Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 39 (1948)

Heft: 22

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bei den Masten der Leitung Amsteg-Mettlen sind an einem Knotenpunkt 4 Diagonalstäbe mit dem Eckpfosten des Mastes verbunden. An jedem Ende eines Diagonalstabes ist bei den Tragmasten nur eine Befestigungsschraube vorhanden, wobei jedoch eine zweischnittige Verbindung besteht. Die für die Pfosten der Masten verwendeten Stahlrohre haben Aussendurchmesser von 100...300 mm, und ihre Wandstärken liegen zwischen 3,5 und 7 mm.

Da es sich bei den Masten der 380-kV-Leitung Amsteg-Mettlen (Fig. 5) um Tragwerke von 37 bis 67 m Höhe handelt, werden besondere Vorkehren

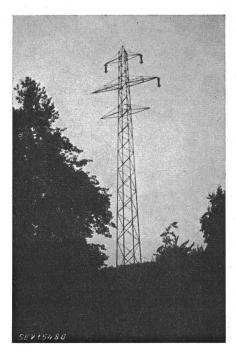


Fig. 7
150-kV-Leitung Töss-Winkeln
der Nordostschweizerischen Kraftwerke
Tragmast mit ausbetonierten Stahlrohren
in der Nähe von Töss
Höhe 40 m

getroffen, um bei Reparaturen oder Unterhaltsarbeiten die Aufgabe der Monteure zu erleichtern. In jedem Mast wird eine kleine Seilwinde permanent installiert, die bei Arbeiten als Aufzug dienen kann.

Die zweisträngige Leitung Amsteg-Mettlen der Aare-Tessin A.-G. für Elektrizität bildet die nördliche Fortsetzung einerseits für die im Jahre 1932 mit Gittermasten aus Winkeleisen gebaute Gotthardleitung, anderseits für die Lukmanierleitung, die mit ausbetonierten Rohrmasten erstellt wird. Zwischen Amsteg und Mettlen sollen vorläufig 6 Kupferseile von 350 mm² und ein Erdseil aus Stahl von 80 mm² Querschnitt ausgelegt werden, verwendbar für den Betrieb mit 220 kV. Beim Übergang auf die Spannung von 380 kV wird die Leitung voraussichtlich mit Hohlseilen ausgerüstet werden.

Vor dem Auslegen der Leiterseile mussten bei den Kreuzungen mit elektrischen Bahnen provisorische Schutzgerüste erstellt werden. Als solide Holzkonstruktionen wurden solche z.B. zwischen Altdorf und Flüelen errichtet, wo die 380-kV-Leitung in einer Spannweite von über 600 m gleichzeitig die Gotthardlinie der SBB und eine Staatsstrasse mit Strassenbahn überquert. Zwischen Amsteg und Mettlen werden an 8 Stellen Haupt- und Nebenbahnen gekreuzt.

Gittertragwerke mit ausbetonierten Stahlrohren in der Schweiz

(Stand am 1. Juli 1948)

Tabelle I

Anlage	Spannung	Länge	Zahl der
	kV	km	Masten
Fertige Leitungen Nufenen (Talstrecke) 1) Töss—Winkeln (Fig. 6 und 7) Littau—Wolhusen Davos—Filisur (Fig. 2)	150	12	50
	150	—	49
	50	15	66
	50	18	88
Leitungen im Bau Amsteg—Mettlen (Fig. 5) Lukmanier Sesselbahn Grindelwald—First	380	52	159
	380	54	145

1) Siehe Bild eines Tragmastes im Bull. SEV Bd. 39 (1948) Nr. 7, S. 208.

Über die Anwendung der von Motor-Columbus entwickelten Gittertragwerke mit ausbetonierten Stahlrohren in der Schweiz gibt Tabelle I Auskunft.

In Frankreich ist die 60-kV-Leitung der Französischen Staatsbahnen von Villefranche nach Perpignan, deren Länge 45 km beträgt, mit 102 ausbetonierten Rohrmasten erstellt. Wir verweisen auch auf den Bericht Nr. 221 der CIGRE 1948: Les pylônes en tubes d'acier remplis de béton par R. Vögeli, Baden.

Adresse des Autors:

R. Gonzenbach, Ingenieur der Motor-Columbus A.-G. für elektrische Unternehmungen, Baden (AG).

Technische Mitteilungen — Communications de nature technique

21.331 : 625.3 (494)

50 Jahre schweizerische elektrische Bergbahnen
Im Sommer bzw. Frühlerhet dieses Jahres waren fast

Im Sommer bzw. Frühherbst dieses Jahres waren fast gleichzeitig 50 Jahre verstrichen, seit im Jahre 1898 am 20. August die Gornergratbahn, am 20. September der erste Abschnitt (Kleine Scheidegg—Eigergletscher) der Jungfrau-Bahn und am 5. Oktober die Stansstad—Engelberg-Bahn als erste von Anfang an elektrisch betriebene Bergbahnen unseres Landes eröffnet wurden. Wir Elektrotechniker haben allen Grund, dieser ein halbes Jahrhundert zurückliegenden Ereignisse mit Freude und Genugtuung zu gedenken. Denn

die Eröffnung jener Bahnen bildet den Ausgangspunkt einer ruhmreichen Entwicklung, auf die kurz Rückschau zu halten gerechtfertigt ist und zwar um so mehr, als die von der Schweizerischen Lokomotiv- und Maschinenfabrik Winterthur im Verein mit unseren Elektrofirmen seither für unsere Bergbahnen gebauten Triebfahrzeuge weitaus den grössten Teil der Gesamtheit aller auf der ganzen Welt heute in Betrieb stehenden Zahnradfahrzeuge ausmachen. Was im Ausland an Fahrzeugen dieser Art gebaut wurde, ist anteilmässig unbedeutend. Hingegen hatten unsere beteiligten Industrieunternehmungen oder deren Lizenznehmer im Laufe

der Jahre Gelegenheit, eine Anzahl sehr beachtenswerter Triebfahrzeuge für ausländische Zahnradbahnen zu liefern.

Von den erwähnten ersten elektrischen Bergbahnen unseres Landes waren die Gornergratbahn (Drehstrom 725 V, 50 Hz) 1) und die Jungfrau-Bahn (Drehstrom 650 V, 40 Hz) mit ihrem ersten Abschnitt reine Zahnradbahnen, d. h. solche mit durchgehendem Zahnstangenbetrieb, während die Stansstad—Engelberg-Bahn (750 V, 32 Hz) bereits eine Bahn mit gemischtem Zahnstangen- und Adhäsionsbetrieb war.

Dass bei diesen Bahnen Drehstrom zur Anwendung kam, erklärt sich z. T. aus dem um die Jahrhundertwende erreichten Stand der Entwicklung, als man Drehstrom auch für die Vollbahnelektrifizierung als das geeignetste Stromsystem hielt oder damals noch gar zu halten gezwungen war, dann aber auch deshalb, weil die starre Charakteristik des Drehstrommotors für die Befahrung von Zahnstangenstrecken ziemlich gleichbleibender Steigung nicht unbedingt nachteilig und die Leichtigkeit der Anwendung von Nutzbremsung ohne jede Umschaltung oder Zusatzapparatur ein wesentlicher Vorteil zu sein schien. Der Nachteil der doppeldrähtigen Oberleitung fiel bei diesen Bahnen nicht schwer ins Gewicht.

Später haben sich dann diese Anschauungen geändert. Man erkannte die Überlegenheit der «weichen» Seriecharakteristik auch für die Befahrung von Zahnstangenstrecken namentlich bei wechselnder Steigung und wurde sich bewusst, den Vorteil der ja doch fahrdrahtabhängigen Nutzbremsung überschätzt zu haben. Das ist der Grund, warum Drehstrom bei unseren Bergbahnen später nur noch einmal und zwar bei der 1905 eröffneten Brunnen—Morschach-Bahn (750 V, 50 Hz) zur Anwendung gekommen ist, in der Folge aber zunächst ausschliesslich Gleichstrom und später auch Einphasenwechselstrom gewählt wurde, das letzte namentlich dann, wenn entweder gleichspuriger Anschluss an den Bahnkörper der SBB vorlag (Rorschach—Heiden-Bahn) oder völlige (Furka—Oberalp-Bahn, Brünigstrecke der SBB) oder doch teilweise (Visp—Zermatt-Bahn) energiewirtschaftliche Eingliederung in deren Netz das Gegebene war.

Das Jahr 1899 brachte zunächst die Vollendung des zweiten Abschnittes der Jungfrau-Bahn bis zur heute aufgehobenen Station Rotstock. Dann folgte in der Westschweiz im Jahre 1900 die Eröffnung der Bergbahnen Aigle—Leysin und Bévieux (Bex)—Gryon (650 V Gleichstrom), die als Adhäsionsstrecke im Jahre 1901 bis Villars und 1906 bis Chesières verlängert wurde. 1903 wurde der dritte Abschnitt Rotstock—Eigerwand der Jungfrau-Bahn eröffnet, dem 1905 der vierte Eigerwand—Eismeer und die Inbetriebnahme der bereits erwähnten Brunnen—Morschach-Bahn folgten. 1906 wurde die Bahn Martigny—Châtelard (750 V Gleichstrom) dem Betrieb übergeben, auf der erstmalig Zahnrad-Triebwagen und zwar für gemischten Zahnstangen- und Adhäsionsbetrieb und mit sogenannten kombinierten Antrieben eingesetzt wurden.

Im Jahre 1907 stellte die Arth—Rigi-Bahn ihren Dampfbetrieb auf elektrischen Betrieb (750 V Gleichstrom) unter Verwendung von Triebwagen für reinen Zahnstangenbetrieb um, und 1908 erfolgte die Betriebsaufnahme auf der Bahn von Monthey nach Champéry (Gleichstrom 750 V), deren Triebwagen für gemischten Zahnstangen- und Adhäsionsbetrieb die ersten Zahnradfahrzeuge unseres Landes mit getrennten Triebwerken waren.

Im Jahre 1909 wurde der oberhalb des Genfersees gelegene Höhenkurort Glion durch eine Bahn (750 V Gleichstrom) mit gemischtem Zahnstangen- und Adhäsionsbetrieb mit Montreux verbunden. Noch im selben Jahr aber war die Umstellung des Abschnittes Lauterbrunnen—Kleine Scheidegg der Wengernalpbahn auf elektrischen Betrieb das grosse Ereignis. Denn zum erstenmal in der Geschichte der elektrischen Traktion ist dort eine Gleichstrom-Fahrdrahtspannung von 1500 V angewendet worden, und die Lokomotiven wiesen die für die damalige Zeit und unter Berücksichtigung der Spurweite von nur 800 mm sehr respektable Leistung von 220 kW (300 PS) auf. 1910 setzte dann auch auf dem Ostteil der Wengernalpbahn Kleine Scheidegg—Grindelwald der elektrische Betrieb kurz vor Vollendung der zweiten Strecke Lauterbrunnen—Wengen ein.

Im Jahre 1911 wurde die Bahn Blonay—Les Pléiades (800 V Gleichstrom) mit Lokomotiven für gemischten Zahnstangen- und Adhäsionsbetrieb eröffnet, und im selben Jahre folgte in der Ostschweiz die Bahn von Altstätten nach Gais (1000 V Gleichstrom) mit Triebwagen für die gleiche Betriebsform und mit getrennten Triebwerken.

Von besonderer Denkwürdigkeit in der Geschichte unserer elektrischen Bergbahnen war das Jahr 1912. Zum erstenmal flatterte am Bundesfeiertag die Schweizer Fahne auf dem Plateau des Jungfraujochs. Das grosse, vielumstrittene, mit dem Namen des Zürcher Grossindustriellen A. Guyer-Zeller untrennbar verknüpfte Werk der Jungfrau-Bahn war vollendet!

Ende 1913 kam die Bergbahn von Villars nach Bretaye als reine Zahnradbahn in Betrieb (650 V Gleichstrom), die dem damals aufkommenden Wintersport Rechnung trug, und im Frühjahr des Landesausstellungsjahres 1914 war die Umstellung der Berner-Oberland-Bahnen mit gemischtem Zahnstangen- und Adhäsionsbetrieb und der Schynige-Platte-Bahn als reine Zahnradbahn auf elektrischem Betrieb (beide für 1500 V Gleichstrom) beendet.

Wenn die Zeit bis 1914 bei uns fast jedes Jahr die Eröffnung einer neuen elektrischen Bergbahn oder die Umstellung einer bestehenden auf elektrischen Betrieb gebracht hat, so hat der Ausbruch des Krieges diese imponierende Entwicklung jählings unterbrochen. Von den damals noch im Bau befindlichen Bergbahnen konnte die Bahn von Leuk nach Leukerbad (1500 V Gleichstrom) mit Triebwagen für gemischten Zahnstangen- und Adhäsionsbetrieb immerhin noch im Jahre 1915, die Schöllenen-Bahn (zunächst 1200 V Gleichstrom) mit Lokomotiven für gemischten Zahnstangenund Adhäsionsbetrieb aber erst im Jahre 1917 dem Betrieb übergeben werden, während der Weiterbau der Furka-Bahn, wie sie damals hiess, für die noch Dampfbetrieb vorgesehen war, ganz eingestellt werden musste.

Aber auch nach dem Kriege hatten wir auf diesem Gebiete zunächst einen ausgesprochenen Entwicklungsstillstand zu verzeichnen. Erst um die Mitte der Zwanzigerjahre setzte der Fremdenverkehr wieder stark ein und verlangte auch von unseren Bergbahnen ziemlich unvermittelt Verkehrsleistungen, die diese mit ihrem inzwischen veralteten, modernen Ansprüchen namentlich hinsichtlich Geschwindigkeit nicht mehr genügenden Material nur mehr schwer bewältigen konnten.

Im Jahre 1929 war die Umstellung der Visp—Zermatt-Bahn auf elektrischen Betrieb (10 500 V, 16 % Hz) beendet. Die wesentlich leistungsfähigeren Lokomotiven für gemischten Zahnstangen- und Adhäsionsbetrieb ermöglichten durch Steigerung der Geschwindigkeit eine Verkürzung der Reisezeit und eine Vermehrung des Anhängegewichtes, was erst ermöglicht hat, den um jene Zeit einsetzenden starken Zustrom an Gästen nach Zermatt und nach dem Skigelände von Riffelalp—Riffelberg zu bewältigen. 1930 wurde die meterspurige Verbindungsstrecke Visp—Brig fertiggestellt und damit der Anschluss an die Furka—Oberalp-Bahn erreicht, die, wieder erstanden und unter Mitwirkung des Bundes, der Kantone Wallis, Uri und Graubünden und der Rhätischen Bahn von Gletsch bis Muster (Disentis) vollendet, im Jahre 1926 dem Betrieb übergeben worden war, der zunächst noch mit Dampflokomotiven durchgeführt wurde.

In der Ostschweiz war gleichfalls im Jahre 1930 die im Bahnhof Rorschach unmittelbar an die SBB anschliessende Rorschach—Heiden-Bahn mit 15 000 V, 16 ¾ Hz elektrifiziert worden unter Verwendung von Lokomotiven für gemischten Zahnstangen- und Adhäsionsbetrieb; im Jahre 1931 war weiter die durch ihre schwierigen Streckenverhältnisse bekannte Appenzeller Strassenbahn unter Änderung ihres Namens auf Elektrische Bahn St. Gallen—Gais—Appenzell auf elektrischen Betrieb (1500 V Gleichstrom) mit Triebwagen für gemischten Zahnstangen- und Adhäsionsbetrieb übergegangen.

Dann trat unter dem Druck der Wirtschaftskrise mit ihrem erheblichen Verkehrsrückgang, der die Bergbahnen ganz besonders in Mitleidenschaft zog, abermals ein mehrjähriger Entwicklungsstillstand ein, der aber wenigstens insofern sein Gutes hatte, als man das Erreichte kritisch überblicken und daraus Lehren für die Zukunft ziehen konnte. Die Situation war etwa folgende:

¹⁾ Ursprünglich 600 V, 40 Hz.

Die Epoche des Baus von Bergbahnen konnte in unserem Lande bereits mit der Vollendung der Furka-Oberalp-Bahn im Jahre 1926 als abgeschlossen gelten. Was - vom Standort der ersten Dreissigerjahre aus gesehen - noch zu tun vor uns lag, das war vor allem die Modernisierung der Triebfahrzeuge und damit des Betriebes einer Anzahl unserer elektrischen Bergbahnen. Man wurde sich bewusst, dass sozusagen bei allen unseren Bergbahnen beim Betrieb mit Lokomotiven oder schweren Triebwagen die Nutzlast in einem sehr ungünstigen Verhältnis zum gesamten Zugsgewicht steht und dass diese durch das Sitzplatzangebot ausdrückbare und allenfalls noch ausreichende Nutzlast nur durch eine extrem niedrige Geschwindigkeit erkauft wird. Der Einsatz leistungsfähiger Leichttriebwagen, die allein Abhilfe schaffen könnten, schien also bei den Bergbahnen noch interessanter und dringlicher als bei den übrigen Bahnen aller Art.

Dabei standen wenigstens für reinen Zahnstangenbetrieb folgende Wege offen: Entweder war es möglich, einen Lokomotivzug bisheriger Betriebsform durch einen alleinfahrenden Triebwagen gleichen Sitzplatzangebotes und gleicher Leistung zu ersetzen, dann war mit einer möglichen Geschwindigkeitserhöhung direkt im Verhältnis der Verminderung des Fahrzeuggewichtes und des Rollwiderstandes zu rechnen. Oder aber der Lokomotivzug konnte mit gleichem Sitzplatzangebot nur durch einen Triebwagen mit einer Anzahl Vorstellwagen ersetzt werden, dann war die erzielbare Taraverminderung unbedeutend und die Geschwindigkeitssteigerung als primäres Ziel konnte nur durch eine erhebliche Leistungserhöhung in Verbindung wieder mit der Rollwiderstandsverminderung erreicht werden. Je nach den örtlichen Verhältnissen sind dann beide Wege beschritten worden, als die Weiterentwicklung innerhalb der zweiten Hälfte der Dreissigerjahre einsetzte, teils mit dem Wiedererstarken des Wirtschaftslebens, teils dank den vom Bundesrat rückwirkend auf 1. Januar 1936 beschlossenen Erleichterungen des Privatbahnhilfegesetzes vom 2. Oktober 1919 und dessen Novellierung vom 6. April 1939, die auch zu Gunsten der Bergbahnen zu spielen begannen.

Die ersten Zahnrad-Leichttriebwagen für reinen Zahnstangenbetrieb erhielt die Pilatus-Bahn bei ihrer Elektrifizierung (1500 V Gleichstrom) im Jahre 1937. Wegen der extrem hohen Steigung von 480 %00, der Locherschen Zahnstange mit seitlichem Zahneingriff und der geringen Spurweite von nur 800 mm waren die Baubedingungen für diese Triebwagen besonders schwierig. Ungleich leichter lagen die Verhältnisse bei den normalspurigen Leichttriebwagen der Rigibahn (Vitznau—Rigi-Bahn), wieder für reinen Zahnstangenbetrieb, die gleichfalls noch im Jahre 1937 bei der Umstellung dieser Bahn auf elektrischen Betrieb (1500 V Gleichstrom) zur Ablieferung kamen.

1938 wurde der Dampfbetrieb der Glion-Rochers-de-Naye-Bahn durch den elektrischen (750 V Gleichstrom) ersetzt. Bei den Leichttriebwagen dieser Bahn für reinen Zahnstangenbetrieb hat die Spurweite von nur 800 mm die bei Bergbahn-Triebwagen neuartige Lagerung der Motoren in Richtung der Wagenachse und die Einschaltung einer Kardanwelle zwischen die beiden Übersetzungen nötig gemacht.

Die Bex-Gryon-Villars-Chesières-Bahn war die erste Bergbahn unseres Landes, die ihren veralteten elektrischen Betrieb im Sinne der oben genannten Richtlinien völlig modernisiert hat. Dieser war zeitraubend und kostspielig in der Weise abgewickelt worden, dass Triebwagen alter Bauart für reinen Adhäsionsbetrieb auf der Zahnstangenstrecke zwischen Bevieux und Gryon von Lokomotiven für reinen Zahnstangenbetrieb mit einer Geschwindigkeit von nur 10 km/h hinaufgestossen und wieder hinabbefördert wurden. Diese Lokomotivzüge wurden im Jahre 1940 durch allein fahrende Triebwagen ersetzt, die - für gemischten Zahnstangen- und Adhäsionsbetrieb und kombinierten Antrieb gebaut -Bex bis Gryon durchlaufen und auch die Strecke von Villars bis Bretaye zu befahren vermögen. Die Motorenanordnung ist ähnlich wie bei den Triebwagen der Glion-Rochers-de-Naye-Bahn. Die Übersetzung von den Motoren nach den Triebzahnrädern bzw. den Adhäsionsachsen ist eine dreifache, und die Kardanwellen sind je zwischen erste und zweite Übersetzung geschaltet. Mit diesen Triebwagen ist eine Steigerung der Geschwindigkeit auf der Adhäsions- und Zahnstangenstrecke um 50 % erreicht worden.

Eine ähnliche radikale Modernisierung und Fahrzeitverkürzung um 40 % gegenüber ihrer analogen veralteten Betriebsform gelang der Aigle—Leysin-Bahn unter Erhöhung ihrer Fahrdrahtspannung auf 1300 V mit Hilfe ihrer im Jahre 1946 in Dienst gestellten Leichttriebwagen für gemischten Zahnstangen- und Adhäsionsbetrieb, kombiniertem Antrieb und mit gleicher Motorenanordnung.

Die Gornergratbahn, die älteste schweizerische Bergbahn für reinen Zahnstangenbetrieb, erhielt 1947 alleinfahrende Leichttriebwagen mit gleichem Sitzplatzangebot und etwa gleicher Leistung wie ihre Lokomotivzüge. Tara- und Rollwiderstandsverminderung ermöglichten eine Fahrzeitverminderung um wieder 40 %.

Im Gegensatz dazu weisen die 1947/48 gelieferten Leichttriebwagen der Wengernalpbahn für reinen Zahnstangenbetrieb mit zwei Vorstellwagen etwa das gleiche Sitzplatzangebot und auch die gleiche Tara der bisherigen Lokomotivzüge auf. Da deren Geschwindigkeit bei Bergfahrt nur 11 km/h betrug, musste mit Rücksicht auf den starken Verkehrsandrang besonders im Winter bei den neuen Leichttriebwagen die Forderung auf Geschwindigkeitserhöhung auf 25 km/h, also mehr als das Doppelte, gestellt werden, die nur durch Verdoppelung der Leistung auf 440 kW (600 PS), aufgeteilt auf vier Motoren in Längsanordnung, erfüllt werden konnte.

Das Jahr 1949 wird die Indienststellung der Leichttriebwagen der Berner-Oberland-Bahnen (1500 V Gleichstrom) für gemischten Zahnstangen- und Adhäsionsbetrieb bringen. Bei dieser der Automobilkonkurrenz stark ausgesetzten Bahn war eine Geschwindigkeitssteigerung ganz besonders wichtig. Sie gelang im Verhältnis von 70 km/h zu 40 km/h auf den Adhäsionsstrecken und von 21,5 km/h zu 10 km/h auf den Zahnstangenstrecken gegenüber dem bisherigen Lokomotivbetrieb unter Verwendung von vier im Adhäsionsbetrieb parallel, im Zahnstangenbetrieb in zwei Gruppen parallel geschalteten in Längsrichtung angeordneten Doppelkollektormotoren von je 157 kW. Ferner werden im nächsten Jahr zwei Leichttriebwagen für reinen Zahnstangenbetrieb bei der Arth-Rigi-Bahn (750 V Gleichstrom) mit zwei Motoren in Längsanordnung für zusammen 410 kW in Betrieb kommen. Die Triebwagen der Berner-Oberland-Bahnen, der Wengernalp- und der Arth-Rigi-Bahn werden leistungsmässig die stärksten Personentriebwagen für Zahnstangenstrecken unseres Landes sein.

Die Brünigstrecke der SBB und die Furka-Oberalp-Bahn, die wegen ihrer Zahnstangenstrecken noch zu den Bergbahnen zählen, sind bekanntlich schon früher elektrifiziert worden. Die Elektrifizierung der Brünigstrecke (15 000 V, 16 % Hz) war von den SBB seinerzeit noch als Arbeitsbeschaffungsmassnahme beschlossen worden, dann aber auch zum Zwecke der Modernisierung dieser vorwiegend dem Touristenverkehr dienenden Bahn. Durchführung und Vollendung haben sich dann der Kriegsverhältnisse wegen bis in die Jahre 1941 (Luzern-Meiringen) und 1942 (Meiringen-Interlaken Ost) hinausgezogen. Die nun über die ganze Strecke durchlaufenden Gepäcktriebwagen für gemischten Zahnstangen- und Adhäsionsbetrieb und mit getrennten Triebwerken für beide Betriebsformen haben auf den Adhäsionsstrecken eine Geschwindigkeitssteigerung von 55 auf 75 km/h und auf den Zahnstangenstrecken von 16 auf 26 km/h gegenüber dem Dampfbetrieb ermöglicht.

Bei der Furka-Oberalp-Bahn haben die schwerwiegenden politischen Veränderungen vom Jahre 1938 jenseits unserer Ostgrenze, die glücklicherweise von begrenzter Dauer waren, die Elektrifizierung zunächst des Oberalpteils [Andermatt-Muster (Disentis)] mit 10 500 V, 16 3/3 Hz, und den Umbau der Schöllenenbahn auf das gleiche Stromsystem erzwungen. Noch vor Vollendung dieser Elektrifizierungsarbeiten im Jahre 1941 hielt man es aber bei der Entwicklung des Kohlenpreises, der immer fühlbarer werdenden Kohlennot und der strategischen Bedeutung der mitten durch unser Réduit hindurchführenden Bahn für geraten, auch auf deren Westteil den elektrischen Betrieb auszudehnen, was 1942 ge-schah. Lokomotiven und Triebwagen für gemischten Zahnstangen- und Adhäsionsbetrieb und kombiniertem Antrieb mit einer Maximalgeschwindigkeit von 55 km/h und 30 km/h auf den Adhäsions- bzw. Zahnstangenstrecken versehen den Dienst. Bei den Lokomotiven der Schöllenenbahn konnte beim Umbau von Gleichstrom auf Einphasenwechselstrom eine Leistungs- und Geschwindigkeitssteigerung von 80 % erreicht werden.

Es ist selbstverständlich, dass unsere Elektrofirmen alle bei den Fahrzeugen für Adhäsionsbetrieb beiderlei Stromarten erzielten Fortschritte auch bei den Triebfahrzeugen der jüngsten Entwicklungsphase unserer Bergbahnen zur Anwendung brachten. Das gilt ganz besonders von der Steuer- und Bremsapparatur. Durchwegs wird elektrische Bremsung als normale Betriebsbremsung angewandt, wobei der einfacheren, bequemer regulierbaren und mehr oder weniger vom Fahrdraht unabhängigen Widerstandsbremsung mehrheitlich der Vorzug gegeben wird.

Noch ist nicht alles getan. Noch harren mehrere unserer elektrischen Bergbahnen der zeitgemässen Modernisierung.

Das gilt ganz besonders von der Stansstad-Engelberg-Bahn. Eine radikale Modernisierung dieser Bahn muss aber ihre Einmündung in die Brünigstrecke in Hergiswil (oder Alpnachstad) zusammen mit einer durch Tracéverlegung zu erreichenden Verminderung der heute 250 % betragenden Steigung zwischen Obermatt und Gherst in sich schliessen, um - Umbau auf Einphasenwechselstrom als Selbstverständlichkeit vorausgesetzt - durchgehenden Triebwagenverkehr zwischen Luzern und Engelberg zu ermöglichen. Damit aber wird diese Modernisierung zu einem überaus kostspieligen Unternehmen. Vielleicht ist die Elektrifizierung der Brienz-Rothorn- und der Generoso-Bahn eher durchführbar. Es wäre doch bedauerlich, wenn gerade diese beiden Bergbahnen, die zu Aussichtspunkten ganz besonderer Schönheit hinanführen, als letzte und einzige unseres Landes beim Dampfbetrieb verbleiben würden. K. Sachs

Ein interessanter Blitzschaden

551.594.2 : 614.84

Bei einem Gewitter versagte etwa um 20.30 Uhr in einer kleinen Ortschaft im mittleren Thurgau plötzlich das Licht.

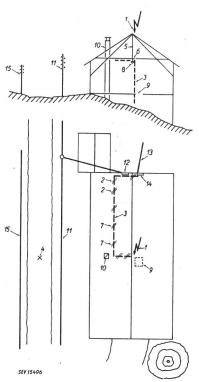


Fig. 1 Lageplan

1 Einschlagstelle; 2 Beschädigungen; 3 Blitzweg; 4 Fundort des abgeworfenen Firstziegels; 5 beschädigter Stützbalken; 6 angebrannter Balken der Firstzange; 7 sieben Schmelzstellen an den armierten Isolierrohren; 8 Scheunenlampe; 9 Ventilationsöffnung im Scheunenboden; 10 Dunstkamin; 11 elektrische Leitungen 145/250 V und 290/500 V; 12 Hauptsicherung der Kraftleitung; 13 Überführungsleitung vom Wohnhaus; 14 Sieherungsgruppe in der Scheune; 15 Telephonleitung; rechts unten: Nussbaum

Als die Energieversorgung wieder einsetzte, machte Landwirt E. einen Rundgang durch sein Heimwesen. Dabei stellte er fest, dass auf der Verteiltafel im Wohnhause die Schmelzeinsätze der Gruppe «Scheune» durchgebrannt und in der Küche die Lampe beschädigt waren. Weitere Schäden konnte er nicht beobachten.

Als der Landwirt am anderen Morgen etwa um 7 Uhr nach der freistehenden Scheune (Fig. 1) ging, sah er auf der Strasse einen Firstziegel liegen. Ein solcher fehlte ungefähr in der Mitte des Scheunenfirstes. Etwas beängstigt ging der Landwirt zu der Scheune, um nach weiteren Blitzspuren zu suchen. In der Einfahrt bemerkte er im Dachgebälk einen angesplitterten Stützbalken, neben dem ein kleines Räuch-

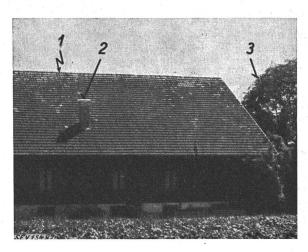


Fig. 2 Die vom Blitz getroffene Scheune 1 Einschlagstelle 2 Dunsthami Nussbaum

Im Vordergrund nicht sichtbare Telephon- und elektrische Leitungen

lein aufstieg. Von einer Leiter aus stellte er fest, dass der eine Holzbalken der mittleren Firstzange glühte. Mit Wasser und nassen Tüchern gelang es ihm und seinen Hilfskräften, das Feuer zu löschen. Später bemerkte er, dass in der Einfahrt auch die Lampe und ihre Zuleitung beschädigt waren.

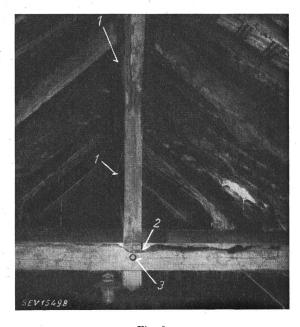


Fig. 3 Das beschädigte Dachgebälk Splitter am Stützbalken angebrannter Balken der Firstzange Verbindungsschraube

Unzweifelhaft hat der Blitz, als in der Ortschaft das Licht ausging, in den First der Scheune von Landwirt E. eingeschlagen (Fig. 2) und den Ziegel auf die Strasse hinuntergeworfen. Dann folgte der Blitz dem durch den Stalldampf

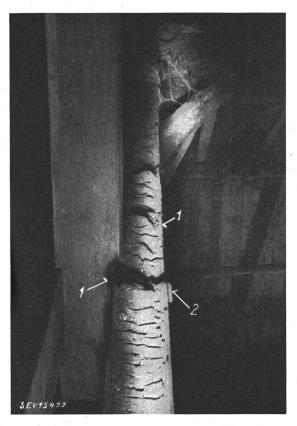


Fig. 4

Die Brandschäden an Stützbalken und Firstzange

1 angebrannte Balken der Firstzange
2 Verbindungsschraube

etwas feucht gewordenen Stützbalken der Firstzange und zersplitterte ihn (Fig. 3). Beim Übergang auf die armierten Rohre der Leitung zur Scheunenlampe entzündete er den Holzbalken. Der darauf liegende Schmutz behinderte die Luftzufuhr dermassen, dass es nicht zu einem offenen Feuer kam. Im Laufe der Nacht, d. h. während etwa 10 Stunden, wurde der Balken auf einer Länge von rund 2 Metern etwa

6 cm tief angebrannt (Fig. 4). Die Zuleitungsdrähte zur Lampe in der Scheune waren einzeln in armierte Isolierrohre eingezogen und diese ohne Verbindungsmuffen stumpf aneinandergestossen. So erklärte sich, dass bei jeder Stoßstelle

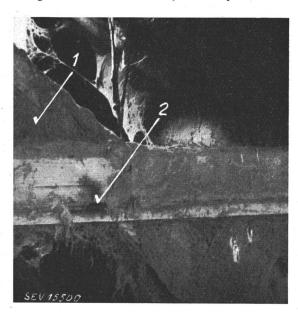


Fig. 5
Eine Schadenstelle der Isolierrohre chicht auf dem Balken der Firstzange

Schmutzschicht auf dem Balken der Firstzange
 Schmelzspur an den armierten Isolierrohren (erst nach Entfernung der Spinnengewebe sichtbar geworden)

grössere Schmelzspuren entstanden (Fig. 5). Im Stall wurde eine Bleikabelleitung, die über der Wasserleitung lag, geschmolzen. Am hölzernen Dunstkamin des Stalles, das etwa 2 m von der Einschlagstelle entfernt und etwa 1 m niedriger ist als der First, am westlich der Scheune stehenden Nussbaum, der den First etwa um 2 m überragt, sowie an den Drähten der elektrischen Leitungen und des Telephons, die an der Scheune vorbeiführen, konnten keine Einschlagspuren festgestellt werden.

In den Rechenschaftsberichten der Brandversicherungsanstalten ist schon wiederholt auf die Möglichkeit von verspäteten Brandausbrüchen nach Blitzeinschlägen hingewiesen worden. In keinem Falle liessen sich bisher die bestehenden Vermutungen bestätigen. Durch einen günstigen Zufall wurde ein grösseres Schadenfeuer verhindert und zugleich der Beweis erbracht, dass solche Brandausbrüche möglich sind.

W. Uebeli

Nachrichten- und Hochfrequenztechnik — Télécommunications et haute fréquence

Die Familie der «Tronen» 1)

621.385

Eine Zusammenstellung von Bezeichnungen für Röhren und andere elektronische Geräte, deren Namen die Endung «Tron» führen

Soviel dem Autor bekannt ist, stellt das Wort «Elektron» die erste Verwendung der Endung «Tron» dar. Dieses Wort stammt aus einer griechischen Wurzel, die später für die Bezeichnung sehr verschiedener elektronischer Geräte verwendet wurde.

Es gibt ein etwas veraltetes schottisches Wort «tron», das einen an einem Ende belasteten Balken bezeichnet. Später wurde dieses Wort zur Benennung einer groben Waage verwendet.

1) Der Artikel von W.C.White erschien in englischer Sprache in «Electronics Industries», Januar 1946, und in französischer Sprache in «Le Vide», Mai 1946, Nr. 3.

Immerhin sind andere Wörter, z. B. «Patron» oder «Matrone» sicher nicht gleichen griechischen Ursprungs. Man begegnet dem Worte «Elektron» zum ersten Male in einem Artikel von *Johnston*, der in den Sci. Trans". Royal Dublin Soc., Bd. 1891, erschien.

Die Verwendung der Endung «Tron» wurde 1913 von J. I. Bennet, Griechischlehrer am Union Colledge von Schenectady, vorgeschlagen, um gewisse Typen von Elektronenröhren zu bezeichnen. Man findet diese Endung ebenfalls in einem Artikel von Langmuir (Proc". Inst. Radio Engrs. 1915), von dem wir hier einen Auszug wiedergeben:

«Um diese Systeme von denjenigen zu unterscheiden, die Gas enthalten oder meistens zu ihrem Betriebe Gas benötigen, haben wir das Wort «Kenotron» gewählt. Dieses Wort ist aus dem griechischen «Kenos», das «leerer Raum» bedeutet, und aus der Endung «Tron» gebildet, welche bei den Griechen verwendet wurde um ein Instrument oder einen Apparat zu bezeichnen. In der Praxis wurde das Wort «Kenotron» verwendet, um Röhren mit zwei Elektroden und hohem Vakuum im Innern zu bezeichnen.»

So wurde das Wort «Kenotron» zum ersten einer Serie neuer Wörter mit der Endung «Tron». Verschiedentlich wird eingewendet, dass diese neuen Wörter weder nötig noch wünschbar sind. Über das Wort «Audion» machte *Pupin* folgende Bemerkung:

«Wenn man für jede Neuentdeckung, für jeden Fortschritt der Elektrotechnik, ein neues Wort aufnehmen soll, so wird es sehr bald in der Elektrotechnik eine sehr grosse Zahl neuer Wörter geben, und deren Kenntnis wird bedeutend schwieriger werden als das eigentliche Studium dieser Wissenschaft.»

In der folgenden Liste sind auch Namen und Bezeichnungen von Fabrikschutzmarken enthalten, die mit einem Stern (*) bezeichnet wurden. Eine Klassifizierung war nicht leicht, da in vielen Fällen, z. B. bei Thyratron, Ignitron, Klystron usw. diese Namen zuerst als Fabrikschutzmarken verwendet wurden, dann aber in den allgemeinen Sprachgebrauch übergingen und sogar als offizielle Bezeichnungen durch Institutionen wie z.B. das «American Bureau of Standards» normalisiert wurden. Der gleiche Weg kann auch in Zukunft für Bezeichnungen eingeschlagen werden, die heute noch Fabrikmarken sind. Es ist auch darauf hinzuweisen, dass gewisse Wörter der folgenden Liste unglücklich gewählt wurden, da sie aus der Kombination von Wurzeln verschiedener Sprachen entstanden sind, oder weil die Silben oft in einem falschen Sinne verwendet wurden. Leider ist die Einführung eines neuen Wortes mehr von der Notwendigkeit abhängig, mit einer Wortkombination, also ohne Verwendung eines langen Satzes, verschiedene Eigenschaften auszudrücken, als von seinen phonetischen Eigenschaften und der sprachlichen Richtigkeit. Die in der folgenden Aufstellung enthaltenen Literaturangaben bezeichnen entweder den Originalartikel, in welchem der betreffende Ausdruck erstmals verwendet wurde, oder einen Artikel, der die Bedeutung des Ausdruckes besonders gut erklärt.

Alphatron *: Fabrikschutzmarke zur Bezeichnung eines Ionisationsmessapparates, das von der National Research Corp. entwickelt wurde.

Rev. scientific instr". 1945, Sept., S. 8 (VIII).

Arcotron: Hochvakuumröhre deutscher Fabrikation (Telefunken). Das Steuergitter befindet sich ausserhalb des Glaskolbens.

Exper. Wirel. & Wirel. Engr. 1930, S. 534.

Audiotron *: Fabrikschutzmarke von E. T. Cunningham Inc., bezeichnet Röhren, die die Gesellschaft seit bald zwanzig Jahren verkauft.

Augetron: Hochvakuum-Elektronenvervielfacher englischer Fabrikation mit mehreren Stufen.

Red.: The «Augetron». Multi-stage electron multiplier. Television & short wave wld. Bd. 12(1939), Nr. 139, S. 540.

Axiotron: Hochvakuumdiode mit Glühkathode, deren Heizfaden einen so grossen Strom verbraucht, dass das entstehende Magnetfeld den Anodenstrom steuert.

Hull, Albert W.: The axially controlled magnetron. J. Amer. Inst. Electr. Engrs. Bd. 42(1923), Nr. 10, S. 1013... 1018.

Betatron: Anordnung zur Beschleunigung von Elektronen auf sehr hohe Geschwindigkeiten.

nen auf sehr hohe Geschwindigkeiten. Rev. scientific instr". 1942, Sept., S. 387.

Electronics Ind. 1942, Dezember [Kerst].

Calutron: Elektromagnetisches Gerät zur Trennung der Isotopen des Urans, entwickelt durch die Princeton-University of Berkeley, California (daher der Name).

Smyth: Rapport sur la bombe atomique. Kap. 9, S. 1.

Cathetron: Siehe Kathetron.

Cetron *: Fabrikschutzmarke für die von der Continental Co. fabrizierten Röhren. Electronics Ind. 1945, Juli, S. 205.

Cyclotron: Elektromagnetischer Apparat zur Erzeugung eines Strahles sehr schneller, geladener Elementarteilchen. Diese werden periodisch, durch ein synchrones elektrisches Wechselfeld beschleunigt. Sie beschreiben eine spiralförmige Bahn, in einem zur Spiralenebene rechtwinklig stehenden Magnetfeld.

Phys. Rev. 1932, April, S. 19. Electr. Engng. 1942, S. 348. Electronics Ind. 1944, Okt., S. 86. Duodynatron: Eine besondere Art des Dynatrons, bei dem die Sekundärelektronen von einem besonderen inneren Gitter erzeugt werden.

Proc. IRE, 1934, Juni, S. 751.

Dynatron: Hochvakuumröhre, deren Arbeitsweise auf der Sekundäremission von Elektronen einer Platte oder eines Zylinders beruht.

Proc. IRE 1918, Febr., S. 5.

Electron: Elementarquantum der negativen elektrischen Ladung (erstmalige Verwendung des Wortes «Elektron»). Sci. Trans". Royal Dublin Soc., Bd. 4, Serie II, S. 582. Electronics, 1942, Dez., S. 42.

Emitron: Fernsehröhre, deren Kathodenstrahl das auf eine photoempfindliche Schicht projizierte Bild zerlegt. Red.: A new Emitron camera with greatly increased sensitivity. Television & short wave wld. Bd. 11(1938), Nr. 119, S. 11...12.

Excitron: Quecksilberdampfröhre mit einer starren Anode und einer weiteren, speziell geformten Elektrode.

Marti, O. K.: «Excitron» Mercury arc rectifiers. Trans". Amer. Inst. Electr. Engrs. Bd. 59(1940), S. 927...930.

Flashtron: Sehr empfindliches, als Relais verwendetes Gerät.

Electronics 1943, Okt., S. 280.

Frenotron: Diode mit Triode im gleichen Glaskolben kombiniert. Die Diode wird zur Stabilisierung der Triode verwendet, wenn diese als Verstärkerröhre arbeitet. Exper. Wirel. & Wirel. Engr. 1928, April, S. 214.

Furnatron *: Fabrikschutzmarke, die von der Westinghouse Electric Corp. verwendet wurde, um ihre mit Thyratronröhren und gesättigten Drosseln arbeitenden Widerstandmessgeräte zu bezeichnen.

Electronics Ind. 1944, April, S. 129.

Gammatron: Handelsbezeichnung der von Heintz & Kaufmann Ltd. fabrizierten Röhren.

Electronics Ind. 1945, Juli, S. 211.

Gasomagnetron: Gasenthaltendes Magnetron russischer Entwicklung zur Erzeugung von Ionenströmen. Phys. Rev. Bd. 59(1941), März, S. 467.

Gausitron: Siehe Gusetron.

Gusetron: Quecksilberdampfröhre, auch Gausitron genannt. Eine isolierte Sonde taucht in das Quecksilber, um die periodische Zündung hervorzurufen. Phys. Rev. Bd. 57(1939), Jan. [Germershausen].

Hytron *: Handelsbezeichnung der von der Hytron Corp. fabrizierten Röhren.

Electronics Ind. 1945, Juli, S. 119.

Ignitron: Entladungsröhre mit einfacher Hauptanode und einer Zündelektrode, die vor jeder Leitperiode auf der Kathode einen Kathodenfleck erzeugt.

Slepian, J., und L. R. Ludwig: A new method of starting an arc. Electr. Engng. Bd. 52(1933), Nr. 9, S. 605...608.

Illitron *: Handelsbezeichnung für Hochfrequenz-Heizanlagen der Illinois Tool Works. Plastic Wld. 1944, Juli, S. 7.

Isotron: Gruppierungsmethode für Ionen, die zur Trennung der Uranisotope verwendet wird, und die von der Princeton-University Berkeley entwickelt wurde. Smyth: Rapport sur la bombe atomique. Kap. 11.

Kallirotron: In England verwendete Röhre und Röhrenschaltung mit negativem Widerstand, die als Oszillator oder Verstärker arbeitet.

Radio Rev. Bd. 1(1920), April, S. 317.

Kathetron *: Gastriode mit Glühkathode und einem Gitter ausserhalb des Glaskolbens.

Electronics Bd. 6(1933), März, S. 70.

Kenopliotron: Hochvakuumtetrode mit Glühkathode. Die Anode eines Diodensystems wird durch die Elektronenbombardierung erwärmt und stellt die Kathode des Triodensystems dar.

Proc". Inst. Radio Engrs. Bd. 11(1923), April, S. 89.

Kenotron: Hochvakuumdiode mit Glühkathode, in welcher kein Mittel zur Stromregulierung vorgesehen ist. Proc". Inst. Radio Engrs. Bd. 3(1915), Sept., S. 261.

Klystron: Hochvakuumröhre mit mehreren Elektroden, die Gleichstromenergie in Hochfrequenzenergie umwandelt, indem Elektronen eines Elektronenbündels abwechselnd beschleunigt und verzögert werden. Man nützt die Elektronenlaufzeit zwischen zwei Punkten aus, um einen Wechselstrom zu erzeugen, der seine Energie an einen Hohlraumresonator abgibt.

J. Appl. Phys. Bd. 10(1939), Mai, S. 324.

Electronics Ind. 1944, Juni, S. 9.

Kodatron: Gasentladungsröhre, in welcher während einer sehr kurzen Zeit ein grosser Strom fliesst, der ein kurzes Blitzlicht erzeugt, mit welchem sehr schnelle Vorgänge photographiert werden können.

Electronic Engng. Bd. 17(1944), Juni, S. 16.

Magnetron (1. Bedeutung): Hochvakuumdiode mit Glühkathode, in welcher der Strom durch eine Änderung eines Magnetfeldes gesteuert wird.

Hull, Albert W.: The magnetron. J. Amer. Inst. Electr. Engrs. Bd. 40(1921), Nr. 9, S. 715...723.

Magnetron (2. Bedeutung): Hochvakuumröhre mit einer Kathode und einer Anode, wobei diese oft in zwei oder mehrere Segmente aufgeteilt ist. Ein konstantes Magnetfeld bestimmt die Verteilung der Raumladung und das Verhältnis Strom zu Spannung. Durch gegenseitige Beeinflussung der Raumladung und durch ein äusseres Resonanzsystem wird die Gleichstromenergie in Hochfrequenzenergie umgeformt. Proc". Inst. Radio. Engrs. Bd. 16(1928), Juni, S. 715.

Megatron *: Handelsbezeichnung für Trioden spezieller Konstruktion, hergestellt von der General Electric Co. Electronics Ind. 1944, Sept., S. 10.

Mesotron: Bezeichnung eines geladenen Elementarteilchens. Mesotronen wurden erstmals in den kosmischen Strahlen entdeckt. Man nennt sie auch schwere Elektronen oder Mesonen.

Pollard und Davidson: Angewandte Kernphysik. 1942.

Monotron *: Handelsbezeichnung für die «Monoscope»-Röhren der National Union Radio Corp. Verwendet wurde früher auch das Wort «Videotron».

Negatron: Hochvakuumtriode mit Glühkathode und mit negativer Widerstandscharakteristik, wenn sie unter gewissen Bedingungen betrieben wird.

Scott-Taggart, John: The Negatron. Electrician London Bd. 87(1921), Nr. 2262, S. 386.

Neotron: Gasgefüllte Röhre, die speziell als Impulsgenerator vorgesehen ist.

Electronic Engng. 1945, April, S. 474 (ev. Electr. Engng.).

Neutron: Ungeladenes Elementarteilchen, das die gleiche Masse besitzt wie das Proton.

Chadwick, J.: Possible existence of a Neutron. Nature Bd. 129 (1932), Nr. 3252, S. 312.

Penetron: Gerät zur Bestimmung der Dicke von Materialfolien unter Verwendung von Gammastrahlen, die von einer Radium enthaltenden Nadel ausgestrahlt werden. Ein Zähler nach Geiger wird für die Messung verwendet. Oil & Gas J. 1945, 30. Juni, S. 106.

Pentatron: Hochvakuumröhre mit zwei Elektrodensystemen und gemeinsamer Kathode.

Kröncke, H.: The Pentatron. A new five-electrode receiving valve. Wirel. Wld. Bd. 18(1926), Nr. 23, S. 854.

Permatron: Diode mit Glühkathode und Gas- oder Dampffüllung. Das zyklische Fliessen des Stromes wird durch ein Magnetfeld gesteuert.

Electronics Bd. 12(1939), April, S. 25.

Phanotron: Diode mit Glühkathode und Dampf- oder Gasfüllung ohne Vorrichtung zur Steuerung des Anodenstromes, also im wesentlichen ein Gleichrichterelement. Trans". Amer. Inst. Electr. Engrs. Bd. 47(1928), Juli, S. 753.

Photo-Augetron: Hochvakuumröhre für Elektronenvervielfachung mit mehreren Elektroden und lichtempfindlicher Kathode.

Vacuum Science Products, Ltd., Technical Staff: The Photo-Augetron and its applications. Electronics & television & short wave wld. Bd. 13(1940), Nr. 144, S. 75...76.

Pliodynatron: Hochvakuumtetrode mit Glühkathode, im wesentlichen ein Dynatron mit einem zusätzlichen Steuergitter.

Proc". Inst. Radio Engrs. Bd. 10(1922), Okt., S. 322.

Pliotron: Hochvakuumröhre mit Glühkathode. Ausser Anode und Kathode enthält die Röhre eine 'oder mehrere Zusatzelektroden, meistens Gitter genannt, die zur Steuerung des Anodenstromes dienen.

Proc". Inst. Radio Engrs. Bd. 3(1915), Sept., S. 26.

Plomatron: Vorgeschlagene Bezeichnung für Quecksilberdampfgleichrichter mit Gittersteuerung.

(King, S. G.): Electronic control, its application to industrial and power plants. Electrician London Bd. 129(1942), Nr. 3368, S. 669...670.

Positron: Eines der Hauptpartikel des Atomkerns. Es hat die gleiche Masse wie das Elektron und eine Ladung gleicher absoluter Grösse, aber mit positivem Vorzeichen. Phys. Rev. Bd. 43(1933), März, S. 493.

Precipitron *: Handelsbezeichnung der von der Westinghouse Electric Corp. entwickelten Methode und des zugehörigen Gerätes zum Ausfällen von Staubteilchen. Da das Aufladen und Ausfällen getrennt erfolgen, kann eine kleinere als die in solchen Geräten übliche Gleichspannung verwendet werden.

Penney, G. W.: A new electrostatic precipitator. Electr. Engng. Bd. 56(1937), Nr. 1, S. 159...163.

Pulsatron: Gasgefüllte Triode mit doppelter Kathode. (Bosch, F. J. G. van den: Gas-filled tubes as pulse generator.) Electronic Engng. 1945, April, S. 474.

Pyrotron *: Handelsbezeichnung einer elektrischen Temperaturmessmethode von Bailey Meter Co. Instruments 1945, März, S. 182.

Quadratron: Hochvakuumröhre mit Glühkathode und vier Elektroden. Die vierte Elektrode ist eine dreieckige Anode und liegt in der gleichen Ebene wie der V-förmige Heizfaden.

Huppert Radio News Bd. 8(1926), Juli, S. 50.

Radiotron *: Handelsbezeichnung der von der RCA verkauften Röhren.

Rectron *: Handelsbezeichnung, die zeitweise von der RCA verwendet wurde, um die von ihr hergestellten Gleichrichter zu benennen.

Resnotron: Hochvakuumtetrode, die die Ein- und Ausgangs-Resonanzkreise in ihrem Innern enthält und speziell für hohe Ausgangsleistungen und sehr hohe Frequenzen vorgesehen ist. Sie wurde entwickelt von *Sloan* von der University of Berkeley, California.

Rhumbatron: Bezeichnung für die Hohlraumresonatoren des Klystrons.

J. Appl. Phys. Bd. 10(1939), Mai, S. 321.

Sendytron: Japanische Bezeichnung für eine Quecksilberdampfröhre, in welcher der Lichtbogen durch eine Sonde für Hochspannung gezündet wird.

Watanabe, Y., H. Kasahara und Y. Nakamura: A-type Sendytron using a new method of starting an arc. Electrotechn. J. Tokyo Bd. 2(1938), Nr. 8, S. 180...185.

Sentron: Japanische Konstruktion einer Kurzwellenröhre. Uda, Shintaro, Hidenari Uchida, und Hideo Sekimoto: On the new vacuum tube «Sentron» for ultra short waves. Auszug: Rep. radio res. Japan Bd. 7(1937), Nr. 2, S. (20)...(21). Uda, S[hintaro], und M. Ishida: «Sentron» oscillators with electron-coupled secondary circuit. Electrotechn. J. Tokyo Bd. 2(1938), Nr. 4, S. 95...96.

Skiatron: Apparat zur Projektion von Fernsehbildern. Rosenthal, A. H.: The Skiatron. A new scophony development towards large-screen television projection. Electronics & television & short wave wld. Bd. 13(1940), Nr. 143, S. 52...56.

Spirotron: Apparat zur Bremsung von Partikeln mit grosser Geschwindigkeit nach dem umgekehrten Prinzip des Cyclotrons.

Phys. Rev. Bd. 66(1944), Sept., S. 160.

Strobotron: Entladungsröhre mit kalter Kathode und Steuergitter, das vorgesehen ist, um einen hohen Strom während sehr kurzer Zeit durchzulassen. Die Röhre wird zum Photographieren sehr schneller Vorgänge verwendet. Electronic Engng. 1936, Juli, S. 790.

Synchrotron: Apparat zur Erzeugung eines Strahles geladener Partikel, die durch ein elektrisches Wechselfeld, das mit der Spiralbewegung der Partikel synchronisiert ist, in einem zur Spiralebene senkrecht stehenden magnetischen Wechselfeld auf nahezu Lichtgeschwindigkeit beschleunigt werden.

Phys. Rev. 1945, Sept., S. 143...144.

Takktron: Gasgefüllte Diode mit kalter Kathode für die Gleichrichtung schwacher Hochspannungsströme. Electronics Ind. 1945, Nov., S. 106.

Electronic Engng. 1945, April, S. 164.

Teletron *: Frühere Handelsbezeichnung für die von den Allen B. Dumont Laborat. Inc. verkauften Kathodenstrahloszillographen.

Rev. Sci. Instr. 1941, Juni, S. 337.

Thermatron: Handelsbezeichnung für die von der Radio Receptor Co. Inc. verkauften HF-Heizapparate. Electronics Ind. 1945, Juli, S. 135.

Thyratron: Gasgefüllte Röhre mit Glühkathode und einem oder mehreren Gittern, die das Zünden des Anodenstromes erlauben, diesen jedoch nicht oder nur unter besonderen Bedingungen steuern können.

Hull, Albert W.: Hot-cathode thyratrons. Gen. electr. Rev. Bd. 32(1929), Nr. 4, S. 213...223, und Nr. 7, S. 390...399.

Transitron: Oszillatorkreis, der eine Tetrode mit negativem innerem Widerstand verwendet.

Proc". Inst. Radio Engrs. 1939, Febr., S. 88.

Electronics Ind. 1945, Dez., S. 110.

Trignitron *: Handelsbezeichnung einer Quecksilberdampfröhre, die in einem von der Electronic Power Co. Inc. verkauften Steuergerät für elektrische Schweissung verwendet wird.

Electronics 1944, Juli, S. 58.

Vibratron: Elektromagnetischer Resonator mit sehr grossem Q, dessen kontinuierliche Schwingung durch einen in einem Magnetfeld ausgespannten Draht erzeugt wird. Electronics Ind. 1945, April, S. 79.

Videotron: Siehe Monotron.

Visitron *: Handelsbezeichnung für eine Fernsehprojektionsröhre, die von der Rauland Corp. verkauft wird. Electronics Ind. 1945, Okt., S. 203.

Zyklotron: Siehe Cyclotron.

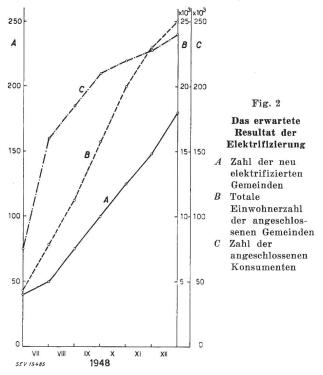
Wirtschaftliche Mitteilungen — Communications de nature économique

Die Elektrifizierung der Dörfer in Ungarn

[Nach Beszámoló az AVIRT-nak 1948 junius hó 1-töl december hó 31-ig terjedő időszakra előirányzott tervéről, Technika, Bd. 3(1948), Nr. 6, S. 129...131.]

621.311 : 63 (439)

Die Elektrifizierung in einem Lande wie Ungarn, wo die Dörfer weit entfernt voneinander liegen, ist meistens mit grossen Investitionen verbunden und kann selten als rentierendes Unternehmen betrachtet werden. Hemmend wirkt auch auf die Elektrifizierung der ungarischen Dörfer der Umstand, dass ein bedeutender Teil der landwirtschaftlichen Bevölkerung nicht in geschlossenen Dörfern, sondern in weit zerstreuten Gehöften, inmitten ihres Landsitzes (ähnlich den Farmern in Amerika) wohnt. Das sind die Hauptgründe weshalb nur etwa 1400 von den 3220 Gemeinden Ungarns die Wohltaten der elektrischen Energie geniessen können. Die Elektrifizierung der Dörfer fördert nicht nur den wirtschaftlichen Wohlstand der Bevölkerung, sondern hebt auch deren kulturellen und sozialen Stand. In diesem Bewusstsein griff die ungarische Regierung das Problem der Elektrifizierung der Landgemeinden auf und stellte den verstaatlichten Elektrizitätswerken die Aufgabe, einen Plan auszuarbeiten.


Zur Deckung der Elektrifizierungskosten wurde ein Kredit von 110 Mill. Forint (etwa 40,5 Millionen Fr.) innert 3 Jahren eingeräumt.

C,D 150 Fig. 1 Zu erstellende Leitungslängen und die dazu benötigten Arbeitskräfte 100 Fernleitungslänge in km Verteilleitungslänge in km Zahl der Facharbeiter DZahl der Hilfsarbeiter 50 40 30 20 10 0 1948

Der Plan der verstaatlichten Elektrizitätswerke sieht innert 3 Jahren den Neuanschluss von 500 Landgemeinden vor. Auf diese Weise können 50 000 Familien, d. h. 250 000 Einwohner mit elektrischer Energie versehen werden.

Für das Jahr 1948 ist der Anschluss von 190 Gemeinden vorgesehen, wobei mit einem Kostenaufwand von 28 Millionen Forint (etwa 10,4 Millionen Fr.) zu rechnen ist. Zur Deckung dieser Kosten soll der vom Staat zur Verfügung gestellte Kredit bis zu 17 Millionen Forint (etwa 6,3 Millionen Fr.) in Anspruch genommen werden. Die restlichen 11 Millionen Forint (etwa 4,1 Millionen Fr.) sollen die an der Elektrifizierung interessierten Einwohner decken. Der Beitrag der Bevölkerung an die Elektrifizierungskosten kommt also auf etwa 40 % der Gesamtkosten. Ausser Geld kann die Bevölkerung ihren Beitrag auch in Naturalien leisten. So werden Kost und Logis für die Arbeiterschaft, Materialtransporte mit eigenem Fuhrwerk, Mitarbeit als Hilfsarbeiter usw. als Beitragsleistungen angerechnet.

Um aus den zur Verfügung stehenden Mitteln so viele Konsumenten als möglich an ein elektrisches Netz anschliessen zu können, soll die Auswahl der zu elektrifizierenden Gemeinden nach bestimmten Gesichtspunkten geschehen. Elektrifiziert werden in erster Linie diejenigen Gemeinden, welche in der Nähe einer solchen Hochspannungsfreileitung

oder eines noch nicht vollbelasteten Kraftwerkes liegen. Bedauerlicherweise gibt es viele Gemeinden, die zwar nicht weit von einer Hochspannungsleitung entfernt liegen, jedoch ist diese Leitung oder das betreffende Kraftwerk voll be-

Extrait des rapports de gestion des centrales suisses d'électricité

(Ces aperçus sont publiés en groupes de quatre au fur et à mesure de la parution des rapports de gestion et ne sont pas destinés à des comparaisons)

On peut s'abonner à des tirages à part de cette page

	Elektrizit des Kanto	ätswerke	Elektrizitätswerk Luzern-Engelb. AG.		Flaktrizitätewerk		Elektri versorgun Gla	
		1		zern		1		1
	1947	1946	1947	1946	1947	1946	1947	1946
1. Production d'énergie . kWh 2. Achat d'énergie kWh 3. Energie distribuée kWh 4. Par rapp. à l'ex. préc. % 5. Dont énergie à prix de	30 352 800 419 366 771 420 225 000 — 3,48	427 808 190	22 195 800 89 797 800	67 555 000 28 844 400 96 399 400 — 1,4	71 382 640			
déchet kWh	21 536 919	48 252 576	7 605 600	11 987 100	_	_	_	_
11. Charge maximum kW 12. Puissance installée totale kW	107 200 481 900 744 000	461 200	12 600	12 800	12 875 108 809 348 118	100 100		1 385 10 327 28 531
13. Lampes { kW	40 640	39 700			15 505	15 249	1 442	1 426
14. Cuisinières { kW	25 360 153 080 20 620	144 300 19 330	3)	5)	3 229 24 387 7 648	2 626 19 672 7 207	418 2 100 468	403 2 000 454
nombre	24 870 59 980		9		13 488 17 667	12 212 16 655	1 100 747	1 066 736
16. Moteurs industriels . { kW	126 530	122 470			20 691	19 995	1 520	1 500
21. Nombre d'abonnements 22. Recette moyenne par kWh cts.	56 403 4,99			1,87	50 719 10,26	49 261 8,9	3 420 7,2	3 359 7,3
Du bilan:								
31. Capital social fr. 32. Emprunts à terme > 33. Fortune coopérative >	_	=	2 700 000 	2 700 000	=	_	_	_
34. Capital de dotation » 35. Val. comptable des inst. » 36. Portefeuille et participat. »		9 000 000 5 700 004 10 517 000	2 497 000		2 861 613 ²⁾ 2 430 000			100 000 251 242
37. Fonds de renouvellement »		14 710 000		_	828 383			132 131
Du compte profits et pertes:								
41. Recettes d'exploitation . fr. 42. Revenu du portefeuille et		22 084 900					412 500	432 703
des participations » 43. Autres recettes »	498 030 16 478	23 934	11 484	11 283	10 202		3 838	4 197
44. Intérêts débiteurs » 45. Charges fiscales »	702 108 20 000	18 504	172 049	165 483		164 387 27 365	5 775 1 529	8 068 1 662
46. Frais d'administration . » 47. Frais d'exploitation »	2 869 150 4 517 300	2 868 412 4 815 249		1	2 113 302			89 018 51 598
48. Achats d'énergie » 49. Amortissem, et réserves . »		12 036 059 2 274 313					99 637 68 292	98 281 101 195
50. Dividende	_		162 000 6	162 000 6	_	=	_	_
52. Versements aux caisses			_	_	2 216 405	2 313 685	75 000	75 000
publiques //					2 210 403	2 313 003	73 000	75 000
Investissements et amortissements:								
61. Investissements jusqu'à fin de l'exercice fr. 62. Amortissements jusqu'à	59 867 221	58 069 807	1	/	1	/	2 254 526	
fin de l'exercice » 63. Valeur comptable » 64. Soit en % des investisse-	55 037 216 4 830 005	52 369 803 5 700 004	2 497 000	2 637 000	2 861 613	2 257 570	1 854 918 399 608	
ments	8,07	9,82	/	/	/	/	18	13
1) Déduit des intérêts actifs. 2) Y compris compteurs, instruments, mobiliers et outils.								

Déduit des intérêts actifs.
 Y compris compteurs, instruments, mobiliers et outils.
 Pas de vente au détail.

lastet, so dass ein Anschluss und damit die Elektrifizierung dieser Dörfer einstweilen nicht in Frage kommen kann. Weiter erhalten bei der Auswahl jene Gemeinden den Vorzug, welche bei gleichen technischen Bedingungen sich zur grösseren Beitragsleistung entschliessen können.

Durch den Anschluss an bestehende Hochspannungsfernleitungen wird die Elektrifizierung in diesem Jahr relativ billig ausfallen. Die späteren Arbeiten, bei welchen neue Fernleitungen oder gar Kraftwerke erstellt werden müssen, bedingen einen bedeutend grösseren Kostenaufwand und werden die Elektrifizierungskosten pro Konsument bedeutend erhöhen.

Die im Jahre 1948 zu erstellenden Leitungslängen, sowie die dazu benötigten Arbeitskräfte zeigt Fig. 1; das erwartete Resultat der Elektrifizierungsarbeiten ist aus Fig. 2 ersichtlich

Miscellanea

In memoriam

Georges-F. Lemaître †. Am 5. Juni 1948, nach längerer, schmerzvoller Krankheit, starb Georges-F. Lemaître, Präsident des Verwaltungsrates der S. A. des Ateliers de Sécheron und der Société Générale pour l'Industrie Electrique, Vizepräsident des Verwaltungsrates der Ateliers des Charmilles S. A., Mitglied des SEV seit 1922. Ein an aufbauender Tätigkeit im Dienste der Wirtschaft reiches Leben ist damit erloschen.

Geboren 1884, durchlief G.-F. Lemaître die Schulen und die Abteilung III der Eidgenössischen Technischen Hochschule, wo er 1906 diplomierte. Nach einem Jahr Praxis in der Maschinenfabrik Örlikon begab er sich für drei Jahre nach Chicago, wo er bei einer bahnamtlichen Aufsichtsbe-

Georges-F. Lemaître 1884—1948

hörde als Kontrollingenieur arbeitete und sich die ersten grossen Erfahrungen erwarb. 1909 kehrte er in die Schweiz zurück und übernahm für drei Jahre die Stelle des Oberingenieurs der Stadt Genf. 1912 machte er sich selbständig und eröffnete ein Büro als beratender Ingenieur. Mit einem Unterbruch von 1916-1918 als Subdirektor der Cie Générale d'Electricité in Paris führte er diese Tätigkeit bis zu seinem Hinschied fort, soweit ihm neben seiner Verwaltungsarbeit in verschiedenen Industriefirmen dazu noch Zeit blieb. Schon 1916 trat er in den Verwaltungsrat der damaligen Cie de l'Industrie Electrique et Mécanique, aus der die S. A. des Ateliers de Sécheron entstand, ein; er gehörte ihm bis zu seinem Tode ununterbrochen an, wobei er ihn von 1922—1927 und dann wieder seit 1938 präsidierte. In den Verwaltungsrat der Ateliers des Charmilles S. A. wurde er 1921 berufen; er war zuletzt dessen Vizepräsident. Weiter gehörte er dem Verwaltungsrat der Société Genevoise d'Instruments de Physique an, den er seit 1943 präsidierte. Ausserdem war er Mitglied des Verwaltungsrates der Société des Forces Motrices de Chancy-Pougny, der Société Financière Italo-Suisse, der Lonza A.-G., Basel, und verschiedener anderer schweizerischer und ausländischer Gesellschaften. 1927 wurde er Direktor der Banque Générale pour l'Industrie Electrique in Genf, welche 1935 nach Fusion mit der So-ciété Franco-Suisse den Namen Société Générale pour l'Industrie Electrique weiterführte. Er wurde deren Verwaltungsratsdelegierter und zuletzt deren Präsident.

Georges-F. Lemaître war eine Persönlichkeit von hoher Intelligenz und aussergewöhnlicher Arbeitskraft, ein hervorragender Ingenieur und gleichzeitig sehr fähiger Verwaltungsmann, was ihn zu seiner glänzenden Laufbahn prädestinierte. Die Ateliers de Sechéron, denen seine besondere Zuneigung galt, verdanken ihm unter anderem die 1924 herbeigeführte völlige Unabhängigkeit. Zu früh für alle, welche diesen Mann von aussergewöhnlichem Format kannten, ist er seinem Leiden erlegen.

Ferdinand Ekert †. Im hohen Alter von 80 Jahren verschied am 16. September 1948 in Zürich nach einem arbeitsreichen, jedoch auch von mannigfachen Schicksalsschlägen verfolgten Leben, Elektroingenieur Ferdinand Ekert. Der

Ferdinand Ekert 1868—1948

SEV verlor in dem Verstorbenen ein langjähriges Mitglied (Freimitglied), das ihm seit dem Jahre 1907 die Treue bewahrt hatte.

Ferdinand Ekert wurde in Donaueschingen geboren, verlebte aber seine Jugendzeit grösstenteils in Baden-Baden; später siedelte er nach Zürich an das Polytechnikum über, um sich hier zum Ingenieur ausbilden zu lassen. Seine ersten Tätigkeitsfelder waren in Deutschland bei mehreren Grossunternehmungen, insbesondere bei Siemens-Schuckert. Dann zog es ihn in die Schweiz zurück, die er seit seiner Studienzeit in guter Erinnerung behalten hatte. In Baden fand er eine Anstellung bei der Motor A.-G., war dann während 12 Jahren Direktor der Licht- und Wasserwerke Thun, sowie anschliessend Verwalter der Gemeindebetriebe Örlikon, bevor dieser Vorort mit der Stadt Zürich vereinigt wurde. Im letzten Teil seiner beruflichen Tätigkeit war Ingenieur Ekert viele Jahre Vertreter der «Sodeco», Société des Compteurs de Genève, bis körperliche Beschwerden ihn im 73. Lebensjahre zwangen, sich in den Ruhestand zurückzuziehen.

Wer Ferdinand Ekert kennen lernte, vergass seine markante Gestalt nicht leicht wieder. Sein Äusseres liess hinter den scharfen Brillengläsern einen Künstler oder Musiker vermuten. Er verfügte denn auch über eine besondere Begabung für die Musik und hatte Freude, mit seiner Violine oder Viola an musikalischen Aufführungen mitzuwirken. Was den Verstorbenen weiter auszeichnete, waren Treue zum Arbeitgeber und zu seinen Freunden, sowie eine ausgeprägte

Gewissenhaftigkeit und peinliche Genauigkeit im beruflichen und bürgerlichen Leben. Durch Sparsamkeit hoffte er sich ein ruhiges Alter zu sichern, verlor dann aber, offenbar infolge allzu grosser Vertrauensseligkeit, fast sein ganzes Vermögen, so dass ihm auch in dieser Beziehung ein harter Schicksalsschlag nicht erspart blieb, nachdem ihn das Leben sonst schon mehrfach in eine harte Schule genommen hatte.

Die letzten Lebensjahre litt Ferdinand Ekert nicht nur darunter, dass ihm die materiellen Früchte seines Fleisses und seiner Sparsamkeit entrissen worden waren, sondern auch unter Krankheitserscheinungen. Dies veranlasste ihn, trotzdem er die Geselligkeit sehr geliebt hatte, sich immer mehr in die Einsamkeit zurückzuziehen und möglichst ungestört seinen Eigenheiten zu leben. Da er aber eine tief religiöse Natur war, fand er Trost in der festen Überzeugung an ein besseres Jenseits. Er sah den Tod als einen Freund an sein Krankenbett treten.

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

Franz Hartmann, Gründer und Seniorchef der Firma F. Hartmann A.G. Zürich, Kollektivmitglied des SEV, feiert am 2. November 1948 seinen 70. Geburtstag. Der Jubilar hat die Firma aus kleinsten Anfängen im Jahre 1913 durch seine unermüdliche Arbeitskraft zu einem angesehenen Unternehmen des Engroshandels für Elektroinstallationsmaterial entwickelt.

Paul Schröder, Ingenieur, Inhaber der Schröder-Apparate K.-G., Stuttgart, Mitglied des SEV seit 1912 (Freimitglied), feiert am 5. November 1948 in voller Tätigkeit seinen 75. Geburtstag.

Kleine Mitteilungen

Tätigkeitsbericht des Eidgenössischen Amtes für Mass und Gewicht pro 1947

In den Prüfämtern wurden 248 730 Elektrizitätszähler und 46 403 Gasmesser amtlich geprüft. Bei 10 Prüfämtern und 27 Elektrizitätsversorgungen wurden Inspektionen vorgenommen. Ein Eichmeisterkurs wurde durchgeführt. Die Tarife für Eicharbeiten, sowie diejenigen für Elektrizitätsverbrauchsmesser und Gasmesser sind erhöht worden.

Für die Messapparate für Flüssigkeiten wurden neue Vorschriften erlassen.

Zur amtlichen Prüfung und Stempelung wurden 2 Systeme für Elektrizitätszähler, 2 Neigungswaagensysteme, 8 Systeme von Benzinmessapparaten, sowie I Gasmessersystem zuge-

Im Jahre 1947 wurden 2263 Prüfscheine für 7306 Instrumente und Apparate ausgestellt. Auf die verschiedenen Gebiete verteilen sich die Prüfungen wie folgt:

1.	Längenmasse und Längenmessinstrumente				1962
	Gewichte, Waagen, Gasmesser				271
3.	Hohlmasse, Alkoholometer, Aräometer usw,			121	1552
4.	Druckmessgeräte, Tachometer usw				198
5.	Thermometer				2215
6.	Thermoelemente, Widerstandsthermometer	•			31
7.	Photometrische Messungen, Röntgendosim	etri	Э		66
8.	Kapazitäten, Selbstinduktionen, Frequenzm	essa	ppa	rate	301
9.	Widerstände, Kompensatoren, Normaleleme	ente			64
10.	Messwandler, Zähler, Ampere-, Volt-, Watt	met	er u	sw.	305
11.	Magnetische Messungen				328
12.	Diverse Spezialuntersuchungen				13
	77 7 1 1 1 1 1 1 1 1 1 1 1 1 1				

Von den im Berichtsjahr gemachten Anschaffungen seien folgende erwähnt:

Messmaschine Mul 1000 der S. J. P., 100-W-HF-Sender für Messzwecke, Impedanz Messbrücke und Spezial-Kurzwellenempfänger

1 Beckmann-Quarz-Spectrophotometer.

Die Beanspruchung des Amtes mit Prüfaufträgen war auch im vergangenen Jahr eine sehr grosse, wobei besonders der Ausbau der Einrichtungen für Prüfung der Messgeräte für Flugzeuge viel Zeit beanspruchte.

Als Veröffentlichung erschien:

Eine Methode zur Bestimmung von Reflexionszahlen mit Hilfe der Ulbricht'schen Kugel. Bulletin SEV Bd. 38(1947), Nr. 20.

Ferner sei auf das im Zusammenhang mit der wissenschaftlichen Tätigkeit im Amt erschienene Buch: «Der Begriff der Helligkeit», von H. König, Editions du Griffon, Neuchâtel, hingewiesen.

Über die Verteilung der amtlich geprüften Zähler und Gasmesser auf die einzelnen Prüfämter geben die nachstehenden Tabellen Aufschluss:

Elektrizitätsverbrauchsmesser

		Liektr	izitatsv	CLDI	aucii	31116	SSEF				
Nr.											100
1	Amt .										163
2	Landis & (Jyr A(ł., Zug	•_						0	57921
3	Sodeco, Ste			s de	Gene	ve				6	38310
4	EW der S	tadt Ber	rn .								9804
5	Bernische	Kraftwe	rke A.	-G.,	Nidai	1			v :		19430
6	EW der St	adt Zür	ich .							-	13169
7	EW der St EW der St	adt Luz	ern .							•	2057
8	EW der St	tadt Lau	isanne	•							3933
9	EW Genf		a			•		•			15395
10	Siemens E			• 1							1104
11	EW der S	tadt Bas	sel .		•	•					13806
12	EW des K EW Lugar EW La Ch	antons 2	Zürich							•	8331
13	EW Lugar	10 .									2437
14	EW La Ch	aux-de-l	conds							•	1003
15	EW Uster				•	•		٠			493
16	Schweizeri	scher E	lektrote	echni	scher	Ve	rein,	Züi	rich .	•	10920
18	EW der S EW Jona	tadt Sch	affhau	sen	•			•			1946
19	EW Jona	(SG)	· · .	•	•	٠.	٠.				301
20	StGallisel	n-Appen	zellisch	e K	raftw	erke	A	٠.			4198
22	Elektra Ba		Liesta	1.			•				359
23	EW Burgo			•				•		•	442
24	Wasserwer				•		•	•		•	1560
25	EW der S Elektra B	tadt Sol	othurn	٠,			•	•			1258
26			Münche	enste	in			•		•	2647
27	EW Davos	AG.	: 4	•	٠.			•	•	•	267
28	Centralsch			aftw	erke,	Luz	ern	• ,	•	5	10047
29	EW der S	tadt Aa	rau .	141				•			347
30	EW der St EW der St	tadt Wil	nterthu	r.				•		•	3512
31	EW der S	tadt St.	Gallen	•				•	•	٠	2424
32	EW der S	tadt Bie					. 01	. 14		•	2031
33	Lichtwerk	und v	vasserv	erso	rgung	c de	r Sta	lat	Chui		1431
34	EW der St	adt Neu	enburg					•	•	•	2565
36	EW der S EW des K	tadt Ro	rsenaen			6.73				•	527
37	EW des K	antons	Inurga	u, Fi	rauen	tera	* 1	•	•	•	4434
38	EW der G	emeinde	Ruti	ZH)	7:1 /0	d)			•	•	48
39	Gas- und l	Liektrizi	tatswei	K W	11 (5)	ut)				•	285 2616
40	Aargauisch		trizita	tswe:	rk, A	araı	1	•	•	•	2010
41	EW St. Mo Licht- und	oritz .		T-4.	1-1-	•		*		•	776
43	Licht- und	wasse	rwerke	THU	eriake	911	•	•		•	483
44	EW Bellin Eichgenoss	izona	4 . 6 1	71.1.		·	معاده	* 337	· tail-	•	
45			t lur i	Liek	TIZITE	usw	егке,	VV	BIZIK	OH	837
46	EW Locar EW Chias	no .		•	•	•	•	•		٠	624
47	Landeswer	SO .	o Cob		•			•		•	121
48			ia, sen	аап	•	•	•	•	•	•	121
49 50	EW Le Lo Sté Roman	ide d'El	actricit	4 '0	larar	·Mo	ntre	u.v.		•	3582
90	Ste Roman	ide d Ei	ectricit	е, С	татец	9-141 O	шпе		•	•	
									Tota	I	248730
			Co	sme	SSAT						
AT.			Ga	SILLE	3301						
Nr											5
1	Amt .			•	•					•	20072
2	Zürich			•		•		•		•	5100
3	Genf .			•	•	•	•	•		•	6146
4	Luzern			•		41	•	•		•	6930
5 6	Basel . St. Gallen			•		•			•	•	3636
7	La Chaux-	do-Fond		•			•	•	•	•	574
9	La Chaux-	Ge-LOHG				•	*	. 1		•	2788
10	Vevev					•	•		•	•	1152
10	vevey			•	•	•		•			
									Tota	1	46403

Wasserkraft — Ewige Kraft

Ein Schweizer Film

Im Herbst 1946 beschlossen etwa 20 Elektrizitätswerke auf Einladung der «Elektrowirtschaft», die Kosten für einen Do-kumentarfilm über Wasserkraft-Elektrizität aufzubringen. Der Film wurde an der Mitgliederversammlung der «Elektrowirtschaft, am 5. Oktober 1948 in Luzern erstmals gezeigt, und es sei gleich vorweggenommen: Er ist ein wohlgelungenes Werk.

Produzent ist C. G. Duvanel, Genf. Der Service de l'électricité de Genève stellte in der Person von E. P. Roesgen einen technisch geschulten Berater zur Verfügung. Den Fortgang der Arbeiten wurde von einer Kommission überwacht, in der der Service de l'électricité de Genève, die «Ofel», Lausanne, die BKW und die «Elektrowirtschaft» vertreten waren.

Die Drehbuchautoren sind C. G. Duvanel und E. P. Roesgen. Die Texte stammen von René Besson, Genf. Für die Photographie war C. G. Duvanel verantwortlich, während die Tricks im Film, die zur Erklärung wasserwirtschaftlicher Vorgänge nötig waren, durch E. P. Roesgen ausgeführt wurden. Die Musik stammt von Hans Haug.

Der Film zeigt in einfacher Weise die Bedeutung der Wasserkraftnutzung für unser Land. Er erklärt die Erzeugung von elektrischer Energie aus Wasserkraft und weist geschickt auf die Rolle und die Wichtigkeit der Speicherkraftwerke hin. Er betont die bedeutende Aktivität im Kraftwerkbau und wirft instruktive Streiflichter auf die vielfältigen Anwendungsmöglichkeiten der Elektrizität in Industrie, Gewerbe, Landwirtschaft und Heim.

Der Film ist bildmässig sehr schön, er ist spannend, inhaltsreich, klar, und er enthält nichts, was der kritische

Techniker beanstanden könnte; hervorgehoben seien besonders auch die hervorragend instruktiven Trickbilder. Er gehört ohne Zweifel zum Besten, was auf diesem Gebiet schon geleistet wurde.

Damit steht nun den Elektrizitätswerken, Schulen und anderen Stellen, die das Verständnis für Wasserkraft-Elektrizität fördern wollen, in deutscher und französischer Sprache ein hohen Ansprüchen genügender Film zur Verfügung. Die Länge beträgt rund 1000 m, das Format 35 mm. Für die Beiprogramme der Kinotheater wurde je eine deutsch- und französischsprachige Kurzausgabe hergestellt.

Wir zweifeln nicht daran, dass der Film Erfolg haben wird

Briefe an die Redaktion - Lettres à la rédaction

«Versuchslokomotive für Einphasen-Wechselstrom von 50 Hz»

(Bull, SEV Bd. 39(1948), Nr. 15, S. 481.)

Zuschrift:

621,335,2,025,1

Herr P. Sztrókay, Ingenieur der Ganz & Co., Elektrizitäts, Maschinen-, Waggon- und Schiffbau A.-G., Budapest, erinnert im Zusammenhang mit dem zitierten Artikel daran, dass in Ungarn bereits seit dem Jahre 1933 der Vollbahnbetrieb der 190 km langen Linie Budapest—Hegyeshalom (ungarische Teilstrecke der Linie Budapest—Wien) mittels elektrischen Lokomotiven von 50 Hz abgewickelt wird. Die ungarischen Lokomotiven sind allerdings keine Lokomotiven mit 50-Hz-Motoren, sondern eine Art von Umformerlokomotiven und damit grundverschieden von dem von uns erwähnten Prototyp. Da mit diesem Traktionssystem während 15 Jahren befriedigende Ergebnisse erzielt wurden, dürfte die Weiterentwicklung dieser Lokomotive in Fachkreisen Interesse erwecken. Wir entnehmen dem Schreiben folgendes:

Die Anforderungen an Geschwindigkeit und Lokomotivleistung sind in den letzten Jahren stark angewachsen, wobei das Dienstgewicht möglichst vermindert werden sollte; es erwies sich also als nötig, die ursprüngliche Lokomotive umzukonstruieren. Bei den neuen Lokomotiven wird ebenso, wie bei den alten, die zugeführte Einphasenenergie in einem Phasenumformer auf Drehstrom umgeformt und den Triebmotoren (normale Induktionsmotoren) zugeführt. Zur Geschwindigkeitsregulierung wird aber statt des Polzahlwechsels der alten Lokomotiven das Prinzip des Frequenzwechsels eingeführt, was den Einzelachsantrieb ermöglicht. Die neuen Lokomotiven wurden für eine Maximalgeschwindigkeit von 125 km/h konstruiert. Ihr Gewicht ist bei einer Stundenleistung von 2350 kW und einer Maximalleistung von 3100 kW auf 85 t vorgesehen. Zur Beurteilung des spezifischen Gewichtes der Lokomotive muss bemerkt werden, dass diese Lokomotiven ihre Stunden- und Maximalleistung bis zu der maximalen Geschwindigkeit ausüben können und dass sie damit eine ausgedehntere Verwendbarkeit besitzen, als die Lokomotiven mit Kommutatormotoren gleicher Nennleistung; diese weisen bei hohen Geschwindigkeiten im allgemeinen eine stark abfallende Leistungscharakteristik auf. Man darf daher die neuen Lokomotiven nur mit Kommutatorlokomotiven bedeutend höherer Nennleistung vergleichen. Beim Vergleich wird ersichtlich, dass die 50-Hz-Phasenumformer-Lokomotiven in ihrer neuesten Entwicklung sogar die leichtesten elektrischen Lokomotiven von 16 % Hz praktisch erreicht haben. Die ersten Lokomotiven des neuen ungarischen Types stehen in den Werkstätten der Firma Ganz und der ungarischen staatlichen Lokomotivwerke in Bau.

Antwort:

Zu dieser Zuschrift teilt die Maschinenfabrik Örlikon mit:

Leistungsvergleiche zwischen Lokomotiven grundverschiedener Systeme (Induktionsmotor gegen Kollektormotor) sind irreführend. Die Leistungscharakteristik eines Motors mit hoher Überlastbarkeit während der Anfahrt und unbedeutend abfallender Leistung bei Maximalgeschwindigkeit lässt sich nicht mit derjenigen eines überlastbeschränkten Motors mit wenigen festen Dauergeschwindigkeiten, dafür aber voller Leistung bei Maximalgeschwindigkeiten direkt vergleichen. Ferner ist hohe Anfahrtzugkraft betrieblich weit wichtiger als hohe Zugkraft bei den Höchstgeschwindigkeiten.

Bei Gewichtsvergleich sind allfällige Sonderbedingungen zu berücksichtigen. So ist die im Bau befindliche Co-Co-Lokomotive für die SNCF auch für Gleichstrombetrieb 1500 Volt zu bauen, was eine wesentliche Gewichtserhöhung ergibt. Das ungarische System schliesst eine solche Lösung zum vorneherein aus. Heute ist die Maschinenfabrik Örlikon in der Lage, auf Grund des heutigen Standes der Entwicklung Lokomotiven für ausschliesslich Einphasenstrom mit 50 Per./s von 2350 kW Stundenleistung mit wesentlich geringerem Gewicht zu bauen, als dies bei der oben erwähnten ungarischen Lokomotive der Fall ist.

Estampilles d'essai et procès-verbaux d'essai de l'ASE

I. Marque de qualité

B. Pour interrupteurs, prises de courant, coupecircuit à fusibles, boîtes de jonction, transformateurs de faible puissance, douilles de lampes, condensateurs.

pour conducteurs isolés.

Transformateurs de faible puissance A partir du 1er octobre 1948

Fr. Knobel & Cie., Ennenda.

Marque de Fabrique:

Appareils auxiliaires pour lampes fluorescentes.

Utilisation: Montage à demeure dans les locaux secs ou temporairement humides.

Exécution: Appareil auxiliaire sans coupe-circuit thermique. Enroulement en fil de cuivre émaillé, base en matière isolante moulée, ou en tôle. Couvercle en tôle; livrable également sans couvercle pour montage incorporé.

Exécution spéciale avec socle pour montage d'un starter au néon.

Pour lampes de 14 ou 20, 15, 25, 30, 32 et 40 W.

Tension: 110...250 V, 50 Hz.

Exécution: Appareil auxiliaire avec coupe-circuit thermique et starter système «Knobel». Enroulement en fil de cuivre émaillé, base en matière isolante moulée. Couvercle en tôle; livrable également sans couvercle pour montage incorporé.

Pour lampes de 14 ou 20, 15, 25, 30, 32 et 40 W.

Tension: 110...250 V, 50 Hz.

Condensateurs

A partir du 15 octobre 1948

Condensateurs Fribourg S. A., Fribourg.

Marque de fabrique:

Condensateurs $\cos q$:

FHC 6400/A et B $-4\,\mu F$ 220 V, 60 °C.

IV. Procès-verbaux d'essai

[Voir Bull. ASE t. 29(1938), No 16, p. 449.]

Valable jusqu'à fin septembre 1951.

P. Nº 827.

Objet:

Chancelière

Procès-verbal d'essai ASE: O. N° 21 893a, du 11 sept. 1948.
 Commettant: Fabriques d'Appareils Solis, Dr. W. Schaufelberger & Cie, Zurich.

Inscriptions:

Best. Nr. 653 Volt 220 Fuss-Sack Nicht zudecken! Nicht unbeaufsichtigt unter Strom lassen! Fab. Nr. 26901 Watt 40 Chancelière Ne pas recouvrir! Ne pas laisser enclenché sans surveillance

Description:

Chancelière selon figure, en étoffe, avec corps de chauffe. Cordons chauffants en fil de résistance enroulé sur amiante et recouvert d'une guipure de cette même matière, le tout

cousu entre deux toiles. Limiteur de température. Cordon rond à deux conducteurs fixé à la chancelière, avec fiche.

Cette chancelière a subi avec succès les essais relatifs à la sécurité. Elle est conforme au «Règlement pour l'octroi du signe distinctif antiparasite» (Publ. N° 117 f). Utilisation: dans les locaux secs.

Valable jusqu'à fin septembre 1951.

P. N° 828.

Objet:

Thermostat de cheminée

Procès-verbal d'essai ASE: O. Nº 22 682, du 15 sept. 1948. Commettant: S. A. Honeywell, Mühlebachstrasse 172, Zurich.

 $D\'{e}signation$:

Тур С 40 А

Inscriptions:

AUTOMATIC CONTROLS

 $\prod_{\mathbf{F}} \mathbf{P}$

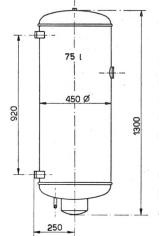
PYROSTAT
REG. U.S. PATENT OFFICE
TYPE C 40 A 1×1 MADE IN U.S. A
110 VOLTS 1/4 AMP. ~ 220 Volts 1/8 AMP. ~
MINNEAPOLIS - HONEYWELL
REGULATOR COMPANY MINNEAPOLIS, MINN.

Description:

Thermostat de cheminée, selon figure, avec déclencheur unipolaire à contacts en argent. Pièces de contact montées sur plaque en matière isolante moulée. Boîtier en tôle d'acier, avec vis de mise à la terre.

Ce thermostat de cheminée a subi avec succès des essais analogues à ceux prévus par les «Prescriptions pour interrupteurs» (Publ. N° 119 f). Utilisation: dans les locaux secs ou temporairement humides.

Valable jusqu'à fin septembre 1951.


P. Nº 829.

Objet: Chauffe-eau à accumulation

Procès-verbal d'essai ASE: O. Nº 22 393a, du 16 sept. 1948. Commettant: Vital Meyer, Hochdorf.

Inscriptions:

Vital - Meyer Zentralheizungen Sanit, Installationen Hochdorf Spannung 380 V Leistung 0,9 kW Betriebsdruck 6 at. Prüfdruck 12 at. Inhalt 75 Lt. Fabr. No. Fe 20. 7. 48

Description:

Chauffe-eau à accumulation pour montage mural, selon croquis. Un corps de chauffe, un régulateur de température avec dispositif de sûreté et un thermomètre à aiguille.

Ce chauffe-eau est conforme aux «Prescriptions et Règles pour chauffe-eau électrique à accumulation» (Publ. N° 145 f).

Valable jusqu'à fin août 1951.

P. N° 830.

SEV 15395

(Remplace le procès-verbal P. N° 89.)

Objets: Tubes isolants, ployables à la main

Procès verbal d'essai ASE: O. Nº 21 973/I, du 16 août 1948.

Commettant: Fabriques de tuyaux Rüschlikon S. A.,

Rüschlikon.

Désignation :

Tubes isolants «Kopex» de 9, 11, 13,5, 16, 23, 29 et 36 mm de diamètre.

Description:

Les tubes isolants ployables à la main se composent de deux rubans de papier imprégné et d'un feuillard plombé, enroulés en hélice, de façon à obtenir un double recouvrement. Ces tubes sont pourvus d'une rainure hélicoïdale à double pas, en forme de filet carré, courant en sens inverse du sens d'enroulement du feuillard.

Utilisation:

Pour les mêmes applications que les tubes isolants armés. En cas d'introduction dans des équerres ou des tés, les extrémités des tubes «Kopex» doivent être munies d'entrées en matière isolante. Valable jusqu'à fin août 1948.

P. Nº 831.

Objets: Deux chauffe-eau à accumulation

Procès-verbal d'essai ASE: O. Nº 22 057/I, du 20 sept. 1948. Commettant: La Ménagère S.A., Morat.

Inscriptions:

& Ménagère

La Ménagère S.	A. Mora	t-Suisse
Prüf-Nr.	1	2
App.No.	4800374	4800375
Туре	CRPT FE	CRPT FE
Ltr.	30	100
V	220 ~	380 ~
W	400	1300
A	1,8	3,4
Pression essai Prüfdruck	At. 12	12
Pression service Betriebsdruck	At. 6	6

Description:

Chauffe-eau à accumulation pour montage mural, selon croquis. Un, resp. deux corps de chauffe et un régulateur de température avec dispositif de sûreté. Le chauffe-eau N° 2 est muni d'un thermomètre à aiguille.

Chauffe-e	eau No 1	2
Cote a	880 mm	1360 mm
Cote b	$400 \mathbf{mm}$	$540 \mathbf{mm}$
Cote c	500 mm	700 mm
Cote d	245 mm	290 mm

Ces chauffe-eau à accumulation sont conformes aux «Prescriptions et Règles pour chauffe-eau électriques à accumulation» (Publ. N° 145 f).

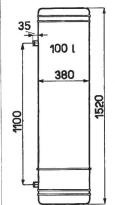
Valable jusqu'à fin août 1951.

P. Nº 832.

Objet: Chauffe-eau à accumulation

Procès-verbal d'essai ASE: O. N° 22 057/II, du 20 sept. 1948. Commettant: La Ménagère S. A., Morat.

Inscriptions:


& M<u>énagèr</u>e

La Ménagère S. A. Morat-Suisse App. No. 4800376 Type CCPT FE 100 Ltr.

380 V ~ 1300 W 3,4 A

Pression essai 12 At. P

At. Pression service 6 At. Betriebsdruck 6 At.

Description:

Chauffe-eau à accumulation pour montage mural, selon croquis, comprenant deux réservoirs cylindriques juxtaposés. Enveloppe extérieure rectangulaire de 380×615 mm. Deux corps de chauffe, un régulateur de température avec dispositif de sûreté et un thermomètre à aiguille.

Ce chauffe-eau est conforme aux «Prescriptions et Règles pour chauffe-eau électriques à accumulation (Publ. N° 145 f).

Communications des organes des Associations

SEV 15333

Les articles paraissant sous cette rubrique sont, sauf indication contraire, des communiqués officiels des organes de l'ASE et de l'UCS

Mise en vigueur de modifications et compléments aux Prescriptions de l'ASE sur les installations intérieures

Bull. ASE t. 39 (1948), n° 20, p. 697 Complément

Concernant la mise en vigueur immédiate des modifications et compléments mentionnés ci-dessus, un délai de transition jusqu'au 30 septembre 1949, est accordé, aux termes du § 309 des Prescriptions de l'ASE sur les installations intérieures.

Publication No 172, VAF, en anglais

La Publication N° 172 (Prescriptions concernant la sécurité et la protection des appareils électriques de transmission et de reproduction du son et de l'image et des appareils de télécommunication et de télécommande) vient d'être traduite en anglais. Cette édition est en vente auprès de l'Administration commune de l'ASE et de l'UCS, 301, Seefeldstrasse, Zurich 8, au prix de fr. 3.— (pour membres), et de fr. 4.— (pour non-membres).

Vorort

de l'Union suisse du commerce et de l'industrie

Nos membres peuvent prendre connaissance des publications suivantes du Vorort de l'Union suisse du commerce et de l'industrie:

Revision der Verordnung über die Tara.

Trafic des marchandises et des paiements avec l'Egypte.

Négociations économiques hispano-suisse.

Trafic des marchandises avec la Belgique et le Luxembourg, y compris le Congo belge.

Neuordnung der schweizerischen Gütertarife.

Echange de marchandises avec La France, négociations au sujet des contingents.

Accord relatif à l'échange des marchandises et au règlement des paiements avec la République tchécoslovaque, du 25 septembre 1948.

Accord avec la République populaire fédérative de Yougoslavie, du 27 septembre 1948.

Echange de marchandises avec le Danemark.

Bulletin de l'Association Suisse des Electriciens, édité par l'Association Suisse des Electriciens comme organe commun de l'Association Suisse des Electriciens et de l'Union des Centrales Suisses d'électricité. — Rédaction: Secrétariat de l'Association Suisse des Electriciens, 301, Seefeldstrasse, Zurich 8, téléphone (051) 34 12 12, compte de chèques postaux VIII 6133, adresse télégraphique Elektroverein Zurich. — La reproduction du texte ou des figures n'est autorisée que d'entente avec la Rédaction et avec l'indication de la source. — Le Bulletin de l'ASE paraît tous les 2 semaines en allemand et en français; en outre, un «annuaire» paraît au début de chaque année. — Les communications concernant le texte sont à adresser à la Rédaction, celles concernant les annonces à l'Administration. — Administration: case postale Hauptpost, Zurich 1, téléphone (051) 23 77 44, compte de chèques postaux VIII 8481. — Abonnement: Tous les membres reçoivent gratuitement un exemplaire du Bulletin de l'ASE (renseignements auprès du Secrétariat de l'ASE). Prix de l'abonnement pour non-membres en Suisse fr. 36.— par an, fr. 22.— pour six mois, à l'étranger fr. 48.— par an, fr. 28.— pour six mois. Adresser les commandes d'abonnements à l'Administration. Prix de numéros isolés en Suisse fr. 3.—, à l'étranger fr. 3.50.