**Zeitschrift:** Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

**Band:** 39 (1948)

Heft: 6

**Artikel:** Schaltung eines Gleichstromgenerators zur Erzielung einer geknickten

Stromkennlinie ohne bewegte Schaltkontakte

Autor: Förster, S.

**DOI:** https://doi.org/10.5169/seals-1057940

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

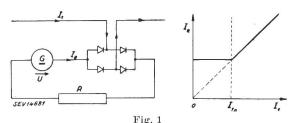
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 29.11.2025

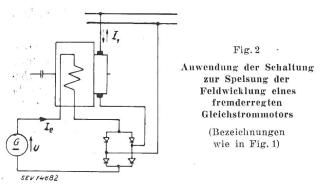
ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch


## Schaltung eines Gleichstromgenerators zur Erzielung einer geknickten Stromkennlinie ohne bewegte Schaltkontakte

Von S. Förster, Brühl (Deutschland)

21.314.6.06: 621.313.126

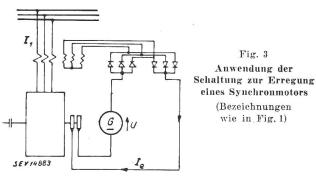
Eine Erregermaschine kann mit Hilfe einer Gleichrichteranordnung und einer äusseren Stromquelle derart betrieben werden, dass der von der Erregermaschine erzeugte Gleichstrom eine geknickte Kennlinie aufweist. Ein solcher Erregerstrom kann für die Speisung der Feldspulen von Gleichstrom- oder Synchronmotoren verwendet werden, wenn beson dere Betriebsbedingungen, z. B. für Regulierprobleme, verlangt werden. Der Autor beschreibt einige Schaltungsvarianten und erklärt ihre Wirkungsweise. Une excitatrice peut fonctionner, à l'aide d'un dispositif à redresseur et d'une source de courant étrangère, de manière que le courant continu produit présente une caractéristique coudée. Un tel courant d'excitation peut servir à l'alimentation des bobines de champ de moteurs à courant continu et de moteurs synchrones qui doivent satisfaire à des conditions de service particulières, par exemple pour la régulation. L'auteur décrit différents couplages et en explique le fonctionnement.


Es wird eine Schaltung beschrieben, welche die in Fig. 1 dargestellte geknickte Kennlinie eines Gleichstromes  $I_e$  durch einen Widerstand R, in Funktion eines Gleich- oder Wechselstromes  $I_1$ , zu erzielen gestattet. Für  $I_1 < I_{1n}$  soll der Strom  $I_e$  unabhängig von  $I_1$ , z. B. proportional der Spannung U einer Spannungsquelle sein; für  $I_1 > I_{1n}$  dagegen soll  $I_e$  proportional mit  $I_1$  ansteigen.



Prinzipschaltbild und Stromkennlinie

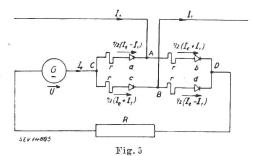
G Gleichstrommaschine (z. B. Erregermaschine), Io Erregerstrom, U Spannung, R Verbraucherwiderstand (z. B. Feldwicklung eines Gleichstrom- oder Synchronmotors), I1 Strom einer äusseren Stromquelle (Gleich- oder Wechselstrom)


Wenn  $I_1$  den Ankerstrom,  $I_e$  den Erregerstrom eines Gleichstrommotors und U die abgegebene Spannung eines Gleichstromgenerators bedeuten (Fig. 2), liegt nach der beschriebenen Kennlinie ein Gleichstrommotor vor, der bei einem Belastungsstrom unterhalb des Nennstromes  $I_{1n}$  als fremderregte Maschine und bei höherem Belastungsstrom als Reihenschlussmotor mit entsprechender Drehzahlkennlinie arbeitet.



Ein zweites Anwendungsbeispiel wäre der Fall eines Synchronmotors.  $I_1$  sei der Ankerstrom,  $I_e$  der Erregerstrom des Synchronmotors und U die Spannung der Erregermaschine (Fig. 3). Der Synchronmotor verhält sich dann bei einem Belastungsstrom unterhalb des Wertes  $I_{1n}$  als konstant erregte Maschine und bei  $I_1 > I_{1n}$  als reihenschluss-

erregter Synchronmotor mit erhöhtem Kippmoment.


Die geknickte Stromkennlinie wird nach Fig. 1 ohne bewegte Schaltkontakte durch eine Gleichrichteranordnung im  $I_e$ -Kreis erreicht, über die auch der Aussenstrom  $I_1$  oder, wie in Fig. 3 dargestellt, ein ihm proportionaler Strom geführt ist.



In den Fig. 1 bis 3 ist eine Brückenschaltung der Gleichrichter gewählt, die bezüglich  $I_1$  sowohl für Gleich- als auch Wechselstrom möglich ist. Nach Fig. 4 kann jedoch auch eine Mittelpunktschaltung der Gleichrichter in dem Falle ausgeführt werden, wo  $I_1$  ein Wechselstrom ist.



Die Wirkungsweise der Schaltung sei in Fig. 5 erläutert. Bei der folgenden Betrachtung sei  $I_1$  ein Gleichstrom, U konstant, und die vier Gleichrichter mögen Trockengleichrichter sein, die in Durchlassrichtung je den kleinen Eigenwiderstand



Detailliertes Prinzipschema zur Erklärung der Wirkungsweise (Bezeichnungen wie in Fig. 1)

r haben. Mit Hilfe des Ueberlagerungssatzes lässt sich leicht nachweisen, dass für  $I_1 < U/(R+r)$  der Strom  $I_e$  unabhängig von  $I_1$ , lediglich durch die Spannung U bestimmt ist. Der Ueberlagerungssatz darf in diesem  $I_1$ -Bereich angewendet werden, da nach der Ueberlagerung alle Gleichrichter noch stromführend sind und somit in der Ersatzschaltung durch den kleinen Widerstand r ersetzt werden dürfen.

Denkt man sich in der Gesamtschaltung zunächst die Spannung U allein wirksam und die Spannungsquelle im  $I_1$ -Kreis durch einen Kurzschlussdraht ersetzt, so wird nur im  $I_e$ -Kreis ein Strom fliessen. Die Spannungsquelle U kann keinen Strom in den  $I_1$ -Kreis schicken, da die Knotenpunkte A und B elektrisch potentialgleich sind. Im  $I_e$ -Kreis beträgt daher die Stromstärke  $I_e = U/(R+r)$ , wobei  $I_e$  je zur Hälfte über die beiden Gleichrichterzweige fliesst.

Da sich die Spannungsquelle U im  $I_1$ -Kreis nicht bemerkbar macht, so ist umgekehrt bei U=0 zu erwarten, dass die Spannungsquelle im  $I_1$ -Kreis, die dort den Strom  $I_1$  zur Folge hat, sich im  $I_e$ -Kreis nicht auswirkt. Dies ist auch tatsächlich der Fall. Der Strom  $I_1$  teilt sich im Knotenpunkt A in zwei gleiche Teile und fliesst über die beiden Gleichrichterzweige unmittelbar nach B. Im  $I_e$ -Kreis kann kein  $I_1$ -Teilstrom fliessen, da diesmal die Knotenpunkte C und D potentialgleich sind.

Nach der Ueberlagerung fliessen in den Gleichrichterzweigen a und d bei der angegebenen  $I_1$ -Richtung die Ströme  $I_a = I_d = (I_e - I_1)/2$  und in den Zweigen b und c die Ströme  $I_b = I_c = (I_e + I_1)/2$ . Bei der angegebenen  $I_1$ -Fliessrichtung sind also die Gleichrichter b und c immer stromführend; die Gleichrichter a und d dagegen nur so lange als  $I_1 < I_e$  ist. In diesem  $I_1$ -Bereich ist daher  $I_e$  unverändert gleich U/(R+r).

Uebersteigt  $I_1$  den Wert U/(R+r), so sperren je nach der  $I_1$ -Fliessrichtung entweder die Gleichrichter a und d oder die Gleichrichter b und c. Der Strom  $I_1$  wird dann über das jeweils stromführende Gleichrichterpaar immer nur im ursprünglichen  $I_e$ -Richtungssinn den  $I_e$ -Kreis und damit den Widerstand R durchfliessen, so dass nunmehr  $I_e = I_1$  ist.

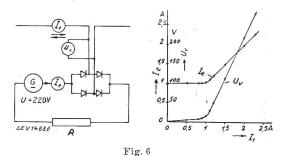
Zusammenfassend ergibt sich also beim Beispiel von Fig. 5 für  $I_1 < U/(R+r)$  der Strom  $I_e$  unabhängig von  $I_1$  mit dem Wert  $I_e = U/(R+r)$ ; für  $I_1 > U/(R+r)$  dagegen ist  $I_e = I_1$ . Damit ist die Knickung der  $I_e$ -Kennlinie bewiesen.

Da die geknickte  $I_e$ -Kennlinie unabhängig von der  $I_1$ -Fliessrichtung ist, kann die Anordnung auch für Wechselstrom  $I_1$  angewendet werden, wie in den Beispielen Fig. 3 und 4 gezeigt wurde. Für das Beispiel Fig. 2 bedeutet diese Tatsache, dass beim Uebergang vom motorischen in den generatorischen Betrieb (Bremsen) der Gleichstrommaschine keine Umschaltung des  $I_1$ -Anschlusses an die Gleichrichteranordnung erforderlich ist.

Was die Spannungsverteilung im  $I_e$ -Kreis von Fig. 5 betrifft, so liefert die Spannungsquelle dau-

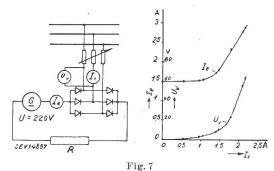
ernd die konstante Spannung U. Solange  $I_1 < U/(R+r)$  ist, tritt zwischen den Knotenpunkten A und B nur eine geringe Spannung  $U_{\nu}$  entsprechend der unterschiedlichen Strombelastung der Gleichrichter auf:

$$U_v = r \left( \frac{I_e + I_1}{2} - \frac{I_e - I_1}{2} \right) = r I_1$$


In diesem  $I_1$ -Bereich stellt die Gleichrichteranordnung gewissermassen eine Kurzschlussverbindung für den Strom  $I_1$  dar. Erst wenn  $I_1$  den Wert U/(R+r) übersteigt und durch den Widerstand R geleitet wird, entsteht zwischen den Klemmen A und B die Differenzspannung  $RI_1 - U$  zuzüglich der Gleichrichter-Verlustspannung:

$$U_v = (R + 2r) I_1 - U$$

Für die Bemessung der Gleichrichter ist die Sperrspannung  $U_s$  wichtig. Für die Gleichrichter a und d erhält man aus Fig. 5:


$$U_s = (R + r) I_1 - U$$

Anderseits ist jeder der vier Gleichrichter für den Strom  $I_1$  zu bemessen. Entsprechende Ueberlegungen sind für den Fall anzustellen, dass  $I_1$  ein Wechselstrom ist.



Schaltschema einer Versuchsanordnung an einem Einphasen-Wechselstromnetz und zugehörige Kennlinien

Zwei Laboratoriumsversuche, deren Ergebnisse in den Fig. 6 und 7 dargestellt sind, bestätigten die obigen Ueberlegungen in allen Punkten. Der Knick der  $I_e$ -Kennlinie ergab sich verhältnismässig scharf ausgeprägt. Beim Versuchsbeispiel nach Fig. 7, bei welchem  $I_1$  als Drehstrom gewählt wurde, ist zu beachten, dass der Knick der  $I_e$ -Kennlinie eintritt, wenn der Höchstwert des Stromes  $I_1$  in einer Zuleitungsphase den Betrag U/(R+r) übersteigt.



Schaltschema einer Versuchsanordnung an einem Dreiphasen-Wechselstromnetz und zugehörige Kennlinien

Die Anwendung der beschriebenen Anordnung zur Erreichung einer geknickten Stromkennlinie ist selbstverständlich nicht auf die angegebenen Beispiele beschränkt, sondern kann in der Regelungs- und Steuerungstechnik weitere Verwendungen finden.

Adresse des Autors:

S. Förster, dipl. Ing., Auguste-Viktoria-Strasse 10, (22c) Brühl b, Köln (Deutschland).

# Inbetriebnahme des Ennskraftwerkes Staning der Oesterreichischen Kraftwerke A.-G.

Von H. von Molnár, Wien

621.311.21(436)

Am 19. November 1946 wurde die erste Maschinengruppe des Wasserkraftwerkes Staning an der Enns der Oesterreichischen Kraftwerke A.G., des ersten der zahlreichen im Bau befindlichen oder geplanten Enns-Kraftwerke, in Betrieb gesetzt. Bei einer mittleren nutzbaren Wassermenge von 180 m³/s und einem mittleren Gefälle von 13,5 m beträgt die Höchstleistung des Werkes 33 000 kW, verteilt auf 3 Maschinengruppen. Die Jahresarbeit erreicht 170 GWh, wovon 67,5 GWh im Winter (6 Monate) und 102,5 GWh im Sommer. Nach einer kurzen Beschreibung der baulichen Anlage werden die Ereignisse geschildert, welche als Folge der Kriegshandlungen sowohl die Fertigstellung der Turbinen und Generatoren als auch die Montage im Werk selbst immer wieder verzögerten, und zu deren Uebewuindung ungewöhnliche Vorkehren getroffen werden mussten.

Le 19 novembre 1946, le premier groupe de machines de l'usine hydroélectrique de Staning sur l'Enns, appartenant à l'Oesterreichische Kraftwerke A.G., a été mis en service. Il s'agit de la première des nombreuses usines de l'Enns en construction ou projetées. Pour un débit moyen utile de 180 m³/s et une chute moyenne de 13,5 m, la puissance maximum de cette usine atteindra 33 000 kW, fournis par trois groupes de machines. La production annuelle sera de 170 GWh, dont 67,5 pendant les 6 mois d'hiver et 102,5 en été. Après une brève description des installations, l'auteur expose quelles furent les difficultés sans nombre qui, par suite de la guerre, retardèrent sans cesse la construction des turbines et des alternateurs, de même que le montage, et qui obligèrent d'avoir recours à des moyens exceptionnels.

Am 19. November 1946 wurde die erste Maschine des Wasserkraftwerkes *Staning* an der Enns, welches der Oesterreichischen Kraftwerke A.-G., Linz (OEKA) gehört, in Betrieb genommen (Fig. 1).

haupt, verdient um so eher hervorgehoben und näher beschrieben zu werden, als es sich hier nicht nur um den weiteren erfolgreichen Ausbau der Wasserkraftenergien in Oesterreich handelt, son-

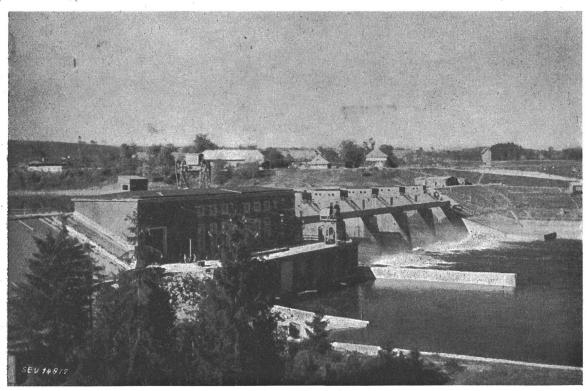



Fig. 1
Das Wasserkraftwerk Staning
Ansicht von der Unterwasserseite

Die Tatsache der Inbetriebnahme des ersten Generators in Staning, des ersten Maschinensatzes in der Reihe der vielen geplanten und teilweise im Baubefindlichen Wasserkraftwerke an der Enns über-

dern um die Indienststellung des ersten grossen Wasserkraftgenerators in Oesterreich nach Beendigung des zweiten Weltkrieges, wobei Schwierigkeiten technischer, wirtschaftlicher, ja sogar politi-