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39e année N° 6 Samedi, le 20 Mars 1948

BULLETIN
DE L'ASSOCIATION SUISSE DES ELECTRICIENS

Mathematische Statistik und Tarifwesen II1)
Von Ch. Morel, Feldmeilen

In diesem zweiten Aufsatz werden zunächst die wichtigsten

Eigenschaften der Gaußschen Fehlerfunktion gestreift,
da diese die Grundlage bildet, auf die sich• die praktischen
Verfahren zur Auswertung und Prüfung von Statistiken
aufbauen. Eine besondere Rolle spielt dabei das Fehlerintegral,
dessen graphische Darstellung eine S-förmige Kurve ergibt.
Durch eine Maßstabtransformation erhält man das
Wahrscheinlichkeitsnetz, in welchem die Fehlerintegralkurve, auch
Summenhäufigkeit genannt, als Gerade, und die glockenförmige

Fehlerkurve als eine Art Hyperbel erscheint, was die
Lösung der meisten sich stellenden Aufgaben wesentlich
erleichtert und auch die Analyse der erhaltenen Kurven ohne
mathematische Hilfsmittel auf einfachste Weise gestattet.
Beispiele praktischer Anwendung dieser Methoden auf das
Tarifwesen ergänzen die Darstellungen.

519.24 : 621.317.8

Dans ce deuxième article, l'auteur expose brièvement les
principales caractéristiques de la forwtion d'erreurs de Gauss,
qui est à la base des procédés pratiques d'utilisation et de
contrôle des statistiques. Dans ce domaine, l'intégrale des

erreurs, représentée graphiquement par une courbe en S, joue
un rôle particulier. A l'aide d'une transformation d'échelle,
on obtient un réseau de probabilité, dans lequel la courbe
intégrale des erreurs (appelée également courbe de
fréquences cumulées) devient une droite, tandis que la courbe
en cloche se présente sous la forme d'une sorte d'hyperbole,
ce qui facilite grandement la solution de la plupart des
problèmes posés et permet l'analyse des courbes, sans avoir
recours à des procédés mathématiques. Cet exposé est
complété par des exemples cTapplication dans le domaine de la
tarification.

5. Die Gaußsche Fehlerfunktion und die
Summenhäufigkeiten

a) Geometrische Eigenschaften
Die Grundform der Gaußschen Fehlerfunktion

1 _ — "2)

/ =- e
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2 s» (26)

kann, wie bereits angedeutet, durch Setzen von

v—v
y 2 |/2 TT sf und x

in die reduzierte oder normale Form
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i) siehe den I. Teil im Bull. SEV Bd. 38(1947), Nr. 6,
S. 141...149.
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(28)

übergeführt werden.
Charakteristisch für den Verlauf der Kurve sind

ihre Maxima, Minima und Wendepunkte. Um diese
zu finden, setzt man die erste, bzw. die zweite
Ableitung der Funktion nach der Variabein gleich
null. Diese Operationen führen zu folgenden Werten:

Tabelle VI

Maximum

Wendepunkte -

Wendetangenten

— Schnittpunkte
mit Abszissenaxe

l
: "\Jln

Vin — v ~H s

1

r - 1 -T-J
s "\Jln '

: V + 2 i

0 ym

--+ 1

yu»= 2 e

x + 2

Fig. 5 gibt diese Beziehungen für die Grundform,

Fig. 6 für die Normal- oder reduzierte Form
der Fehlerfunktion wieder.

b) Die einfache Summenhäufigkeit (F-lntegral)
In der Auswertung von Statistiken stellt sich oft

die Frage, wieviele Einzelwerte der Variabeln
einen bestimmten Wert v dieser Variabein nicht
übersteigen, mit andern Worten, wie gross die

161



162 Bull. Schweiz, elektrotechn. Ver. Bd. 39(1948), Nr. 6

Summe aller Häufigkeiten der Variabein zwischen
ihrem untersten Wert (—co) und dem bestimmten
Wert v ist. Diese Summe, die einfache
Summenhäufigkeit F, schreibt sich

F (v) J'/w • du (29)

Die Summenhäufigkeit stellt zugleich die
Wahrscheinlichkeit für das Auftreten irgendeines Einzel-

1,0

10,5

•

y„,i \y»:

\
-4 -3 -2
SEf tSOEl

*1

Fig. 6

Reduzierte Form der Fehlerfunktion

wertes der Statistik zwischen den Grenzen — co
und v dar. Erstreckt sich die Summierung auf die
ganze Statistik, also zwischen den Grenzen — co
und -f- °o so wird die Wahrscheinlichkeit zur
Gewissheit, da jeder beliebige Einzelwert innert dieser

Grenzen liegen muss. Infolgedessen wird

F (cvd) J f(v) dt; 1

F(v)

Setzt

(v-v)5
2s2

1/2 TT

V — V

j/2

du

.ird

F (v)
71

0

— u*

e du

oder F (v)
71

— ui
e du

u'
du

Das bestimmte Integral zwischen — co und 0 ist
bekannt :

0
'

TTli*
e du

(30)

Für die Grundform der Fehlerfunktion gemäss
Gleichung (29) lautet das Integral:

(31)

So erhält man

F (v) - 1 +
X 71

— «2 \
e du (32)

Das verbleibende bestimmte Integral zwischen
0 und u kann nur durch Reihenentwicklung
gelöst werden. Es bestehen jedoch Tafeln, wie für
die Logarithmen, aus denen die einzelnen Werte
von

2 u

_ r - ut
<P (") -jn e

0

herausgelesen werden können (siehe z. B. Tab. VII).
Tabelle VII

u f 00 Diff. u 9 00 Diff.

0,00 0,000 56
56
56
55
53
53
50
49
47
45
43
41
38
36
33
31
29
26

0,90 0,797 24
22
37
30
24
18
14
10

O

0,05 0,056 0,95 0,821
0,10 0,112 1,00 0,843
0,15 0,168 1,10 0,880
0,20 0,223 1,20 0,910
0,25 0,276 1,30 0,934
0,30 0,329 1,40 0,952
0,35 0,379 1,50 0,966
0,40 0,428 1,60 0,976
0,45 0,475 1,70 0,984 o

c
0,50 0,520 1,80 0,989 J

A.

0,55 0,563 1,90 0,993 <y

0,60 0,604 2,00 0,995
Z
o

0,65 0,642 2,10 0,997
z
1

0,70 0,678 2,20 0,998
1

1

0
1

0,75 0,711 2,30 0,999
0,80 0,742 2,40 0,999
0,85 0,771 2,50 1,000 I
0,90 0,797

Numerische Werte der Funktion

9 («) e
VK J

du

Für die reduzierte Form der Fehlerfunktion
erhält man nach Einsetzen von

F (x) -\/27Z I 1
-u' \

e du.) (33)

Die Funktion F (v) ist in Fig. 7 graphisch
dargestellt.

c) Die Summenhäufigkeit der absoluten Fehler
(W-Integral, W-Funktion)

Man kann sich auch fragen, wieviele Einzelwerte

um nicht mehr als einen bestimmten absoluten

Betrag z (v —v) vom Mittelwert abweichen.
Diese Anzahl nennt man die Summenhäufigkeit W
der absoluten Fehler, bzw. der absoluten
Abweichungen vom Mittelwert. Die symbolische Formel
dafür lautet:
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V + (»-!>)
W | v — v | Jf (v) dv

V — (v — v)

(34)

Dieser Ausdruck entspricht der Wahrscheinlichkeit
des Auftretens eines Einzelwertes der Statistik

zwischen v-(v-v) und v-\-(v-v) bzw. v—z und v-\-z.
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Grundform der Fehlerfunktion und Ihrer Summenhäufi?keiten

Für die Gaußsche Fehlerfunktion (26) kann man
schreiben, wenn (v—v) z gesetzt wird:

+ Z z2

^dzW (z
< |/2W

oder, da die Funktion symmetrisch ist:

2
W (z) —= f «W

s ]/2 n J

Z*

2 s* dz (35)

Macht man die Substitution u
1 2s

so erhält man

W(z)
V

du
jr

(36)

Die numerischen Werte von W können den Itère

its erwähnten Funktionen-Tafeln entnommen
werden.

Für die reduzierte Form der Fehlerfunktion (281

x
ergibt sich, wenn u

W(x I)

1/2
gesetzt wird

2 ]/2 jr V/
—«2

e du (37)

Die Kurve der IT-Funktion ist ebenfalls in
Fig. 7 eingezeichnet.

d) Die Summenhäufigkeit der einen bestimmten
Wert übersteigenden absoluten Fehler (P-Integral)

Oft begegnet man der Frage, bei wieviel Einzelwerten

der Fehler einen bestimmten Betrag z
(v—v) übersteigt, oder wie gross die Wahrscheinlichkeit

ist, dass ein Einzelwert um mehr als diesen

Betrag z vom Mittelwert v abweicht. Man sieht
ohne weiteres, dass diese Funktion, die P (z)
geschrieben wird, die Funktion W (z) zu 1 ergänzt:

P(z) 1 - W{z) (38)

Für die normale Verteilung gemäss (26) kann man
also setzen, wenn z (v—v)

P(z) 1

oder, wenn u
I 2

42

ist

22

2s2
dz (39)

P(z)
* -U2
e du (40)

: Aelinlich gilt für die reduzierte Fehlerfunktion (28)

Tabelle VIII
p 0,0 0,1 0,2 0,3 0,4 0,3 0,6 0,7. 0,8 0,9 P

0,00 oo 1,644 854 1,281 552 1,036 433 0,841 621 0,674 490 0,524 401 0,385 320 0,253 347 0,125 661 0,00
0,01 2,575 829 1,598 193 1,253 565 1,015 222 0,823 894 0,658 838 0,510 073 0,371 856 0,240 426 0,113 039 0,01
0,02 2,326 348 1,554 774 1,226 528 0,994 458 0,806 421 0,643 345 0,495 850 0,358 459 0,227 545 0,100 434 0,02
0,03 2,170 090 1,514 102 1,200 359 0,974 114 0,789 192 0,628 006 0,481 727 0,345 126 0,214 702 0,087 845 0,03
0,04 2,053 749 1,475 791 1,174 987 0,954 165 0,772 193 0,612 813 0,467 699 0,331 853 0,201 893 0,075 270 0,04

0,05 1,959 964 1,439 531 1,150 349 0,934 589 0,755 415 0,597 760 0,453 762 0,318 639 0,189 118 0,062 707 0,05
0,06 1,880 794 1,405 072 1,126 391 0,915 365 0,738 847 0,582 841 0,439 913 0,305 481 0,176 374 0,050 154 0,06
0,07 1,811 911 1,372 204 1,103 063 0,896 473 0,722 479 0,568 051 0,426 148 0,292 375 0,163 458 0,037 608 0,07
0,08 1,750 686 1,340 755 1,080 319 0,877 896 0,706 303 0,553 385 0,412 463 0,279 319 0,150 969 0,025 069 0,08
0,09 1,695 398 1,310 579 1,058 122 0,859 617 0,690 309 0,538 836 0,398 855 0,266 311 0,138 304 0,012 523 0,09
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P(x) 2 ] 2 n l 1
' 7T

II
/* —ur du |, wobei

]/2
(41)

In Fig.7 ist die der Funktion P (z) entsprechende
Kurve eingetragen.

Für die Funktion P (x j, die bei der Prüfung von
statistischen Masszahlen eine wichtige Rolle spielt,
findet man in Tabelle VIII für verschiedene Werte
von P (*), bezogen auf P (0) 1, die entsprechenden

Werte von x.

e) Die Bedeutung der verschiedenen
Summenhäufigkeiten

Liegt eine Statistik vor, so interessiert in erster
Linie, ob ihre Verteilung normal ist, d. h. ob sie
dem Gaußschen Fehlergesetz gehorcht. Mit Hilfe
der abgeleiteten Summenhäufigkeits-Funktionen
lassen sich gewisse Normen aufstellen, die eine
summarische Ueberprüfung der Verteilung
gestatten.

So findet man bei numerischer Auswertung der
W-Funktion (35) für die entsprechenden
Integrationsgrenzen, dass bei einer normalen Verteilung
0,683 oder rund % aller absoluten Fehler, bzw.
Abweichungen vom Mittelwert, kleiner als die mittlere
quadratische Abweichung s sein, d. h. innerhalb
der Grenzen v + s liegen müssen. Ferner müssen
0,954 oder rund 95% aller absoluten Fehler kleiner

sein als 2 s und 0,997 oder 99,7 °/o kleiner als
3 s. Praktisch dürfen also nicht mehr als 3 °/00
aller Einzelwerte um mehr als ± 3 s vom Mittelwert

abweichen.
Auf diese Weise kann man auch ermitteln, innerhalb

welcher Grenzen ein bestimmter Prozentsatz
aller Einzelwerte einer Statistik sich bei normaler
Verteilung befinden müssen. Die Ausrechnung
ergibt z. B., dass

50 °/o aller Werte innerhalb der Grenzen v ± 0,675 s

90 % aller Werte innerhalb der Grenzen v ± 1,645 s

95 °/o aller Werte innerhalb der Grenzen v ± 1,956 s

98 °/o aller Werte innerhalb der Grenzen v ± 2,326 s

99 °/o aller Werte innerhalb der Grenzen v ± 2,576 s

liegen müssen.

Kann die Verteilung einer Statistik zum
vorneherein als normal angenommen werden, so lässt
sich auf einfache Weise die mittlere quadratische
Abweichung in erster Annäherung errechnen. Man
ermittelt die Grenzen v -(- z und v — z, innerhalb
welcher z. B. 95 °/o aller absoluten Fehler liegen,
und dividiert den so erhaltenen Grenzfehler z
durch 1,956.

6. Die Prüfung von statistischen Masszahlen

a) Die Sicherheitsschwelle
Jede Statistik muss als eine Stichprobe aus einer

Grundgesamtheit betrachtet werden. Entnimmt

man dieser Grundgesamtheit eine Anzahl
voneinander unabhängiger Stichproben, so werden
ihre statistischen Masszahlen nicht in allen Fällen
mit denjenigen der Grundgesamtheit übereinstimmen;

sie werden streuen mit einer Verteilung, die
derjenigen der Grundgesamtheit entspricht. Im
Falle einer normalen Verteilung ist somit theoretisch

zu erwarten, dass z. B. der Durchschnitt v
oder die Streuung s2 der einzelnen Stichproben
innerhalb der Grenzen — co und -j- oo um den
Durchschnitt p oder die Streuung' o2 der
Grundgesamtheit herum streuen werden. Praktisch kann
aber nicht jede Abweichung als zufällig hingenommen

werden. Es muss eine Grenze definiert werden,

innerhalb welcher der Fehler als zufällig gilt
und bei deren Ueberschreitung die Abweichung als
wesentlich oder gesichert zu betrachten ist. Diese
Grenze nennt man Sicherheitsschwelle.

In der mathematischen Statistik ist es nun üblich
zu sagen, ein Fehler -oder eine Abweichung vom
Mittelwert sei wesentlich, wenn der entsprechende
P-Wert kleiner als 0,01 (l°/o) und zufällig, wenn
der entsprechende P-Wert grösser als 0,05 (5%)
ist. Mit anderen Worten, eine Abweichung gilt als
gesichert, wenn sie grösser als 2,576 s und als
zufällig, wenn sie kleiner als 1,956 s ist. Für Werte,
die dazwischen liegen, muss erst eine besondere
Untersuchung zeigen, ob die Abweichung gesichert
ist oder nicht. Für praktische Berechnungen und
um sich diese besondere Untersuchung zu ersparen,
kann man mit der einen Grenze von P 0,05
(5°/o) auskommen. Damit nimmt man in Kauf,
dass in 5 °/o von allen möglichen Fällen eine
Abweichung als wesentlich betrachtet wird, die an
sich rein zufällig ist. Mit dieser Grenze wird bei der
Prüfung von Abweichungen ein strengerer Massstab

angelegt, als mit der Grenze P 0,01.

b) Die Prüfung von Durchschnitten
Die am häufigsten verwendete statistische Masszahl

ist der Durchschnitt. Hat man den Durchschnitt

v einer Stichprobe zu N Einzelwerten
ermittelt, so kann man sich fragen, wieweit dieser
Durchschnitt mit dem für die Grundgesamtheit zu
erwartenden Durchschnitt p übereinstimmt. Allein
dieser letzte Wert ist in der Regel unbekannt.
Trotzdem weiss man von ihm, dass er gleich ist dem
Durchschnitt p- aus allen Durchschnitten v der
möglichen einzelnen Stichproben. Ist nun a2 die
Streuung der Grundgesamtheit, so wird die Verteilung

der Durchschnitte der Stichproben eine Streu¬
er2

ung <T—2 -^aufweisen, da jede Stichprobe N Einzelwerte

umfasst. Die Gleichung für die Verteilung
der Durchschnitte wird also lauten

j<v)

C-rt2
2<T7!

(42)

wobei die Variable nun v ist.
Geht man von der Sicherheitsschwelle P 0,05

aus, so muss nachAbschnitt 5,lit.e, der Durchschnitt
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v innerhalb der Grenzen ju, ± 1,956 <J— liegen, wenn
er nur zufällig von li abweicht. Im Grenzfall ist
also

v /t + 1,956 <j—

oder da ö „
VN

V — /JL 1,956
a

Ist für die gewählte Stichprobe N gross genug,
so kann man, ohne einen grossen Fehler zu
begehen, für die Streuung o2 der Grundgesamtheit,
die Streuung s2 der Stichprobe in die Gleichung
einsetzen, die dann lautet:

v — a ± 1,956 —
| Y

(43)

Da von einem P 0,05 W 0,95) ausgegangen

wurde, besagt die Gleichung (43), dass in
95 °/o aller Stichproben ein Durchschnitt zu erwarten

ist, der um höchstens ± 1,956
J/N

dem

für die Grundgesamtheit theoretisch zu erwartenden
Urdurchschnitt abweicht. Mit andern Worten,

der errechnete Durchschnitt wird mit 95 % Wahr-
g

scheinlichkeit um 'nicht mehr als ± 1,956 —= vom
\N

Urdurchschnitt abweichen. Wird diese Wahrscheinlichkeit

auf 99% erhöht (P 0,01), so vergrös-
sert sich die Grenze der möglichen Abweichung

auf ± 2,576 —=.VN
Für das im ersten Aufsatz erwähnte Zahlenbei-

spiel aus dem Tarifwesen, mit N 225 Einzel-
werten, war der mittlere spezifische Energieverbrauch

q zu 36,5 kWh pro Parametereinheit
(Grundeinheit GE) und die mittlere quadratische

Abweichung s zu 13,03 (s2 169,99) ermittelt

worden.
Für P 0,05 gilt in diesem Falle die Relation

- ,fir 1.956 • 13,03
q 36,5 /.{ ± y== p±l,1

Mit 95 %iger Wahrscheinlichkeit kann der
errechnete Durchschnitt von 36,5 um höchstens ± 1,7,
d. h. um höchstens ± 4,65 °/o vom theoretischen
Urdurchschnitt abweichen.

Setzt man die höchstzulässige Abweichung zum
vorneherein fest, so kann man ohne weiteres aus
der ebenfalls als bekannt angenommenen Streuung
den erforderlichen Umfang der Stichprobe ermitteln.

Dabei ist leicht festzustellen, dass, um eine
zulässige Verringerung der Abweichungsgrenze auf
die Hälfte zu erreichen, der Umfang der Stichprobe
auf das Vierfache erhöht werden muss.

Ist der Durchschnitt der Grundgesamtheit
bekannt, so kann ohne Schwierigkeit ermittelt wer¬

den, ob der errechnete Durchschnitt der
Stichprobe von jenem wesentlich oder nur zufällig
abweicht. Aus Formel (43) geht hervor, dass der Aus-

VN
druck (v—u) höchstens ± 1,956 (bei P 0,05 I

s

betragen darf. Ergibt die Ausrechnung einen höheren

Wert, so gilt der Unterschied als gesichert und
die Stichprobe entspricht mit 95 °/oiger
Wahrscheinlichkeit nicht der Grundgesamtheit.

c) Die Prüfung von Streuungen
Ist o die Streuung der Grundgesamtheit und s

die Streuung von Stichproben grösseren Umfanges,
so ist die Verteilung der Streuungen s normal, mit

einer Streuung os2
2 N

Geht man wiederum von einem P 0,05 aus,
so kann man, wie für den Durchschnitt im
vorangehenden Abschnitt, setzen:

s o ± 1,956 as

oder
V )2 N

(44)

Aus dieser Gleichung geht hervor, dass die aus
der Stichprobe errechnete Streuung mit 95 °/oiger

Wahrscheinlichkeit um höchstens ± -
—£5^ von der
J 21V

Streuung der Grundgesamtheit abweichen darf,
wenn sie innerhalb der Zulässigkeitsgrenze bleiben
soll. Mit andern Worten: Man nimmt in Kauf, dass
in 5 °/o aller möglichen Fälle eine Streuung s zu
erwarten ist, die bei

N 100 um
N 1000 um
N 5 000 um
N 10 000 um

oder mehr von der Streuung
heit abweicht. Für das
lautet die Relation (44) :

13,8 %
4,4 %
2,0 °/o

1,4 °/o

der Grundgesamt-
erwähnte Zahlenbeispiel

s 13,03 ö 1 ±
1,956

2 • 225
o (1 ± 0,092)

Mit 95 %iger Wahrscheinlichkeit wird für das
gewählte Beispiel die Streuung s um nicht mehr
als 9,2 °/o von der Urstreuung o abweichen.

Nun kann der kleine Fehler korrigiert werden,
der in der Gleichung (43) dadurch entstand, dass
statt o nur s gesetzt wurde. Die neue Gleichung
sollte demnach korrekt lauten

v ju + 1,956 1± 1,956
(45)

\N \ y 2 N

Für das Zahlenbeispiel ergibt sich:

v /( ± 1,7 (1 + 0,092)

v n ± 1,86.

Die mit 95 °/oiger V ahrscheinlichkeit zu erwartende

höchste Abweichung des aus der Stichprobe
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errechneten Durchschnittes vom Urdurchschnitt hat
sich durch Berücksichtigung der Abweichungsmöglichkeit

der Streuung von 1,7 auf 1,86, d. h. um rund
9 °/o erhöht. Auf den errechneten Durchschnitt von
36,5 bezogen bedeutet dies eine Erweiterung der
Grenze von ± 4,65 auf ± 5,10 %>, was tatsächlich
unbedeutend ist und für eine erste Annäherung die
einfachere Formel (43) durchaus rechtfertigt,
besonders wenn der Umfang der Stichprobe (IV)
gross ist.

7. Eine graphische Lösung:
Das Wahrscheinlichkeitsnetz

a)Die Entstehung des JVahrscheinlichkeitsnetzes
Die Transformation einer praktisch erhaltenen

Häufigkeitskurve (Treppenkurve) auf den Massstab

der normalen Häufigkeitskurve ist bereits
erläutert worden. Diese, eine Beurteilung der
Verteilung einer Statistik oder Stichprobe ermöglichende

Operation ist jedoch umständlich, da sie
eine grosse Rechenarbeit verlangt. Es wurde
deshalb nach einer einfachen graphischen Methode
gesucht, welche die Verteilung einer Statistik und
die mit dieser Verteilung eng zusammenhängenden
Summenhäufigkeiten zu kontrollieren gestattet.
Diese Methode beruht auf der Anwendung des
Wahrscheinlichkeitsnetzes, in welchem — normale
Verteilung vorausgesetzt — die Summenhäufigkeitskurven

als Geraden und die Häufigkeits- oder
Fehlerkurve als eine Art Hyperbel erscheinen.
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Konstruktion des Wahrscheinlichkeilsnetzes
links: normale Teilung
rechts: Wahrscheinlichkeitsteilung

Nimmt man eine normale Summenhäufigkeitskurve

(z.B. diejenige von Fig. 5) und zieht eine
beliebige, schräge Gerade d durch die Mitte der
Kurve (entsprechend der Abszisse v), so ist jedem

Punkt F der Kurve mit Abszisse v ein Punkt D der
Geraden d mit der gleichen Abszisse zugeordnet.
Die Punkte D ergeben eine neue Teilung der Ordi-
natenaclise, die von der Mitte aus nach oben und
nach unten immer gestreckter wird, etwa wie eine
umgekehrte logarithmische Teilung. In Fig. 8 sind
die entsprechenden Punkte F der Kurve (normale
Teilung) und der Geraden D (Wahrscheinlichkeitsteilung)

zur Verdeutlichung mit gleichlautenden
Indices versehen. Zudem ist im linken Teil der Figur
die alte und im rechten Teil die neue Teilung
eingezeichnet. Das auf diese Weise erhaltene Netz,
das sich theoretisch nach oben und nach unten bis
ins Unendliche erstreckt, praktisch aber nur etwa
zwischen 0,1 und 99,9 verwendet wird, nennt man
das Wahrscheinlichkeitsnetz. Aus praktischen Gründen

werden die Einzelwerte von F in Prozenten
der Endsumme angegeben.

In diesem Netz erscheint also die F-Kurve
(einfache Summenhäufigkeit) als eine Gerade (bei
normaler Verteilung), deren Neigung vom Massstab

der Variabein v und von der Streuung s2

abhängt. Bei gleichbleibendem u-Maßstab wird die
Gerade um so steiler, je kleiner die Streuung s2 ist.

b) Die Häufigkeitskurve
Zeichnet man die normale Häufigkeitskurve in

die untere Hälfte des Wahrscheinlichkeitsnetzes
ein, so erhält man nicht mehr die bekannte,
glockenförmige, sondern eine hyperbelartige Kurve, deren

Fig. 9

Durstellung der Fehlerfunktion Im Wahrschelnlichkeitsnetz
(einfache Häufigkeit)

äussere Äste infolge der Dehnung der Teilung
angenähert zu Geraden gestreckt sind (Fig. 9). Die
neue Kurve ist leichter zu zeichnen und gibt, vor
allem für die extremen Werte der Variabein, eine
bessere Uebersicht der Häufigkeitsverteilung.

c) Die P- und W-Kurven
Bei zweckmässiger Anpassung des Maßstabes der

Ordinatenteilung [W °/o 2 (F — 50) %>] und
Verwendung der oberen Netzhälfte wird auch die W-
Kurve (Summenhäufigkeit der absoluten Fehler)
zu einer durch den Ursprung gehenden geneigten
Geraden (Fig. 10).
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Auch hier ist ohne weiteres ersichtlich, dass für
einen bestimmten Maßstab der Variabein die W~

Gerade um so steiler wird, je kleiner die Streuung
ist.
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Smnmenhäuflgkelt

der absoluten Fehler

In der untern Hälfte des Wahrscheinlichkeils-
lietzes wird schliesslich nach Anpassung des
Massstahes (P °/o 2 F °/o) auch die P-Kurve (Sum-
menhäufigkeit der einen bestimmten Wert
übersteigenden absoluten. Fehler) zu einer Geraden
(Fig. 11).

Fig. 11

Summenhäufigkelt

der einen bestimmten

Wert z

Ubersteigenden

absoluten Fehler

d) Die Wahl des Maßstabes für die Variable
im Wahrscheinlichkeitsnetz

In allen diesen Fällen ist die Wahl des Maßstabes
für die Variable (i? bei den /- und F-Kurven, und
z bei den W- und P-Kurven) theoretisch nur durcit
die Breite des verwendeten Wahrscheinlichkeitsnetzes

beschränkt. Sollen jedoch mehrere Statistiken

einander gegenübergestellt werden, so ist es
zweckmässig, einen gemeinsamen Maßstab zu neh¬

men. Eine für überschlägige Untersuchungen geeignete

Methode besteht darin, die einzelnen Werte,
bzw. Klassenmitten und Klassengrenzen der Variabein,

in Prozenten des Durchschnittes auszudrücken.
So erhält man leicht vergleichbare Kurven, aus
deren Verlauf und vor allem aus deren Neigung
qualitative Schlüsse über die Streuung gezogen
werden können. Sind die Streuungen der einzelnen
Statistiken bekannt (was aber selten der Fall ist),
so kann für jede Statistik die Variable als ein
Vielfaches der mittleren quadratischen Abweichung s

ausgedrückt werden; die einzelnen Kurven müssen
dann untereinander und mit einer zum voraus leicht
zu zeichnenden Standard-Kurve identisch sein,
wenn bei allen Statistiken die Verteilung normal
ist, d. h. wenn diese Statistiken den Gesetzen der
Wahrscheinlichkeitsrechnung genügen. Eine
andere praktisch bewährte Vergleichs- und
Untersuchungsmethode soll weiter unten näher erläutert
werden.

8. Praktische Anwendung
des Wahrscheinlichkeitsnetzes

a) Allgemeines
Im ersten Teil dieser Studie ist bereits auf die

wesentliche Vereinfachung hingewiesen worden,
welche die Gruppierung der N Einzelwerte einer
Statistik oder Stichprobe in M Klassen von der
Breite w mit Klassenmitte Vj und Klassenhäufigkeit
nt für die Berechnung der statistischen Masszahlen
mit sich bringt. Für die praktische Prüfung der
Verteilung und für die Ermittlung der
Summenhäufigkeiten ist diese Gruppierung geradezu
unentbehrlich.

Es ist bereits auf den Vorteil hingewiesen worden,

die Klassenbreite mit der mittleren quadratischen

Abweichung s in Beziehung zu bringen, um
Vergleiche zu erleichtern. Da aber die Berechnung
der Streuung s2 umständlich ist, zieht man in der
Praxis einen Wert vor, der in einem festen Verhältnis

zu ihr steht, aber leichter zu ermitteln ist: die
Grundspanne.

Ist gj die obere Grenze der Klasse j mit Mitte v-n
so entspricht dieser Grenze gj die einfache
Summenhäufigkeit Fj, in Analogie zum F-Integral der
Fehlerfunktion. Ist weiter nt die Häufigkeit der
Klasse j, so wird

F> t nt
i=i

Im Grenzfall, d. i. für j M, erhält man
M

S n,
j=i

A

Zweckmässig wird Fj, wie auch in Prozenten von
N ausgedrückt.

Als Spanne G bezeichnet man die absolute
Differenz zwischen zwei in bezug auf v symmetrischen
Grenzwerten g, deren entsprechende F-Werte (in
Prozenten von N ausgedrückt) zusammen 100
ergeben. Die Spanne zwischen g5, entsprechend F —
5 °/o und g„- entsprechend F 95 %> heisst die
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Grundspanne G00. Sie umfasst 90 % aller Einzelwerte

der Statistik und entspricht bei normaler
Verteilung dem IF-lntegral für den absoluten Fehler

z \v — g5| |t> — g05| 2).
Der Klassengrenzwert g50 ist identisch mit dem

Medianwert m und bei normaler Verteilung auch
mit dem Durchschnitt v. Diesem Grenzwert
entspricht theoretisch die Spanne G0.

Die Spanne G50 gibt bei normaler Verteilung
die obere und untere Grenze des wahrscheinlichen
Fehlers an, d. h. des Fehlers, für welchen die
Summenhäufigkeit W gleich 0,5 oder 50 °/o ist, während
die mittlere quadratische Abweichung s, bzw. die
Grenzen i; ± s der Spanne G68 entsprechen.

chungen vom Mittelwert als zufällig betrachtet,
während ausserhalb dieser Spanne fallende
Abweichungen als gesichert gelten. Es wäre somit
naheliegend, die Klassenbreite w mit dieser Spanne
G95 in eine einfache Beziehung zu bringen. Die
Erfahrung hat aber gezeigt, dass es zweckmässiger ist,
von der zuverlässiger ermittelbaren Grundspanne
G90 auszugehen, und diese je nach Feinheit der
vorzunehmenden Untersuchung in 5, 10 oder 20 gleich
grosse Teile zu teilen, so dass sich zum Beispiel
bei der 10er Teilung eine Klassenbreite

w 90 #95 —

10 10

Tabelle IX
Klassenmitte v: obere Häufigkeit ni pro Klasse in % von N Summenhäufigkeit Fi in % von N

Klassengrenze
5er Teilung 10er Teilung 20er Teilung B\ 5er Teilung 10er Teilung 20er Teilung 5er Teilung 10er Teilung 20er Teilung

10 10 10
12,5

10
15

0,15 0,15 0,15
0,10

0,15 0,15 0,15
0,25

15 17,5
22,5

20
25

0,27 0,17
0,26

0,42 0,42
0,68

20 25 27,5 30 0,91 0,64 0,38 1,06 1,06 1,06
32,5 35 0,56 1,62

35 37,5
42,5

40
45

1,35 0,79
1,11

2,41 2,41
3,52

40 45 48,5 50 3,94 2,59 1,47 5,00 5,00 5,00

52,5 55 1,93 6,93
55 57,5

62,5
60
65

4,41 2,48
3,07

9,41 9,41
12,48

60 65 67,5
72,5

70
75

11,18 6,77 3,70
4,37

16,18 16,18 16,18
20,55

75 77,5
82,5

80
85

9,36 4,99
5,53

25,54 25,54
31,07

80 85 87,5
92,5

90
95

20,92 11,56 6,03
6,36

37,10 37,10 37,10
43,46

95 97,5
102,5

100
105

12,90 6,54
6,54

50,00 50,00
56,54

100 105 107,5
112,5

110
115

25,80 12,90 6,36
6,03

62,90 62,90 62,90
68,93

115 117,5
122,5

120
125

11,56 5,53
4,99

74,46 74,46
79,45

120 125 127,5
132,5

130
135

20,92 9,36 4,37
3,70

83,82 83,82 83,82
87,52

135 137,5
142,5

140
145

6,77 3,07
2,48

90,59 90,59
93,07

140 145 147,5 150 11,18 4,41 1,93 95,00 95,00 95,00

152,5 155 1,48 96,48
155 157,5

162,5
160
165

2,59 1,11
0,79

97,59 97,59
98,38

160 165 167,5
172,5

170
175

3,94 1,35 0,56
0,38

98,94 98,94 98,94
99,32

175 177,5
182,5

180
185

0,64 0,26
0,17

99,58 99,58
99,75

180 185 187,5 190 0,91 0,27 0,10 99,85 99,85 99,85
190 190 190 190 0,15 0,15 0,15 100,00 100,00 100,00

b) Wahl der Klassenbreite
Bei der Prüfung von statistischen Masszahlen

werden alle innerhalb der Spanne G05 (entsprechend

W 0,95 oder P 0,05) liegenden Abwei-

2) Der Grund, warum für die Spanne das Symbol G und
nicht W gewählt wurde, liegt darin, dass W seinem Wesen
nach das Integral der Fehlerhäufigkeiten zwischen zwei in
bezug auf v symmetrischen Abszissenwerten ist, während die
Spanne G die Strecke der Abszissenachse zwischen diesen
zwei Werten misst.

ergibt. Diese Klassenbreite gilt selbstverständlich
auch für die Bereiche ausserhalb der Grundspanne.

c) Die Häufigkeitsteilung
> In Tabelle IX sind die bei normaler Verteilung
zu erwartenden Häufigkeiten und Summenhäufigkeiten

für eine Statistik mit Durchschnitt v 100
und Streuung s2 923 (s 30,4) bei 5er, 10er
und 20er Teilung der Grundspanne G00 zusammen-
gestellt.
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In der Praxis werden sich je nach der Streuung
der betrachteten Statistik andere Klassenbreiten w,
Klassenmitten und Klassengrenzen gj ergeben.
Die relativen Werte der Häufigkeit und der
Summenhäufigkeit (in Prozenten des Statistikumfanges
N) werden aber bei normaler Verteilung immer
den Tabellenwerten entsprechen.

Hieraus ergibt sich nebenbei eine einfache
Methode zur angenäherten Berechnung der Streuung.
Für die Statistik von Tabelle IX liegen die Grenzen

g5 und g,,- bei 50 und 150. Die Grundspannc
G00 beträgt 100 und die entsprechende absolute
Abweichung 50. Nach Abschnitt le) müssen bei
normaler Verteilung 90% aller Werte innerhalb der
Grenze v ± 1,645 s liegen. Kann man annehmen,
dass die Verteilung der zu untersuchenden Statistik
normal ist, so entspricht die absolute Abweichung
50 der Grenze ± 1,645 s. Somit erhält man

50
30,4 und s2 923

1,645

Auch wenn die Verteilung nur angenähert normal

ist, was praktisch meistens der Fall ist, liefert
diese einfache Rechnung für die Streuung einen
für überschlägige Betrachtungen hinreichend
genauen Wert.

Bei der graphischen Darstellung pflegt man die
Klassenhäufigkeit iij der Klassenmitte Vj und die
Summenhänfigkeit Fj der oberen Klassengrenze g,
zuzuordnen (Fig. 12).

d) Numerisches Beispiel
Zur Illustrierung der geschilderten graphischen

Methode sei das frühere Beispiel herangezogen
(Tabelle IV). Die 225 Werte umfassende Statistik
(N 225) besass nach der «klassischen» Berech-
nunssweise folgende Charakteristiken:

Umfang N --= 225

Durchschnitt q 36,5

Streuung s2 169,99

mittlere quadratische Abweichung s 13,03.

Das Ordnen der Statistik nach steigendem Wert
von q zeigt, dass 5 °/o aller Werte die Grenze

c b a
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Fig. 12

Darstellung der Normalvortcllung nach Tabelle IX
Tabelle X

Teilungsklassen

Obere Klassengrenze g\ Klassenmitte q\ Klassenhäufigkeit rt| Summenhäufigkeit F\ Normalverteilung

absolut % von q absolut % von q absolut o/o von N absolut % von N nj °/0 von N P\ o/o von N

0,2
0 0 0,2

3,1 5,8 0 0 0,9
äussere 6,4 17,5 0 0 1,1

10,7 29,3 11 4,9 3,9
gr> 15,0 41.1 11 4,9 5,0

19,3 52,9 19 8,4 11,2
23,6 64,7 30 13,3 16,2

27,9 76,4 59 26,3 20,9
32,2 88,2 89 39,6 37,1

36,5 100,0 66 29,3 25,8
innere 40,8 111,8 155 68,9 62,9

45,1 123,6 34 15,1 20,9
49,4 135,3 189 84,0 83,8

53,7 147,1 25 11,1 11,2
gdf. 58,0 158,9 214 95,1 95,0

62,3 170,7 7 3,1 3,9
66,6 182,5 221 98,2 98,9

70,9 194,2 o 1,0 0,9
75,2 206,0 223 99,2 99,8

äussere 79,5 217,8 1 0,4 0,2
83,8 229,6 224 99,6 100,0

88,1 241,4 1 0,4
92,4 253,1 225 100,0
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gs 15 und 95 °/o die Grenze g95 58 nicht
übersteigen. Die Grundspanne errechnet sich somit zu

G90 58 —15 43

Für eine überschlägige Untersuchung genügt eine
5er Teilung der Grundspanne. Somit wird die
Klassenbreite

w 90 43

7 8,6

Die sich daraus ergebenden oberen Klassengrenzen

gj und Klassenmitten qj, sowie die aus der
Auszählung resultierenden Klassenhäufigkeiten nj
und Summenhäufigkeiten Fj sind in Tabelle X
zusammengestellt. Um die graphische Darstellung zu
erleichtern, figurieren daneben die relativen Werte,
bei Klassenmitten und Klassengrenzen in Prozenten
des Durchschnittes, bei den Häufigkeiten in
Prozenten des Umfanges der Stichprobe. Zur Kontrolle
sind die bei normaler Verteilung zu erwartenden
Häufigkeitswerte in Prozenten von N angeführt.

Im Wahrscheinlichkeitsnetz von Fig. 13 sind die
Werte der Tabelle X graphisch aufgetragen.
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Darstellung der Mischverteilung nach Tabelle X
Mischverteilung
Normalverteilung gleicher Grundspanne
(bzw. Streuung).

a einfache Häufigkeit b Summenhäufigkeit

Im Bereiche der Grundspanne G90, d. h.
zwischen den Grenzen g5 und g95 weichen die tatsächlichen

Kurvenwerte (volle Kurve) nicht sehr stark
von den für eine normale Verteilung zu erwarten-

36,5 —1,645 s

36,5 + 1,645 s

den Werten ab (gestrichelte Kurve). Wenn der
Umfang der Stichprobe wächst, tritt auch in den
äusseren Teilungsklassen eine weitgehende Angleichung
an die Normalwerte ein.

Aus der Kenntnis der Grundspanne Geo lässt
sich die mittlere quadratische Abweichung s
kontrollieren. Die Grundspanne G90 entspricht dem
Bereich q + 1,645 s, innerhalb welchem bei
normaler Verteilung 90 % aller Werte liegen müssen.
Somit ist

g5 q —1,645 s

gas q + 1,645 s

oder in Zahlen

gs 15,0

gas 58,0

woraus sich ergibt

s 13,08
und s2 171

Gegenüber den «klassisch» errechneten Werten
beträgt der Unterschied 0,05 oder 0,4 % für s und
rund 1,0 oder 0,6 °/o für s2. Diese Unterschiede
sind also vernachlässigbar klein.

Aber auch rein graphisch kann die Streuung
direkt ermittelt werden. Bei normaler Verteilung
müssen 68,3 °/o aller Werte innerhalb der Grenzen

q + s liegen. Auf der Summenhäufigkeitskurve
(bzw. -geraden im Wahrscheinlichkeitsnetz)
entspricht also q + s einem F~^+ s 84,15 % und
q — s einem Fq_ s 15,85%. Die Spanne
zwischen den Abszissen dieser beiden F-Punkte ist
somit gleich 2 s. In Fig. 13 ist diese Spanne rund
70% von q oder 25,6, womit s 12,8 wird. Bei
grösserem Statistikumfang würde auch dieser rein
graphisch ermittelte Wert sich dem theoretischen
Wert besser nähern.

Der Vorteil der geschilderten graphischen
Methode liegt in ihrer Einfachheit, aber auch darin,
dass es genügt, die leicht zu erhaltenden Häufig-
keits- und Summenhäufigkeitskurven im
Wahrscheinlichkeitsnetz zu zeichnen, um auf den ersten
Blick zu erkennen, ob die Verteilung normal oder
annähernd normal ist, oder ob sie Unregelmässigkeiten

aufweist, die auf eine Mischverteilung
hindeuten. Die Zerlegung solcher Mischverteilungen
in eine Anzahl normaler Verteilungen ist erst durch
die Anwendung des Wahrscheinlichkeitsnetzes auf
eine einfache und elegante Art möglich gemacht
worden. Diese Zerlegung erlaubt, wertvolle Schlüsse
auf die Auswirkung von Faktoren, die bei der
Untersuchung vorerst nicht berücksichtigt wurden, zu
ziehen.

9. Analyse von Häufigkeitsverteilungen mit
Hilfe des Wahrscheinlichkeitsnetzes

a) Allgemeines
Das Beispiel von Fig. 13 zeigt, dass, zumal beim

Energieverbrauch, wo stets mehr als ein Faktor im
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Spiele steht, die die Verteilung der spezifischen
Verbrauchswerte wiedergebende Häufigkeitskurve
stets mehr oder weniger von der normalen Verteilung

nach der Gaußschen Formel abweicht. Die
Erfahrung zeigt ferner, dass die «Anomalien» der
Kurven in der Regel auch bei starker Vermehrung
des Statistikumfanges weiter bestehen bleiben.
Wohl verschwinden mit zunehmendem Umfang
infolge zuverlässigerer Mittelwertbildung die kleinen

Unregelmässigkeiten, vor allem bei den untersten

und obersten, meist schwach besetzten Klassen,

aber die grossen, typischen Abweichungen vom
normalen Kurvenverlauf behaupten sich.

Diese Erscheinung darf keineswegs als ein
Versagen der Gaußschen Fehlertheorie gedeutet werden.

Läge z. B. für den Beleuchtungsenergieverbrauch

nur ein beeinflussender Faktor, z. B. die
Raumzahl, vor, so müsste die Häufigkeitsverteilung
unbedingt normal ausfallen. Sobald sich aber weitere

Faktoren hinzugesellen, z. B. die Raumgrösse,
die Ausdehnung der Installation, die Lebensgewohnheiten

der Abnehmer usw., so müssen diese eine
Veränderung der Verteilung hervorrufen. Diese
Einflüsse weitgehend herauszuschälen und zu deuten

gestattet die nachfolgend beschriebene analytische

Methode.
Wie jede Schwingungskurve nach der Fourier-

schen Analyse als eine Summe reiner Sinuskurven
verschiedener Phasen, Frequenzen und Amplituden
betrachtet werden kann, so lässt sich auch jede
beliebige Häufigkeitskurve (als Bild eines beliebigen
Urkollektivs) in einzelne normale Häufigkeitskurven

(als Bilder normaler Teilkollektive) mit
verschiedenen Durchschnitten, Streuungen (bzw.
Grundspannen) und Scheitelwerten (bzw. Umfangen)

zerlegen. Die Deutung der charakteristischen
Grössen der Teilkollektive erlaubt dann, auf die
Eigenschaften des Urkollektivs Rückschlüsse zu
ziehen.

Nebst statistisch-mathematischem, also rein
handwerksmässigem Geschick verlangt diese
graphisch-rechnerische Analyse, und noch viel mehr
die Deutung der Ergebnisse, eine gründliche
Beherrschung der untersuchten Materie und viel
Verständnis für ihre inneren Zusammenhänge.

b) Das Werkzeug
Von wesentlicher Bedeutung für die Kennzeichnung

einer normalen Häufigkeitskurve sind die
Grundspanne G90, die ein praktisches Mass für
die Streuung bildet, und der Umfang des durch die
Kurve dargestellten Kollektivs.

Zu den beiden Endpunkten der Grundspanne
G90 einer normalen Häufigkeitskurve, als Abszissen

genommen, gehören zwei gleich grosse Ordinaten,
die in einem bestimmten Verhältnis zu dem dem

Durchschnitt q zugeordneten Scheitelwert nm der
Kurve stehen.

Nach Tabelle VI hat der Scheitelpunkt der Kurve
die Ordinate

/ IJ m 1 r—
s ]/ 2 7t

Die Endpunkte g5 und g95 der Grundspanne G„a

entsprechen den Abszissenwerten q —1,645 s und
q -j- 1,645 s. Setzt man diese Werte in Formel (26)
ein, so erhält man

1,6452

fg5 fg95 - ' e
syzTt

und das gesuchte Verhältnis ergibt sich zu

fto « •

Jm

1,6452

0,258 oder rund 0,26

(46)
Das Wertvolle an dieser Beziehung ist, dass der
Faktor ygo konstant und von der Streuung
unabhängig ist.

Ebenso kann nachgewiesen werden, dass bei
normaler Verteilung der Umfang N in einer bestimmten

Beziehung zum Scheitelwert fm steht, die aber
von der Streuung abhängt. Die Beziehung lautet

N fm sY^t
Für praktische Berechnungen, bei denen die
Variabein in Klassen von der Breite w eingeteilt sind,
wobei die grösste Klassenhäufigkeit (Scheitelwert)
mit nm bezeichnet wird, schreibt sich die Formel

N —^ s J/2jt
w

Da aber G90 2 • 1,645 s und ]/ 2 7t

ist, so erhält man

N 0,76 G90su w

rund 2,5

(47)

Für die rasche Skizzierung einer normalen
Häufigkeitskurve im Wahrscheinlichkeitsnetz ist es
noch nützlich zu wissen, dass ausserhalb der Grundspanne

die beiden Kurvenäste praktisch gradlinig
verlaufen.

c) Die Darstellung
Bei der graphischen Darstellung ist es hier nicht

nötig, von der Grundspanne des Urkollektivs
auszugehen, und diese in 5, 10 oder 20 Teile zu teilen,
um die Klassenbreite zu erhalten. Es ist sogar
vorteilhafter, hiefür eine runde ganze Zahl zu wählen,
1, 2, 5 oder 10, je nach Grösse der Variabein.

Wichtig ist nur, die Breite der Klassen nicht
zu klein zu wählen, da sonst auf jede Klasse,
besonders auf die äussersten, zu wenig Einzelwerte
entfallen, so dass die Kurve1 unter Umständen
zackig wird. Anderseits darf die Unterteilung nicht
zu grob sein, sonst verschwinden die charakteristischen

Unregelmässigkeiten der Kurve. Mit einiger
Uehung ist es nicht schwer, die Klassenbreite dem
gewünschten Feinheitsgrad der Untersuchung
anzupassen.

Für die rasche und genaue Aufzeichnung der
Teilkollektive mit normaler Verteilung kann die
5er oder 10er Teilung der Grundspanne gute
Dienste leisten, da die einzelnen Punkte aus der
Tabelle IX herausgelesen werden können. Dabei
muss aber der abgelesene Tabellenwert entspre-
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cliend dem Verhältnis der Klassenhreite des
darzustellenden Teilkollektivs zur Klassenbreite des
vorhandenen Urkollektivs und vom Umfang des
Teilkollektivs zum Umfang des Urkollektivs, sowie
dem für die Häufigkeit gewählten Maßstabe,
umgerechnet werden.

Da fiir die Darstellung der Kurven die untere
Hälfte des Wahrscheinlichkeitsnetzes (0...50°/o)
verwendet wird, wählt man als Maßstab für die
Klassenhäufigkeit, die zweckmässig in absoluten
Zahlen ausgedrückt wird, ein ganzes Vielfaches des
vorhandenen Prozentmaßstabes, dermassen, dass der
Kurvenscheitel nicht über die 50%-Linie hinausragt,

aber möglichst nahe an diese herankommt
(bei nm 120 setzt man z. B. 125 50 °/o und bei
nm 160, 200 oder 250 50 %>).

In den meisten Fällen ist es angezeigt, die
Häufigkeitskurve des Urkollektivs auszugleichen, vor
allem wenn sie wegen zu kleinen Umfangs etwas
zackig ausfällt. Sehr oft genügt eine Verschiebung
der Klassengrenzen um eine halbe Klassenbreite,
um nach erneuter Auszälilüng eine weitere Punktreihe

zu erhalten, die es erlaubt, eine stetige Kurve
zu zeichnen. Genügt dies nicht, so können noch die
Klassen je zu zweien zusammengenommen werden,
was im entsprechenden Maßstab eine weitere Punktreihe

ergibt. Mitunter kann es auch nötig sein, die
Suinmenliäufigkeitskurve zur Ausgleichung
heranzuziehen, indem man die auffällig daneben
geratenen Punkte berichtigt und hierauf die einfache
Häufigkeitskurve zurückkonstruiert.

d) Das Vorgehen bei der Analyse

In der Regel verrät das Aussehen der die
Mischverteilung darstellenden, ausgeglichenen Urkurve,
wo das wichtigste, oder vielleicht auch schon, wo
die anderen Teilkollektive liegen können. Anhaltspunkte

dafür liefern die verschiedenen Buckel und
der Verlauf der äussersten Kurvenäste.

Ist nur ein Teilkollektiv ohne weiteres erkennbar,

so wird dieses zunächst von Hand einskizziert,
mit Scheitel und ungefährer Oeffnung. Die unter
b) abgeleiteten Beziehungen erlauben, die Grundspanne

und dann den Umfang zu bestimmen,
worauf die Kurve genau gezeichnet werden kann,
sei es durch Heranziehung der 5er oder 10er
Teilung (1er Grundspanne, oder über den Umweg der
Summenhäufigkeitsgeraden. Mit der durch
Subtraktion erhaltenen Restkurve wird gleich verfahren,

bis alle Teilkollektive ermittelt sind. Wenn
nötig, werden an den einzelnen Teilkollektiven
noch Korrekturen angebracht, bis die Summen-
kurve mit der Urkurve praktisch übereinstimmt.

Wenn sich die Teilkollektive alle sofort erken-
' nen lassen, so werden sie miteinander einskizziert.
Aus Sclieitelwcrt und Grundspanne wird der
Umfang jedes Teilkollektivs ermittelt; die Summe
muss den Umfang des Urkollektivs ergeben. Diese
erste Kontrolle vor dem genauen Zeichnen der
Teilkurven erspart in der Regel spätere Korrekturen.

e) Zahlenbeispiel
Als Beispiel diene wiederum die schon mehrfach

verwendete Statistik (Tabelle IV) mit folgenden
Charakteristiken :

Umfang N — 225

Durchschnitt q — 36,5

Streuung s- — 169,99.

Wenn die Klassenbreite w zu 20°/o des gleich
100 °/o gesetzten Durchschnittes q gewählt wird, so
ergibt sich folgende Urverteilung:

Tabelle XI
Obere Klassengrenze g,- 30 50 70 90 110 130 150 170 190 210 230 250

Klassenmitte g,- 20 40 60 80 100 120 140 160 180 200 220 240

Klassenhäufigkeit », 6 12 20 53 57 30 27 13 4 1 1 1

Nach dem Ausgleichen durch Verschieben der
Klassengrenzen und durch Zusammenlegen je
zweier Nachbarklassen ergibt sich die in Fig. 14

gestrichelt gezeichnete Kurve. Entsprechend dem
grössten Wert von zj7- 57 wurde für den
Häufigkeitsmaßstab 50 °/o 100 gesetzt.
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Fig. 14

Zerlegung; einer MiscliVerteilung U
in drei Normalverteiiungen I, II und III

K einfache Häufigkeit S Sumrnenhäufigkeit

Die gestrichelte Häufigkeitskurve des spezifischen

Energieverbrauches pro Raum ist unregel-
niässig. Es liegt also eine Mischverteilung vor. Der
Kurvenverlauf lässt vermuten, dass es sich hier um
mindestens drei Teilkollektive handelt. Die
Auswertung nach dem geschilderten Verfahren bestätigt

in erster Annäherung diese Annahme und führt
zu folgendem Ergebnis:
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Scheitelwert nm
Abszisse qm des Sclieitel-

wertes (Durchschnitt)
Grundspanne G,,,,

Uni tail"; N

Kurve /
30

125
90

103

Kurve II Kurve HI

47

86
56

100

12

40
48
22

Die drei Teilkurven K I, K II und K III sind in
Fig. 14 voll ausgezogen, ebenso die zugehörigen
Summenhäufigkeitsgeraden S I, S II nnd S III. Der
Umfang des durch Summierung der drei Teilkurven

erhaltenen neuen Kollektivs T (Fig. 14)
errechnet sich zu 225. Aus der zugehörigen
Summenhäufigkeitskurve S lässt sich die Grundspanne des
neuen Summenkollektivs T zu G,,0 118 °/o oder
43,1 kWh/GE ermitteln.

Das Ergebnis der rechnerischen Kontrolle zeigt
Tabelle XII.

apparate aufweisen. Dies geht auch aus dem relativ

schwachen spezifischen Energieverbrauch dieser

Gruppe pro Hauptraum hervor. Das mittlere
Kollektiv K II, das rund 44% aller Abonnenten
umfasst, stellt mit grosser Wahrscheinlichkeit die
Abnehmer dar, die neben der Beleuchtung einen
regen Gebrauch von ihren Klcinapparaten, z. B.
von Bügeleisen, Staubsauger und Radio, machen.
Der mittlere spezifische Verbrauch dieser Gruppe
stellt sich auf 31,4 kWh pro Hauptraum, was für
eine Wohnung mit 5 Haupträumen (4 Zimmer mit
Küche, ohne Bad oder 3 Zimmer mit Küche und
Bad) einem mittleren Jahresverbrauch von 157

kWh entspricht. Das Kollektiv K III schliesslich
dürfte diejenigen Abonnenten gruppieren, die neben
der Beleuchtung und den Kleinapparaten auch noch
Raumheizung in mässigen Grenzen betreiben; sie

Tabelle XII

Obere Klassengrenze gj 30 50 70 90 110 130 150 170 190 210 230 250

Klassenmitte qj 20 40 60 80 100 120 140 160 180 200 220 240

Klassenhäufigkeiten nj (absolut)
ausgeglichene Urkurve U 5,8 11,8 19,8 53,0 57,0 30,8 26,8 13,4 4,2 1,4 0,7 0,3

Teilkurve KI
Teilkurve K II
Teilkurve K III 5,5

0,3

1,8

11,0

2.0

15,5

5.1

8,0

41,7

0,4

19,9

32,8

28,8

7,7

25,3

0,5

13,5 4,3 0,8 0,1

Summenkurve T 5,5 13,1 22,6 50,1 52,7 36,5 25,8 13,5 4,3 0,8 0,1

Aus der Grundspanne G,m 43,1 des Summen-
kollektivs T errechnet sich die mittlere quadratische

Abweichung zu

s
43,1

13,08
2 -1,645

was mit dem früher ermittelten Werte (13,03) sehr
gut übereinstimmt.

Die Deutung des Ergebnisses ist hier nicht
schwer. Das Urkollektiv kann als die Summe vou
drei Teilkollektiven normaler Verteilung angesehen
werden, die sich um die spezifischen Verbrauchswerte

40 °/o 14,6 kWh/GE, 86 % 31,4 kWli/GE
und 125 °/o 45,7 kWh/GE scharen (1 GE 1

Hauptraum). Das Kollektiv mit dem kleinsten
spezifischen Verbrauch (K III) ist schwach besetzt,
die beiden anderen ungefähr gleich stark. Die Kol-.
lektive K III und K II weisen eine ziemlich starke
Konzentralion auf, während das Kollektiv K I
wesentlich stärker streut.

Da es sich hei dieser Untersuchung um den am
Licht - Doppeltarifzähler gemessenen Energieverbrauch

im Haushalt handelt, unter Ausschluss von
Küche und Warmwasserbereitung, können die drei
ermittelten Teilkollektive nur Abonnentengruppen
mit verschiedenen Verbrauchseigenschaften darstellen.

Das Kollektiv K III, mit dem kleinsten
Umfang (rund 10 % des Gesamtumfanges) dürfte
diejenigen Abonnenten umfassen, die neben dem
eigentlichen Beleuchtungsverbrauch keinen
nennenswerten oder gar keinen Konsum für Klein¬

machen rund 46 °/o aller Abnehmer aus. Für eine
Wohnung mit 5 Haupträumen beträgt in diesem
Falle der mittlere Jahresverbrauch 228,5 kWh.

Nimmt man mangels genauerer Angaben an, die
Verteilung der verschiedenen Wohnungskategorien
sei in allen drei Teilkollektiven identisch und gleich
der Verteilung im Gesamtkollektiv, so ergehen sich
die in Tabelle XIII zusammengestellten Werte.

Tabelle XIII

Kollektiv
Anteil am
Gesamt-
kollektiv

°/o

Anzahl der
Haupträume

Mittl. spez.
Verbrauch

pro Hauptraum
kWh

Jahresverbrauch

pro Kollektiv
kWh

III 10 103 14,6 1504

II 44 454 31.4 14256

I 46 475 45,7 21707

Total 100 1032 36.3 37467

Diese Werte stimmen mit den früher auf andere
Arten ermittelten Werten ziemlich gut überein
(mittl. spez. Verbrauch 36,5 kWh/GE und
Gesamtverbrauch 37 293 kWh).

Die durchgeführte Analyse erlaubt weiter, den
mutmasslichen mittleren F nergieverbrauch pro
Hauptraum,-je für Beleuchtung, Kleinapparate und
Zusatzheizung in der Uebergangszeit (denn 1938
wurde noch nicht so intensiv elektrisch geheizt, wie
während und nach dem zweiten Weltkrieg) zu
ermitteln. Die Differenzbildung zwischen den drei
Teilkollektiven ergibt für
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Beleuchtung : 14,6 kWh/Hauptraum
Kleinapparate : 16,8 kWh/Hauptraum
Zusatzheizung: 14,3 kWh/Hauptraum

Mit diesen Zahlen fällt es nicht schwer, für jede
Wohnungsgrösse die entsprechenden Werte zu
berechnen.

f) Schlussbemerkung
Eine solche mathematisch-statistische

Untersuchung des Haushaltenergieverhrauches ist
unseres Wissens noch nie durchgeführt worden. Es
dürfte sicher von Interesse sein, ob die so ermittelten

Zahlen mit den praktischen Erfahrungen
übereinstimmen. Sollte dies zutreffen, so wäre mit der
geschilderten Methode ein wirkungsvolles Instrument

geschaffen, um die Struktur des Energieverbrauches

ohne umfangreiche und langwierige
statistische Erhebungen (im landläufigen Sinne des
Wortes) zu untersuchen.
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Etude sur la marche en parallèle des centrales des Forces Motrices
Bernoises S. A.

Par Ch. Jean-Richard, Muri (BE)
621.3.016.32:621.311.21(494.24)

La marche en parallèle des centrales des Forces Motrices
Bernoises s'effectue au moyen d'un réseau à 45 kV, formé
de plusieurs mailles, mises en parallèle. A trois endroits de
ce réseau il est opportun de maintenir la tension constante
pour une valeur moyenne du facteur de puissance. Aux autres
endroits il y a lieu de régler la puissance réactive en fonction
de la puissance active dans le but d'orienter le flux de la
puissance réactive vers les consommateurs.

L'emploi systématique de régulateurs automatiques, soit
de tension soit de puissance réactive et de relais «Deltavar.»

pour le choix automatique du mode de réglage, présentera
l'avantage de rendre l'exploitation des réseaux à la fois plus
simple, plus économique et plus stable.

Der Parallelbetrieb der einzelnen Kraftwerke der BKW
(Bernischen Kraftwerke A.-GJ erfolgt über ein 45-kV-Netz, das
aus mehreren parallel geschalteten Maschen besteht. An drei
Stellen dieses Netzes ist es angezeigt, die Spannung bei einem
mittleren Leistungsfaktor konstant zu halten. An den übrigen
Stellen sollte die Blindleistung in Abhängigkeit der
Wirkleistung so reguliert werden, dass die Blindleistung in Richtung

der Verbraucher fliesst.
Die systematische Verwendung automatischer Regler, seien

es Spannungs- oder Blindleistungsregler, und von tDeltavar»-
Relais für die automatische Wahl der Regulierart weist den
Vorteil auf, den Betrieb der Netze gleichzeitig einfacher,
wirtschaftlicher und cuisgeglichener zu gestalten.

Huit centrales sont exploitées par les FMB
(Forces Motrices Bernoises). Deux d'entre elles se

trouvent à l'une des extrémités d'un réseau à 150 kV
de forme triangulaire. Leur puissance disponible
est de 260 MW et l'énergie de 800 000 MWh par an.
L'étendue du réseau est de 628 km de lignes
simples, montées sur pylônes, principalement à deux
ternes. La puissance réactive à vide est de 41 MVar
à 150 kV.

Les six autres centrales sont échelonnées le long
des cours d'eau qui sillonnent le canton de Berne.
Leur puissance est de 79 MW et l'énergie de
460 000 MWh par an.

La pointe maximale de la charge des réseaux
des FMB au mois d'août 1947 a été de 329 MW.

Les six centrales sont reliées par un réseau à
45 kV, formé de plusieurs mailles. En outre, elles
alimentent chacune une partie d'un réseau à 16 kV,
de même que des sous-stations 45/16 kV.

Aux barres omnibus à 16 kV de ces centrales la
tension est prescrite par un diagramme hebdomadaire

ajusté à la main et maintenue par régulateurs
automatiques de tension. Cette tactique peut être
désignée à juste titre par classique. Elle remonte
aux débuts du service électrique, les besoins étant
déterminés par une clientèle dont les occupations
se règlent d'après les heures du jour.

Logiquement, l'emploi de régulateurs automatiques

de tension aux barres omnibus à 16 kV des
sous-stations donne de bons résultats.

Les deux centrales branchées au réseau à 150 kV
sont assez puissantes pour imposer la tension à tout
le réseau de manière à ce qu'elle soit constante
en un point donné de ce réseau.

Le réseau à 45 kV n'est pas aussi facile à exploiter.

Il assure la marche en parallèle des centrales
entre elles tout en étant placé entre le réseau à
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