ein Spitzenprodukt im neuen Senderbau darstellt und auf längere Zeit unsern Ansprüchen genügen sollte.

Pro Radio 1948

058:621.396 (494)

Das Jahrbuch 1948 der Pro Radio will Rechenschaft ablegen über die Tätigkeit der Pro Radio im Jahr 1948. Ausserdem werden einige neue Erkenntnisse und neue Probleme behandelt, die während des Jahres aufgetaucht sind.

Als wichtigstes Arbeitsgebiet bot sich der Pro Radio weiterhin die Entstörung elektrischer Apparate. Der Vorstand der Pro Radio betrachtet den störungsfreien Empfang als die beste indirekte Propaganda für das Radio-Verkaufsgeschäft, aus der Erkenntnis heraus, dass gute Empfangsverhältnisse zur Anschaffung moderner Radioempfänger anregen.

Die Entstörungsaktion dehnte sich wieder auf dem Gebiet der deutschen, welschen und italienischen Schweiz aus. Es wurden 9633 (11 824) ¹) Energiekonsumenten besucht und dabei 40 404 (48 975) elektrische Apparate kontrolliert, von denen sich 5260, d. h. 13 % (6289 = 13,1 %) als radiostörend erwiesen. Von 5645 (12 047) mit Mangel behafteten elektrischen Installationen störten 4468 (5832) den Radioempfang. Insgesamt wurden im Jahr 1948 10 812 (10 217) elektrische Apparate und Anlagen entstört.

Um die Entstörungsaktion nicht nur auf die grösseren Städte begrenzen zu müssen, wurde im Berichtsjahr ein grosser Werbewagen mit eingebauter Entstörungswerkstätte in Auftrag gegeben. Der dazu benötigte Aufwand von rund

¹⁾ In Klammern die entsprechenden Zahlen des Vorjahres.

100 000 Franken wird ermöglichen, dass überall im Land Störfälle rasch untersucht und nach Möglichkeit behoben werden können. Dabei wird der Wagen die Erzeugnisse der schweizerischen Radiofabriken mitführen, welche ermöglichen sollen, in den Gemeinden Hörstuben einzurichten und damit für die modernen Radioempfänger zu werben. Der Werbewagen soll im Frühsommer 1949 in Betrieb gesetzt werden.

Beachtenswert sind die Entstörungsversuche bei Ölbrenneranlagen. Viele dieser in den letzten Jahren stark verbreiteten Anlagen erwiesen sich als Störer des Radioempfanges, bei denen keines der bestehenden Normalfilter den Anforderungen genügte. Dafür wurde ein neues Filter entwickelt, das besonders für die Bedürfnisse der Ölfeuerungsanlagen bemessen ist (maximaler Stromverbrauch 1,5 A). Im weiteren finden wir eine kurze Schilderung des gegenwärtig im Aufbau begriffenen Telephon-Richtstrahlnetzes, als Vorläufer bau begriffenen Telephon-Richtstrahlnetzes, als des späteren Fernsehnetzes gedacht.

Aus einer Reihe von Betrachtungen sind besonders zu bemerken die Entstörung von elektrischen Rechenmaschinen und Elektrowerkzeugen und der Vorschaltgeräte für Fluoreszenzlampen.

Wirtschaftliche Mitteilungen — Communications de nature économique

Die Schweizerischen Bundesbahnen im Jahr 1948 ¹)

1. Energiewirtschaft²)

621.331 : 625.1 (494)

Zu Beginn des Berichtsjahres war die Wasserführung in den Kraftwerken günstig; auch war der Sommer 1948 sehr niederschlagsreich. Die drei Stauseen konnten frühzeitig gefüllt werden. Die Zahlenwerte über Erzeugung und Verbrauch elektrischer Energie bei den SBB im Jahre 1948 zeigt Tabelle I. Im Vergleich zum Vorjahr stieg der totale Verbrauch um 32 GWh³), was teils von der Vermehrung der Zugsleistungen im Personenverkehr, teils von Sparmassnahmen im Energieverbrauch 1947 herrührt, die damals infolge des Fehlbetrages von 454) GWh in den Stauseen angeordnet werden mussten.

Allgemeinversorgung. Im Spätsommer setzte aber eine Trokkenperiode ein, so dass wegen des unbefriedigenden Standes der Energieversorgung bereits anfangs Oktober zur Einsparung von elektrischer Energie die Lieferung an Elektrokessel eingestellt und bei Anfang der Heizperiode die Zugsheizung eingeschränkt werden musste. Weitere Sparmassnahmen folgten anfangs Dezember durch Kürzung der Zugskompositionen, den Verzicht auf die Führung von Personenextrazügen, die Aufhebung von Güterzügen und den Ersatz elektrischer Triebfahrzeuge durch Dampflokomotiven.

Mit der Aare-Tessin A.-G. (Atel) wurde ein neuer Vertrag abgeschlossen, wonach die SBB die im Kraftwerk Amsteg anfallende Überschussenergie in Form von Drehstrom verkaufen oder bei Bedarf für den Bahnbetrieb gegen Einphasen-

Energiewirtschaft der Schweizerischen Bundesbahnen im Jahr 1948

	1.	2.	3.	4.		tal Vh³)
		Qua GW	1948	1947		
Eigene Erzeugung von Ein- und Dreiphasenenergie						
Kraftwerkgruppe: Amsteg-Ritom-Göschenen Kraftwerkgruppe: Vernayaz-Barberine-Trient-	61	105	106	66	338	318
Massaboden	76	80	76	77	309	298
Total wovon:	137 (100%)	185 (100%)	182 (100%)	143 (100%)	647 (100%)	616 (100%)
a) in den Speicherwerken Ritom, Barberine und	100 80000	000 00.000				
Vernayaz erzeugt	67 (49%)	29 (16%)	30 (16%)	77 (54%)	203 (31%)	168 (27%)
Trient und Massaboden erzeugt	70 (51%)	156 (84%)	152 (84%)	66 (46%)	444 (69%)	448 (73%)
Bezogene Einphasenenergie						
vom Etzelwerk	$\begin{array}{c} 40 \\ 27 \end{array}$	15 23	$\begin{array}{c} 20 \\ 32 \end{array}$	27 16	102 98	76 88
von anderen Kraftwerken	24	15	15	42	96	127
Total	91	53	67	85	296	291
Total der erzeugten und bezogenen Energie	228	238	249	228	943	907
Abgabe an Dritte · · · · · · · · · · · ·	2	2	2	3	9.	11
Verbrauch für den Betrieb von Speicherpumpen Abgabe von Überschussenergie **)	1 6	8 15	$\begin{smallmatrix}2\\27\end{smallmatrix}$	1 1	12 49	14 41
Energieabgabe für den Bahnbetrieb	219	213	218	223	873	841

^{*)} Die Zahlen sind diejenigen wie sie sich aus den Vergleichszahlen in den Quartalsberichten des Jahres 1948 der SBB ergeben, angepasst. Differenzen rühren vom Begriff «Brutto- und Nettobezug» her.

**) Die Abgabe von Überschussenergie ist um die entsprechenden Verluste ab Kraftwerk-Abgabestelle erhöht.

Die Abgabe von Sommer-Überschussenergie geschah durch die Speisung von Elektrokesseln im eigenen Betrieb und durch Energiebelieferungen an die Elektrizitätswerke der

energie der Atel und der NOK im Unterwerk Seebach der SBB umtauschen können.

2. Kraftwerke

Über die Veränderung des Energieinhaltes der Stauseen orientiert Tabelle II.

Es wurden folgende Erweiterungs- und Instandhaltungsarbeiten an den Kraftwerken ausgeführt:

Vernayaz: Die Wasserfassung des Triège wurde geändert, um die Vereisung der Schützen zu verhindern.

¹) Aus den Quartalsberichten der Generaldirektion und dem Geschäftsbericht 1948 der SBB. Für das Jahr 1947 vgl. Bull. SEV, Bd. 39(1948), Nr. 16, S. 559...560.
²) Energiewirtschaft der SBB, Quartalsberichte, vgl. Bull. SEV, Bd. 39(1948), Nr. 15, S. 493; Nr. 19, S. 648; Nr. 25, S. 843 und Bd. 40(1949), Nr. 6, S. 159.
³) 1 GWh = 10° Wh = 10° (1 Million) kWh.
⁴) Der Fehlbetrag von 45 GWh versteht sich am 1. X. (Beginn der Winterperiode); er ist grösser als derjenige beim erreichten Höchstwasserstand infolge frühzeitiger Absenkung der Stauseen. der Stauseen.

Veränderung des Energieinhaltes der Stauseen

Tabelle II

		aler		Tief	fster	Wasse	rstand		Höck	ıster				ginn er	Wasse un Stai	ter
Stausee Energie- Inhalt			Tag, Verbleibender Energieinhalt GWh		Tag, Monat		Energieinhalt GWh		Zum vo fehle Energi GV	nder einhalt	Abser	nkung Monat	am 31. Dezember m			
	$10^6~\mathrm{m}^3$	GWh	1948	1947	1948	1947	1948	1947	1948	1947	1948	1947	1948	1947	1948	1947
Barberinesee Ritomsee Sihlsee Total	39,0 27,5 91,8		18.4 16.3	16.4 13.4 5.3	25,9 9,3 53,5 88,7	14,4 2,1 8,7 25,2	10.8 13.9	26.8 1.10 28.7	$110,3 \\ 45,1 \\ 91,8 \\ \hline 247,2$	101,6 31,9 73,6 207,1	0 0 0	8,7 13,2 18,2 40,1	20.9 20.9 15.9	27.8 2.10 30.7	12,2 8,4 6,0	11,4 11,5 2,3

Barberine: Das Projekt für die Zuleitung des Triège in den Barberinesee wurde fertiggestellt 5).

Massaboden: Mit dem Umbau der Wasseranlagen zur Erhöhung der Wasserführung des Zuleitungsstollens von 7 auf 20 m³/s wurde im Frühjahr begonnen. Vom neu zu erstellenden, 2,9 km langen Zulaufstollen Mörel-Massaboden wurden bis Ende des Jahres 1761 m oder 62% der Gesamtlänge vorgetrieben.

Amsteg: Im oberen Teil der Druckleitungen 1 und 2 wurden zur Verhinderung von Vibrationen bei voller Belastung der Rohrleitungen Verstärkungsringe angebracht.

Ritom: Die Arbeiten am 2,5 km langen Zuleitungsstollen der Garegna aus dem Val Canaria zum Ritomsee wurden weitergeführt. Im Laufe des Sommers konnte die Wasserfassung im Canariatal nahezu fertiggestellt werden. Im weiteren wurden auf der Seite Val Canaria 356 m Stollen vorgetrieben. Der Zuleitungsstollen Seite Piora wurde bis auf 654 m erstellt. Mit den Vorarbeiten für den Einbau des Buchholzschutzes in die Transformatoren wurde begonnen.

Kraftwerk Rupperswil-Auenstein: Die Toninjektionen am rechtseitigen Aaredamm wurden zu Ende geführt. Die Notstromgruppe ist fertig montiert und dem Betrieb übergeben.

Für die Aufstellung der Schlupfumformergruppe im Kraftwerk Unteraa der Centralschweizerischen Kraftwerke wurden die erforderlichen baulichen Vorbereitungen durchgeführt.

3. Übertragungsleitungen und Unterwerke

Infolge der Ausführung von Bauarbeiten bzw. zur Sicherung gegen Bergstürze mussten an verschiedenen Stellen bestehende Übertragungsleitungen verlegt werden, so bei dem Kraftwerk «Bois Noir» des Elektrizitätswerkes Lausanne und im Gebiet der Gemeinden Ehlen. Amsteg und Gresciane

Die Erweiterungsarbeiten der 15-kV-Schaltanlage des Unterwerkes Grüze wurden fortgesetzt. In verschiedenen Unterwerken wurden Vorbereitungen für den Einbau von 15-kV-Schnellschaltern sowie des Buchholzschutzes in die Transformatoren getroffen.

4. Elektrifizierung neuer Linien

Im Hinblick auf den Mangel an elektrischen Triebfahrzeugen wurde die Elektrifizierung weiterer Linien zurückgestellt. Es handelt sich noch um folgende Linien:

Monthey-Bouveret-St-Gingolph	20 km
Genf-La Plaine	15 km
Olten-Läufelfingen-Sissach	17 km
Cadenazzo-Ranzo/S. Albondio	23 km
Verbindungsbahn Basel	9 km
Winterthur-Bauma-Wald	40 km
Oberglatt-Niederweningen	12 km

Auf der Strecke Winterthur—Wald sind die Herstellung des Lichtraumprofils und Arbeiten an Schwachstrom- und Sicherungsanlagen im Gang. Auf den Strecken Monthey— St-Gingolph, Sissach—Läufelfingen—Olten und Oberglatt— Niederweningen wurden ebenfalls Vorarbeiten ausgeführt.

Der Bau der Verbindungslinien zwischen den Bahnhöfen Genf-Cornavin und Eaux-Vives ist weiter fortgeschritten. Der 1078 m lange Tunnel de la Bâtie, dessen Durchschlag am 30. Juni 1948 erfolgte, war am Ende des Jahres bis auf Nacharbeiten vollendet. Auf folgenden Strecken wurde am Ausbau auf Doppelspur gearbeitet: Matran—Freiburg, Olten-Hammer—Oensingen, Winterthur-Grüze—Winterthur, Lachen—Ziegelbrücke und Flums—Unterterzen.

(Fortsetzung auf Seite 452.)

Données économiques suisses

(Extraits de «La Vie économique» et du «Bulletin mensuel Banque Nationale Suisse»)

	«Bulletin mensuel Banque Nat	ionate Suis	se»)
Nº	•	M	ai
IV.		1948	1949
1.	Importations)	458,9	303,9
	(janvier-mai) en 106 frs	(2333,8)	(1661.8)
	Exportations	268,1	269,2
	(janvier-mai))	(1303,6)	(1349,8)
2.	Marché du travail: demandes		
	de places	1254	5707
3.	Index du coût de la vie Juillet (223	221
	Index du commerce de \ 1914 \		
	gros $= 100$	233	221
	Prix-courant de détail (moyen-		
	ne de 33 villes)		
1	Eclairage électrique		
	cts/kWh	33 (66)	33 (66)
	$Gaz \qquad cts/m^3 \begin{cases} (Juin 1914) \\ = 100) \end{cases}$	32 (152)	32 (152)
	Coke d'usine à gaz	20,07 (402)	17,46(349)
	frs/100 kg	' ' '	
4.	Permis délivrés pour logements		
	à construire dans 33 villes	597	887
	(janvier-mai)	(4387)	(5476)
5.	Taux d'escompte officiel . %	1,50	1,50
6.	Banque Nationale (p. ultimo)		
	Billets en circulation 106 frs	4158	4279
	Autres engagements à vue 106 fra	1298	1812
	Encaisse or et devises or 106 trs	5779	6402
	Couverture en or des billets		
	en circulation et des au-		
	tres engagements à vue %	103,97	99,12
7.	Indices des bourses suisses (le		
	25 du mois)		
	Obligations	99	105
	Actions	236	228
	Actions industrielles	369	331
8.	Faillites	36	57
	(janvier-mai)	(182)	(248)
	Concordats	7	15
	(janvier-mai)	(42)	(52)
9.	Statistique du tourisme	Av	
	Occupation moyenne des lits	1948	1949
	existants, en %	21,4	21,9
	*	Av	ril
10.	Recettes d'exploitation des	1948	1949
	CFF seuls		
	Marchandises)	33 153	22 839
	(janvier-avril) .	(118 690)	(94 018)
	Voyageurs 1000 frs	23 441	25 565
	(janvier-avril)	(87 235)	(83 361)
1	(Janvier-aviii) .	(01 200)	(00 001)

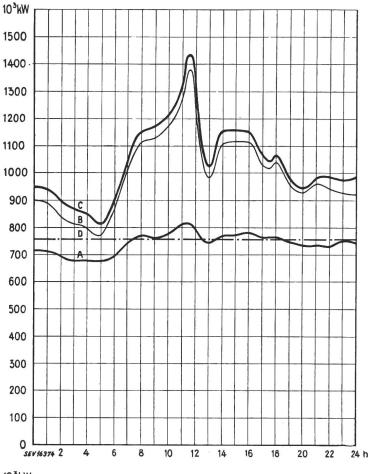
⁵⁾ s. Bull. SEV Bd. 40(1949), Nr. 4, S. 98...99.

Statistique de l'énergie électrique

des entreprises livrant de l'énergie à des tiers

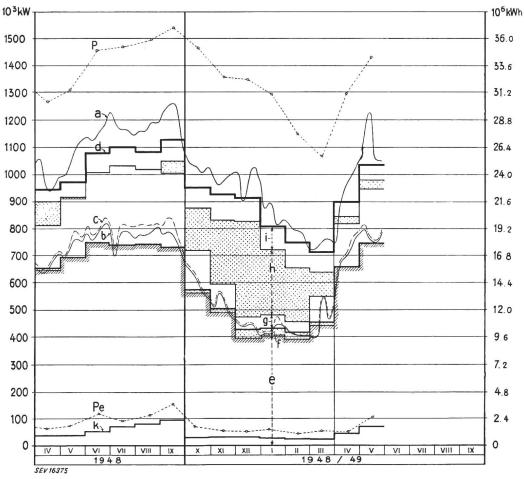
Elaborée par l'Office fédéral de l'économie électrique et l'Union des Centrales Suisses d'électricité

Cette statistique comprend la production d'énergie de toutes les entreprises électriques livrant de l'énergie à des tiers et disposant d'installations de production d'une puissance supérieure à 300 kW. On peut pratiquement la considérer comme concernant toutes les entreprises livrant de l'énergie à des tiers, car la production des usines dont il n'est pas tenu compte ne représente que 0,5 % environ de la production totale.


La production des chemins de fer fédéraux pour les besoins de la traction et celle des entreprises industrielles pour leur consommation propre ne sont pas prises en considération. La statistique de la production et de la distribution de

ces entreprises paraît une fois par an dans le Bulletin.

	Production et achat d'énergie										Accumulat. d'énergie							
Mois	Production hydraulique		Production thermique		achet entre ferrovi	rgie ée aux orises aires et crielles		rgie ortée	four	rgie rnie éseaux	Diffé- rence par rapport à l'année	d'aceun à la fin	bassins	const pendan — vic	ences atées t le mois lange blissage	Exp tati d'éne	lon	
	1947/48	1948/49	1947/48	1948/49	1947/48	1948/49	1947/48	1948/49	1947/48	1948/49	précé- dente	1947/48	1948/49	1947/48	1 9 48/49	1947/48	1948/49	
				en	million	s de k	Wh				0/0	en millions de l			s de kV	Wh		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Octobre	545,1	646,0	15,0	10,0	19,3	33,0	10,2	15,5	589,6	704,5	+19,5	744	985	-155	-129	23,2	2 3, 1	
Novembre .	520,2	600,4	11,0	20,5	27,3	20,5	6,2	25,9	564,7	667,3	+18,2	775	807	+ 31	-178	25,0	22,0	
Décembre .	584,3	616,9	10,9	23,4	27,8	14,5	7,8	27,5	630,8	682,3	+ 8,2	651	520	-124	-287	23,4	23,2	
Janvier	650,9	543,7	1,6	24,5	32,0	19,4	2,9	14,7	687,4	602,3	-12,4	575	324	- 76	-196	31,5	18,7	
Février	688,9	436,9	0,7	33,2	19,4	18,0	6,2	13,0	715,2	501,1	-30,0	401	179	-174	-145	44,0	17,8	
Mars	645,8	473,2	1,2	21,4	24,3	23,0	8,5	12,9	679,8	530,5	-22,0	296	110	-105	- 69	24,3	17,1	
Avril	646,8	608,0	2,7	2,3	21,5	31,2	9,5	6,4	680,5	647,9	- 4,8	231	216	- 65	+106	25,5	29,5	
Mai	677,0	726,4	0,5	3,5	42,5	36,9	1,0	2,1	721,0	768,9	+ 6,6	383	291	+152	+ 75	27,1	52,8	
Juin	722,5		0,5		51,8		0,4		775,2			640		+257		37,3		
Juillet	763,6		0,6		51,8		0,1		816,1			843		+203		52,2		
Août	755,4		0,5		47,6		0,2		803,7			1085		+242		60,1		
Septembre .	751,8		1,6		53,2		0,4		807,0			1114		+ 29		68,2		
Octmars	3635,2	3317,1	40,4	133,0	150,1	128,4	41,8	109,5	3867,5	3688,0	- 4,6					171,4	121,9	
Avril-mai	1323,8	1334,4	3,2	5,8	64,0	68,1	10,5	8,5	1401,5	1416,8	+ 1,1					52,6	82,3	


	Distribution d'énergie dans le pays																	
	Us:	ages				etro-					Do-	Pertes et		mmation	en Su	isse et	pertes	
Mois	domestiques et artisanat		Industrie		chimie, métallurgie, thermie		Chauc électri	lières ques ¹)	Trac	etion	éner	es et gie de page 2)	chaudi	chaudières et Dine- chaud		chaudi	rec les idières et compage	
	1947/48	1948/49	1947/48	1948/49	1947/48	1948/49	1947/48	1948/49	1947/48	1948/49	1947/48	1948/49	1947/48	1948/49	8)	1947/48	1948/49	
								en mi	llions de	e kWh								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Octobre	238.3	287,1	114.2	127,3	79,3	93,4	4,1	25,9	43,4	43,3	87.1	104,4	560,1	650.8	+16.2	566,4	681.4	
Novembre .		291,9		125,7	60,5	74,8	18,5	7.6	41,5	46,5	87,6	98,8	508,3			539,7		
Décembre .		309,0	106,9	129,0	67,1	67,2	11,0	3,9	52,1	52,2	95,1	97,8	590,8	,		607,4		
Janvier	280,3	279,6	108,3	108,9	70,0	50,1	45,9	3,3	51,3	54,9	100,1	86,8	601,5	578,9	- 3,8	655,9	583,6	
Février	268,4	229,4	106,9	95,7	66,4	37,7	82,0	3,2	49,6	48,0	97,9	69,3	584,4	479,2	-18,0	671,2	483,3	
Mars	266,8	239,8	110,4	97,8	80,1	43,0	56,5	5,3	43,9	48,4	97,8	79,1	592,7	504,5	-14,9	655,5	513,4	
Avril	257.1	245.9	115.1	100.4	98,7	81,9	50,9	56,2	37,9	37,1	95,3	96.9	597,8	548.2	_8.3*)	655,0	618.4	
Mai		265,6	,	108,7		112,4		86,3	31,1	31,0	116,6	112,1				693,9	200	
Juin	240,3		112,6		106,0		124.5		33,0		(20,7) $121,5$	(15,3)	593,1			737,9		
Juillet	247,4	1	110,2		113,0		139.6		42,1		111,6		614,5			763,9		
Août	236,9		107,6		106,7		142,8		37.3		112,3		592,3			743,6		
Septembre .	254,9		116,3		103,5		114,5		38,7		110,9		617,2			738,8		
Octmars	1561,9	1636,8	645,4	684,4	423,4	366,2	218,0	49,2	281,8	293,3	565,6 (40,3)	536,2 (13,8)	3437,8	3503,1	+ 1,9	3696,1	3566,1	
Avril-mai	499,9	511,5	220,6	209,1	204,8	194,3	142,7	142,5	69,0	68,1			1179,2	1162,7	- 1,4	1348,9	1334,5	
¹) Chaudières à	 électro	des.																

1) Chaudières à électrodes.
2) Les chiffres entre parenthèses représentent l'énergie employée au remplissage des bassins d'accumulation par pompage.
3) Colonne 15 par rapport à la colonne 14.
4) Energie accumulée à bassins remplis.
*) Le recul provient en partie des fêtes de Pâques (1948 en mars).

Diagramme de charge journalier du mercredi 18 mai 1949

Légende:		
1. Puissances disponibles:	108	kW
Usines au fil de l'eau, disponibilités d'après les appo d'eau (O-D)		1737
2. Puissances constatées:		
0-A Usines au fil de l'eau (y compris usines à bass cumulation journalière et hebdomadaire). A-B Usines à accumulation saisonnière.		
B-C Usines thermiques + livraisons des usines des l'industrie et importation.	CF.	Fde
3. Production d'énergie:	06	kWh
Usines au fil de l'eau		17,9
Usines à accumulation saisonnière		6,3
Usines thermiques		0,3
Livraison des usines des CFF, de l'industrie et impo	r-	
tation	٠	0,9
Total, le mercredi 18 mai 1949	٠	25,4
Total, le samedi 21 mai 1949	•	23,6
Total le dimanche 22 mai 1949		19,1

Production du mercredi et production mensuelle

Légende:

1. Puissances maximums:

- P de la production totale;
 Pe de l'exportation.

2. Production du mercredi:

quantité d'énergie)

a totale;
b effective des usines au fil de l'eau;
c possible des usines au fil de l'eau.

3. Production mensuelle:

(puissance moyenne mensuelle ou quantité journalière moyenne d'énergie)

- d'énergie)
 totale;
 des usines au fil de
 l'eau par les apports
 naturels;
 des usines au fil de
 l'eau par les apports
 provenant de bassins
 d'accumulation;
 des unique à accumulation;
- des usines à accumu-lation par les apports naturels; des usines à accumu-lation par prélèvement sur les réserves accu-
- sur les réserves accu-mulées; des usines thermiques achats aux entreprises ferroviaires et indus-trielles, importation; exportation; ex consommation dans le pays.

5. Triebfahrzeuge

Im Laufe des Berichtsjahres wurden folgende elektrische Triebfahrzeuge neu in den Dienst gestellt:

	Serie Bezeichnung	in Dienst gestellt	in Auftrag gegeben
Streckenlokomotiven	Re 4/4	10	4
Rangierlokomotiven	Ee 3/3 Ee 6/6	=	} 6
Traktoren	Te Tem	3	<u> </u>

Bei den Fahrzeugen muss immer noch mit sehr langen Lieferfristen von 2 Jahren für Personenwagen und 3 Jahren für die Triebfahrzeuge gerechnet werden.

Im März 1948 wurde die neue elektrische Schneeschleuder Xrot e 99 übernommen und für den Dienst auf der Gotthardlinie zugeteilt⁶).

6. Signal- und Sicherungsanlagen

Im Berichtsjahr wurden 13 neue elektrische Stellwerkanlagen, 239 Lichtsignale und 11 Blinklichtanlagen in Betrieb genommen und 33 mechanische Barrieren auf elektrischen Antrieb umgebaut. Die Strecken Delsberg—Liesberg, Auvernier—Colombier, Auvernier—Champs du Moulin, Brunnen—Sisikon, Luzern—Horw und Rüti—Bubikon sind mit dem Streckenblock ausgerüstet worden.

7. Schwachstrom- und Niederspannungsanlager

Automatische Telephonanlagen wurden in Betrieb genommen in Vallorbe sowie auf den Strecken Bern—Luzern und Zofingen—Aarau—Wettingen.

Die Bahnhöfe von Genf, Neuenburg, Bern und Bellinzona sind mit Lautsprecheranlagen ausgerüstet worden. Schi.

Miscellanea

In memoriam

Fridolin Luchsinger †. Am 28. Mai dieses Jahres starb im Alter von erst 55 Jahren Fridolin Luchsinger, Elektroingenieur, Mitglied des SEV seit 1935.

Als einziger Sohn einer angesehenen Glarner Familie hat der Verstorbene eine schöne und sorglose Jugendzeit verlebt. Nach mit Erfolg bestandener Maturität an der Kantonsschule Frauenfeld bildete sich F. Luchsinger alsdann an der ETH in Zürich zum Elektroingenieur aus.

Schon von Anfang an interessierte ihn ganz besonders die damals noch wenig bekannte Radio- und Hochfrequenztechnik, deren ungeahnte Entwicklung er voraussah und die ihm Lebenszweck werden sollte.

Fridolin Luchsinger 1894—1949

Im Physikalischen Institut der Universität Zürich, unter Prof. Dr. Edgar Meyer, führte er schon früh wissenschaftliche Untersuchungen durch, unter anderem an Kristalldetektoren und über die Ladung des Elektrons, und er unternahm von diesem Institut aus Versuchssendungen als Vorarbeit für den Bau des Senders Höngg. Daher findet man Luchsinger unter den Pionieren, welche die Initiative für den Bau dieser schweizerischen Radio-Sendestation ergriffen, und deren erster technischer Leiter er dann wurde. Einige Jahre gehörte er auch dem Vorstand der Radio-Genossenschaft Zürich an.

Als Mitglied des SEV, als Mitarbeiter der Radiostörschutzkommission des SEV und VSE, wo er schon frühzeitig Versuche über die Messung der Störungen des Radioempfangs durch Hochspannungs-Isolatoren unternahm, als Mitgründer des Radio-Clubs Zürich, dem er als Ehrenmitglied und Vizepräsident bis zu seinem Tode angehörte, als Präsident des Schweizerischen Radio-Clubs, welches Amt er mehrere Jahre bekleidete, hat F. Luchsinger, bekannt als

glänzender Referent, in unzähligen öffentlichen Experimentalvorträgen das Wesen der Radio- und Hochfrequenztechnik dem technisch interessierten Publikum in uneigennütziger Weise näher gebracht. Der allzufrüh Heimgegangene hat sich daher in den Fachkreisen und bei vielen Freunden des Radios ein bleibendes Andenken erworben.

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

Generaldirektion der PTT. Dr. iur. Eduard Weber, z. Zt. Chef der Abteilung Rechtswesen und Sekretariat des Eidg. Post- und Eisenbahndepartementes, wurde vom Bundesrat am 24. Juni 1949 zum neuen Generaldirektor der Post-, Telegraphen- und Telephonverwaltung gewählt. Dr. Weber wird am 1. Januar 1950 sein Amt und damit die Nachfolge von Dr. Fritz Hess antreten, der zum Direktor des Internationalen Bureaus des Weltpostvereins ernannt worden ist 1).

St. Gallisch-Appenzellische Kraftwerke A.-G. Dr. *J. Elser*, Mitglied des SEV seit 1931, hat kürzlich dem Verwaltungsrat bekanntgegeben, dass er seine schon seit längerer Zeit gehegte Absicht, infolge seiner angegriffenen Gesundheit als Direktor der SAK zurückzutreten, auf den 30. September 1949 verwirklichen möchte.

Der Demissionär hat von 1912—1914 dem Elektrizitätswerk des Kantons St. Gallen, sowie von 1914—1928 dessen Rechtsnachfolgerin, den St. Gallisch-Appenzellischen Kraftwerken A.-G., als Protokollführer des Verwaltungsrates, von 1928—1935 als Vizedirektor und seit 1935 als Direktor diesem Unternehmen in hervorragender Weise gedient. Auch dem VSE leistete Dr. Elser grosse Dienste, besonders als Vorstandsmitglied von 1932 bis 1941.

Alle, die mit dem Zurücktretenden in engern Kontakt kamen, hoffen und wünschen, dass sich die Entlastung von den Geschäften in günstigem Sinne auf seine Gesundheit auswirke und dass ihm ein angenehmer Ruhestand beschieden sein möge.

Maschinenfabrik Oerlikon, Zürich-Oerlikon. F. E. Hirt, Vizepräsident der Direktion der Maschinenfabrik Oerlikon, Mitglied des SEV seit 1941, ist am 30. Juni 1949 von seinem Amt zurückgetreten. Er wird der Geschäftsleitung weiterhin als beratender Ingenieur zur Verfügung stehen. Zu seinem Nachfolger als Direktor, mit Amtsantritt am 1. Juli 1949, ernannte der Verwaltungsrat Ingenieur Jörg Steinmann, Mitglied des SEV seit 1949.

Die Chefs der Verkaufsorganisationen von Bern, Lausanne und Zürich wurden zu Prokuristen ernannt, nämlich J. Elmer, Mitglied des SEV seit 1924, Bern, C. E. Fautrier, Lausanne, und M. Steiner, Zürich.

Dr. h. c. Auguste Marguerat, Direktor der Visp—Zermattund Gornergratbahn, sowie der Furka—Oberalp- und Schöllenenbahn, tritt am 30. September 1949 von seinen Ämtern

⁶⁾ s. Bull. SEV Bd. 40(1949), Nr. 4, S. 89...95.

¹⁾ siehe Bull. SEV Bd. 40(1949), Nr. 12, S. 403.

zurück. Der Verwaltungsrat der Visp—Zermatt-Bahn ernannte ihn am 18. Juni 1949 zum Mitglied des Verwaltungsrates.

Baumann, Koelliker & Co., Aktiengesellschaft für elektrotechnische Industrie, Zürich. F. Waser und Ad. Mathys, Mitglied des SEV seit 1934, wurden zu Vizedirektoren, P. Montigel, E. Muser und R. Gretener zu Prokuristen ernannt.

Gfeller A.-G., Apparate-Fabrik, Flamatt. H. Schori wurde zum Prokuristen ernannt.

Kleine Mitteilungen

Zementtransporte für den Kraftwerkbau. Wir entnehmen dem SBB-Nachrichtenblatt 1949, Nr. 6, folgendes: Der Bau der Kraftwerke Handeck II (Bern) und Cleuson (Wallis) erfordert grosse Mengen Zement, die die Zementfabriken in La Roche (Waadtland) und Wildegg liefern. Der Zement wird von der Fabrik bis zum Silo der Baustelle in auf Spezialwagen M 7 verladenen besonderen, 400 kg fassenden Kübeln transportiert. Auf jeden Bahnwagen M 7 kann man 48 solcher Kübel verladen. Täglich fahren geschlossene «Kübelzüge» im Pendelverkehr beladen von der Fabrik bis zur Seilbahnstation im Tal (Ardon und Innertkirchen) und nach der Entleerung sofort wieder zurück zur Fabrik. Über diese sehr interessanten kombinierten Transporte Eisenbahn/Schwebebahn wird später in einem besonderen Artikel von berufener Seite berichtet werden.

Kraftwerk Calancasca

621.311.21 (494.262.4)

Die Gemeinden Buseno, Castaneda, Grono und Roveredo haben die auf den Namen des Syndikates Calancasca erteilte Wasserrechtskonzession auf die kürzlich gegründete Calancasca A.-G. übertragen. Der Kleine Rat des Kantons Graubünden hat diese Übertragung der Verleihung am 17. Juni 1949 genehmigt.

Mit den Bauarbeiten für das neue Kraftwerk soll noch im Herbst 1949 begonnen werden 1).

Kraftwerk Val di Lei-Innerferrera

621.311.21 (494.262.3)

Die Tagespresse meldet: Am 18. Juni 1949 wurde in Rom durch die Delegierten Italiens und der Schweiz eine Vereinbarung unterzeichnet, welche die Fragen zwischenstaatlichen Charakters betreffend die Erstellung eines Speicherwerkes Val di Lei-Innerferrera regelt. Dieses Grenzkraftwerk mit einem Stausee von 200 Millionen m³ Inhalt auf italienischem und dem Maschinenhaus auf schweizerischem Boden wird die oberste der drei Stufen umfassenden Kraftwerkgruppe Val di Lei-Hinterrhein bilden. Das Kraftwerk soll durch die zu gründende Aktiengesellschaft Kraftwerke Hinterrhein, an der neben schweizerischen Elektrizitätsunternehmungen auch die Società Edison Milano beteiligt sein wird, gebaut werden. Die Vereinbarung tritt mit dem Austausch der Ratifikationsurkunden in Kraft.

Literatur — Bibliographie

23.7 Nr. 10 533

Geburt und Tod der Sonne. Sternbildung und subatomare Energie. Von George Gamow. Deutsch von Emmanuel von der Pahlen. Basel, Birkhäuser, 1947. 8°, XVIII, 284 S., 60 Fig., 16 Taf., 4 Sternkarten. — Wissenschaft und Kultur, Bd. 3. — Preis: geb. Fr. 24.50.

Der Verfasser, Professor an der George Washington University, beabsichtigt das Problem der Quellen der Sonnenenergie und das fundamentale Rätsel der Schöpfung der Sternenwelt zu besprechen; eine Aufgabe, zu der er um so berechtigter erscheint, als er an den damit zusammenhängenden Untersuchungen selbst regen Anteil genommen hat.

Zuerst macht er einige Angaben über die Temperatur, den Druck sowie die Dichte im Innern der Sonne, um dann gleich auf die grundlegende Frage nach dem Ersatz der Sonnenenergie — die Helmholtzsche Kontraktionstheorie und die subatomare Energie — zu sprechen zu kommen.

Um Irrtümer zu vermeiden, sei erwähnt, dass für 109 stets «Billion» gebraucht wird, nicht «Milliarde».

Anschliessend folgt die Entwicklung des Atombegriffes, die kinetische Wärmetheorie und das Maxwellsche Verteilungsnetz bis zum Bohrschen Atom-Modell. Hier wird mit vollem Recht nachdrücklich darauf hingewiesen, dass sich im Innern des Atoms praktisch keine einzige Voraussage der klassischen Theorie bewährt hat, was zur Begründung der neuen Wellenmechanik von Schrödinger und Heisenberg geführt hat.

Über die Radioaktivität inklusive die Zerfallsreihen kommen wir bis zur Umwandlung der Elemente durch Rutherford im Jahre 1919 und die damit verbundene Freigabe von Energie.

Im Kapitel «Alchemie der Sonne» wird sodann auseinandergesetzt, wie in der Sonne bei einer durch Kontraktion hervorgerufenen Temperatur von $20 \cdot 10^6$ °C der von Bethe und Weizsäcker vorgeschlagene zyklische C—H-Prozess statfindet, bei dem — in Gegenwart von Kohlenstoff und Stickstoff als Katalysatoren — der Wasserstoff in Helium übergeführt wird. Da die Sonne heute noch zu 35 % aus Wasserstoff besteht und das Helium bei der erwähnten Temperatur den Austritt der Strahlung etwa 4mal stärker verhindert als

der Wasserstoff, muss die Temperatur der Sonne in den nächsten 10 Milliarden Jahren ansteigen, so dass ihre Strahlung etwa 100mal stärker sein wird als heute. So wird dann also alles Leben auf der Erde durch Verbrennen zugrunde gehen und nicht durch Erfrieren. Ist aller Wasserstoff in Helium übergeführt, so erfolgt eine weitere Kontraktion mit einer allerdings nicht mehr in Betracht fallenden Wärmeproduktion, woran sich dann eine rasche Abnahme der Leuchtkraft und der Temperatur anschliesst.

Zu den Sternen übergehend führt der Verfasser die Harvard-Spektralklassen, d. h. die Einteilung derselben nach der Temperatur sowie das Russel-Diagramm (Beziehung zwischen absoluter Leuchtkraft und Spektralklasse) ein. Es folgt eine Aufzählung der bei den Sternen je nach der Temperatur möglichen Atomreaktionen. So ist bei einer Temperatur von $1 \cdot 10^6$ °C nur die Deuteron-Reaktion möglich gemäss der Gleichung

$$_{1}D^{2}+_{1}H^{1}=_{2}He^{3}+Strahlung$$

Bei etwa $7 \cdot 10^6\,^{\circ}\text{C}$ wird die Lithium-Wasserstoff-Reaktion einsetzen

$$_{3}\text{Li}^{7} + _{1}\text{H}^{1} = _{2}\text{He}^{4} + _{2}\text{He}^{4}$$

die ihrerseits bei $15\cdot 10^6\,^{\rm o}{\rm C}$ durch die Bor-Wasserstoff-Reaktion abgelöst wird.

$$_5B^{10} + _1H^1 = _6C^{11} + Strahlung$$

um dann bei $20\cdot 10^6\,^{\rm o}{\rm C}$ in den oben erwähnten C—H-Prozess überzugehen.

Währenddem die sog. «Roten Riesen» diese Prozesse der Reihe nach durchlaufen, sind die «weissen Zwerge» sehr alte Sterne, bei denen die Kernreaktionen sich dem Ende nähern. Bei der dann eintretenden Abkühlung wird das Innere des Sternes — eine genügend grosse Masse vorausgesetzt — durch die Gravitation sehr stark homogenisiert, so dass die Elektronenschalen zerstört werden und die Dichte enorme Beträge annehmen kann. So hat zum Beispiel der Begleiter des Sirius eine Dichte von 200 000 g/cm³.

Ein weiteres Kapitel ist den Sternexplosionen, den Novae und Supernovae gewidmet. Bei den letzteren wurde während

¹⁾ vgl. Bull. SEV Bd. 39(1948), Nr. 19, S. 650.

¹) Die technische Beschreibung dieses Kraftwerkes erscheint in einer nächsten Nummer des Bulletins.

einiger Tage oder Stunden eine Steigerung der Helligkeit um das Millionenfache beobachtet. Es sei hier auf die von meinem Landsmann Prof. Zwicky stammende Erklärung verwiesen: Bei Massen, die merklich grösser sind als die Sonne, führt die Kontraktion dazu, dass Kerne und Elektronen sich berühren, so dass im Sterninnern schliesslich eine kontinuierliche «nukleare» Substanz von der Dichte 1000 Milliarden entsteht. Der dabei befreite enorme Betrag an Gravitationsenergie reicht völlig aus, um die intensive Ausstrahlung der Supernovae zu erklären.

Neuere Anschauungen über die extragallaktischen Nebel sowie eine gut dargestellte Chronologie bilden den Schluss des sorgfältig redigierten und gut ausgestatteten Buches.

M. Alder

621.397 Nr. 10 525
Principes fondamentaux de télévision. Par H. Delaby.
Paris, Eyrolles, 1948; 8°, 198 p., fig. — Prix: broché
fr. 15.65.

Der Autor des Werkes «Principes fondamentaux de télévision» hat es verstanden aus dem weitverzweigten Gebiet des Fernsehens mit seinen unzähligen voneinander unabhängigen Detailproblemen das Wesentliche in anschaulicher und klarer Weise hervorzuheben.

Einleitend wird die Prinzipschaltung einer Fernseh-Sendeund Empfangsanlage erklärt. Es folgen einige Kapitel über Optik, die über Strahlung, Photometrie, einfache geometrische Optik, physiologische Optik und Beleuchtungstechnik im Fernsehen berichten. Aus der Elektronenoptik werden die wesentlichen Punkte der Fokussierung und Ablenkung behandelt. Ferner wird der Zusammenhang zwischen Bildauflösung, Bildwechsel, Zeilenzahl und zu übertragender Signalbandbreite erläutert. Ein Abschnitt über Photozellen und Bildfängerröhren beschreibt deren Wirkungsweise und orientiert über die Vor- und Nachteile der einzelnen Bildfängerröhren. Es folgt ein kurzes Kapitel über die Kathodenstrahlröhren zur Bildwiedergabe. Zum Schluss wird die Fernsehschaltungstechnik behandelt, wobei die einzelnen Gebiete wie Impulserzeugung, Kippanordnungen, Schaltung der Ablenkorgane, Synchronisierung und Synchronisierzeichen mit Bildsignal hervorgehoben sind.

Studenten und Ingenieure, die sich mit Fernsehen befassen möchten, finden in diesem Werk eine ausgezeichnete Orientierung und Einführung in das grosse Gebiet des Fernsehens und Wegleitung bei Arbeiten auf demselben.

378.962 (43)

Von der Bauakademie zur Technischen Universität.

150 Jahre technisches Unterrichtswesen in Berlin. Von Josef Becker. Berlin-Charlottenburg, Techn. Universität, Pressestelle, 1949; Quer-8°, 42 S., 6 Taf.

In der Festschrift zum 150jährigen Jubiläum des technischen Unterrichtswesens in Berlin beschreibt der Autor die 5 bedeutenden Entwicklungsphasen des technischen Lehrwesens in Berlin vom Jahre 1770 bis heute. Da der Krieg alle Akten vernichtet hat, und Quellen aus zweiter Hand und persönliche Erinnerungen ältester Mitglieder des Lehrkörpers nicht genügten, um eine ausführliche Chronik zu schreiben, hat sich der Autor darauf beschränkt, den geschichtlichen Ablauf nur in grossen Linien zu zeichnen. Er schildert ihn aber in Verbindung mit der Gesamtentwicklung des technischen Unterrichtswesens überhaupt, und so ist denn eine wirklich interessante Veröffentlichung entstanden.

Unter dem Titel «Die Vorläufer der heutigen Technischen Universität» beschreibt der Autor die Bauakademie (1799...1879), die Gewerbeakademie (1821...1879), die Bergakademie (1770...1916) und die Technische Hochschule (1879...1946). Einige hübsche alte Stiche zeigen damalige Bauten und Bildnisse von Förderern des technischen Schulwesens aus dieser Zeit und illustrieren den Text vorteilhaft. Der letzte Abschnitt «Die Technische Universität (1946...1949)» beschreibt den Wiederaufbau, die Organisation und den heutigen Stand des technischen Unterrichtswesens in Berlin und erklärt dem Leser den Sinn des Namenswechsels, aus dem zu lernen ist, «dass jede Erziehung technisch, humanistisch oder was immer, universal sein muss», wie der britische General Nares in der Eröffnungsansprache am 9. April 1946 sich ausdrückte.

Jauges de tolérance et contrôle des pièces. L'application pratique des jauges et des calibres en liaison avec le contrôle des pièces dans la fabrication de petites et grandes séries. Par H. Kieffer. Lausanne, Scriptar, 1° éd.

grandes séries. Par H. Kieffer. Lausanne, Scriptar, 1° éd. franç., trad. de la 4° éd. allem., rev., augment. et comprenant le système de tolérances ISA (ISO), 1948; 8°, 312, 82 p., 323 fig., annonces. — Prix: fr. 12.—.

Der Verfasser dieses Buches hat aus seiner Praxis heraus den Werkstattleuten, insbesondere aber auch den vielen anderen, die sich mit Toleranzlehren, Kontrolle in der Werkstatt usw. befassen, seine Erfahrungen bis in die Details bekanntgegeben. Es ist sehr zu begrüssen, dass die 4. Auflage in deutscher Sprache in die französische Sprache übersetzt wurde; sie dürfte für die westschweizerische Präzisionsindustrie interessant sein. Der Autor hat es nicht unterlassen, eine eingehende Beschreibung der heute auf dem Markt befindlichen Mess- und Kontrollgeräte anzuführen. Auch die Messmöglichkeiten und Details der Anordnung sind besprochen und durch sehr viele Bilder gut und sehön illustriert. Das Buch ist daher auch dem Werkstattpraktiker zu empfehlen.

Etwas ungenau sind die Ausführungen über die ISO. Es ist auch nicht verständlich, warum neben ISA in Klammern ISO steht, denn es ist bis heute noch kein Beschluss gefasst, dass das in der ganzen Welt bekannte ISA-Toleranzsystem ISO-Toleranzsystem heissen solle. Bei der Erklärung der früheren Grenzlehrensysteme fehlt es ein wenig an Deutlichkeit, was früher war und was heute gemacht wird. Man könnte glauben, dass die früheren VSM-, DIN- oder CNM-Grenzlehrensysteme in den entsprechenden Ländern immer noch üblich wären. Etwas merkwürdig berührt es, dass die Zeichnungen von den VSM-Zeichnungs-Normen deutlich abweichen. Es muss, entsprechend der Tätigkeit des Verfassers, angenommen werden, dass dies in der Waffenfabrik, also in einer Eidg. Institution so gemacht wird, und das ist ausserordentlich schade. Die Bezeichnung der Toleranzmasse, Seiten 35 und 37, die Zeichnungen auf den Seiten 39, 42 und 44 und die Art der Toleranzangabe, z. B. auf Seite 47, weichen von VSM ab. Im Kapitel Oberflächenkunde ist in ziemlich neutraler Weise über die vorhandenen Instrumente geschrieben, ausser der Bemerkung auf Seite 308, wonach die Tastinstrumente den übrigen Systemen vorzuziehen seien. Es ist kaum zu glauben, dass dem so ist, ist doch der Fehler, den die Tastinstrumente in sich haben, viel zu gross im Vergleich zu ihrer von den Fabrikanten angegebenen Genauigkeit.

Dem Verlag gebührt Dank für die schöne Ausstattung und den guten Druck. Für eine nächste Auflage sollten aber die Reklamen zurücktreten. Es ist unangenehm, zwischen den Seiten immer wieder darauf zu stossen. Dies gilt auch für die deutsche Ausgabe.

H. Abegg

621.385

**)
Elektronenröhren als Schwingungserzeuger und Gleichrichter. Von Horst Rothe und Werner Kleen. Leipzig, Becker & Erler, 2. Aufl., 1948; 8°, XIV, 268 S., 189 Fig.

— Preis: brosch. Fr. 25.80.

Die Neuauflage des vorliegenden Buches unterscheidet sich in vielen wesentlichen Punkten von der ersten Auflage. Fast alle Kapitel sind gegenüber der ersten Auflage neu bearbeitet, und viele Unklarheiten oder sogar Fehler ausgemerzt worden. Insbesondere wird in der zweiten Auflage bei der Darstellung der Grundlagen der Schwingungserzeugung wieder von der Existenz eines negativen Widerstandes in selbsterregten Schaltungen ausgegangen, wobei jedoch im Gegensatz zur ersten Auflage für den Unterschied zwischen Organen mit Lichtbogen- und mit Dynatronkennlinie eine exakte Begründung gegeben wird. Diese Darstellung war in der ersten Auflage unbefriedigend. Es ist interessant, dass im fünften Kapitel die Stabilität der Schwingungserregung mit rückgekoppelten Röhrengeneratoren nach den neueren Arbeiten der Literatur in sehr übersichtlicher Weise behandelt wird. Hierdurch werden die früher meistens bei der Behandlung dieses Gebietes ausgelassenen Erscheinungen des «Überschwingens» gebührend in den Vordergrund gestellt. Bei der Behandlung der Gleichrichtung mit Hilfe von Elek-

^{*)} In der Bibliothek SEV ist nur die 1. Auflage vorhanden (Nr. 10501).

tronenröhren sucht man vergebens eine Erläuterung der hierbei auftretenden spontanen Schwankungen (Rauschen). Die betreffende Behandlung findet sich jedoch im Band III der gleichen Bücherreihe wie der vorliegende Band. Man kann den Verfassern zu ihrer ausserordentlich wertvollen Arbeit aufs beste gratulieren und das vorliegende Buch allen interessierten Lesern empfehlen.

Max Strutt

413.2:62

Technisches Wörterbuch über Elektrotechnik, Radio, Fernsehen und Fernmeldetechnik, einschliesslich der meist gebrauchten Ausdrücke aus Akustik, Beleuchtungstechnik

... = Technical Dictionary of Technical Terms ... =
Dictionnaire technique des termes ... Bd. 2: Deutschenglisch-französisch. Von Hans Thali. Hitzkirch, Thali, 1948; 8°, 311 S. — Preis: geb. Fr. 25.—.

Der erste Band des vorliegenden Wörterbuches (englischdeutsch-französisch) ist im Jahre 1946 erschienen und wurde dank des kriegsbedingten Mangels an technischen Wörterbüchern rasch verbreitet. Der vorliegende Band ist deutschenglisch-französisch abgefasst und weist gegenüber Band I einige Änderungen auf. Als Vorteil ist zu erwähnen, dass der zweite Band bei nur unwesentlich grösserem Umfang rund 10 000 Wortstellen mehr (+ 70 %) enthält. Dies konnte nur auf Kosten der Typengrösse und des Zeilendurchschusses (Abstand der Zeilen von einander) geschehen. Die kleinen Typen sind zwar sauber gedruckt und noch gut lesbar, der enge Zeilenabstand aber ermüdet nach längerem Gebrauch die Augen. Für diesen Nachteil findet man aber eine angemessene Entschädigung in dem reichen Wortschatz. Statt viele Synonymen, die die Auswahl des gesuchten Wortes für den weniger Sprachkundigen oft nur erschweren, finden wir zahlreiche Wortstellen mit nur wenigen Synonymen aus allen Gebieten der Technik. Dabei wurden nicht nur fachliche Sprachgüte und Verständlichkeit angestrebt, sondern auch 80...90 % der Ausdrücke des international anerkannten Vocabulaire Electrotechnique International der Commission Electrotechnique Internationale (CEI) übernommen und mit einem Stern gekennzeichnet. Die Kennzeichnung der international angenommenen Ausdrücke ist sehr zu begrüssen, denn sie erleichtert dem Leser unter Umständen die Wahl bei Synonymen.

Das Wörterbuch besteht inhaltlich wie in der Ausführung die Prüfung gegenüber den in der Nachkriegszeit im Ausland erschienenen ähnlichen Werken gut. Schi.

331.054 Nr. 512 003 Psychologische Skizzen über berufliche Arbeit. Von Hanns Spreng. Zürich, Verlag Mensch und Arbeit, 1949; 8°, 39 S. Fig. — Preis: brosch. Fr. 2.40.

Das Büchlein, sehr gepflegt dargeboten und mit hübschen Skizzen von Fritz Traffelet illustriert, ist eigentlich ein kleines Vademeeum für jeden, der sich hie und da die Zeit nimmt, über Zweck und Sinn der Berufsarbeit nachzudenken. Es enthält in konzentrierter Form Erkenntnisse und Wahrheiten, die dem einen selbstverständlich erscheinen mögen, dem anderen dagegen als Offenbarung vorkommen, die aber vielleicht das Ergebnis jahrelangen Suchens und Sammelns von Erfahrungen desjenigen sind, der sie ausspricht. Wenn ein Bild hier angebracht ist, so möchte man sagen, das Büchlein enthalte die Goldkörner, die durch mühevolles Waschen von vielen Tonnen Sand erhalten wurden. Gerade der in der Technik Tätige wird reichen Gewinn aus dem Büchlein ziehen, wenn er den Inhalt wie eine Kostbarkeit in kleinen Dosen geniesst.

576.8 Nr. 10 517
The Chemical Activities of Bacteria. By Ernest F. Gale.
London, University Tutorial Press, 2nd ed. 1948; 8°,
200 p., 11 fig., 16 tab. — Price: cloth £ —.8.6.

Das Büchlein will dem jungen Biochemiker, Bakteriologen und Chemiker die wichtigsten Kenntnisse über die chemische Tätigkeit der Bakterien vermitteln. Zugleich soll es als Grundlage dienen für eingehendere bakteriologische Studien. Nach einleitenden Ausführungen über die Lebensbedingungen und die Systematik der Bakterien werden zusammenfassend behandelt die bakterischen Enzyme, die Synthese und der Abbau der Polysacharide, die Zerlegung der Eiweißstoffe, der Stickstoffkreislauf und die Gärung, die Oxydation des Alkohols, sowie die pathogenen Bakterien und die Chemotherapie. Den Abschluss bilden kurze Ratschläge für die praktische Durchführung bakteriologischer Versuche im Laboratorium. Jedem Kapitel folgen einige Hinweise auf einschlägige Literatur.

621.314.2 Nr. 10 613
 Villamos gépek. I. Rész: Transzformátorok. [Elektrische Maschinen. I. Teil: Transformatoren.] Von József Liska.

Budapest, Verlag von Mérnöki Továbbképző Intézet, 1948; 8°, VII, 190 S., 195 Fig., 13 Tab., 1 Taf. — Preis: brosch. Ft. 50.—.

Das vorliegende Buch ist der erste Band eines umfassenden Werkes über die elektrischen Maschinen von einem weitbekannten Fachmann seines Landes. Der erste Band stellt sich die Aufgabe, die Vorlesungen des Verfassers über Transformatoren an der Technischen Hochschule in Budapest zu ergänzen, bzw. das Studium zu erleichtern. Dazu werden all die Probleme, die für den Ingenieur in der Praxis von Bedeutung sind, aufgegriffen und auch theoretisch erörtert.

In der Erkenntnis, dass rein theoretische Abhandlungen, deren praktische Anwendungen dem Studenten fremd bleiben, oft von diesen als unnötige Belastung abgelehnt werden, hat der Verfasser zu jedem Abschnitt ein auf das ganze Buch aufgeteiltes Rechenbeispiel hinzugefügt. Dies ist nicht nur aus dem angeführten Grund zu begrüssen, sondern auch darum, weil die Studenten den Aufbau und die Systematik der Theorie besser erfassen können.

Im ersten Abschnitt werden einige Grundlagen, z. B. das Induktionsgesetz, Vektordiagramme, der Leerlauf, die Belastung usw. der Transformatoren behandelt. Weitere Abschnitte sind der Kurzschlußspannung, der Spannungs- und Stromänderung und dem Wirkungsgrad gewidmet. Im weiteren werden die Dreiphasentransformatoren, die unsymmetrische Belastung, der Parallelbetrieb, Spezialtransformatoren und Messwandler erörtert. Ein anderer Teil des Buches befasst sich neben der Konstruktion von Transformatoren mit den Messversuchen und der Dimensionierung. Ein komplettes Dimensionierungsbeispiel ergänzt diesen Teil.

Im Anhang finden wir eine kleine Orientierung über die Schreibweise der Grössen und Einheiten, ferner eine Zusammenstellung der verwendeten Buchstabensymbole. Es ist erfreulich, dass der Verfasser die gleichen Grundsätze und Buchstabensymbole übernommen hat, die auch durch den SEV empfohlen werden.

Zusammenfassend kann man feststellen, dass der Stoff in klarer, gut verständlicher Weise zusammengestellt ist. Figuren und Druck sind sauber und klar. Den Studierenden, wie auch den in der Praxis tätigen Fachleuten wird das Buch ein wertvoller Leitfaden sein. Schi.

Recueil des normalisations, spécifications et règles techniques françaises

Editées par l'Union technique de l'Electricité 061.2 : 621.3 (44) 389.6

Reprenant une tradition interrompue par la guerre, l'Union technique de l'Electricité vient de publier en recueil les différents textes techniques qui intéressent les industries électriques, décrets, arrêtés, circulaires ministérielles, normes françaises, spécifications, normalisations ou recommandations professionnelles traitant des réseaux de distribution, des installations, des machines et des moteurs, des conducteurs, de l'appareillage des appareils d'utilisation de l'énergie électrique qu'il s'agisse de la haute comme de la basse tension, des courants industriels comme de la basse fréquence.

Le recueil précédent portait le millésime 1940. Les événements qui se sont déroulés depuis cette date ont conduit à une révision de presque tous les textes antérieurs et à la mise au point d'un grand nombre de documents nouveaux. Par rapport à l'édition précédente, celle qui vient de paraître tient compte de la publication de 192 textes nouveaux, de la révision de 23 fascicules antérieurs, de l'homologation de 77 normes françaises, de l'abrogation de 45 textes anciens et du remaniement de 23 publications. Sans doute tous ces documents ont-ils été édités en fascicules séparés, mais ils n'ont pas toujours pu, en raison des circonstances, recevoir la diffusion nécessaire. Aussi était-il d'un grand intérêt de les rassembler en un recueil. En raison de leur nombre important force a été de les répartir en quatre volumes:

Le premier consacré aux généralités, matériaux entrant dans la construction électrique, mesures et essais;

Le second traitant des installations électriques, des fils et câbles isolés, du petit appareillage et du matériel d'installation:

Le troisième relatif aux réseaux de distribution d'énergie électrique, aux conducteurs non isolés, au gros appareillage, à l'appareillage à haute tension et au matériel pour lignes aériennes;

Le dernier groupant les textes concernant les machines électriques, transformateurs, redresseurs, les appareils utilisant

l'énergie électrique, les accumulateurs et le matériel de télécommunications.

Des tables des matières, listes de publications et index alphabétique des sujets traités facilitent les recherches et permettent au lecteur de se reconnaître dans un ensemble qui comporte plus de 4000 pages soit le double du nombre de pages de l'édition antérieure.

L'ouvrage en question constitue l'instrument de travail indispensable à tous les électriciens et maisons de construction ou de vente du matériel électrique, particulièrement à ceux qui sont connectés au marché français et international. L'Union technique de l'Electricité, avec laquelle l'ASE est, par plusieurs organes, étroitement liée, est à féliciter de ce beau travail.

L'ensemble des quatre volumes, reliés sous une forte couverture en toile, du format 13,5×21 cm et comprenant respectivement 907, 1059, 1073 et 1061 pages, est mis en vente à l'Union technique de l'Electricité, 54, avenue Marceau, Paris (8°), au prix de 5000 francs nets, les frais d'expédition et les taxes étant toutefois facturés en plus.

Estampilles d'essai et procès-verbaux d'essai de l'ASE

I. Marque de qualité

B. Pour interrupteurs, prises de courant, coupecircuit à fusibles, boîtes de jonction, transformateurs de faible puissance, douilles de lampes, condensateurs.

- pour conducteurs isolés.

Interrupteurs

A partir du 15 juin 1949.

Spälti Fils & Cie, Zurich.

Marque de fabrique:

Boutons poussoir, unipol., pour ~ 6 A, 500 V.

Utilisation: Pour montage encastré ou apparent dans des locaux secs.

Exécution: Socle en stéatite. Contacts en argent. Plaque frontale ou boîtier en matière isolante moulée noire. A contact de travail et à contact de repos.

Type 110-li-6: Elément de bouton poussoir seul, sans boîtier

Type 115—1 —6: pour montage apparent, avec 1 bouton Type 115—2 —6: pour montage apparent, avec 2 boutons

Type 115-1a-6: pour montage apparent, avec 1 bouton et lampe de signalisation

Type 116-1 -6: pour montage encastré, avec 1 bouton

Type 116—2—6: pour montage encastré, avec 2 boutons Type 116—1a—6: pour montage encastré, avec 1 bouton et lampe de signalisation

Interrupteurs

A partir du 1er juillet 1949.

Fr. Sauter S. A., Bâle.

Marque de fabrique: Plaquette

Contacteurs pour 500 V, 6 A.

Utilisation: dans des locaux secs.

Exécution: Interrupteur tripolaire avec contacts en argent, sans coupe-circuit. Boîte en tôle.

Type SL 6 III: pour commande à distance.

Coupe-circuit à fusible

A partir du 1er juin 1949.

S. A. des Produits électrotechniques Siemens, Zurich.

Marque de fabrique:

Socles de coupe-circuit à vis pour 500 V.

Nº SAZ 25: Socle de coupe-circuit, unipol. 25 A, pour montage dans coffrets

Nº SAZ 60: Socle de coupe-circuit, unipol. 60 A, pour montage dans coffrets

N° DHZ 1×25 , ... $1 \times 25/0$: coupe-circuit à chapeau double, unipol., 25 A

N° DHZ 2×25 , ... $2 \times 25/0$: coupe-circuit à chapeau double, bipol., 25 A

N° DHZ 3×25 , ... $3 \times 25/0$: coupe-circuit à chapeau double, tripol., 25 A

 N° DHZ 3×60 , ... $3 \times 60/0$: coupe-circuit à chapeau double,

 $3 \times 60/E$ tripol., 60 A A partir du 15 juin 1949.

Oskar Woertz, Bâle.

Marque de fabrique:

Sectionneurs du neutre.

Utilisation: pour montage encastré.

Exécution: socle en matière isolante moulée jaune.

Nr. 4058/59: pour 60 A, 500 V.

Boîtes de jonction

A partir du 1er juin 1949.

Oscar Woertz, Bâle.

Marque de fabrique:

Bornes sur rails, unipolaires, pour 500 V.

Exécution: Corps isolant en stéatite (S) resp. en matière isolante moulée noire (J), jaune (Jg) ou blanche (Jc).

4010 S, J, Jg, Jc: 4011 S, J, Jc: 4012 S, J, Jc:	Borne pour raccordement direct Borne avec barre mobile Borne pour transmission	
4091 S, J, Je: 4092 J:	Stéatite resp. matière isolante moulée noire ou blanche Matière isolante moulée jaune	
4001 S, J, Jc: 4002 J:	Stéatite resp. matière isolante moulée noire ou blanche Matière isolante moulée jaune	
4003 S, J, Jc: 4004 J:	Stéatite resp. matière isolante moulée noire ou blanche Matière isolante moulée jaune	
4005 S, J, Je: 4006 J:	Stéatite resp. matière isolante moulée noire ou blanche Matière isolante moulée jaune	

Conducteurs isolés

A partir du 15 juin 1949.

E. A. Schürmann, Zurich 5 (Représentation de la maison Kabel und Metallwerke Neumeyer A.-G., Nürnberg).

Fil distinctif de firme: bleu-rouge-vert, torsadé.

- a) Conducteurs à gaine de caoutchouc Cu-GS, fil de 1 à 2.5 mm^2 .
- b) Cordon rond Cu-GRg et GRs 2 × 0,75 mm² avec première tresse.

H. Studer, Texmetall, Niedergösgen (SO).

Fil distinctif de firme: jaune-blanc torsadé.

Conducteurs d'installations Cu - T, fil de 1 à 16 mm².

Prises de courant

A partir du 23 juin 1949.

Wagner S. A., Waldstatt.

Marque de fabrique:

Fiches et prises mobiles bipolaires, pour 6 A, 250 V.

Utilisation: dans des locaux secs.

Exécution: corps isolant en matière isolante moulée noire.

Nr. KP—A—132:

fiche sans protège-doigts

Nr. KP—A—133:

fiche avec protège-doigts

Nr. KP—A—132a:

prise mobile sans protège-doigts

Nr. KP—A—133a:

prise mobile avec protège-doigts

Type 1, Norme SNV 24505

Transformateurs de faible puissance

A partir du 1er juillet 1949.

A. Wagner, Elektro-Apparate, Zurich.

Marque de fabrique: <

Appareils auxiliaires pour lampes fluorescentes.

Utilisation: Montage à demeure dans des locaux secs et temporairement humides.

Exécution: Appareils auxiliaires sans coupe-circuit thermique. Enroulement en fil de cuivre émaillé. Bobine de self logé dans un boîtier en tôle rempli de masse compound. Couvercle en tôle. Livrables également sans couvercle, pour montage incorporé.

Pour lampes de 40 W. Tension: 220 V, 50 Hz.

III. Signe «antiparasite» de l'ASE

Sur la base de l'épreuve d'admission, subie avec succès, selon le § 5 du Règlement pour l'octroi du signe «antipara-site» de l'ASE [voir Bull. ASE t. 25(1934), N° 23, p. 635...639, et nº 26, p. 778], le droit à ce signe a été accordé:

Signe «antiparasite»

A partir du 1er mai 1949.

Electrolux S. A., Zurich. S

(Représentation de la maison Aktiebolaget) Lux, Stockholm).

Marque de fabrique:

Aspirateur de poussière «VOLTA», Mod. U 118, 350 W. Aspirateur de poussière «VOLTA», Mod. U 120, 400 W. Aspirateur de poussière «ELECTROLUX», Mod. Z 48, 350 W. Tensions: 127, 145, 220, 230 et 240 V.

A partir du 15 mai 1949.

ELHAG Elektro-Haushaltapparate-Vertrieb G.m.b.H., Zürich (Représentation de la maison Vereenigde EFA-Produka Bedrijven, Amsterdam.)

Marque de fabrique: AIRMASTER

Aspirateur de poussière «AIRMASTER», Typ UT, 220 V, 270 W.

A partir du 15 juin 1949.

Solis Apparatefabrik, Zurich.

Marque de fabrique: (Jolis

Douche à air chaud Solis, Mod. No. 106, pour 110, 125, 150, 220, 250 V, 750 W.

IV. Procès-verbaux d'essai

[Voir Bull. ASE t. 29(1938), No 16, p. 449.]

Valable jusqu'à fin mai 1952.

P. Nº 993.

Objet:

Etuve de séchage

Procès-verbal d'essai ASE: O. Nº 23 224a, du 25 mai 1949. Commettant: S. A. Salvis, Fabrique d'appareils électriques,

Lucerne.

Inscriptions:

Salvis

A. G. Luzern (Schweiz) Volt 220 Watt 200 41996 B Max. Temp. 120 No. 41996 B

Etuve de séchage et de cultures bactériennes, selon figure. Diamètre intérieur 365 mm, profondeur 300 mm. Parois intérieure et extérieure en tôle d'aluminium. Régulateur de température pour 20 à 100 °C, thermomètre, interrupteur unipolaire, lampe et fiche d'appareil incorporés.

Cette étuve a subi avec succès les essais relatifs à la

sécurité.

Valable jusqu'à fin mai 1952.

P. Nº 994. Objet:

Brûleur à mazout

Procès-verbal d'essai ASE: O. Nº 23 166, du 23 mai 1949. Commettant: Société de Transactions financières et commerciales S. A., 10, rue de Hollande, Genève.

Inscriptions:

Prest - O - Heet, Oil Burner Hartford 6, Conn. U. S. A. Susca S. A., 10 r. de Hollande Genève

sur le moteur:

OHIO

Long hour duty A. C. Motor
Type 926 A 3841 B Cont. 55 °C

Volt 230 Amp. 1.4 H. P. 1/6 Ph 1 Cyc. 60 RPM 1450 Ser. No. 47 G Mfd. by The Ohio Electric

Mfg. Co. Cleveland, Ohio U.S.A. sur le transformateur d'allumage:

Transformatoren-Fabrik Zürich 1

F. No. 1017 F 50 VA: 160 max. Klasse HA
Prim.: 220 V
Sec. 14'000 Ampl. V
0,015 max. A

Made in Switzerland

Description:

Brûleur automatique à mazout, selon figure. Vaporisation de l'huile par pompe et gicleur. Allumage à haute tension. Mise à la terre du point médian de l'enroulement haute tendu transformateur d'allumage. Commande par moteur monophasé à induit Bornes en court-circuit. communes sur matière céramique pour le moteur et

le transformateur. Manœuvre par appareils PENN.

Ce brûleur à mazout a subi avec succès les essais relatifs à la sécurité. Il est conforme au «Règlement pour l'octroi du signe distinctif antiparasite» (Publ. Nº 117 f).

P. Nº 995.

Deux aspirateurs de poussière Objets:

Procès-verbal d'essai ASE: O. Nº 23 234, du 25 mai 1949.

Commettant: S. A. Electrolux, Zurich.

Inscriptions:

Made in Sweden

Radioschutzzeichen des SEV

Signe «antiparasite» de l'ASE

Essai no 1 Mod. Z 48 No. S 8001002 Volt 220 ≌ Watt 350 Volt 220

Essai nº 2 Mod. Z 48 No. 9001107 Volt 127 ≅ Watt 350 Volt 127

Description:

Aspirateurs de poussière selon figure. Soufflante centrifuge entraînée par moteur monophasé série, dont le fer est isolé des parties métalliques accessibles de l'appareil. Tuyau

souple, rallonges et diverses embouchures permettant d'aspirer et de souffler. Fiche d'appareil et interrupteur à bouton-poussoir incorporés.

Ces aspirateurs de poussière sont conformes aux «Conditions techniques auxquelles doivent satisfaire les aspirateurs électriques de poussière» (Publ. nº 139 f), ainsi qu'au «Règlement pour l'octroi du signe distinctif antiparasite» (Publ. nº 117 f).

Valable jusqu'à fin juin 1952.

P. Nº 996.

Objet:

Moteur triphasé

Procès-verbal d'essai ASE: O. Nº 23 515, du 3 juin 1949.

Commettant: Elwex S. A., Luterbach.

Inscriptions:

ELWEX A.-G. Elektromotoren Luterbach Sol. (Schweiz)

Typ DF 30 B 2 Nr. 20070 Ph 3

Volt 220/380 A 13/7,5

Nps 5 dauernd T/min. 2860 Hz 50

Description:

Moteur triphasé à induit court-circuit, ouvert, à roulements à billes, selon figure. Bornes de raccordement pour couplage étoile et triangle, ainsi que borne de mise à la terre, protégées par un couvercle vissé. Raccords pour tubes isolants armés d'acier.

Ce moteur est conforme aux «Règles pour les machines électriques» (Publ.

nºs 108, 108a). Utilisation: dans les locaux secs ou temporairement humides.

Valable jusqu'à fin juin 1952.

P. Nº 997.

(remplace P. Nº 500)

Objet:

Percolateur

Procès-verbal d'essai ASE: O. Nº 23 589, du 9 juin 1949.

Commettant: Autometro S. A., Zurich.

Inscriptions:

AUTOMETRO A.-G. ZUERICH No. 202 V 3 × 380 W 2500 A 3,8 ~

Description:

Percolateur, selon figure, dont les parties sous tension sont normalement en contact avec l'eau. L'eau est chauffée dans un récipient, isolé des autres parties métalliques, dans lequel des électrodes sont in-troduites. Le percolateur comprend des accessoires pour la préparation du café ainsi qu'un thermomètre à aiguille, un interrupteur et des lampes-témoins, encastrés. Le raccordement du cordon d'alimentation s'effectue au moyen de bornes fixes.

Ce percolateur est conforme aux: «Conditions techniques

pour chauffe-eau instantanés» (publ. Nº 133 f). Le raccordement des percolateurs, dont les électrodes sont en contact direct avec l'eau, ne peut avoir lieu qu'avec l'autorisation du distributeur d'électricité.

Valable jusqu'à fin juin 1952.

P. Nº 998.

Objet:

Brûleur à mazout


Procès-verbal d'essai ASE: O. Nº 23 682, du 8 juin 1949. Commettant: Gustave Bolliger, Ateliers de constructions mécaniques, Gunten (Lac de Thoune).

Inscriptions:

Swiss Made G. Bolliger Mech. Werkstätte Gunten

No. 1401 Volt 220 Amp. 0,8 n = 1400 Per. 50

Description:

Petit brûleur à mazout, selon figure. Pompe et ventilateur entraînés par moteur monophasé à induit en court-circuit. Le mazout est amené par la pompe dans une cuvette à brûleur, où il est allumé à la main. Le débit du mazout et celui de l'air de combustion sont réglables. Interrupteur à levier basculant incorporé. Cordon de raccordement fixé la machine, avec prise 2 P + T.

Ce brûleur à mazout a subi avec succès les essais relatifs à la sécurité.

Valable jusqu'à fin juin 1952.

P. Nº 999. Objet: Baladeuse antidéflagrante

Procès-verbal d'essai ASE: O. Nº 23 679, du 7 juin 1949.

Commettant: Camille Bauer S. A., Bâle.

Inscriptions:

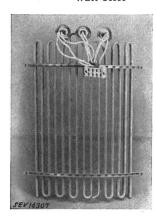
Gehäuse: 9-S-4432-L Glühlampe: GE 1491 0,8 A 2,4 V

Description:

Baladeuse à boîtier en fonte d'aluminium, renfermant 2 piles sèches de 1,5 V chacune. Réflecteur de 10 cm de diamètre sur le devant du boîtier et interrupteur encastré à levier basculant. Utilisation: dans les locaux présentant des dangers d'explosion.

Valable jusqu'à fin juin 1952.

P. Nº 1000.


Objet: Corps de chauffe pour machines à laver Procès-verbal d'essai ASE: O. N° 23 664, du 7 juin 1949. Commettant: Maxim S. A., Aarau.

Inscriptions:

Maxim

Volt 500 人 Watt 14000 L. Nr. WCA 15 N F. Nr. 542831

Corps de chauffe, selon figure, pour montage dans les chaudières de machines à laver. Trois barres chauffantes pour courant triphasé sous gaine en cuivre de 9/18 mm de diamètre, chacune pour un tiers de la puissance de chauffe. Serpentins cintrés. Extrémités des résistances de chauffe isolées par des perles et conduites à des bornes montées sur un socle en matière céramique.

Ce corps de chauffe a subi avec succès les essais relatifs à la sécurité.

Valable jusqu'à fin mai 1952.

P. Nº 1001.

Objet:

Luminaire

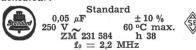
Procès verbal d'essai ASE: O. N° 23 597, du 31 mai 1949. Commettant: Belmag S. A., Bubenbergstrasse 10, Zurich.

Inscriptions:

sur le luminaire:

Belmag 42 587 Belmag 42 588

Qualität u. Form


BELMAG Zürich Suisse

sur l'appareil auxiliaire:

Elektroapparatebau Ennenda Fr. Knobel & Co. Fluoreszenzröhre 40 Watt Typ 220 RtK Strom 0,42 Spannung 220 V 50 ~ Nr. 3, 49

sur le condensateur:

Description:

Luminaire pour 1 ou 2 lampes, selon figure, destiné à des locaux présentant des dangers d'explosion. Lampes fluorescentes 40 W, logées dans un coffre en tôle étanche, dont la face inférieure est constituée par une plaque en verre de 5 mm d'épaisseur, maintenue en place contre une garniture

en caoutchouc par 6 fermetures à vis. Lampes à culots à broches assurée contre tout dégagement par deux brides. Appareil auxiliaire avec bobine de self et starter thermique dans boîtier rempli de masse compound. Fixation des fils de connexion par soudage.

En attendant la nouvelle rédaction des Prescriptions pour le matériel antidéflagrant par le CT 31, ces luminaires sont admis dans les locaux présentant des dangers d'explosion.

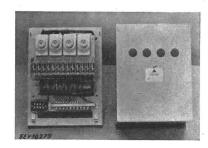
Valable jusqu'à fin mai 1952.

P. N° 1002.

Objet:

Coffret de manœuvre

Procès-verbal d'essai ASE: O. N° 23 518, du 30 mai 1949. Commettant: Albiswerk Zurich S. A., Zurich.


Inscriptions:

Type AW. Sk. 6S 251a Nr. 1079 Netz 110-250 V 50 \sim N_{max} 300 VA Leerl. 6 W

Description:

Coffret de manœuvre pour installation de recherche de personnes, selon figure. Transformateur de réseau avec coupecircuit normaux au primaire et au secondaire et bloc de

relais pour le service des circuits d'appel. Relais alimentés par un réseau séparé.

Ce coffret de manœuvre est conforme aux «Prescriptions pour appareils de télécommunication» (Publ. n° 172 f).

P. Nº 1003.

Objets: Deux aspirateurs de poussière

Procès-verbal d'essai ASE: O. N° 23 122, du 25 mai 1949. Commettant: W. Widmann, Löwenstrasse 20, Zurich. Inscriptions:

Made in Sweden

Radioschutzzeichen des SEV

Signe «antiparasite» de l'ASE

Essai nº 1 Mod. U 118 No. S 8001494 V 220 ≌ Fi W 350

Description:

Aspirateurs de poussière selon figure. Soufflante centrifuge entraînée par moteur monophasé série, dont le fer est isolé des parties métalliques accessibles de l'appareil. Tuyau souple, rallonges et diverses embouchures permettant d'aspirer et de souffler. Fiche d'appareil et interrupteur incorporés. Ces aspirateurs de poussière sont conformes aux «Conditions techniques auxquelles doivent satisfaire les aspirateurs

électriques de poussière» (Publ. n° 139 f), ainsi qu'au «Règlement pour l'octroi du signe distinctif antiparasite» (Publ. n° 117 f).

Communications des organes des Associations

Les articles paraissant sous cette rubrique sont, sauf indication contraire, des communiqués officiels des organes de l'ASE et de l'UCS

Nécrologie

Nous déplorons la perte de Monsieur A. Saesseli, propriétaire de la maison A. Saesseli & Co., membre collectif de l'ASE, décédé le 4 juin 1949 à Zurich, à l'âge de 54 ans. Nous présentons nos sincères condoléances à la famille en deuil.

Assemblée annuelle de 1949 de l'ASE et de l'UCS

Avis préliminaire

Nos membres sont avisés que les Assemblées générales de l'ASE et de l'UCS auront lieu, sauf imprévu les

1er, 2 et 3 octobre 1949, à Lausanne.

Il s'agira, comme tous les deux ans, d'une «grande» Assemblée, à laquelle les dames seront également invitées. Outre les deux assemblées générales, il y aura une soirée récréative, un banquet, ainsi que des excursions le lundi.

Comité Technique 33 du CES Condensateurs de puissance

Le CT 33 a tenu sa 12° séance le 22 juin, à Zurich, sous la présidence de M. A. Imhof, président. Il a discuté en détail de quelques objections formulées à propos du projet de Recommandations pour l'utilisation de condensateurs pour l'amélioration du facteur de puissance des installations à

basse tension, qui avait été examiné pour la première fois lors de la dernière séance.

La normalisation des dimensions de condensateurs pour la compensation individuelle de moteurs, qui avait été envisagée, sera examinée ultérieurement, au moment de la mise au net des Recommandations.

Le texte d'une requête à la CEI, à propos du procèsverbal de la séance du Comité d'Etudes n° 33, d'octobre 1948, à Stockholm, a été approuvé.

Les spécialistes du CT 33 s'occuperont également, à titre préparatoire, de prescriptions pour les condensateurs de faible puissance.

Admission de systèmes de compteurs d'électricité à la vérification

En vertu de l'article 25 de la loi fédérale du 24 juin 1909 sur les poids et mesures, et conformément à l'article 16 de l'ordonnance du 23 juin 1933 sur la vérification des compteurs d'électricité, la commission fédérale des poids et mesures a admis à la vérification le système de compteur d'électricité suivant, en lui attribuant le signe de système indiqué:

Fabricant: Maschinenfabrik Oerlikon, Zürich-Oerlikon.

Supplément au

Transformateur de tension, Types MOE 1 à 50, et MLE 0,5 à 10, pour la fréquence 50 Hz.

Berne, le 14 avril 1949.

Le président de la commission fédérale des poids et mesures:

P. Joye

Bulletin de l'Association Suisse des Electriciens, édité par l'Association Suisse des Electriciens comme organe commun de l'Association Suisse des Electriciens et de l'Union des Centrales Suisses d'électricité. — Rédaction: Secrétariat de l'Association Suisse des Electriciens, 301, Seefeldstrasse, Zurich 8, téléphone (051) 34 12 12, compte de chèques postaux VIII 6133, adresse télégraphique Elektroverein Zurich. — La reproduction du texte ou des figures n'est autorisée que d'entente avec la Rédaction et avec l'indication de la source. — Le Bulletin de l'ASE paraît toutes les 2 semaines en allemand et en français; en outre, un «annuaire» paraît au début de chaque année. — Les communications concernant le texte sont à adresser à la Rédaction, celles concernant les annonces à l'Administration. — Administration: case postale Hauptpost, Zurich 1, téléphone (051) 23 77 44, compte de chèques postaux VIII 8481. — Abonnement: Tous les membres reçoivent gratuitement un exemplaire du Bulletin de l'ASE (renseignements auprès du Secrétariat de l'ASE). Prix de l'abonnement pour non-membres en Suisse fr. 40.— par an, fr. 25.— pour six mois, à l'étranger fr. 50.— par an, fr. 30.— pour six mois. Adresser les commandes d'abonnements à l'Administration. Prix de numéros isolés en Suisse fr. 3.—, à l'étranger fr. 3.50.