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det werden kann3). Auch scheint es zweckmässig,
wenn einmal eine gewisse Normung, wenigstens für
Leuchten, die für Arbeitsstätten in Betracht kommen,

durchgeführt würde, was wohl am ehesten auf
freiwilliger Basis unter den solche Produkte
herstellenden Firmen erfolgen könnte. Es ist sicher
nicht nötig, dass wieder eine grosse Menge der
verschiedensten Leuchtentypen zur Anwendung
gelangt, wie es heim Glühlampenlicht der Fall war
und heute noch ist, wobei sich unter diesen Leuchten

immer solche befinden, die lichttechnisch
unbefriedigend sind.

Schlussbemerkungen
Schliesslich möge noch eine Anregung gestattet

sein, zu welcher die Installation von Fluoreszenzlampen

in der Textilindustrie geführt hat. Bis vor
kurzem wurden die Fluoreszenzlampen parallel zu

3) Zur Zeit werden verschiedene solche Leuchten gebaut,
von denen eine bereits von der Materialprüfanstalt des SEY
geprüft und zum Anschluss zugelassen wurde.

den Webstühlen, Spinn- und Zwirnmaschinen
angeordnet, neuerdings senkrecht. Diese Anordnung
ist zweifellos wesentlich vorteilhafter als die
frühere, nach welcher nun eine ganze Reihe von
Anlagen ausgeführt wurden, die nun schon wieder bis
zu einem gewissen Grad veraltet sind. Warum führt
man nicht für die Beleuchtung so zahlreich
vorhandener Maschinen, z. B. von Webstühlen,
Spinnmaschinen, Nähmaschinen oder Werkzeugmaschinen,

systematische Versuche durch, um die beste
Beleuchtungsart herauszufinden, bevor Anlagen in
den Betrieben eingerichtet werden?

Zum Schlüsse sei der Hoffnung Ausdruck
gegeben, dass die kritischen Betrachtungen des

Vortrages in dem Sinne verstanden worden sind, wie
sie gemeint waren: als Beitrag zum Vermeiden von
Fehlern in der Beleuchtung von Arbeitsstätten,
Fehlern, die sich zum Nachteil von Arbeitgebern
und Arbeitnehmern auswirken.
Adresse des Autors:
E. Bitterli, Dipl.-Ing., Adjunkt des eidgenössischen
Fabrikinspektors des III. Kreises, Utoquai 37, Zürich 8.

Beitrag zur Theorie der mathematischen Behandlung nichtlinearer Vorgänge
Yon H. Rosenhamer, Västeräs (Schweden) 517.9 : 621.3

Um eine allgemeine Differentialgleichung n-ter Ordnung,
wie sie sich z. B. bei der mathematischen Behandlung eines
nichtlinearen elektrischen Vorganges ergibt, lösen zu können,
stellt der Verfasser zunächst die Gleichung als Summe von
Produkten linearer Differentialquotienten mit Koeffizientenfunktionen

dar und ersetzt diese punktweise durch geeignet
zu wählende Konstanten, worauf die Integration in bekannter

Weise durchgeführt wird. Das so erhaltene Ergebnis, das
der ursprünglichen Differentialgleichung natürlich nur mit
gewisser Näherung genügt, wird weiter zur Bestimmung
neuer, modifizierter Koeffizientenfunktionen benutzt, die zu
einer befriedigenden Lösung der Differentialgleichung des
vorgelegten Problems führen. Dabei kann man die den
nichtlinearen Systemelementen entsprechenden Funktionen
unverändert lassen und die erforderliche Modifizierung lediglich
mit Hilfe von Konstanten bewirken.

Als Anwendungsbeispiel dieser «Methode der
Funktionskonstanten» werden die Vorgänge untersucht, die sich bei
einer Reihenschaltung einer Induktivität, einer Kapazität
und eines Widerstandes einstellen können, wenn eine
sinusförmige Spannung angelegt wird. Es zeigt sich dabei u. a.,
dass Kipperscheinungen an das Auftreten eines stationären
Ausgleichgliedes gebunden sind, während Unterschwingungen
besonders dann entstehen, wenn der Maximalwert des
Zeitintegrals der aufgezwungenen Spannung gerade gleich dem
Maximalwert des entsprechenden, vom System selbst
gegebenen inneren Spannungsintegrals ist. Das Beispiel lässt
gleichzeitig erkennen, dass diese Methode zur übersichtlichen

und anschaulichen Behandlung auch schwierigerer
Aufgaben geeignet ist.

L'auteur présente une méthode pour résoudre les équations

différentielles générales de n'-ordre, du type de celles
rencontrées, par exemple, dans l'étude mathématique des
phénomènes électriques non-linéaires. Il réduit tout d'abord
l'équation à une somme de produits de quotients différentiels
linéaires à coefficients variables, puis remplace successivement

ces coefficients par des constantes à déterminer; il
effectue ensuite l'intégration par les méthodes habituelles. Le
résultat ainsi obtenu ne satisfait l'équation différentielle
primitive que de façon approchée. Par contre il peut servir
à déterminer de nouveaux coefficients variables qui
permettent de trouver une solution plus satisfaisante de l'équation

donnée. Cette modification des coefficients peut
s'obtenir uniquement à l'aide de constantes, sans transformer les
fonctions correspondant aux éléments non linéaires.

Comme exemple d'application de cette «méthode de la
variation des constantes», l'auteur étudie un circuit,
comprenant en série une self-induction, une capacité et une
résistance, lorqu'on lui applique une tension sinusoïdale.
On constate entre autres, que les phénomènes de relaxation
sont liés à la présence d'un terme de compensation station-
naire. D'autre part, des oscillations de fréquence sous-multiple

de l'onde fondamentale peuvent apparaître quand la
valeur maximale de l'intégrale sur le temps de la tension
aux bornes est égale à la valeur maximale de l'intégrale de
la tension induite correspondante du système. Cet exemple
démontre comment la méthode permet de traiter d'une façon
simple et claire des problèmes particulièrement difficiles.

I. Das Verfahren

Verhältnismässig oft kommen Fälle vor, bei
denen die Komponenten des betrachteten
Vorgangs nicht nur proportional den Zustandsgrössen
selbst und ihren Differentialquotienten sind,
sondern auch in weniger einfacher Weise von diesen
Grössen abhängen, die also im Falle nur einer
unabhängigen Veränderlichen durch eine allgemeine
Differentialgleichung n-ter Ordnung,

*{"•* =0 (1)

dargestellt werden. Bekannte Beispiele, die ein
derartiges nichtlineares Verhalten zeigen, sind der
Widerstand mit Lichtbogenentladung, die Induktionsspule

mit Eisenkern, die Kapazität mit beweglichen
Elektroden, sowie die mechanischen Anlogie-Fälle,
nämlich die geschwindigkeitsabhängige Reibung, die
geschwindigkeitsabhängige Masse, die wegabhängige
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Elastizität. Bekanntlich gelingt es mit Hilfe dieser
mechanischen Systeme ungedämpfte periodische
Bewegungen hei zeitlich konstanten Kräften zu
erzeugen. Der stromahhängige Widerstand bewirkt
jedoch einen Austausch von Gleich- und
Wechselstromenergie, während bei der feldabhängigen
Induktivität und Kapazität ein Austausch von elektrischer

und mechanischer Energie stattfindet [1] 1

Eine geschlossene mathematische Behandlung
derartiger Probleme ist nicht möglich, da es keine
Methoden gibt, durch die man eine Differentialgleichung

der erwähnten Art in jedem Falle integrieren
könnte. Dies gilt auch noch für die verhältnismässig
einfache, aber technisch besonders wichtige Form

y fo (y) + d a-
fl {y) + Tx* *2 (j) sin* (2)

Eine solche Gleichung lässt sich z. B. für eine mit
sinusförmiger Spannung gespiesene Reihenschaltung

einer stromabhängigen Kapazität, eines
stromabhängigen Widerstandes und einer stromabhängigen

Induktivität aufstellen. Man hat versucht [26,
27] Ansätze der Form

y Bq -+- (a i sin — x-\-B i cos—:r) -f- (3)
\ TT n TT n I
/ 2 2 \

-(- IA 2 sin — x-\- B 2 cos x -+...
\ — n — n\ n n /

-f-[A„_isin x-\- B„_i cos — -+-
\ — n — n\ n n /

-+- ^Al sin x -f- ßj cos -+

/ r, n+1 \+ I ^n+1 sin —- x+ Bn+1 cos —— x J +...
\ n n /

in Gl. (2) einzusetzen und damit die Konstanten
A j und B

; zu bestimmen. Ohne dies selbst durch-
n n

zuführen, erkennt man, dass die Rechenarbeit bei
diesem Verfahren trotz verschiedener Vereinfachungen

und Vernachlässigungen bedeutend ist, sehr
zum Nachteil der praktischen Anwendbarkeit und
der physikalischen Klarheit. Die bei diesem
Lösungsverfahren auftretenden Schwierigkeiten liegen
im wesentlichen darin begründet, dass mit Komponenten

gearbeitet wird, die wegen der hier
vorliegenden gestörten Superposition nicht unabhängig
voneinander sind.

Bei einer zweiten Methode, die, im Gegensatz zur
vorhergehenden, oft Anwendung findet, wird jede
Kennlinie durch verschiedene Geradenstücke
ersetzt, deren Zahl man aus Gründen der Einfachheit
so klein wie möglich wählt. Für jedes Geradenstück
werden konstante Koeffizienten bestimmt und in
die zugehörige Differentialgleichung eingesetzt. Die
bei diesem Verfahren erreichbare Genauigkeit ist
im allgemeinen mittelmässig, denn abgesehen von
den Abweichungen, die beim Ersatz einer krummen
Kennlinie durch wenige Geradenstücke auftreten,
entstehen an den Stoßstellen zweier aufeinanderfol-

1 siehe Literaturverzeichnis am Schluss des Artikels.

gender Geradenstücke Übergangserscheinungen,
deren Berücksichtigung bei diesem Näherungsverfahren

recht umständlich wäre. Immerhin leistet diese
Ersatzmethode oft gute Dienste, beispielsweise in
der Reglertheorie [2, 3, 4, 5]

Noch eine dritte Methode, ihrem Wesen nach
eine Integralmethode, verdient Erwähnung. Man
rechnet mit den für gewisse Kurvenformen bestimmbaren

Effektivwerten und kann daher zwar keinen
Aufschluss über die Augenblickszustände geben,
wohl aber leistet diese Methode oft wertvolle Hilfe
bei der Beurteilung der sich einstellenden Betriebs-
zustände. Auf diese Weise können z. B. die Stabilität

von Arbeitspunkten oder die Grenzen für das
Auftreten von Kipperscheinungen bei Serie- oder
Parallelschaltung von Kapazitäten und Induktivitäten

untersucht werden [16, 17]

In der vorliegenden Arbeit soll ein neuer Weg
eingeschlagen werden, indem ein nichtlinearer
Vorgang durch Differentialgleichungen von der Form

y f0 (*> y) + ^fi (*. y) H h fn (*.y) F <*)

dargestellt wird und die Koeffizientenfunktionen
iv (x, y) (die im allgemeinen auch Ableitungen
enthalten dürfen) punktweise konstant gehalten
und den Werten gleichgesetzt werden, die sie für
geeignet gewählte Werte von x und y annehmen.
Die Differentialgleichung (4) kann dann wie eine
lineare Differentialgleichung mit konstanten
Koeffizienten behandelt werden und liefert daher eine
implizite Gleichung g(x, y) 0 für die beiden
Variabein, aus der y als Funktion f(*) prinzipiell
bestimmbar ist. Diese Lösung wird aber im
allgemeinen die Gl. (4) nicht recht befriedigen, da deren
Integration nicht längs der Funktionen iv erfolgt
ist, sondern längs konstanter Ersatzwerte. Immerhin

wird der erhaltene Funktionsverlauf ein qualitativ

brauchbares Bild vermitteln, das bei
entsprechender Modifizierung der Koeffizientenfunktionen
auch zu einer quantitativ befriedigenden Lösung
führen kann. Wird also der durch y f (x) gegebene

Funktionsverlauf als der tatsächliche
angesehen, so kann Gl. (4) für eine Anzahl von
Wertepaaren x, y bei vorerst noch unbestimmten
Koeffizientenfunktionen f* neu angeschrieben und diese
Koeffizientenfunktionen aus den so erhaltenen
Bedingungen ermittelt werden. Dabei lassen sich die
Verhältnisse so einrichten, dass die den ursprünglichen

Koeffizientenfunktionen f v entsprechenden
nichtlinearen Kennlinien unverändert bleiben und
sich die erforderlichen Modifizierungen lediglich
auf Konstantwerte erstrecken.

Es lässt sich zeigen (der Beweis musste mit Rücksicht

auf den Umfang der Arbeit wegbleiben), dass
sich etwa vorhandene Integrationskonstanten bei
diesem Verfahren stetig und lediglich nach Massgabe

der Koeffizientenfunktionen îv ändern und
dass daher, so lange der Vorgang stetig verläuft,
keine Ausgleichglieder entstehen. Im Falle von
Unstetigkeit können aber Ausgleichglieder auch
für den Dauerzustand vorkommen.
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II. Die Reihenschaltung einer Induktivität mit
Eisenkern und einer konstanten Kapazität

1. Die möglichen Betriebszustände
Das im Teil I angedeutete Verfahren soll jetzt

dazu benutzt werden, einen näheren Einblick in die
Physik derjenigen Erscheinungen, insbesondere des

Kippvorganges und des Unterschwingungszustandes,
zu ermitteln, die an Serieschaltungen von Induktivität

mit Eisenkern und konstanter Kapazität
beobachtet werden.

Unter Kippen versteht man bekanntlich das
plötzliche Umschlagen vom induktiven in den
kapazitiven Betriebszustand, was bei einer mit
sinusförmigem Strom gespiesenen Serieschaltung
einer stromabhängigen Induktivität und einer
Kapazität dann eintritt, wenn bei stetiger
Spannungserhöhung die Differenz zwischen den
Effektivwerten der über der Induktivität und
über der Kapazität gemessenen Spannungen ihr
Maximum erreicht. Ein entsprechendes Umschlagen
vom kapazitiven in den induktiven Zustand tritt
auch bei Verkleinerung der Spannung ein, in diesem
Fall aber wesentlich durch den stets von Null
verschiedenen Widerstand des Stromkreises bedingt
[6...19] Beachtenswert ist hier die Tatsache, dass
der Zustand innerhalb einer Periode erfahrungsge-
mäss nur induktiv oder nur kapazitiv sein kann, dass
der Strom also bei positiver Eingangsspannung nur
zunehmen bzw. nur abnehmen kann. Nun zeigt
aber eine einfache Überlegung (z. B. bei der
Berechnung der Induktivitäts- und der Kapazitätsspannung,

die durch einen sinusförmigen Strom erzeugt
werden), dass es Fälle gibt, bei denen wegen der mit
dem Strome zunehmenden Sättigung der Induktivität

der Zustand innerhalb derselben Periode bei
kleinen Strömen induktiv, bei grossen dagegen
kapazitiv sein sollte. Wie dieser Widerspruch gelöst
werden kann, wird aus den folgenden Ausführungen
ersichtlich werden.

Während der Kippvorgang in der Literatur bereits
1907 erwähnt wurde, scheint der Unterschwingungs-
zustand erstmalig 1926 erkannt worden zu sein
[20] Er äussert sich darin, dass ausser der durch
eine rein sinusförmige Eingangsspannung erzeugten
Grundschwingung des Stromes auch noch
Unterschwingungen auftreten, deren Frequenzen beliebige

rationale Teile der Grundfrequenz / sind;

vorzugsweise stellt sich dabei die Frequenz ~f ein,
TTl

während die übrigen Frequenzen — / (wo m und n
n

ganze, teilerfremde Zahlen bedeuten) weniger stabil
sind [20...34] Ähnlich wie der Kippvorgang ist
auch der Unterschwingungszustand mit dem
Auftreten von Überspannungen und Überströmen
verbunden. Was die Physik des Unterschwingungszustandes

anbelangt, scheint man bisher nicht über
Hypothesen hinausgekommen zu sein, obschon man
für eine Anzahl konkreter Fälle seine Existenzbedingungen

empirisch feststellen konnte und es auch
gelungen ist Unterschwingungsformen mit
Rechenmaschinen (Differentialanalysatoren) zu erzeugen
[32]

Betont sei, dass hier nur einfache
Reihenschaltungen betrachtet werden, die von einfrequen-
ten, also rein sinusförmigen Spannungen ge-
spiesen werden; davon zu unterscheiden sind die
Fälle, in denen einfache nichtlineare Systeme durch
mehrfrequente Spannungen oder gekoppelte,
nichtlineare Elemente enthaltende Systeme durch ein-
frequente Spannungen erregt werden. In solchen
Fällen entstehen Unterschwingungen bekanntlich
als Kombinationsschwingungen [18, 19] Auch die
Unterschwingungen, welche bei vollkommen linearen

Elementen auftreten können, wenn eine
Asynchronmaschine in Reihe mit einer Kapazität von
einer einfrequenten Spannung gespiesen wird, und
die dadurch zustande kommen, dass die Maschine
als Motorgenerator arbeitet, sollen nicht Gegenstand
dieser Betrachtungen sein. Im übrigen sollen sich
die folgenden Untersuchungen ausschliesslich auf
den Dauerzustand beziehen; Übergangserscheinungen

sollen hier nicht behandelt werden.

Nimmt man an, die Eingangsspannung sei

u — U sin cot

so lautet die Systemgleichung

Ci dt d <I>
1

C
' dt N U sin tot

(5)

(6)

oder
i d2id(f>^. /di\2d2<Z>
C ' dt2di \dt/ di2 N - coU cos cot (7)

wo C die Kapazität, <I> den Induktionsfluss und N
die Windungszahl der Induktionsspule bedeuten.
Dies ist nun freilich eine Differentialgleichung zweiten

Grades. Werden aber nach dem oben erwähnten

Verfahren die Koeffizienten des zweiten Gliedes

punktweise durch noch zu definierende
konstante Werte L (Induktivität) ersetzt, so verschwindet

das dritte Glied und Gl. (7) nimmt die Form
(4) an. Die Lösung lautet bekanntlich

Ü
cos r,)t -t- K. cos 1- K- sin

]/LC
(8)

toL — toC

cos cot k, cos -
1

\/LC
- k2 sin

wo jedoch die Integrationskonstanten kx und k„ als
Funktionen von L zu verstehen sind. Setzt man
abkürzungsweise für das Ausgleichglied

fcj cos
t t

fe2 sin ; â
Ü

VLC VLC wL.

so lässt sich für (8) auch schreiben

(9)

toC

coL —

y= i

1

co C

U
w — A — cos cot — J v (10)

Diese Gleichung ist die allgemeine Zustandsglei-
chung des Systems. Die Systemfunktion y ist lediglich

eine Funktion des Stromes und soll zunächst
für sich allein untersucht werden.
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Zu diesem Zweck stellt man die Kennlinie der
Induktivität in mathematischer Form dar, z. B.
indem man die sich hier recht gut eignende Expo-
nentialform wählt1

a 0 -|- b 1 (H)

Den Konstanten b und c ist dasselbe Vorzeichen zu
geben wie es die Durchflutung 0 hat, während a
stets positiv ist. Hier lässt sich sofort eine
Vereinfachung dadurch erzielen, dass man alle möglichen
Kennlinien auf dieselbe Exponentialfunktion reduziert,

indem man an Stelle der Durchflutung 0 als
neue Veränderliche £ oder 0 gemäss der Definition

£ -,—.d c & cNi
c

(12)

verwendet, von denen £ wegen der eben genannten
Vorschrift nur positiv sein kann. Gl. (11) geht
damit über in

<P b b
a - Ii ~*
rcs+( 1_.

Die Induktivität soll als Mittelwert

<PN
L ~ b c IV2

i

(13

bcN2

a 1 — e
1

b Ici
1

d

0 1 — e~k
L

b c §
(14)

definiert werden, was der wirklichen Kennlinie
längs eines Integrationsweges 0...i besser ent-

d 0N
spricht als die Definition L —

u f
ben sich die Grenzwerte

Lq Li =o (a -f- be) N2

sowie
Loo Li oa aN2

für die noch die Beziehung gilt
1a

b c
k

Damit erge-

(15)

(16)

(17)

— 1

Für die Systemfunktion y ergibt sich jetzt nach
Gl. (10) der einfache Ausdruck

y P (1 — e-S)—qt; (18)

wo die dimensionlosen Grössen p und q bedeuten

bNco

P=-Ö (19)

1) Weniger geeignet wäre diePotenzform <2> ai + bic.
Bei dieser muss nämlich 0 < c < 1 sein, da ja $ konkav
gegen die i-Achse hin zunehmen soll; dies hat aber zur Folge,
dass die Steigung beim Strom Null unendlich gross, die
Abweichung von der Wirklichkeit also bedeutend wird.
Hingegen ermöglicht die inverse Darstellung, i a $ + 6 $c,
ebenso wie die Exponentialform eine sehr gute Anpassung
an empirische Kennlinien, wenn man von der tatsächlichen
Verkleinerung der Permeabilität bei geringen Durchflutungen

absieht.

aN co
9 —r.cU \ a N2 co2 C

1

co L

cNUWCL0
(20)

Führt man noch Relativwerte gemäss den Definitionen

1
1 (21)y° p ' q°

p
~~ À

\ co2 CL„

ein, so bekommt man schliesslich für die
Systemfunktion

Jo (1 — e"Ö — % S (22)

Das Klammerglied dieser Gleichung nimmt, wie
es dem Wesen ferromagnetischer Stoffe entspricht,
mit steigendem Strome immer langsamer zu,
während das letzte Glied stets proportional mit dem
Strom wächst; bei einem gewissen Strom nimmt
daher die Systemfunktion ein Maximum an. Man
findet für den Ort dieses Maximums

9o e~~ i (23)
und für den Betrag

Jo 1 -«-f (1 + <?)

Der Verlauf der Systemfunktion ist für einige
Parameter qn in Fig. 1 wiedergegeben. Man ersieht, dass

(24)

Fig. 1

Verlauf der Systemfunktion bei der Reihenschaltung einer
Induktivität mit Eisenkern und einer Kapazität

2/o Systemfunktion; go Parameter; 2/0 Kurve der Maximalwerte

der Systemfunktion; £ dem Strom i proportionale Grösse

Maximalwerte y0 nur für Werte von q0 zwischen
0 und 1 auftreten können.

Um die Zeitabhängigkeit des Stromes zu ermitteln,

geht man von der Zustandsgieichung (10) aus,
in der vorerst vom Ausgleichglied abgesehen und
dementsprechend w durch v ersetzt wird. Da v
unabhängig vom Strom und also auch von £ ist, können

die jeweiligen Betriebspunkte als Schnittpunkte
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der Systemfunktion (22) mit der harmonisch
schwingenden Parallelen zur £-Achse

cos 0)t
(25)

erhalten werden. An Hand der Fig. 1 kann man
folgenden, für das Verhalten des Stromkreises
entscheidenden Umstand erkennen: Während die
Reihenschaltung einer konstanten Induktivität und
Kapazität oder eine konstante oder auch stromabhängige

Induktivität allein jeder beliebigen Werte
v0 fähig ist (d.h. jedes beliebigen
Eingangsspannungsintegrals), da y0 hier mit dem Strom dauernd
zunimmt, ist das von der Reihenschaltung einer
Induktivität mit Eisenkern und einer Kapazität
abhängige Spannungsintegral gewissen Einschränkungen

unterworfen. Je nach dem Verhältnis zwischen
dem Maximalwert y0 dieses inneren Spannungsintegrals

und dem Maximalwert v0 des
Eingangsspannungsintegrals sind die folgenden sechs typischen
Betriebszustände möglich:

a) Rein induktiver Zustand, gekennzeichnet durch

— ©o JS q0 < 0

b) Induktiver Resonanzzustand, gekennzeichnet
durch

1

9o - 0. Vo

c) Induktiv-isoliertkapazitiver Zustand, gekenn¬
zeichnet durch

0 q0 ^ + !» To > ~
d) Induktiv-kapazitiver Zustand, gekennzeichnet

durch

o =£ q0 Jo < —

e) Knotenpunktzustand, gekennzeichnet durch

Jo=y<l0 — 90 - ~
f) Rein kapazitiver Zustand, gekennzeichnet durch

-+- 1 < g0 + ^°

In Fig. 2 ist die in der erwähnten Weise aus Fig. 1

konstruierte Zeitabhängigkeit des auf seinen jeweiligen

Höchstwert bezogenen Stromes für den Fall

p 1,626 sowie für die Betriebszustände
0,615

c)...f) dargestellt und zwar für

q0 0 0,3 0,125 2

py0 1,626 0,551 1

Der rein induktive und der rein kapazitive
Betriebszustand weisen keine Besonderheiten auf;
eine rein sinusförmige Eingangsspannung hat einen
Strom zur Folge, der je nach dem Grad der
Kennlinienkrümmung (q0 < 0 bzw. q0= 1) mehr oder
weniger von der Sinusform abweicht. Der induktive
Resonanzzustand entsteht gemäss Gl. (21), wenn die

Kapazität in Resonanz mit der Sättigungsinduktivität
ist und äussert sich im Auftreten eines induktiven

Stromes, dessen Betrag für cot — kji, (k 0,
1, 2, unendlich gross wird. Tatsächlich ist
jedoch der Sättigungsteil der Induktivitätskennlinie
niemals so geradlinig, wie dies nach der
Ersatzfunktion Gl. (11) vorausgesetzt wird, und der
Strom wird deshalb, wie auch wegen der auftretenden

Verluste stets auf endliche Werte begrenzt. Der
induktiv-isoliertkapazitive Betriebszustand besitzt
ähnlichen Stromverlauf wie der rein induktive
Zustand ; im Gegensatz zu diesem treten hier aber
isolierte Kurvenzweige auf (Fig. 1), die jedoch im
Dauerzustand niemals durchlaufen werden können.
Der induktiv-kapazitive Zustand sowie der
Knotenpunktszustand sollen im folgenden eingehender
behandelt werden.

2. Der induktiv-kapazitive Zustand
Der induktiv-kapazitive Zustand ist in Fig. 2

durch die Kurve q0 — 0,3 wiedergegeben. WoEte
man diesem Kurvenverlaufe folgen, so wäre man ge-

Fig. 2

Zeltlicher Verlauf des Stromes

für den Fall p 1,626
s i— dem Ausdruck — proportionale Grösse
£ _ /

(i Momentanwert, I Amplitudenwert des Stromes);
o>t Zeitmass; p, qo Parameter

zwungen, in gewissen Abschnitten zeitlich rückwärts
zu schreiten, sofern man sich nicht zu Stromsprüngen

entschliessen möchte. Der erste Weg ist für den '

natürlichen Ablauf des Vorgangs undenkbar und
auch zu einem Stromsprung kann es wegen des
Vorhandenseins der Induktivität nicht kommen. Dagegen

wird durch die Unstetigkeitstendenz des. Stromes

ein Ausgleichglied hervorgerufen, so dass nun
hier das Glied A der Zustandsgieichung (10)
berücksichtigt werden muss. In Erweiterung des
bisherigen Verfahrens kann man sich vorstellen, dass
der jeweilige Betriebspunkt als Schnittpunkt der
Systemfunktion (22) mit einer Kurve

A — cos(ot
(26)
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gewonnen wird, die sich additiv zusammensetzt aus
der harmonisch schwingenden Parallelen zur f-
Achse, Gl. (25), und der relativ zu dieser bewegten,
ström- und zeitabhängigen Kurve

A0 — (27)

Das Ausgleichglied A0 ist durch die endgültigen
Koeffizientenfunktionen f* der Gl. (4) vorgeschrieben,

die aber in ihrer genauen Form von
vornherein nicht bekannt sind. Man wählt deshalb
umgekehrt A0 willkürlich und schreibt damit die
definitiven Koeffizientenfunktionen vor. Gleichzeitig
erspart man sich durch diese Festsetzung auf die
Strom- bzw. Zeitabhängigkeit des Ausgleichgliedes
(27) einzugehen. Wie es sich später zeigen wird,
entsprechen bei gegebener Induktivitätskennlinie
jedem Funktionsverlauf, der für A0 gewählt wird,
bestimmte Werte der Kapazität und der
Eingangsspannungsamplitude, nach denen sich der
induktivkapazitive Betriebszustand einstellt. Aus der
zweifachen Unendlichkeit, die sich demnach für die
Wahl von A0 ergibt, soll der für die Ausbildung
eines Stromes der aufgezwungenen Frequenz
einfachste Fall gewählt werden, nämlich

J0 — • y0 cos Sot cos cot (28)

wobei man sich aus Symmetriegründen auf das

Intervall cot —
TT

beschränken kann. Da-
2 ' 2

mit ergibt sich für Gl. (26) der einfache Ausdruck

Wfy — y0 cos Scot (29)

w0 erscheint im Diagramm der Systemfunktion
(Fig. 1) als eine harmonisch mit der dreifachen
Frequenz schwingende Parallele zur f-Achse, deren

Amplitude w0 gleich dem Maximalwert y0 der
Systemfunktion ist. Für diesen Maximalwert nimmt
die Stromänderungsgeschwindigkeit

d<f
d cot

d w0

dot
dJo

(30)

gerade den zur Erzeugung des erforderlichen
Ausgleichgliedes notwendigen Wert an. Wäre w0 > yo>
so bekäme man den erwähnten Fall der
Stromsprungtendenz, der die Vergrösserung eines zu kleinen

Ausgleichgliedes bewirkte. Wäre tv0 < y0, so
wären nur endliche sowie stetige
Stromänderungsgeschwindigkeiten möglich, welche die Verkleinerung

eines zu grossen Ausgleichgliedes zur Folge
hätten. Dass in Gl. (28) gerade die dreifache
erzwungene Frequenz gewählt wurde, beruht darauf,
dass der damit erzeugte Strom in der Hauptsache
mit der erzwungenen Frequenz schwingt (siehe
Abschnitt .1 wodurch die Energieaufnahme aus dem
Netz erleichtert wird.

Der in der beschriebenen Weise konstruierte

i.Stromverlauf ist in Fig. 3 als Relativwert — mit
J &

f 4,421 aufgezeichnet und kann, entsprechend
dem in Teil I erwähnten Verfahren, als der
tatsächliche Stromverlauf betrachtet werden. Gleich-

Fig. 3

Induktiv-kapazitiver Zustand (Kippzustand)
für den Fall p — 1,626; qo — 0,3; wo -yo cos 3 (ût

zeitig ist damit aber auch der zeitliche Differentialquotient

d
d ot

und das Zeitintegral

j fid ot

(31)

(32)

des Stromes auf Grund graphischer Differentiation
bzw. Integration für jeden Augenblick angebbar.

Der zweite Teil der Aufgabe besteht nun darin,
mit dem gefundenen Stromverlauf und einer
vorgegebenen Induktivitätskennlinie (bestimmt durch
die Konstanten a, b und c) die Systemgleichung (6)
zu erfüllen. Um die Höhe der Spannung an der
Induktivität nicht von vornherein festzulegen, muss
die Windungszahl frei bleiben. Werden die
definitiven Werte, soweit sie von den bisherigen
abweichen, durch einen Stern gekennzeichnet, so kann
man setzen

§*= cß* cN*i* cN*i= ^ i m* § (33)

Für den Windungsfluss der Induktivität kann nach
Gl. (11) geschrieben werden

^=fl0* + 6(l-e-'«') — m*i -f- b (1 — e—m*f)

(34)
Als Induktivität soll die in Fig. 4 dargestellte
gewählt werden. Im zugehörigen Diagramm sind
gemessene Werte durch Kreuze bezeichnet. Die
eingetragene analytische Ersatzkurve wurde mit den
Konstanten
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Wh
a 6,81.10—8—, b l,78-10-4 Wb,

A

c 48,5.10-4

berechnet.

Wb

<M0~4

1-10

n

c/ Ks 2L

X *C

/ is

a—-J

I

0 _S£V«664

1 10 2-10

Fig. 4

3*10 A

U dt

mit

P*
bN*m*(o

U p m*

mit

q*
c N*U co C

Induktivität einer Spule mit Elsenkern in Abhängigkeit
des Stromes

(Messpunkte und berechnete Kurve)
Rechts: Skizze in der Spule, 1 Eisenkern, 2 Spulenquerschnitt

Soll nun die Spannungsgleichung (6) erfüllt sein,
so muss die Summe der relativen Induktivitätsspan-
nung

N* d£* ojN* d<I>* d<?

üt=P*W+e~m")
(35)

(36)

und der relativen Kapazitätsspannung

u* -
Ç i* dt Trl- [ t dojt q*j (37)

UC) c N* U a> Cj

(* + 9o) P (38)

in jedem Augenblick gleich sein der relativen
Eingangsspannung

u
u' —— sin a)t (39)

u
Durch geeignete Wahl der Konstanten m* könnte
diese Forderung für einen bestimmten Zeitpunkt
erfüllt werden. In Anbetracht des Näherungsverfahrens,

das bei der Integration der Systemgleichung

angewandt wurde, dürfte aber kaum eine
befriedigende Übereinstimmung für andere
Zeitpunkte erwartet werden. Deshalb soll der
Zusammenhang zwischen p* und p sowie zwischen q* und
q nicht weiter berücksichtigt, sondern drei willkürliche

Richtpunkte gewählt werden, entsprechend

drei bestimmten Augenblicken, in denen volkom-
mene Übereinstimmung gefordert wird und durch
die die Konstanten m*, p* und q* eindeutig
bestimmt werden. Man findet als Bedingungsgleichungen

P £ öß (vß+i — vu+2) (A + eM) 0 (40)
1

Vß— Vfi+l%

(S)ß (Â -h e//) —(/i+ e^+i)

q* vß—p*öß (A + eß)

wobei abkürzungsweise gesetzt wurde

(41)

(42)

ô" Jß jß
eß e-m*^ (p 1,2,3) (43)

Fordert man z. B. Übereinstimmung in den
Augenblicken (at 30, 60 und 80°, in welchen nach
Fig. 3 S 3,201, 1,203 und 0,298, d —3,88,
— 3,22 und —1,84 sowie j 2,10, 3,23 und 3,49
ist, so findet man zunächst aus Gl. (40) m* 1,067
und 16,0. Der erste Wert führt nach Gl. (41) und
Gl. (42) auf ein negatives p* und ein positives q*
und ist daher physikalisch nicht möglich. Hingegen
bekommt man mit m* 16,0 die Werte p* 0,435

und q* — 0,302, so dass, da A T— -
b c 1,78*48,5

0,079 ist, die relative Induktivitäts- bzw.
Kapazitätsspannung gleich wird

u* 0,435 (0,079 +- e-16*0?) d

u* 0,302 j
Die Spannungsgleichung (6) wird mit diesen Werten

in allen Punkten ziemlich genau erfüllt und
nur in nächster Nähe von wt — 90° treten grössere
Abweichungeil auf; diese entsprechen aber grossen
Werten von

di>* u? bm*

d7 irpr («)

und lassen sich daher leicht als Einfluss der in
Wirklichkeit reduzierten Anfangspermeabilität deuten.

Eine völlige Übereinstimmung liesse sich natürlich

ohne prinzipielle Schwierigkeiten durch eine
Modifizierung des Stromverlaufs in der Umgebung
des Nulldurchganges erreichen, worauf hier jedoch
nicht weiter eingegangen werden kann. In Fig. 3
sind auch noch die Spannungen u\ u% und
u*'=u'—u* eingetragen. Für die
Eingangsspannungsamplitude und die Kapazität, die zur Erzielung

des berechneten Zustandes erforderlich sind,
findet man, wenn z. B. N* — 300 gewählt wird,

u
bN*m*cti 1,78 • 10~4-16,0 • 300 • 2jr 50

0,435
:618 V

C
m

c N*a> q* U
16,0

48,5 • 10-4 • 300 • 2 jt 50 • 0,302 • 618
- 187 |xF

Die Durchflutung erreicht den relativ hohen
Maximalwert
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6* m
<f

16,0
48,5 • 10-

4,421 1,46 • 104 A

Zusammenfassend kann man feststellen:
Kennzeichnend für das Zustandekommen des
induktivkapazitiven Zustandes, der offenbar nichts anderes
ist als der gekippte Betriebszustand, ist, dass der
Maximalwert v0 des Eingangsspannungsintegrals
grösser ist als der Maximalwert y0 der Systemfunktion;

kennzeichnend für die sich im gekippten
Zustande abspielenden Vorgänge ist das Auftreten
eines stationären Ausgleichsgliedes A0, das für die
Gleichheit y0 w0 d0+ v0 sorgt und dessen

Quellen in den Maximalpunkten y0 liegen.

3. Der Knotenpunktszustand
Lässt man in Fig. 2 den Parameter q0 von 1 bis

0,125 abnehmen, so erkennt man, dass die
symmetrisch zu oit 0 und 180° liegenden Unstetig-
keitsstellen des Stromes einander immer näher
rücken und sich schliesslich treffen; zwei getrennte
Kurvenpunkte haben sich in einem Doppelpunkt
vereinigt, den man üblicherweise, da es sich um
reelle Zweige handelt, als Knotenpunkt bezeichnet.

Gleichzeitig ist die Tangentenrichtung nach Gl.
(30), in der nur w0 durch v0 zu ersetzen ist (von
einem Ausgleichsglied soll zunächst abgesehen
werden), doppelwertig geworden und man findet
dafür die entgegengesetzt gleichen Werte

IL
d(ot

d2 v,

d(eot)2 _ I

d2Jo'

— ±

'COS Cüt\

P%/ U>t 77

|/1,626-0,125
±2,22 (45)

Diese Werte erhält man auch rein graphisch mit
£ 12,95 aus Fig. 2. Physikalisch bedeuten die
Knotenpunkte eine Gleichsetzung der Maximalwerte

y0 und v0 Wichtig ist dabei, dass die harmonisch

schwingende Parallele v0 in drei aufeinanderfolgenden

Halbperioden Arbeitspunkte auf drei
verschiedenen Zweigen der Systemfunktion bildet
und dass daher eine rein sinusförmige Zwangsspannung

ohne Auftreten irgendwelcher Ausgleichglieder

eine UnterSchwingung der Ordnung ^ zur
o

Folge hat. Eine analoge Erscheinung ist bereits im
vorhergehenden Abschnitt erwähnt worden, bei der
allerdings ein Ausgleichglied aufgetreten war.

In der Systemfunktion (22) wurde bisher nur
die erzwungene Frequenz berücksichtigt. Der derart

ermittelte Strom, der mit i' bezeichnet werden
soll, wird nun noch durch den Strom i" ergänzt,

der durch die Systemfunktion für co geliefert
O

wird. Der Gesamtstrom ergibt sich zu i — i + i".
Nach den Gl. (19)...(21) ist

(46)

"" Ï7B =r"M+^> <«>

und die Systemfunktion lautet daher für die Fre-
1

quenz — (o

y« 1 — e
-tAÖ" — (9^+ 8/lV^" (48)

In Fig. 5 sind die beiden Komponenten 0' und
sowie ihre Resultante # #' + ij" aufgezeichnet.
Der zeitliche Verlauf des Gesamtstromes, wie er

Fig\ 5

Systemfunktion für den Knotenpunktzustand
(Unterschwing'ungszustand)

<70 0,125

nach der früher beschriebenen Weise erhalten
wurde, mit Hilfe der harmonisch schwingenden
Parallelen zur $-Achse

cos cot cos (Ot

p p 1,626
und reduziert auf seinen Maximalwert

I d _ 14,48
|c| N |c| N

ist in Fig. 6 für eine Unterschwingungsperiode 6 71

aufgetragen.

SfVTJSB6

Fig. 6

Strom, und Spannungskurven für den Knotenpunktzustand
p — 1,626; qa — 0,125; m* 1,51
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Um mit diesem Stromverlauf und der
Induktivitätskennlinie der Fig. 4 der Spannungsgleicliung
(6) zu genügen, verfährt man gleich wie bei der
Untersuchung des Kippzustandes. Wählt man als
Richtpunkte z. B. die Augenblicke cut 30, 135
und 240°, bei denen nach der Stromkurve der Fig. 6
& 13,67, 3,26 und —0,40, d —3,15, —4,77
und 0,4 sowie j 7,44, 23,62 und 24,84 ist, so
erhält man als Wurzeln der Gl. (40) die beiden Werte
m* 0,027 und 1,51. Beide Werte führen nach den
Gl. (41) und (42) zunächst auf negative Werte für
p* und q*. Ersetzt man aber die relative Spannung
u sin cut durch u sin (cut + jt), so erhält man
p* 0,297 und q* 0,0297 bzw. p* 2,33 und
q* 0,0108. Für den ersten Unterschwingungszu-
stand ergeben sich die Relativspannungen nach den
Gl. (35) und (37) zu

u* 0,297 (0,079

ut 0,0297 j
-0,027 ')d

Diese Werte erfüllen die Spannungsgleichung (6)
recht gut, sofern man von den kleinen Stromwerten
absieht. Die Kapazitäts- und Induktivitätsspannungen

u* und «*' u — il* weisen den in Fig. 6

ersichtlichen Verlauf auf und zwar mit ungefähr
doppelt so grossen Werten für u*. Für die Amplitude

der aufgezwungenen Spannung U und die
Kapazität C erhält- man für diesen ersten Unter-
schwingungszustand nach den Gl. (36) und (38),
wenn für die Windungszahl N* der Induktivität
2880 gewählt wird,

- 1,78 • 10"4 • 0,027 • 2880 • In 50
U 14,6 V

C

0,297

0,027

0,0297 -48,5 -10-4 • 288(F2ti 50-14,6
14,2 pF

Der Maximalwert der Durchflutung wird nach Gl.
(33)

14 48
0,027 0,009 -104 A0*

48,5-10-4

^ 1,78-10-4-1,51-2880-27t 50
104 5 y

C

2,33
1,51

0,108 • 48,5 • 10-4 • 2880 • 2ji 50 • 104,5
304,5 pF

W !'51 °'450 1°4A

Dabei fallen die theoretisch und praktisch
durchlaufenen Abschnitte der Induktivitätskennlinie
grösstenteils zusammen; es ist daher zu erwarten, dass
sich der Kurvenverlauf der Fig. 6 tatsächlich
einstellt, wenn nur die Induktivität hinreichend
verlustfrei ist.

Bei den ausgeführten Versuchen war diese
Voraussetzung nicht erfüllt. Abgesehen davon, dass der
Kern der Induktivität (Kennlinie nach Fig. 4) aus
normalem Dynamoblech aufgebaut war, betrug der
Widerstand des Stromkreises 18 ü Der Bereich, in

welchem Unterschwingungen der Ordnung-^- mög-
D

lieh waren, fiel daher bedeutend enger aus, als es bei
völliger Verlustfreiheit der FaU gewesen wäre.
Tatsächlich konnten auch solche Ünterschwingungen
bei 50 Hz Zwangsfrequenz und mit N 2880 nur
innerhalb der Grenzen U 30...500 V und C
0...122 pF nachgewiesen werden. Fig. 7 zeigt die
oszillographische Wiedergabe eines dieser Unter-
schwingungszustände mit U 185 V, C 40 pF
und 0 0,180 104 A. In Anbetracht der getroffenen
Vernachlässigungen ist die Übereinstimmung mit
den berechneten Kurven der Fig. 6 durchaus
befriedigend.

Sowohl U wie 0* sind also recht klein und da
gerade bei kleinen Strömen die Abweichungen
zwischen der theoretischen und der wirklichen
Magnetisierungskurve gross sind, ist es nicht sicher, dass
sich dieser Unterschwingungsfall tatsächlich
nachweisen lässt.

Der zweite Unterschwingungszustand, welcher der
Konstanten m* 1,51 entspricht, gibt hinwiederum
die Relativspannungen

ut 2,33 (0,079 + e—d
n? 0,0108 j

welche die Spannungsgleichung mit ungefähr
derselben Genauigkeit erfüllen wie beim vorhergehenden

Fall. Die Werte u* und «*' —u—u* sind in
Fig. 6 aufgetragen, deren Strom- und Spannungskurven

mit denjenigen des vorhergehenden Falles identisch

sind. Für die aufgezwungene Spannung, die
Kapazität und die Durchflutung findet man diesmal

Fig. 7

Oszillographisch autgenommene Strom- und
Spannungskurven tür den Knotenpunktzustand

(vergleiche die berechneten Kurven, Fig. 6)

Auser diesen Unterschwingungen wurden noch
beobachtet

Unterschwingungen der Ordnung ^ in den Berei-

chen U 85...410 V und C 0...49 pF,

Unterschwingungen der Ordnung— in den Berei-
D

chen U 226...243 V, und C 20 pF, die in der
angeführten Reihenfolge immer weniger stabil wur-
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den. Mit C — 434 jxF konnte noch eine

Unterschwingung der Ordnung - - wahrgenommen werden,

die jedoch nur vorübergehend auftrat. Die
Gebiete kleiner Kapazitäten, bis hinauf zu etwa 18 jaF,
waren stets von den Kippbereichen überdeckt. AU-
gemein gilt, dass Unterschwingungen nur durch
plötzliche Schaltvorgänge oder andere Unstetig-
keiten angeregt werden können, nicht aber durch
langsame Änderungen, wie z. B. der aufgezwungenen
Spannung.

UnterSchwingungen der Ordnung -i- entstehen

also bei Abwesenheit von Verlusten, wenn bei
allmählicher Steigerung der Eingangsspannung der
Maximalwert v0 des relativen Eingangsspannungsintegrals

gerade gleich dem Maximalwert y0 der
Systemfunktion wird, wodurch es zur Bildung von
Knotenpunkten und zum Weiterwandern des
Arbeitspunktes auf den fallenden Zweigen der
Systemfunktion kommt. Bei gegebener Kapazität trifft dies,
wie gezeigt wurde, jeweils für einen bestimmten
Wert der Eingangsspannung ein. Sind, wie es praktisch

stets der Fall ist, auch Verluste vorhanden, so
ist zur Erzielung eines Unterschwingungszustandes
auch das Auftreten eines stationären Ausgleichgliedes

erforderlich, was im Teil III gezeigt werden
soll. Hieraus folgt, dass einerseits bei gegebener
Kapazität der Unterschwingungszustand sich über einen
endlichen Eingangsspannungsbereich erstrecken
wird und dass anderseits zur Erzeugung des
Ausgleichgliedes ein geeigneter magnetischer Anstoss
erforderlich ist.

III. Die Reihenschaltung einer Induktivität mit
Eisenkern, einer konstanten Kapazität und eines

konstanten Widerstandes
Der Strom in einem Kreise mit konstanter

Induktivität L und konstantem Widerstand R ist bei
rein sinusförmiger Eingangsspannung bekanntlich
bestimmt durch

U
i -g

sin (cut—ip0), Z - ]/R2 -f- X2,

X coL
tg v,= R -R- (49)

Den Strom kann man aber auch (wie in Teil II)
durch die Schnittpunkte einer Systemfunktion z mit
einer harmonisch schwingenden Parallelen v zur
Stromachse darstellen. Löst man z. B. nach cos cot
auf, so erhält man die Systemgleichung

zj sX ± R ]/w- s2 v1 —— cos cot, s
U

(50)
Löst man nach sin cot auf, so lautet die Systemgleichung

sR±X l/i sin cot (51)

Beide Systemfunktionen z, und z2 stellen Ellipsen

dar, deren Mittelpunkte im Ursprung liegen und
deren Achsen gegenüber dem Koordinatensystem
im allgemeinen verdreht sind. Setzt man, wenn die
Maßstabfaktoren der s- und der z-Achse mit ot und
ß bezeichnet werden, abkürzungsweise

g [-ö-z hi=2JX' h* 2^Rß
(52)

wobei sich die Indizes 1 und 2 auf die Systemfunktion
(50) bzw. (51) beziehen, so findet man nach

einfacher Zwischenrechnung für den Winkel e, um
den die Ellipsenachsen gegenüber dem Koordinatensystem

s, x vorgedreht sind,

^2£=rz~g (53>

und für das Verhältnis ß der Achsenlängen

£2 l+g+l/fe2+(l-
ï+g-W+-(i-

-g)2

g)2
(54)

Man überzeugt sich leicht, dass die Systemfunktion
(50) für R — 0 in eine Gerade übergeht mit dem
Verdrehungswinkel

2--X
ß

- ~x~ arc tg

entsprechend £ — oo Für den Fall -- — 1 wird
ß X

e 45° ; für X 0 wird e 0 und das Achsenver-
ß &hältnis £ so dass man im Falle R 1

a R ß
einen Kreis erhält. Für die Systemfunktion (51)
liegen die Verhältnisse umgekehrt: Für R 0
wird der Verdrehungswinkel e 0 und das Achsen-

ß ßVerhältnis Ç - was im Falle —X 1 wieder-
a X ß

um einen Kreis ergibt ; für X 0 anderseits erhält
man eine Gerade mit dem Verdrehungswinkel

R

Y arc

l — R

der im Falle— 1 gleich 45° wird. Für die

Extremwerte jeder der Systemfunktionen (50) und
(51) findet man durch Differenzieren ze +1.

Handelt es sich nun um eine Reihenschaltung
einer Induktivität mit Eisenkern, einer konstanten
Kapazität und eines konstanten Widerstandes, so
können entsprechend dem bisherigen Verfahren
auch hiefür die Systemgleichungen (50) und (51)
verwendet werden, sofern man in diesen, entsprechend

den Gl. (10) und (18), sX durch y ersetzt.
Führt man ferner

sR R s r x, r —--U cNU
ein, so lauten die Systemgleichungen

(55)
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z2=x±y x2 -)- y2
— 1 v, —

cos (>Jt (56)

sin cot (57)

Die erste dieser Gleichungen wurde für den Fall
R 0 bereits im Teile II benutzt, doch hätte auch
die zweite Gleichung natürlich zu denselben
Ergebnissen geführt. Die für den Fall p 1,626 und
q0 0,125 dargestellte Systemfunktion z2 die also
der Kurve qa 0,125 der Fig. 1 entspricht, ist in
Fig. 8 aufgezeichnet. Auch für die weitere Behandlung

des Problems mit R =j= 0 sind die beiden
Systemgleichungen (56) und (57) gleichberechtigt, es
wird sich jedoch zeigen, dass Gl. (57) zu übersichtlicheren

Darstellungen führt, weshalb diese bevorzugt

werden soll.

|

\ /
\ /
y

i
ï

0 5

\\1 \

ïfVfSSM

Fig. 8

Verlauf der Systemfunktion bei Reihenschaltung einer
Induktivität mit Eisenkern und eines Kondensators

p '= 1,626; qo — 0,125; r 0

Es soll nun vor allem die Frage behandelt wer-
den, welchen Einfluss der Widerstand auf das
Zustandekommen des Knotenpunktzustandes hat und
wie gross man den Widerstand wählen muss, um
diesen Zustand zu vermeiden. Kennzeichnend für
das Auftreten eines Knotenpunktes ist die
Doppelwertigkeit der Systemfunktion, also das Verschwinden

der Wurzel in Gl. (57), sowie die gleichzeitige
Existenz zweier verschiedener Tangentenrichtungen

dojt

du

dwt
dz2

dß

(58)

(vergleiche Fig. 2, Kurve q0 0,125). Bedenkt man,
dass im Knotenpunkt die Systemfunktion z2 wegen
des Verschwindens der Wurzel in Gl. (57) stets
zwischen 0 und 1 liegen muss (abgesehen vom Fall

du
|=0) und dass daher =k 0 ist, so folgt, dass auch

dcotdz,
.—einen endlichen Wert annehmen muss. Nun ist
d$

aber, wenn die in den Systemgleichungen auftretende

Wurzel mit W bezeichnet wird

+ :
d£

dx

dß
1 ydß)W(x2 + y2)

dy\ y (59)

Dieser Ausdruck nimmt für W — 0 nur dann
endliche Werte an,

y

wenn

0 (60)

ist. Ein Knotenpunkt wird also auftreten sowohl für

dx

wie auch für

dy
dß^Jdß

y 0

0 (61)

(62)

Der erste Knotenpunkt entspricht dem in Teil II
dy tmit R 0 erhaltenen Fall -4.- 0. Der zweite

Knotenpunkt dagegen ist hier neu hinzugekommen
und würde bei verschwindendem Widerstand
zusammen mit der Bedingung W 0 auf widersprechende

Forderungen führen. Diese zweifache
Knotenpunktsmöglichkeit besagt (wie aus den folgenden

Beispielen noch deutlicher hervorgehen wird)
nichts anderes, als dass sich bei Vorhandensein eines
Widerstandes auch eine UnterSchwingung der

Ordnung ^ ausbilden kann.
i

Um den Mindestwiderstand zu bestimmen, der
zur Abdämpfung des Unterschwingungszustandes
erforderlich ist, genügt es die Knotenpunktsbedin-
gung (61) näher zu untersuchen. Die Möglichkeit
des Auftretens des zweiten Knotenpunktes nach
Bedingung (62) hängt nämlich mit der Existenz des
ersten Knotenpunktes eng zusammen, was die
folgenden Beispiele zeigen werden. Die Nebenbedingung

W — 0 würde zwar gestatten, die Eingangsspannung

an Stelle des Stromes einzuführen, was
aber unnötig ist, da der Strom im vorliegenden Fall
doch nur als Hilfsgrösse auftritt. Aus Gl. (61) findet

man mit den Beziehungen (55) und (18) für
denjenigen Widerstand, bei dem sich der erste
Knotenpunktszustand einstellt (unter Voraussetzung
fehlender Eisenverluste und fehlenden Ausgleichgliedes

rn - ]/ (îo—e-f) (- %

R
bcN2a> (63)

Bei gegebenen Werten für q0 und r0 sind im
allgemeinen zweiKnotenpunktszustände der Ordnung ^

möglich, und r0 besitzt ein Maximum, oberhalb wel-
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chem kein Knotenpunktszustand mehr erreichbar

ist. Setzt man
drn

0, so ergibt sich für den Ort

f dieses Maximums

q _ e -f1 e~f (1+ 2 S')
/64)

Führt man diesen Wert in Gl. (63) ein, so erhält
man für den Betrag des Maximums

T —
1 e ' + g') y q _ f (l_i_P)lr°- 1+ e-f [g' (g'-l) -1] Ve Li

(65)

Srv15669

Fig. 9

Erforderlicher Mindestwiderstand zur Abdämpfung der
Unterschwingungen

ro Relativwert des Mindestwiderstandes

Für den Parameter q0

(66)

0,125 findet man z. B.

r0 — 0,121 und damit

R 0,121-1,78 -RH- 48,5 RH - 28802 • 2ti 50 272 a
worin die Eisenverluste mit eingeschlossen sind.

Es sollen nun noch einige Systemfunktionen unter

besonderer Berücksichtigung des Knotenpunktzustandes

untersucht werden, ohne jedoch auf die
Erfüllung der Systemgleichung einzugehen, was
gegenüber dem im Teil II Gesagten nichts wesentlich
Neues bringen würde, abgesehen davon, dass eine
bessere Übereinstimmung zwischen den
Induktivitätsspannungen u* und u* ' erzielbar wäre, da
dank des Widerstandes ein vierter Richtpunkt zur
Verfügung steht. Wählt man zunächst r0 0,0125
bei q0 - 0,125, so findet man nach Gl. (65) für den
Knotenpunktstrom f 2,085. Die zugehörigen
Werte x0 und y0 berechnen sich nach Gl. (55) und
(22) zu

*0 — 2,085-0,0125 0,0261

y0 -j- 1 — e~2-085 - 0,125-2,085 0,615

1
wo p

V*0 -+- yl V 0,02612 -+- 0,6152

r 0,0125 • 1,626 ~ 0,0203

1,626

werden, p ist praktisch ebenso gross wie im FaU
ohne Widerstand. Beliebige Punkte der Systemfunktion

z2, die in Fig. 10 aufgezeichnet ist, berechnen
sich nach Gl. (57) zu

* rg 0,0203 g, y (1 — e - f— q0g)p 1,626y0

^Y /
'

\
\ \
\ \ 0

' \ \
15

\ \
| \
lA I

SEV15671

Fig. 10, 11, 14

Systemfunktion der Reihenschaltung einer Induktivität mit Eisenkern, einer Kapazität und eines Widerstandes
für den Knotenpunktzustand

Fig. 10: qo — 0,125; ro 0,0125; p — 1,626
Fig. 11: qo 0,125; ro 0,0625; p — 1,589
Fig. 14: qo — 0,125; ro 0,0125; p ~ 1,626

Die Funktionen (64) und (65) sind in Fig. 9 dar- Insbesondere findet man (z2) f 0 ± 1, während
gestellt und ermöglichen bei gegebenem q0 den Min- die Knotenpunkte wegen W 0 auf der Geraden

destwert R des zur Abdämpfung der Unterschwin- z2k x r£ liegen. Rechts von der Ordinatenachse

gungen erforderlichen Widerstandes zu bestimmen, wird die Systemfunktion durch die beiden Gera-
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den z2' 1 un(l zî' ~ —1+2r£ begrenzt; für
die Schnittpunkte dieser beiden Geraden mit der
Systemfunktion gilt nämlich die gemeinsame
Gleichung

oder y- — (1 — x) x -j- 0 (67)

Danach besitzen y und damit auch z2 in den
Schnittpunkten zwei zusammenfallende Werte. Zur
Bildung der Arbeitspunkte genügt nun nicht mehr
die Funktion v2 und die ihr entsprechende schwingende

Parallele zur Stromachse allein, sondern es
ist hierzu ein Ausgleichglied erforderlich, das diesmal

eine Komponente der Form

Ä (1—sin cot)r| (68)
enthalten muss.

Wählt man einen grösseren Widerstand, entsprechend

etwa r0 — 0,0625 bei q0 — 0,125, so findet
man in derselben Weise für den Knotenpunkt

Systemfunktion der Reihenschaltung einer Induktivität mit
Elsenkern, einer Kapazität und eines Widerstandes bei

Nichterfüllung der Knotenpunktsbedingung
Fig. 12: Qo " 0,125; ro — 0,0125; p — 1

Fig. 13: go 0,125; ro 0,0125; p 1,75

£ 2,198, x„ 0,1373, y0 — 0,6148 und damit
p — 1,589 und r 0,0993, so dass für beliebige
Kurvenpunkte x 0,0993| und y 1,589 y0 sind.
Die Systemfunktion, die gegenüber dem vorherigen

Fall schon bedeutend zusammengeschrumpft
ist, ist in Fig. 11 aufgezeichnet.

Fig. 12 und 13 zeigen für die oben genannten
Werte q0 und r0 noch einige Fälle der Systemfunktion

(57), in welchen die Knotenpunktbedingung
nicht erfüllt ist. Fig. 12 entspricht dem
induktivkapazitiven Zustand mit zu kleinem p, Fig. 13

dagegen mit zu grossen p dem induktiv-isoliert-kapazitiven
Zustand.

Fig. 14 zeigt, wie die Systemfunktion bei
Benutzung der Gl. (56) in dem der Fig. 10
entsprechenden Knotenpunktfall aussieht. Das Ausgleicli-
glied, das zum selben Stromverlauf führt wie dort,
hat hier offenbar weniger einfache Form.

Die beschriebene Entstehungsweise von

Unterschwingungen der Ordnung - - und - - lässt auch die

Möglichkeit des Zustandekommens von
Unterschwingungen anderer Ordnungszahlen vermuten.

Unterschwingungen der Ordnung — können nämlich
n

für Fälle, wo n eine ungerade Zahl > 5 ist, dadurch
entstehen, dass der Arbeitspunkt beim Auf- und
Niederschwingen der Zwangsfunktionsgeraden eine
oder mehrere Schleifen (siehe Fig. 10) öfters hintef-
einander nach Massgabe der zur Verfügung stehenden

Energie durchläuft. Analog dazu erklärt sich
das Auftreten von Unterschwingungen der Ordnung

bei Vorhandensein eines Widerstandes daraus,
d

dass die Schlinge am weitesten rechts in Fig. 10

überhaupt nicht durchlaufen wird. Ist aber n irgend
eine gerade Zahl, so kann man sich vorstellen, dass

wegen einer remanenten Magnetisierung der erste
Knotenpunkt rechts von der Ordinatenachse (Fig.
10) gerade auf diese zu liegen kommt, so dass

beliebige geradzahlige Werte von n durch ein-
oder mehrmaliges Durchlaufen einer oder zweier
Schlingen beidseits der Ordinatenachse gewonnen

werden. Eine andere Möglichkeit für das
Zustandekommen von Unterschwingungen mit
geradzahligen Werten n ist, dass die Kurve der
Fig. 10 sowie die ihr entsprechende, links von der
Ordinatenachse zu denkende, infolge irgend einer
periodischen Unsymmetrie wechselweise verschieden

oft durchlaufen werden, und zwar so, dass sich
die Zahl der Durchläufe um eine ungerade Zahl
voneinander unterscheiden. In sämtlichen Fällen
stellen sich selbstverständlich die Verhältnisse
immer so ein, dass das über eine Unterschwingungsperiode

gebildete Zeitintegral verschwindet. Auch

Unterschwingungen allgemeiner Ordnung lassen

sich aus der Systemfunktion der Fig. 10 unter
Benutzung der Darstellung der schwingenden
Funktionsgeraden herleiten, wenn man geeignete
Ausgleichglieder ansetzt. Natürlich spielt beim
Zustandekommen der Unterschwingungen auch der
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den Eisenverlusten entsprechende veränderliche
Widerstand eine Rolle. Da aber unter normalen
Verhältnissen die Reaktanz eisengeschlossener Spulen
gross ist im Vergleich zu ihrem ohmschen Widerstand,

so darf man auch vermuten, dass der Einfluss
des Widerstandes auf das Zustandekommen der
Unterschwingungen von geringerer Bedeutung ist.
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Nachrichten- und Hochfrequenztechnik — Télécommunications
et haute fréquence

Schweizerisches Fernsehkomitee
06.049 : 621.397 (494)

Das am 11. Dezember 1947 gegründete Schweizerische
Fernsehkomitee hielt im Jahre 1948 drei Sitzungen ab. Über
die erste Sitzung vom 21. Januar 1948 wurde an dieser Stelle
schon berichtet1

Am 24. Juni 1948 fand in der ETH die zweite Sitzung

') siehe Bull. SEV Bd. 39(1948), Nr. 2, S. 60-61.

statt. Der Präsident des Schweizerischen Fernselikomitees,
Prof. Dr. F. Tank brachte zur Kenntnis, dass er in Zukunft
auch den SEV im Komitee vertreten werde. Die Mitglieder
wurden namentlich bestätigt, und die Ernennung neuer
Mitglieder gutgeheissen. Haupttraktandum bildete der Stand der
Vorarbeiten für die Internationale Fernsehtagung 1948 in
Zürich2). Das Komitee beschloss, diese Tagung unter dem
Patronat der ETH und des Schweizerischen Fernsehkomitees

=j~sïehê Bull. SEV Bd. 39(1948), Nr. 15, S. 492.
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